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ABSTRACT

Deep neural network-based PDE solvers have shown remarkable promise for
tackling high-dimensional partial differential equations, yet their training dynam-
ics and error behavior are not well understood. This paper develops a unified
continuous-time framework based on stochastic differential equations to analyze
the noisy regularized stochastic gradient descent algorithm when applied to deep
PDE solvers. Our approach establishes weak error between this algorithm and its
continuous approximation, and provides new asymptotic error characterizations
via invariant measures. Importantly, we overcome the restrictive global Lipschitz
continuity loss gradient, making our theory more applicable to practical deep net-
works. Specifically, our study focuses on general second-order elliptic PDEs;
however, the proposed framework is not limited to this specific form and can be
extended in principle to broader classes of PDEs. Furthermore, we conduct sys-
tematic experiments to reveal how stochasticity affects solution accuracy and the
stability domains of optimizers. Our results indicate that stochasticity can have
varying impacts on the stability of solutions near different local minima; there-
fore, in practical training, strategies should be dynamically adjusted according to
the local optimization landscape to enhance robustness and stability of neural PDE
solvers.

1 INTRODUCTION

Partial differential equations are essential tools for modeling phenomena across physics, biology,
and engineering, yet classical numerical methods like finite element and finite difference schemes
often struggle with the curse of dimensionality in high-dimensional settings. Recently, deep neu-
ral networks (DNNs) have emerged as powerful alternatives for approximating PDE solutions, with
physics-informed neural networks (Sirignano & Spiliopoulos,, 2018 |Raissi et al.,|2019)) drawing par-
ticular interest by embedding the governing equations directly into the loss function. Other notable
approaches include the Deep Ritz method (Yu & El[2018)), which leverages the variational formula-
tion of PDEs, and the Weak Adversarial Networks framework (Zang et al.,2020), which utilizes the
weak form to effectively address complex boundary conditions and irregular domains.

However, theoretical understandings of training dynamics for these PDE solvers remains elusive.
This challenge arises because the training process, especially under stochastic optimization algo-
rithms, is profoundly influenced by noise and the high dimensionality of the parameter space, both
of which significantly affect convergence and stability (Ge et al., |2015; Keskar et al.l 2022)). To
inform our understanding of these dynamics, we take inspiration from theoretical developments in
supervised learning, where the analysis of training behavior is more advanced. In recent years, a
popular approach in supervised learning has been to employ continuous-time models to study op-
timization dynamics (Dai & Zhu, 2020; |Li et al., 2017). These models, however, often depend on
stringent assumptions such as global Lipschitz continuity of the loss function, which are typically
valid only for linear networks, such as random feature models. Furthermore, loss functions in PDE
solvers are considerably more complex than those in supervised learning, further limiting the ap-
plicability of existing continuum theories. As a result, prior continuous-time models offer, at best,
heuristic guidance, underscoring the need for new theoretical frameworks tailored to the unique
complexities of neural network-based PDE solvers.
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In this paper, we develop a continuous-time framework to model the local training dynamics of
deep neural network—based PDE solvers, using PINNs as a representative case. This framework
dispenses with global Lipschitz assumptions and offers a new perspective on error estimation via
continuous-time modeling. We also conduct systematic experiments to examine how stochasticity
in optimization algorithms influences training dynamics and performance.

1.1 RELATED WORKS

Continuous-time modeling of stochastic optimization methods. Continuous-time formulations
of stochastic gradient descent have emerged as a powerful tool for analyzing the training dynamics
of neural networks. By approximating SGD by stochastic differential equations, researchers have
gained deeper insights into optimization trajectories and convergence behavior. Notably, (Chaudhari
& Soatto| (2018) and |L1 et al.| (2017) established SDE-based analyses with weak convergence re-
sults for supervised learning. Building on this, Hu et al.| (2019) explored diffusion approximations
for non-convex SGD, revealing the essential role of stochasticity in escaping unstable stationary
points. Further, Dai & Zhu| (2020) employed the Fokker-Planck equation to show how batch size
can influence the sharpness of minima, while Smith & Le|(2018)) linked batch size to generalization
from a Bayesian perspective. Continuous-time models have also been developed for dropout algo-
rithm (Zhang et al., [2024). However, most existing studies are limited to supervised learning, where
loss landscapes are typically less complex and more structured than those in PDE solvers.

Training theory and error estimation in DNN-based PDE solvers. Understanding the training
dynamics and stability of DNN-based PDE solvers remains challenging, largely due to the stochas-
ticity of gradient-based optimization in high-dimensional parameter spaces. Early works such as
Mei et al.| (2018) and |Chizat et al| (2019) analyzed mean-field dynamics and highlighted the role
of noise in shaping the optimization landscape, while |Ge et al.| (2015)) examined the difficulty of
escaping saddle points in nonconvex settings. In parallel, substantial progress has been made on
error estimation. For example, De Ryck et al.| (2024) quantified approximation and optimization
errors for physics-informed neural networks, and [Shin et al.| (2020) established convergence results
for PINNs. More recently,|Zhao & Luo (2025) proved convergence for a broad class of DNN-based
PDE solvers for nonlinear PDEs, and [Jiao et al| (2025) presented a comprehensive error analysis
of overparameterized three-layer networks trained with projected gradient descent in the deep Ritz
method. Most of these results study error through the lenses of generalization and optimization,
emphasizing approximation capacity and the optimization gap.

1.2  OUR CONTRIBUTION

In this work, we present a continuous-time framework for analyzing the local training dynamics of a
stochastic gradient descent variant, termed noisy regularized SGD (see later sections), in deep neural
network-based PDE solvers. Our main contributions are summarized below:

(i) Unified SDE-based continuous-time modeling. We develop an SDE approximation for noisy
regularized SGD in DNN-based PDE solvers and derive rigorous weak-error bounds that precisely
quantify the discrepancy between the discrete algorithm and its continuous-time model. In particu-
lar, we decompose the weak error into contributions from trajectories that remain within a bounded

domain and from rare exit events (Theorem 1J).

(ii) New error analysis via invariant measures. We introduce a new perspective on error estimation
by using the invariant measures of the SDE, and derive its asymptotic formulation (Proposition 5J.

(iii) The impact of stochasticity on stability and solution accuracy. Through experiments, we
systematically study how stochasticity affects the stable step-size regime and constrains solution

accuracy even with stable step sizes (Section 4)).

Organization of the paper. The remainder of this paper is organized as follows. [Section 2|reviews
the necessary background, notation, and preliminaries. introduces the noisy regularized
SGD and its associated SDE, derives weak-error bounds, and offers a new perspective on error esti-
mation. presents numerical experiments illustrating the impact of stochasticity.
concludes and outlines future directions. Detailed proofs and additional materials supporting the
main text and experiments are provided in the appendix.
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2 PRELIMINARIES

In this section, we introduce the mathematical framework for our study. We briefly review the use
of physics-informed neural networks for solving elliptic equations, describe the stochastic gradient
descent algorithm for training, and present an intuitive continuous approximation of SGD. Key
assumptions and notations are also summarized, laying the groundwork for later analyses.

