
PQV-Mobile: A Combined Pruning and Quantization Toolkit to
Optimize Vision Transformers for Mobile Applications

Kshitij Bhardwaj 1

Abstract
While Vision Transformers (ViTs) are extremely
effective at computer vision tasks and are replac-
ing convolutional neural networks as the new
state-of-the-art, they are complex and memory-
intensive models. In order to effectively run these
models on resource-constrained mobile/edge sys-
tems, there is a need to not only compress these
models but also to optimize them and convert
them into deployment-friendly formats. To this
end, this paper presents a combined pruning and
quantization tool, called PQV-Mobile, to optimize
vision transformers for mobile applications. The
tool is able to support different types of struc-
tured pruning based on magnitude importance,
Taylor importance, and Hessian importance. It
also supports quantization from FP32 to FP16 and
int8, targeting different mobile hardware back-
ends. We demonstrate the capabilities of our tool
and show important latency-memory-accuracy
trade-offs for different amounts of pruning and
int8 quantization with Facebook Data Efficient
Image Transformer (DeiT) models. Our results
show that even pruning a DeiT model by 9.375%
and quantizing it to int8 from FP32 followed by
optimizing for mobile applications, we find a la-
tency reduction by 7.18× with a small accuracy
loss of 2.24%. We plan to open-source this tool.

1. Introduction
Vision Transformers (ViTs) (Kolesnikov et al.) have recently
emerged as a competitive alternative to Convolutional Neu-
ral Networks (CNNs) that are currently state-of-the-art in
different image recognition computer vision tasks. ViTs
have shown to outperform the CNNs by almost 4× in terms
of computational efficiency and accuracy (VISO). Addition-

1Lawrence Livermore National Lab. Correspondence to: Kshi-
tij Bhardwaj <Bhardwaj2@llnl.gov>.

Accepted in International Conference on Machine Learning, ES-
FOMO Workshop, Honolulu, Hawaii, USA. 2024. Copyright 2024
by the author(s).

ally, ViTs have been shown to be more robust than CNNs
and can be easily trained on smaller datasets.

While ViTs are extremely effective at computer vision tasks,
they are complex and memory-intensive models. For exam-
ple, Facebook’s Data Efficient Image Transformers (DeiT)
take 331MB memory and are therefore not suitable for
resource-constrained edge systems such as for mobile ap-
plications. Previous research has focused on pruning (Fang
et al., 2023) and quantizing (Li & Gu, 2023) ViTs, but
mostly separately and they do not target mobile applications
where deployment of such models is challenging and re-
quires converting these models to mobile hardware friendly
lightweight and optimized formats.

This paper presents a combined pruning and quantization
tool, called PQV-Mobile, to optimize vision transformers
for mobile applications. The tool is able to support dif-
ferent types of structured pruning based on magnitude im-
portance, Taylor importance, and Hessian importance. It
also supports quantization from FP32 to FP16 and int8,
tailored towards several hardware backends, such as x86,
FBGEMM (Facebook General Matrix Multiplication (Face-
book FBGEMM)), QNNPACK (Quantized Neural Network
Package (QNNPACK)), and ONEDNN (Intel’s ONEDNN).
The pruned and quantized models are optimized for mobile
applications and converted to mobile-friendly lightweight
formats. We demonstrate the capabilities of our tool and
show important latency-memory-accuracy trade-offs for dif-
ferent amounts of pruning, int8 quantization, and hardware
backends with two types of Facebook DeiT models.

Our results show that even pruning a DeiT model by 9.375%
and quantizing it to int8 from FP32, we find a latency reduc-
tion by 7.18× with a small accuracy loss of 2.24%. All of
our compared models are optimized for mobile applications
and converted into deployment friendly lightweight formats.

2. PQV-Mobile Tool
Figure 1 shows our PQV-Mobile Tool flow. It supports
different kinds of post-training pruning strategies such as
L1, Taylor, etc. We found that the pruned model shows a
major accuracy drop and therefore needs to be finetuned.
The pruned and finetuned model is then input to a quanti-

1



PQV-Mobile: A Combined Pruning and Quantization Toolkit to Optimize Vision Transformers for Mobile Applications

Figure 1. PQV-Mobile tool flow

zation engine, which can be tailored towards various hard-
ware backends, and optimized for mobile applications. Our
results showed that there is a small accuracy drop after
quantization and therefore we did not perform any further
finetuning of the quantized model. Currently, our tool can
handle any of the HuggingFace ViTs from the TIMM library
(Pytorch Image Models) (TIMM). This section describes
these steps in more details.