2.1 PROBLEM SETUP AND BACKGROUND

We focus on physics-informed neural networks as a representative class of DNN-based PDE solvers,
which embed physical laws and boundary conditions into the loss. This approach offers insights into
DNN-based PDE solvers while highlighting challenges unique to learning with physical constraints.
For further clarity and simplicity, we consider second-order elliptic PDEs and use two-layer neural
networks in our analysis. This setting captures the essential ideas without unnecessary complexity,
and our results readily extend to more general equations and deeper network architectures.

As previously discussed, the primary focus of this work is a class of second-order elliptic partial
differential equation of the form:

Lu=f in UCRY M
o d i
where £ denotes a second-order elliptic operator defined as £ = —3 ;. a"(x)0y,0; +

Zle bi(x) d,, + c(x), with x; being the i-th component of . Here, the functions a™, b, ¢, f :
U — R are prescribed. For clarity, we assume U is a bounded open subset of R? with unit vol-
ume. To approximate the solution of [Eq.(T)] we employ a two-layer neural network with width m,

described by

ug(x) = u(x; 0) = ag + Z ap o(wlx + by), (2)

k=1
where w;, € R?, ag, ax, b € R, and o is an activation function. The parameter vector is given by
0 = vec{ao, {a, wy, by }7,} € RM, where M = 1+m(d+ 2) is the total number of parameters.

Within the PINN framework, the approximate solution to[Eq.(1)|is obtained by minimizing the loss
£(6) = [ (Luofe) - (@) da 3
U

To optimize this loss, a widely used algorithm is stochastic gradient descent (SGD), which estimates
the gradient at each iteration from a mini-batch of n points randomly sampled from U. We define
the pointwise loss £ : RM x U — R by £(8,z) = (Lug(z) — f(x))*. At iteration k, let By =

(k)

(z;"’)P_, denote the mini-batch, where :cz(-k) are sampled independently and uniformly from U. The

parameter update is then
o TN (k)
0k +1) = O(k) — 2 ;1 Vol (e(k), ! ) , )

where 7 is the learning rate, and n is the batch size. The sequence {0(k)} thus forms a discrete-time
stochastic process determined by the sequence of randomly sampled mini-batches.

Remark 1 (Boundary conditions). Our formulation of the PDE (1)) and the loss (3) does not include
boundary terms. For Dirichlet conditions, boundary enforcement reduces to supervised learning on
U, for which continuous-time modeling of SGD is well studied in|Li et al| (2017} 2019)). We omit
the boundary loss to highlight the distinct features and challenges of the PINN framework.
Remark 2 (Empirical loss function). The loss is not the empirical loss used in practice.
Nonetheless, all results extend directly to the empirical setting, including cases with training data
drawn from specific distributions. This choice streamlines the presentation.

2.2 AN INTUITIVE CONTINUOUS MODEL FOR SGD

Stochastic fluctuations from discrete SGD updates significantly affect convergence and stability.
Continuous-time modeling provides a useful tool to analyze these effects. Below, we present an
informal continuous approximation of SGD via stochastic modified equations (L1 et al.,[2017;[2019).
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Specifically, we rewrite [Eq.(4)| as
O(k+1)=06(k) —nVL(O(k)) +/nV(k), ()

where V (k) = \/ﬁ(VL(O(k)) i, Vgé(@(k),mgk))) . Given 0(k), a continuous-time ap-

proximation of the transition from & to k + 1 hinges on the first and second moments of V' (k),
which determine the drift and diffusion coefficients of the associated SDE. We therefore state the

following lemma, with proof in[Section B}

Lemma 1 (Conditional gradient noise). Conditioned on 0(k), the random vector V (k) has mean
zero and its conditional covariance matrix is given by cov [V (k), V (k)|0(k)] = nX(6(k)), where
2(0(k)) = (X:(0(k))),<; j<ps- For each entry, we have

oy L 0l (0,x) 0L (0, x) /86(9,3:) /86(0,m)
E”(g)_n(/U o9, o8, =) "o, ), os )

Based on we can intuitively derive a continuous-time approximation of SGD using the
framework of stochastic modified equations. Consider the following time-homogeneous It6 stochas-
tic differential equation (SDE):

d0; = b(©,)dt + 1 (©,)dW (1), 6)

where ®; € RM fort > 0, and W (¢) denotes a standard M -dimensional Wiener process. Applying
the Euler discretization with step size 7 to and denoting the discrete-time approximation by
©(k), we obtain the following iteration:

O(k+1) = O(k) + nb(O(k)) + 2o (O(k)) Zs, (7

where Z, are i.i.d. standard Gaussian random vectors in R™ . Comparing|[Eq.(7)|with[Eq.(5), we see
that by choosing b = —V L, o = X!/2, the first and second conditional moments are matched. This
observation motivates the following intuitive SDE as an approximation for the dynamics of SGD:

2w (t),

{d@t = —VIL(©,)dt + (12(©)) (8)

©y = 60(0).
Remark 3. nX(0(k)) is the conditional covariance matrix of V (k) given 8(k). So X is a symmetric

positive semidefinite matrix. Consequently, there exists a unique real symmetric positive semidefinite
matrix o (0) such that o(0)? = X(6). In this sense, the square root of . is well-defined.

While the SDE (8) intuitively approximates SGD (@), its coefficients fail to satisfy global Lipschitz
continuity and linear growth, so classical SDE theory does not guarantee well-posedness. In the next
section, we address this by introducing a variant of SGD.

2.3 ASSUMPTIONS AND NOTATIONS

To ensure a well-posed SDE model, we impose the following assumptions on the coefficients
in|Eq.(1)[and the neural network activations:

Assumption 1 (Coefficient regularity). a'/(x), b'(x), c(zx), f(x) € L>®°U), Vi,j=1,...,d.
Assumption 2 (Bounded activations). o, o', ¢” € L>(R).

These conditions guarantee polynomial bounds for L(8) (see[Lemma 3) and ensure stability of both
the PDE solution and the neural network dynamics.

Next, we introduce some notations used throughout this paper. Let |-| denote the vector L? norm.
For a vector v, v; denotes its i-th entry. For a matrix A, || A||r denotes the Frobenius norm. Let Br
be the ball of radius R centered at the origin in RM . Furthermore, throughout this paper, we use
boldface letters to represent vectors or matrices.
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3  FOR THE NOISY REGULARIZED SGD

Revisiting [Eq.(8)] two issues arise. First, the drift is not of linear growth, and no explicit upper
bound on its growth is available. Second, the noise driven by o may be degenerate, since the
covariance ¥ can be only semidefinite rather than positive definite. To control the drift (i.e., the
gradient of the loss) and prevent gradient explosion, a common technique is implicit regularization,
which augments the loss with a regularization term to stabilize the dynamics. Accordingly, we focus
on a noisy, regularized variant of SGD.

Specifically, for any fixed integer s > 10, we consider a regularized loss given by Ls(0) = L(6) +
§]@|?*. The additional term controls the growth of the original loss and can aid in establishing well-
posedness for the continuous stochastic dynamics. At each iteration, we further inject independent
noise g(k). The resulting noisy regularized SGD updates the parameters as

0(k+1)=0(k) — % ivm (e(k),a;g.’“’) + Veg(k), 9)

where (5(0,x) = £(0,x) + 5|0]** and g(k) ~ N(0,I). We provide numerical experiments to
test this algorithm in[Section J| Following the approach in[Section 2.2 we can informally derive its

continuous-time approximation, the noisy regularized SDE:
d©, = bs(©,)dt + 12 0= (©,)dW (¢), (10)
where bs(8) = —V Ls(0) and .(0) = [2(0) + £I]°.

Remark 4 (Choice of regularization term). In our setup, we add the regularization term |0|?* (s >
10), which may appear unusual compared to the more common |0|? used in practice. However, this

higher-order term is necessary to ensure theoretical rigor, as powers lower than |0|?° are insufficient
to control the potential unbounded growth of the loss function at infinity (see[Lemma 3).

The noisy regularized SDE remedies the shortcomings of [Eq.(8)l In[Section C, we establish exis-
tence and uniqueness of solution to via a Lyapunov function V' (see enabled by
the regularization term |6|?*. A natural question is whether the discrete algorithm (9) converges to
the continuous model (T0). [Li et al.| (2019) proved weak convergence of SGD to its limiting SDE
under a global Lipschitz condition in supervised learning. In our setting, however, the coefficients
of are only locally Lipschitz, so convergence can be established only on bounded domains.
Below, we provide the definitions and results for local weak convergence.

Definition 1 (Polynomial growth functions). Let G denote the set of continuous functions RM — R
with at most polynomial growth, i.e., g € G if there exist positive integers K1, ko > 0 such that

19(8)| < rk1(1 4+ |0|%2), forall @ € RM.

Moreover, for integer o > 1 we denote by G* the set of a-times continuously differentiable func-
tions, which together with its partial derivatives up to and including order o, belong to G.

Definition 2 (Stopping times). Let @(")iti denote the solution to|Eq.(10)|\with ® ) (0) = 0, and let

{0 (k)} be the sequence generated by|Eq.(9)|\with learning rate n) > 0 and initial value 8 (0) =
6. Define the exit time of ® " (t) from By, as 7'5%17)(0) = inf{t>0: ©"(t) ¢ Br}.

The piecewise-constant interpolation of the discrete iterates is denoted by
0 (t) == 0(k),  telkn (k+1)n), ke Ny.

Define the exit time of the interpolated process from Br, as Fg) (6) = inf{t>0: 0" (t) ¢ Br}.

Proposition 1 (Local weak convergence). Fix any T > 0. Let @) (t) denote the solution to
the SDE (T0) with initial condition ©(0) = 0, and let (k) be the k-th iterate of the discrete
model Q) with the same initial value 8(0) = 6 and step size 1. Then for any h € G°, R > 0, and
0 € RY, there exists a constant C(R,T) > 0 independent of n) such that for all 0 < 1 < 1 and
k=0,1,.., L%j we have

‘E [(h (e(n)(k")) —h (0(n)(k))) 1{kn§71(3”)(9)}1{k77§1“§z">(9)}} ‘ < O, Ty
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Remark 5. We work on a product probability space that carries both the continuous-time noise
(driving the SDE) and the discrete-time randomness (from the SGD updates). In[Section D} we detail
the construction of this product space, clarify the notion of weak convergence used here (including
the role of the stopping times).

The above proposition, proved in establishes local weak convergence of order 1. To
complete the analysis, it remains to quantify the probability that the trajectories of the noisy regu-
larized SGD and the SDE stay within Bp.

Proposition 2 (Bounded exit time for SDE). There exists a constant c independent of n such that
cT

for all T > 0 and initial point @ € RM P (T}(%")(O) <T) < mfew% -0 as R — oo,

where V = Ls + 1 is the Lyapunov function defined in B

The previous proposition, proved in shows that for any fixed T, the SDE trajectory

remains in By with high probability when R is large enough. For the noisy regularized SGD, we

aim for an analogous high-probability bound that holds uniformly over all step sizes 1. Because

the SGD iterates form a family of processes indexed by 7, such uniform estimates require moment

bounds that are independent of ). Establishing these bounds is generally nontrivial and remains open
in many settings; therefore, we adopt the following standard assumption to enable our analysis.

Assumption 3 (Uniform boundedness of discrete dynamics). Fix any T > 0. Let ") (k) denote the
k-th iterate of the discrete model (O) with step size 1. We assume that there exist a positive integer p

and a constant C, 1, independent of n), such that supg ., -1 Esupo<i<|7/y ‘0(") (k) |2p <Cpr.

We provide further explanation of this assumption, as well as empirical justification, in the appendix
Based on we can estimate the probability that (") (t) exits a given ball

within time T directly.

Proposition 3. Under |Assumption 3| we have P (F%’)(B) < T) < %”2’3 - 0as R —

00, forany0<n<1.

This proposition shows that the probability of the process 8(") (t) exiting the ball By within time T
decays polynomially as R — co. Combining [Proposition 1} [Proposition 2| and [Proposition 3| we
are now in a position to state the main result of this section.

Theorem 1 (Approximate order-1 weak convergence). Fix T > 0. Assume that [Assumptions 1|
tohold. Then for any bounded function h € GS, any R > 0, and @ € RM, there exist positive
constants C(R,T) independent of n) such that for allk = 0,1,...,|T/n], we have

GCTV(O) prT)
lnf|£|2R V(g) RQP ’

‘Eh (6(")(kn)) —Eh (0(")(k)>‘ < C(R, Ty + 2||h|os (

where ¢, V, and C), 1 are as defined in|Proposition 2} |Lemma 3} and|Assumption 3| respectively.

This theorem (see [Section F.2|for the proof) establishes an approximate order-1 local weak conver-
gence between the noisy regularized SGD and its continuous SDE counterpart. The error bound has
two parts: the term C'(R, T)n captures local weak convergence inside Bg, while the second term
is the probability that the processes exit Br. By taking R large, the latter can be made arbitrarily
small, though C' (R, T') may grow accordingly. This is possibly the best that can be achieved without
any additional assumptions. Moreover, collects several properties of the SDE solution,
offering further insight into SGD behavior for sufficiently small step sizes.

3.1 A NEW UNDERSTANDING OF ERROR ESTIMATES

In this subsection, we take a different view of error estimation. Over sufficiently long horizons, the
SDE solution converges to its stationary distribution, so the long-term error can be characterized
by the expected loss under this distribution. For small step sizes, this provides an approximate
description of the long-run behavior of noisy regularized SGD. We begin by establishing existence
and uniqueness of the SDE’s invariant measure.

Proposition 4 (Unique invariant measure). SDE (I0) has a unique invariant measure p, and it is
ergodic. Moreover, the distribution 11 has a density p(0) with respect to Lebesgue measure in RM.
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This density is the unique bounded solution of the equation

Moo
((Zf)ij p) - ; 90 (bs,ip) = 0,

satisfying the additional condition [, p(6) d6 = 1.