2.1. Pruning method

PQV-Mobile supports several pruning strategies, corre-
sponding to structured pruning. In structured pruning,
a block is removed, which can be a neuron in a fully-
connected layer, a channel of filter in a convolutional layer,
or a self-attention head in a Transformer. An alternative
approach is unstructured pruning (also called magnitude
pruning) where some of the parameters or weights with
smaller values are converted to zeroes. PQV-Mobile targets
structured pruning methods as they do not rely on specific
AI accelerators or software to reduce memory consumption
and computational costs, thereby finding a wider domain of
applications in practice (Fang et al., 2023).

In structural pruning, a ‘Group’ is defined as the minimal
unit that can be removed. Many of these groups consist
of multiple layers which can be interdependent and need

to be pruned together so as to maintain the integrity of the
resulting pruned networks. We follow the approach of (Fang
et al., 2023) that uses a dependency graph to model these
dependencies and find the right groupings for parameter
pruning. Similar to (Fang et al., 2023), PQV-Mobile accepts
a group (i.e., an Attention block of a ViT with Linear layers)
as inputs, and returns a 1-D tensor with the same length as
the number of channels. All groups must be pruned simulta-
neously and thus their importance should be accumulated
across channel groups. PQV-Mobile supports the following
groupings:

Magnitude importance based grouping. In this case, L1-
or L2-norm regularization term is applied to the loss func-
tion which penalizes non-zero parameters. If the value
of a connection is less than a threshold, the connection is
dropped (Anwar et al., 2017).

Taylor importance based grouping. The importance is
calculated as the squared change in loss induced by remov-
ing a specific filter from the network. This importance is
approximated with a Taylor expansion which allows for
faster computation from parameter gradients, even for larger
networks (Molchanov et al., 2019).

Hessian importance based grouping. In this method the
importance is computed using a fast second-order metric
to find insensitive parameters in a model. In particular, the
average Hessian trace is used to weight the magnitude of the
parameters; parameters with large second-order sensitivity
remain unpruned, and those with relatively small sensitivity
are pruned (Yu et al., 2022).

2.2. Quantization method

PQV-Mobile currently supports post-training quantization
of both weights and activations from FP32 to FP16 and int8.
We plan to extend this to int4 as future work. The follow-
ing steps are performed for quantization using quantization
libraries of Pytorch:

• Quantize models for a specific backend: We first cre-
ate a quantization engine based on a backend. The
supported backends are: x86, FBGEMM (Facebook
General Matrix Multiplication (Facebook FBGEMM)),
QNNPACK (Quantized Neural Network Package (QN-
NPACK)), and ONEDNN (Intel’s ONEDNN). The gen-
erated engine is then used to quantize the model using
either static or dynamic quantization (Pytorch Quanti-
zation).

• Convert Pytorch models to Torchscript format: Python
models are inefficient to run during deployment. There-
fore, we export the Pytorch models to production en-
vironments through Torchscript (Pytorch Torchscript),
which is an easy way to create serializable and optimiz-

2



PQV-Mobile: A Combined Pruning and Quantization Toolkit to Optimize Vision Transformers for Mobile Applications

Figure 2. Latency and memory results for deit base patch16 model
with varying pruning and quantization. All models are scripted,
mobile optimized, and converted to Pytorch Lite format.

able models.

• Use Pytorch’s mobile optimizer to optimize the quan-
tized and scripted model (Pytorch Mobile Optimizer)
for mobile applications.

• Use Pytorch’s Lite Interpreter to create a deployable
and light version of the mobile optimized model (Py-
torch Lite Interpreter).

3. Experimental Results
In this section, we demonstrate the effectiveness of PQV-
Mobile to prune and quantize Facebook’s Data Efficient Im-
age Transformers (DeiT). We evaluate the models’ latency-
memory-accuracy trade-offs. The structured pruning im-
portance used in this study is based on Taylor’s expansion
(as shown later, it performs the best in terms of accuracy).
The pruned model is then finetuned for 60 epochs (using
distributed training on 4 GPUs) at a learning rate of 0.00015
with a batch size of 64. The finetuned pruned models are
then quantized for the x86 backend engine and then con-
verted to optimized and Lite format. We use the ImageNet
dataset (IMAGENET) for image classification tasks and run
the models on Intel Xeon ES2695 at 2.3 GHz. Pytorch-2.0.0
is used in all our experiments. Please note that our experi-
ments are only meant to demonstrate the capabilities of our
tool and not to achieve the state-of-the-art accuracy. All
comparisons are performed on scripted, mobile optimized,
and Pytorch Lite format models.

Figure 2 shows latency/image and memory for
deit base patch16 model after varying degrees of
pruning and quantizing the model from FP32 to int8.
Quantizing the original dense model to int8 leads to 6.47×
lower latency as the Pytorch Lite interpreter is more
effective with quantized models than FP32 models. Pruning
the quantized model by 9.375% leads to further 9.8%
lower latency (an overall 7.14× latency reduction over the
original dense/FP32 Lite model). Increasing the amount
of pruning to 25% and 50% shows further improvements
in latency by 27.9% and 45.4%, respectively. The tool can
also be used to perform a detailed profiling of the latency of

the mobile optimized and Lite model as shown in Figure 3,
where we can identify the bottleneck based on the time
spent on the various operations (as depicted by the Name of
the process). In terms of accuracy, we found it to be similar
across the different backends.

While pruning the model to 50% leads to significant im-
provements in latency and memory, Figure 4 shows that the
accuracy degradation is considerable. Pruning the original
model by 9.375% shows 1.25% lower accuracy. Further
quantizing this model leads to an additional 0.99% loss in
accuracy. While 25% pruned int8 model achieved a speedup
of 27.9% over 9.375% pruned int8 model, its accuracy loss
is 3.41%. These results demonstrate the importance of per-
forming latency-memory-accuracy trade-offs which can be
seamlessly performed using our PQV-Mobile tool.

Figure 5 shows how the different types of structured pruning
groupings affect accuracy and motivates why we chose Tay-
lor pruning for all of our experiments. We prune the dense
model by 9.375%, finetune it, and also quantize the fine-
tuned pruned model to int8 for this experiment. Although
there is a very small change in accuracy between Taylor,
L1-norm, and Hessian-based pruning, Taylor outperforms
the other methods.

We further compare the latency and accuracy of
pruning and quantizing deit base patch16 model with
deit3 medium patch16 model (Figure 6). The original
dense FP32 accuracies for the two models are 80.79% and
82.19%, respectively. The latter is a smaller model with
38.85M parameters compared to 86.56M parameters in the
former. As evident, the models show similar accuracy when
pruned to the same levels (9.375% or 25%) at int8 quantiza-
tion. However, deit3 medium patch16 model shows latency
improvements by 18.65% and 13.55%, respectively over
deit base patch16 model.

Finally, as shown in Figure 7, we also evaluate the latency
for different int8 quantization hardware backends. We use
the 9.375% pruned deit3 medium patch16 model for this
experiment. We find that x86 and FBGEMM backends to be
the best with FBGEMM slightly outperforming x86. These
results are expected as we are running on an x86 machine
with Advanced Vector Extensions (AVX) enabled, which
are used for fast path executions for both x86 and FBGEMM
backends.

4. Conclusion and Future Work
This paper presents a combined pruning and quantization
tool, called PQV-Mobile, to optimize vision transformers
for mobile applications. The tool is able to support different
types of structured pruning based on magnitude importance,
Taylor importance, and Hessian importance. It also supports
quantization from FP32 to FP16 and int8, targeting different

3



PQV-Mobile: A Combined Pruning and Quantization Toolkit to Optimize Vision Transformers for Mobile Applications

Figure 3. Latency profile for deit3 medium patch16 int8 model at 9.375% pruning level for x86 backend. The model is scripted, mobile
optimized, and converted to Pytorch Lite format.

Figure 4. Accuracy results for deit base patch16 model with vary-
ing pruning and quantization. All models are scripted, mobile
optimized, and converted to Pytorch Lite format.