N~ 0
AP=3 ;1 06,06,

Using the WKB approximation in we obtain p(6) ~ exp(5So(8)). We estimate the error

Jan L(8) p(0) d6 using the Laplace method. To this end, we assume Sy € C?, which also ensures
the same regularity for p. The following lemma shows that Sy has only finitely many maximizers,
thereby justifying the application of the Laplace method.

Lemma 2 (Finitely many maximizers). There are only finitely many maximum points of Sq in RM.
For completeness, the proof of and a brief introduction to the Laplace method are both
included in[Section 1} Applying the Laplace method, we directly obtain:

Proposition 5 (Error estimates). Assume {67} jeJg is the set of maximizers of So. Then the following
asymptotic approximation holds for the error:

as [ —0,

o L(89)es (@)
/RM L(6)p(6) A6 ~ (273) jeZJdet(VQSo (09)"*

where 3 = 1L

Remark 6 (Unique maximizer and gradient-flow consistency). If Sy has a unique and nondegen-

erate maximizer 0%, the Laplace method can be applied to both the numerator and denominator in
So(8)/8

Jrar L(8) p(6) d6 ~ fmlj{RﬂLI(g;;;/ﬁ dede, which yields the asymptotic limit [,,, L(6) p(6)d6 ~

L(6*), B — 0. Since B = n/n, the limit § — 0 corresponds to n — 0 and n — oo (the full-

batch regime). In this case, the noisy dynamics converge to the gradient flow, and the expected loss

concentrates at the equilibrium, consistent with the previous discussion.

The proposition characterizes the leading-order behavior of the long-run error [, L(0) p(9) d6 via
the Laplace method: the dominant contributions come from the maximizers of Sy, weighted by the
local quadratic geometry through |V2S,(67)| /2. In the small-3 regime (small step size and near
full-batch sampling), the error is thus governed by a finite sum over these modes; in the special case
of a unique maximizer, it reduces to the loss evaluated at that point, consistent with the gradient-flow.

Remark 7 (On the generality of the SDE framework). The core technical contribution of this work
is establishing the well-posedness of the limiting SDE for non-globally Lipschitz loss landscapes, a
common scenario with deep neural networks. This is achieved by constructing a Lyapunov function
(the regularized loss itself) to control the growth of the SDE dynamics (as in [Lemma 3). Conse-
quently, our analytical framework is not limited to the specific PDEs, network architectures, or
losses presented in this section. Its applicability extends to any setting where a suitable Lyapunov
function can be constructed to control the corresponding stochastic dynamics, thereby enabling
weak error estimates for a broad class of problems in scientific machine learning.

4 EXPERIMENTS: IMPACT OF STOCHASTICITY ON SGD PERFORMANCE

To investigate the effect of stochasticity, we consider the second-order ODE u”(x) = f(z), = €
[—1,1], with exact solution u(xz) = tanh(2z + 1). The source term f(z) and boundary condi-
tions are set accordingly. We use a two-layer neural network of width 10 in the PINN framework:
u(x; 0) = 21160:1 ay tanh(wygx 4 by). The neural network can exactly represent the solution, en-
abling an explicit characterization of all global minimizers. The training set comprises 1,000 uni-
formly sampled points in [—1, 1]. To isolate the effect of stochasticity, we compare SGD and GD
under identical settings. We examine two regimes: (i) near a global minimizer with low sharpness
and (ii) with high sharpness. The results indicate that the relative advantages of SGD versus GD
differ across these regimes.
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4.1 REGIME 1: NEAR A GLOBAL MINIMIZER WITH SMALL SHARPNESS

In this experiment, we evaluate SGD and GD near a global minimizer 8%, with ag = 1, wyg = 2,
bo = 1 for the first neuron and other parameters zero. The sharpness at this point is about 31.14363,
giving an approximate critical stable learning rate n** = 0.06422 (2/sharpness) for GD.

Experiment 1: Stability domains of learning rates for SGD and GD. We performed 50 random
initializations near 6*. For each initialization, both SGD and GD were run for 300 steps across 50
increasing step sizes. We recorded the loss at step 300 for each algorithm under all step sizes. The
results show that, for all 50 initializations, whenever the step size slightly exceeds n**, the loss at
step 300 for SGD exhibits a sharp increase with respect to smaller step sizes, unlike GD, which
remains stable across all step sizes. An example for one initialization is shown in[Figure 1] Detailed
experimental settings and additional results are provided in[Section K.1.1] These results demonstrate
the much narrower stability range of learning rates for SGD compared to GD near global minimizer
6* with small sharpness.

Main Iter 44: Loss at Step 300 vs. Learning Rate

10! H
—— SGD at Step 300 1
GD at Step 300 H
10-1 4+ * SGD Explosion 1
== 0" (critical LR) :
1
-3
10 T
1
3 1
A 1079 1
a ]
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1
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@ 1
S 1
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1
1
1
10—1] 1
1
1
10-13 4 — S S S N — Al
— B ln “ b i
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Learning Rate

Figure 1: One typical trial comparing the stability domains of SGD and GD near 8*.

Experiment 2: Effect of stochasticity on solution accuracy within the stable learning rate
regime. We study the effect of stochasticity using five learning rates: 0.001, 0.002, 0.003, 0.004,
and 0.005 (all < n**). For each rate, we run SGD 50 times (batch size 32, 3000 iterations) with
random initializations near 8*. The mean prediction is evaluated on 10,000 test points, and rela-
tive L? errors are reported in For step sizes below 0.003, performance remains consistent.
At 0.004 and 0.005, noise effects become pronounced and the averaged solution accuracy drops
sharply. In contrast, 50 runs of GD with n = 0.005 yield a relative L? error almost an order of
magnitude smaller than SGD, underscoring the detrimental effect of stochasticity. Further details
and an analysis of step size effects on solution variance are in[Section K.1.2] Overall, these results
show that greater stochasticity (larger step size) significantly degrades SGD performance.

Table 1: Relative L2 error of the mean function at different learning rates.

Learning Rate 7 0.001 0.002 0.003 0.004 0.005  0.005(GD)
Relative L? Error | 3.60e-07 3.57e-07 3.53e-07 2.74e-05 3.51e-05 7.45e-06

Experiment 3: Mechanism of SGD blow-up at large step sizes. To investigate the mechanism
behind the blow-up of SGD at large learning rates, we train the network (initialized near 8*) under
n = 0.096327. Both SGD and GD are run for 3500 steps, recording the loss at each iteration.
For SGD, we also monitor the Frobenius norm of the covariance matrix nX. Results are shown in
With this large step size, GD remains stable, while SGD quickly diverges. The loss curve
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for SGD closely follows that of the covariance norm, indicating that increased stochastic fluctuations
drive the instability and blow-up of SGD at large learning rates.

Training Loss and Covariance Curve

10* 1
10-1
1073 1
-5
10 —— GD training loss
% 10-7 1 5GD training loss
—— SGD covariance matrix Frobenius norm
1077 1
10-11 4
10-13 4
T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
fteration

Figure 2: Evolution of the loss and Frobenius norm of the covariance matrix with 7 = 0.096327.