Figure 5. Accuracy results for deit base patch16 model with differ-
ent structured pruning groupings (for both FP32 and int8 models).
All models are scripted, mobile optimized, and converted to Py-
torch Lite format.

mobile hardware backends. We demonstrate the capabilities
of our tool and show important latency-memory-accuracy
trade-offs for different amounts of pruning and int8 quanti-
zation with two types of Facebook DeiT models.

As future work, we plan to extend PQV-Mobile to int4
quantization. Additionally, we will extend this tool to target
large language models as well.

5. Acknowledgements
This work was performed under the auspices of the U.S.
Department of Energy by LLNL under contract DE-AC52-
07NA27344 (LLNL-CONF-865054).

Figure 6. Latency and accuracy results for deit base patch16
model vs. deit3 medium patch16 model with varying pruning
levels. All models are scripted, mobile optimized, and converted
to Pytorch Lite format.

Figure 7. Latency results for deit3 medium patch16 int8 model
at 9.375% pruning level for different hardware backends. All
models are scripted, mobile optimized, and converted to Pytorch
Lite format.

References
Anwar, S., Hwang, K., and Sung, W. Structured pruning

of deep convolutional neural networks. ACM Journal on
Emerging Technologies in Computing Systems (JETC),
13(3):1–18, 2017.

Facebook FBGEMM. FBGEMM and FBGEMM GPU Doc-
umentation Homepage. https://pytorch.org/
FBGEMM/.

4

https://pytorch.org/FBGEMM/
https://pytorch.org/FBGEMM/


PQV-Mobile: A Combined Pruning and Quantization Toolkit to Optimize Vision Transformers for Mobile Applications

Fang, G., Ma, X., Song, M., Mi, M. B., and Wang, X. Dep-
graph: Towards any structural pruning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

IMAGENET. IMAGENET. https://www.
image-net.org/.

Intel’s ONEDNN. oneAPI Deep Neural Network Library.
https://github.com/oneapi-src/oneDNN.

Kolesnikov, A., Dosovitskiy, A., Weissenborn, D., Heigold,
G., Uszkoreit, J., Beyer, L., Minderer, M., Dehghani, M.,
Houlsby, N., Gelly, S., et al. An image is worth 16× 16
words: Transformers for image recognition at scale. arxiv
2021. arXiv preprint arXiv:2010.11929.

Li, Z. and Gu, Q. I-vit: integer-only quantization for effi-
cient vision transformer inference. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 17065–17075, 2023.

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., and Kautz,
J. Importance estimation for neural network pruning. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11264–11272, 2019.

Pytorch Lite Interpreter. Introduce lite inter-
preter workflow in Android and iOS. https:
//pytorch.org/tutorials/prototype/
lite_interpreter.html.

Pytorch Mobile Optimizer. torch.utils.mobile optimizer.
https://pytorch.org/docs/stable/
mobile_optimizer.html.

Pytorch Quantization. Quantization. https://
pytorch.org/docs/stable/quantization.
html.

Pytorch Torchscript. Torchscript. https://pytorch.
org/docs/stable/jit.html.

QNNPACK. QNNPACK. https://github.com/
pytorch/QNNPACK.

TIMM. Pytorch Image Models. https://github.
com/huggingface/pytorch-image-models.

VISO. Vision Transformers (ViT) in
Image Recognition – 2024 Guide.
https://viso.ai/deep-learning/
vision-transformer-vit/.

Yu, S., Yao, Z., Gholami, A., Dong, Z., Kim, S., Mahoney,
M. W., and Keutzer, K. Hessian-aware pruning and op-
timal neural implant. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pp. 3880–3891, 2022.

5

https://www.image-net.org/
https://www.image-net.org/
https://github.com/oneapi-src/oneDNN
https://pytorch.org/tutorials/prototype/lite_interpreter.html
https://pytorch.org/tutorials/prototype/lite_interpreter.html
https://pytorch.org/tutorials/prototype/lite_interpreter.html
https://pytorch.org/docs/stable/mobile_optimizer.html
https://pytorch.org/docs/stable/mobile_optimizer.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html
https://github.com/pytorch/QNNPACK
https://github.com/pytorch/QNNPACK
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
https://viso.ai/deep-learning/vision-transformer-vit/
https://viso.ai/deep-learning/vision-transformer-vit/