4.2 REGIME 2: NEAR A GLOBAL MINIMIZER WITH LARGE SHARPNESS

Before presenting our experiments in this regime, we briefly explain why parameter vectors with
very large sharpness can arise in practice. The edge of stability phenomenon (Cohen et al.| [2021)
shows that optimization often drives parameters to regions where the sharpness approaches 2 /7, with
7 the learning rate. At this time, the loss begins to oscillate, but reducing 7 restores stability. By
repeatedly decreasing the step size at the edge of stability, the optimizer can reach global minimizers
with very large sharpness, explaining why such regions can be encountered.

We next present our experiments. We select a global minimizer @** with sharpness about 1.14 x 105,
giving a theoretical GD stability threshold of approximately 1.75 x 1075 (see . Across 50
trials, parameters are randomly initialized near 8**, and the critical GD step size is computed for
each initialization. Both SGD and GD are run for 600 steps at this critical step size plus 1 x 1076,
and their loss trajectories are recorded. In all 50 trials, GD causes the loss to surge from 1076 to
102 within 100 steps, then slowly declines and stabilizes around 10~%. By contrast, SGD steadily
reduces the loss from 1076 to 1071, Two representative runs are shown in illustrating
this qualitative difference. These results indicate that, near this highly sharp minimum, even a
slight increase beyond the stability threshold causes GD to diverge, while SGD continues to make
progress. Notably, this behavior contradicts the theoretical predictions of [Wu et al.| (2018)), and
understanding its cause remains an open question for future work. Further experimental details are

given in|Section K.

Our above experiments employ an ordinary differential equation (ODE) perspective to interpret the
effect of stochastic mini-batch noise in SGD, as compared to deterministic gradient descent, on the
solution behavior of the corresponding ODE. To further support the generality of our conclusion, we
present additional experiments in the appendix [Section K.3|for both the Helmholtz equation and the
Allen—Cahn equation, following the same rationale and experimental protocol. The results consis-
tently demonstrate that similar observations hold in these PDE settings as well, thereby reinforcing
the practical validity of our conclusions across a wider range of problems.

5 CONCLUSION AND DISCUSSION

In this work, we present a rigorous analysis of noisy, regularized SGD for DNN-based PDE solvers.
By introducing an SDE approximation, we derive precise weak error estimates between the discrete
and continuous dynamics. Our general framework applies to diverse solver types, a broad range of
PDEs, and various network architectures, as long as the loss function can be controlled by a suit-
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Figure 3: Representative loss trajectories of GD and SGD for two random initializations near 8**.

able polynomial. Notably, by relaxing the global Lipschitz condition, our results directly encompass
many networks used in scientific computing. Systematic experiments reveal that higher noise in-
creases solution variance and reduces accuracy, and that step size stability for SGD and GD can
differ significantly near different global minima.

Limitations. This study has several limitations. First, our analysis focuses primarily on SGD and
does not extend to other popular optimizers like Adam or L-BFGS, whose dynamics may differ
substantially. Second, while we use an SDE to model the training, we do not leverage this SDE
framework to proactively guide or improve algorithm design. Finally, our noise model is confined to
Brownian motion; exploring broader models, such as SDEs driven by Lévy processes, could more
accurately capture the stochasticity in practical training scenarios. Addressing these limitations
presents valuable directions for future research.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (GPT-5) to polish the language of the manuscript. Specifically, we
drafted the initial versions of all sections ourselves, and then employed GPT-5 to refine the wording
and clarity of selected passages—primarily introductory and expository paragraphs. The model did
not contribute to research ideation, methodology, experiments, analyses, or conclusions.

B PROOF OF[LEMMA 1l

Proof of[Lemma 1] Let x be a random variable uniformly distributed on U C R with respect to the
Lebesgue measure. By definition, we have

E[((6, z)] = /U 06, ) dz = L(8).

Foreachi =1,..., M, we have
oL@) 0 B 0
96, 89iEm[€(0’m)] = Eg [(%’Z_E(O,:c)} ,

where the interchange of differentiation and expectation is justified by regularity conditions.

Therefore, it follows immediately that

E[V (k)| (k)] =0.

For the conditional covariance, by definition we have

cov [V (k),V (k)| 8(k)] =nE

(vL(H(k)) - ;ivee<e<k>7m§’”>>

n T
x (VL(O(k)) - %Z Vol(60(k), mg’”)) 0(k)] .
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Define the matrix 3(6(k)) as the conditional covariance above (without the factor 1), i.e.,

2(0(k)) = E

(vL(O(k)) - %iveae(i«:), scE’”))

n T
x (w(e(k)) - % > Vel(8(k), w§k>>>

m] |

Calculating entry-wise for 7,7 = 1,..., M, using the independence of samples in the mini-batch,
we obtain
1 OL(O(k), x) 0L(0(k), x) oL(0(k),x) o0(0(k), )
Y =— — Ty .
ia(0k) = { /U 90, o6,  O* /U o6, /U o6,  O*
This completes the proof. O

C WELL-POSEDNESS OF SOLUTIONS TO THE NOISY REGULARIZED SDE

A fundamental step is to establish the well-posedness of To this end, we construct an
appropriate Lyapunov function and invoke classical SDE theory to rigorously prove the existence
and uniqueness of solutions.

Lemma 3 (Lyapunov function). Let V(0) = Ls(0)+ 1 and let A denote the infinitesimal generator
associated with the SDE (10), that is,

M
A= Z b,;_’iai +
=1

N3

M
> (50)i0:0;,
ij=1
where bs ; is the i-th component of bs and (X.);; denotes the (i,j)-th entry of the matrix X, =
3 + el. Then under[Assumptions 1|and[2} there exist a constant ¢ > 0 independent of 1) such that
AV () < cV(0), VO cRM,
and moreover,

Vg = inf V(@) 20 as R — oc.
|8|>R

Proof of[Lemma 3| Without loss of generality, we assume s = 10.

Although the coefficients of SDE (I0) are not globally Lipschitz, they possess a crucial property:
both the drift bs and the diffusion matrix X, can be bounded by polynomials in 6. We first establish
this fact.

Consider the special case where the width of the neural network is m = 1, i.e.,
ug(x) = ap + ac(wTx + b).

The gradient then becomes
VL(O) = /UQ(EUQ — f)VeLugdx
= Q/U(Eue — ) (c(x), Lo(wTx +b), Lao' (wTx + b)x, Lao' (wTz +1))" dz.
In particular,

[ (£uo — pyeta) e
U

d d
— / - Z a co” aw;w; + Z bico'aw; + ctag + cao | dx — / f(x)c(x) de.
U U

i,j=1 i=1

13
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Recalling we obtain the following inequality

d d
<C | Y lawawg| + ) lawi| + |ao| + |a| + 1

i,j=1 i=1

/ (Cup — felz) dz
U

d d
<O Y @+ D)W+ D)W+ 1)+ > (@®+1)(w] +1)+aj+a®+1|,

i,j=1 i=1

where the constant C' may differ line by line. Similar calculations show that each component of VL
can be bounded by a polynomial of degree at most 8.

Now, consider the Hessian of L:
D?L = 2/ (Lug — f)H dx + 2/ VQEUQ<V9,CUQ)T dx,
U U

where H = V3 (Lug). More explicitly,

0 0 0 0

0 0 L(o'xT) L(o")
0 L(c'x) L(ac"xzxT) L(ac"x)
0 L(o)) L(ac"2T) L(ac”)

H =

Again, each entry of D?L can be bounded by a polynomial of degree no more than 16.

For the covariance, fori,j =1,..., M,
gy L 00(0,x) 00(0,x) 7/ 000, x) / 000, x)
2i(0) =3 < /U o0, o6, [, "os, ®), o5
4 5 0Lug OLug 0Lug 0Lug
= n(/U(Eue f) a0, 00, dzx /U(Eua ) a0, dw/U(ﬁue ) 20, da:).

By the same argument as above, ensures that ¥;;, and thus (X.);;, can be bounded
by a polynomial of degree at most 16. The generalization to m > 1 is straightforward.

Now, we return to the main claim of the lemma. Since |0]?° is the only highest-degree component
in V(0), we have
Vg := inf V(0) >0 as R — oo.
|8|>R

By the definition of the generator .4, we have

M M
AV = "bsi0,V + g > (200 V
i=1 ig=1

(VL VLs)+ gﬂ 2.V2L,]

—(VL + 205|080, VL + 205|0/'%6) + g Tt [£.V2L]
1
= —(VL +206|0/**0, VL + 205|6/'%6) + 5 Tr [E.V2Ls]  (asp <1).

By the polynomial bounds established above, the dominant term is —40052|0|3%, so that AV — —oco
as |@] — oo. Hence, there exists a constant ¢ > 0 independent of 7 such that AV < ¢ for all
0 € RM_ Since V > 1, it follows that AV < V. O

The function V introduced in the above lemma serves as a Lyapunov function for the SDE (T0). As
the proof illustrates, its existence crucially relies on the addition of the higher-order regularization
term 6|@|*. The Lyapunov function plays a key role in the analysis of SDEs, and we will use
it extensively to establish several results in the subsequent sections [Khasminskii| (2012); [Yu et al.
(2021)). As a first application, it allows us to prove the existence and uniqueness of solutions to the
SDE (T0). We begin by introducing some necessary definitions.

14
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Definition 3 (Equivalent solutions). Fix any T > 0. Two solutions ©1(t) and @2 (t) of some SDE
are said to be equivalent in [0, T] if

P(©1(t) = Oq(t) forallt € [0,T]) =1,
which means that these two solutions are identical with probability 1 over the time interval [0, T).
Definition 4 (Explosion time). Let 7(0) denote the explosion time of the solution ©(t) with ©(0) =

0 t0|Eq.(10), defined as limp_, ~ TR(@), where
Tr(0) = inf{t > 0: O(t) ¢ Br with ©(0) = 0}
is the first exit time of ©(t) from a ball of radius R.

By applying Theorem 3.5 in |Khasminskii| (2012)), together with the Lyapunov function constructed
in[Cemma 3] we can obtain the existence and uniqueness of solutions to the SDE (I0) directly.

Theorem 2 (rephrased from Theorem 3.5 in[Khasminskiil (2012)). Under[Assumptions 1|and 2} for
the noisy regularized SDE (10), we have the following conclusions:

(1) For every random variable ®(0) independent of the process W (t) — W (0), there exists
a solution ©(t) to|Eq.(10)\which is an almost surely continuous stochastic process and is
unique up to equivalence.

(2) This solution is a Markov process whose Feller transition probability function P(0,t, A)
is defined fort > 0 by P(0,t,A) =P{O(t) € A| ©(0) = 0}.

(3) This process satisfies the following inequality:
E[V(©,)] < E[V(8))e*, (an
where V and c are as defined in
(4) The SDE (10) is complete, i.e.,
P(7(0) =o0) =1, forall cRM. (12)

Proof of[Theorem 2] Due to our modification of the diffusion term, the following conditions hold:
for any R > 0, there exists a constant B > 0 such that for all 8, & € Bp,

b5(6) — bs(&)[ + V/nllo=(0) — o-(§)llr < B|6 — ¢
and
1bs(0)] + V/nllo=(0)||r < B(1+6]).

Together with these conditions allow us to apply Theorem 3.5 in [Khasminskii| (2012)
directly to establish the result. O

This theorem establishes the non-explosiveness of solutions, which is a property of fundamental im-
portance. Ensuring non-explosiveness guarantees the long-term stability of the SDE, as the solution
remains well-behaved for all time.

D SUPPLEMENTARY NOTES FOR [PROPOSITION |

In this section, we provide a detailed discussion of topics related to and present its
proof.

D.1 NOTION OF WEAK CONVERGENCE

We begin by recalling the notion of weak convergence, which formalizes the convergence of proba-
bility laws through expectations of test functionals rather than pointwise trajectories.

Intuitively, a sequence of random variables (or stochastic processes) converges weakly if all
bounded, sufficiently regular observables of the sequence converge in expectation to those of a lim-
iting random variable (or process). Formally, let { X, },,>1 be a sequence of random variables taking
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values in a Polish space (X, B(X)), and let X be an X-valued random variable. We say that X,
converges weakly to X (denoted X,, = X) if, for every bounded continuous function ¢ : X — R,

nll_)n;OE[@(Xn)] = Elp(X)].

Equivalently, the probability measures {£(X,,)} converge to £(X) in the topology of weak conver-
gence.

In the context of numerical approximations to stochastic dynamics (e.g., discrete-time algorithms
approximating SDEs), weak convergence of order p > 0 over a finite horizon 7" typically means
that, for all test functions ¢ in a prescribed class (e.g., ¢ € G for some ), there exists C, 7 > 0
such that

[E[p(Xn(T)] = Elp(X(T)]] < Cyprh?,

where X, (T') denotes the numerical approximation at step size h, and X (7') the exact solution at
time 7. This definition captures convergence at the level of distributions and observables, which is
the relevant notion for many inference, optimization, and uncertainty quantification tasks.

D.2 PRODUCT PROBABILITY SPACE

Establishing weak convergence between SGD and its SDE surrogate is central to justifying
continuous-time approximations for discrete stochastic optimization: it guarantees that expectations
of sufficiently regular observables computed along the SGD iterates converge to those of the limit-
ing SDE, thereby validating distributional predictions (e.g., bias, variance, and risk) drawn from the
continuous model for the discrete algorithm.

In our setting, however, the coefficients of SDE are only locally (not globally) Lipschitz, so
global arguments are unavailable and the analysis must be carried out locally. To this end, we place
SGD and the SDE on a common product probability space, namely the product of the SGD sample
space (U™)° (encoding the i.i.d. mini-batch or gradient noise) and the SDE sample space, equipped
with the product measure. The SGD sample space is Qggq = (U™)*° with its cylinder o-algebra
Fsed and law Pgeq (induced by the i.i.d. noise sequence). Let the SDE live on the Wiener space
(s Fur, Py ), where Q, = C([0, 00); RM) is the space of continuous paths, F,, is the canonical
o-algebra, and Py, is the Wiener measure under which the canonical process Wi(w) = w(t) is an
M -dimensional Brownian motion. We then define the product probability space

(Q7f7P) = (ngd X QW7 fsgd ® Fuws ]Psgd ®]PW)

Under this construction, the two noise sources remain independent, while both processes can be
viewed as random elements on the same probability space. This facilitates the definition of stopping
times that confine the dynamics to regions where local Lipschitz and polynomial growth controls
hold, enabling a rigorous, localized weak convergence analysis.

D.3 PROOF OF|[PROPOSITION

Before proving we present a key weak convergence result established in [Mil’shtein
(1986).

Theorem 3 (Theorem 2 in Mil’shtein| (1986))). Consider the SDE
dO; = b(0,)dt + o(©;)dW (¢).

Assume that this SDE is well-defined on interval [0, T|. Define its discrete approximation with step
size n as
6(0) = ©(0), O(k +1) = 0(k) + A(kn, 0(k),n;§), Vk =0,1,...

where & is some (generally vector) rv. possessing sufficiently high moments, and A is a vector
function of dimension M. Let the following conditions hold:

(i) The coefficients of the SDE satisfy the global Lipschitz condition and, together with all their
partial derivatives up to order 2p + 2 inclusive, belong to the class G.
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(ii) The discretization is such that

E([] A, - [[2:] < K@), s=1,....2p+1, Ki(0) €G,
j=1 j=1

2p+2
E H A | < Ks(0)nP*!,  K1(0) € G,

j=1
where A = ©(n) — ©(0), A =6(1) — 0(0), and 1 <i; < M.

(iii) For sufficiently large m, E|0(k)|*™ exist and are uniformly bounded in 1 and k =

0,1,...,{%.

If f and all its partial derivatives in 0 up to order 2p + 2 inclusive belong to the class G, then for
all0 <n < 1andk:0,1,...,L%J,

[Ef(©(kn)) —Ef(O(K))| < K7, (13)

where K is a constant. That is, the method achieves an order-p accuracy in the sense of weak
approximations.

Now we use the above weak convergence result to prove [Proposition

Proof of [Proposition 1] We follow the classical weak convergence framework for SDE discretiza-
tions introduced in localizing the analysis to Bg and leveraging local Lipschitz conti-
nuity to control the error.

asserts that if the one-step weak error of the numerical method is controlled at order
nPT in expectation, and certain regularity and moment conditions are met, then the cumulative
weak error after multiple steps is of order nP. Here, we focus on the case p = 1.

We henceforth carry out all considerations on the previously defined product probability space.
Below, we verify the required conditions in our setting:

(i) Local Lipschitz regularity: On the ball By , the coefficients of [Eq.(10)|and their deriva-
tives up to order 4 are locally Lipschitz and bounded, as required.

(ii) One-step weak error: Let ®(") (1) be the solution of the SDE after one time step 7, and
o (1) the outcome of one step of the discrete algorithm, both starting from :

e (n) = 0+/0n bs (@<n>(s)) ds—i—/onﬁag (@(")(s)) AW (s),
9 (1) =9 — % ivm (e,mg’“)) +/2g(k).

Denote A = @ (n) — @ and A = 6 (1) — 6.

Under the event kn < TI(%") (0) and the event kn < Fg) (0), since bs and o are bounded in
Bpr, we have foreach:=1,..., M,

E[lA;] <Cn, E[|A]] <On, (14)

for some constant C' > 0.
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For any i = 1,---, M, we can estimate the error between the i-th entry of A and A as

| /08L5<®(’7 ) s—fZae (0 ;c(’”)H
:/ V”aL,;( ) 577255 (e a:(k))]d)\

:/ / /aeo @W )da:dsd)\fn/ ils (0, ) dz
" U
:/ / (/ oits 6(’7)(5),m>—8i€5(0,:c)dw> dsd)\‘
n O U
n
gCR/ / ’6(’7)(5)—0’dsd/\
nJ0O

(by the Lipschitz continuity of / 9ils (G‘)(”)(s), :v) — 9,05 (0, ) da:)
U

Ela Al =B

7

SC’RC/ / ndsd\ (by|Eq.(14)
" O

S CRCUQ.

As for s = 2, 3, it is easy to follow that

HAzJ HA” <O,
j=1

wherel <i; < Mforj=1,---,s

Moreover, it is straightforward that
4
EJ]|A
j=1
where 1 <i; < M forj=1,---,4.

So condition (ii) in Theorem 2 of [Mil’shtein| (1986) for p = 1 holds.

(iii) Moment bounds: Both the SDE and the SGD iteration remain in Bp for all steps under
consideration, so the relevant moments are uniformly bounded in & and 7.

With these conditions verified, directly yields that if h € G, then forall 0 < 7 < 1 and
all k, we have

‘E [(h ((-)(")(lm))) h ( )) {k (")(6)}1{kn<l“g’>(0)}} ‘ < C(R,T)n.

for some constant C(R,T') > 0 independent of 7. This completes the proof.

E EXPLANATION AND VALIDATION OF [ASSUMPTION 3|

To substantiate our theoretical analysis, we provide additional clarification and empirical validation
regarding (uniform moment bounds). Specifically, we conducted numerical experi-
ments to examine the plausibility of this assumption. In our experiment, we use a physics-informed
neural network (PINN) to solve a two-dimensional Helmholtz equation. We performed a series of
training runs using 40 different step sizes uniformly spaced on a logarithmic scale from 107> to
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Max Parameter Norm Squared vs Step Size n
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Figure 4: Maximal squared ¢?-norm of parameters during training for various step sizes.

1073, For each configuration, training was conducted for 1/7 steps, and we recorded the maximal
squared ¢2-norm of the parameters throughout training. The results, shown in[Figure 4} reveal that as
the step size decreases toward 10~°, the maximal parameter norms tend to increase. This suggests
that verifying the uniform moment bound is primarily relevant for sufficiently small step sizes.

When the step size is sufficiently small, theoretical guarantees become available. For fixed p and 7,
the recursion for the stochastic gradient descent (SGD) iterates can be expressed as

B2 < BI04 |2 + Cn(1+ EJo,200).

As np — 0, the discrete-time dynamics are controlled by the following ordinary differential equation
(ODE):

d ,
d;: —C (1 + u1+;<s—1>) ,

for which standard theory ensures uniform boundedness on finite intervals [0, T'] for some 7" > 0.
Therefore, uniform moment bounds can be guaranteed for sufficiently small step sizes.

Taken together, these theoretical and empirical findings support the practical validity of our uniform
moment bound assumption.

F PROOF FOR SOME RESULTS IN[SECTION 3]

F.1 PROOF OF [PROPOSITION 2|
Proof of[Proposition 2| Note that
4 _ 76
E°[V(@)(T))] = E? [V(OU)(T)1 iy + VIOD (D) 0|
> E° V(@) (T)L 1]

> B (r(0) <T) inf V()

where E¢ means the expectation conditioned on @ (0) = 6.
From [Theorem 2| we have E®[V(®{")] < V(0)et , so

eCTV(O)
infle|>r V(§)

because Vi := inf|¢|> g V() — o0 as R — oo (see[Lemma 3). O

P(Tl({”)(O)gT)g —+0 as R— o
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F.2  PROOF OF[THEOREM 1

Proof. Fix T > 0, any bounded test function h € G, R > 0, and initial value 8 € RM,

We decompose the total weak error into contributions inside and outside the ball Br, up to time 7"

‘]E h (@<">(kn)) _Eh (0(”)(k)) ‘
= ‘E [(h <®(n)(kn)) —h (0(’7)(13))) 1{kn<ﬁ(§)(9)}1{kn<1“§am(9)}} ‘
o e (1(07080) 4 (00) (o * )]

For the first term, we invoke [Proposition 1| which shows that as long as the process does not exit
Bpg, the weak error is controlled:

‘E [(h (@@m) —n (6 ®))) Linerg )} {kngg)w)}} ‘ < C(R.T)n.

For the second term, applying [Proposition 2| and [Proposition 3| we have uniform exit probability

bounds:
‘IE {( (@(n) kn) <9<n) )) (1{kn<ﬂg,,>(9)} +1{kn<rg)(0)}>”

<2||h\|oo[ ( )(0) < T)+IF’(F(")(9)§T)}

€CTV(0) CT
< _c LT
< 2llhle (iﬂﬂezR V() * RQ”)

Combining the above estimates yields

‘Eh (e<n>(kn)) —Eh (a(n)(k))‘ < C(R,T)n + 2| ( TV (9) Oy ) |

———+ —
lnf‘ﬂz}g V(f) R?r

where C'(R,T) and Cr are as in the referenced propositions/lemmas, and ¢ is from
This completes the proof. O

F.3  PROOF OF [PROPOSITION 4]

Proof. Using[Lemma 3] we can obtain that: there exists a R > 0 large enough such that
AV < -1, forall 6 € Bf. (15)

Define (r(0) = inf{t > 0: ©(¢t) € Bg with ©(0) = 6}.
Using the Theorem 3.9 in book [Khasminskii|(2012), we can know that
E[Cr(0)] < V(0). (16)

For every compact subset K C RM | supyc x E[Cr(6)] < supgex V() < oo

Applymg the Theorem 4.1 and Corollary 4.4 in|[Khasminskii| (2012}, we can conclude that SDE (]'1;0[)
has a unique invariant measure 4.

G FURTHER PROPERTIES OF THE SOLUTION TO THE NOISY REGULARIZED
SDE

In this section, we examine properties of the noise-regularized SDE [Eq.(T0)] While these results
may not fully capture the discrete algorithm’s dynamics, they provide valuable insights when the
step size 7 is sufficiently small.
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G.1 LOSS/MOMENT DECAY RATE

Lemma 4 (Lyapunov stability bound). For any fixed ¢ > 0, there exists a positive constant ()
depending on c such that

AV +¢V < Q, forall 6ecRM. (17)
Proof. Referring to the proof of we can easily derive the following conclusion:

AV 4+ ¢V — —o0, as [0 = 0.
Thus, this theorem clearly holds because V' is smooth. O

Lemma 5 (Lyapunov decay rate). The expected Lyapunov function decays at the following rate:

E° [V (©(1))] < % + (V(o) — Q) e, forallt >0, 0 c RM (18)

c

where c and Q are as defined in the previous lemma, and are independent of 1. Here, E® denotes
expectation conditioned on ©(0) = 6.

Proof. Using Dynkin’s formula, we obtain that

E°[V(©,)] = V() + E° Uot AV (©,) ds} .

Then we have
dE°[V (©,)]

" =R AV (©,)].

Recall that AV < @Q — ¢V, so we have

dE?[V(©,)]

n <EP[Q — cV(©))] = Q — cE°[V(©,)].

By Gronwall inequality, it can be concluded that

ROV (O(t))] < % + (V(O) - Cf) e Vt>0, forall®cRM,

O

The above lemma provides an estimate for the exponential decay rate of the loss function Ls = V —1
along trajectories of the SDE solution. Moreover, by an argument similar to the proof of [Lemma 3|
one can show that | - |27 also serves as a Lyapunov function forwhen q > s, and thus enjoys
the same properties as described in the preceding two lemmas.

Lemma 6 (Exponential decay of high-order moments). Let V,, = |0|%4 for any integer ¢ > s. Given
c > 0, there exists a positive constant Q) depending on c and q such that

AV, + ¢V, <Q, forall 6cRM. (19)

Moreover,

E[|©@)*

0(0) = 0} < % + <9|2q - Cj) e, forallt>0,0cRY.  (20)

These results characterize that the expectations of the loss function and higher-order moment func-
tions along the trajectory of the SDE solution decay approximately at an exponential rate, which
ensures that, with a sufficiently small step size, SGD can essentially remain within a bounded region
and achieve satisfactory learning performance.
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G.2 ERGODIC AND RECURRENCE PROPERTIES OF THE NOISE REGULARIZED SDE

With the correction to the diffusion term (3. = 3 + <I), the smallest eigenvalue of the diffusion
matrix n3. is uniformly bounded away from zero. Moreover, ensures that the solution
to SDE (I0) is a regular Markov process. By classical SDE theory, the solution thus enjoys several
favorable properties that shed light on the dynamics of the discrete optimization process (9). We
summarize these properties below and provide brief proofs.

Proposition 6 (Positive recurrence). The solution to the SDE is a positive recurrent process;
that is, for any bounded open set A C RY, the expected first return time

=inf{t >0:0(t) € A}
is finite for all initial conditions ©(0) = &, Le.,

ES [74] < 00, forany & € RM.

Proof. Using[Lemma 3| we can obtain that: there exists a R > 0 large enough such that
AV < -1, forall 6 € Bg.

Referring to the Theorem 3.9 in book [Khasminskiil (2012)), we can know that the solution to SDE (10 .
is a positive recurrent process according to the definition of positive recurrent process.

The following two results are immediate corollaries of the positive recurrence for Markov processes,
as discussed in|Khasminskii|(2012), and we omit the proofs. We include them here to provide further
insight into the dynamics of the solution to SDE (10).

Corollary 1. Ler P(0,t,-) denote the transition probability of the solution to SDE (10), i.e.,
P(0,t,A) = P{O(t) € A | ©(0) = 0} for measurable sets A. Then the following properties
hold:

(i) V0 cRM Ve >0, 3R >0, to(0) > 0such that P(0,t, BS) < €, Vt > to(8);
(ii) Va >0, Iy, > 05.2. V0,0 € Bg, 3t1(0) > 0 such that P(0,t, Bo(00)) > Yo, Yt > t1(0).

Together, these results demonstrate the strong stability of the solution to SDE (I0): the process
remains confined within a sufficiently large region with high probability over time, and will enter
any neighborhood within this region repeatedly, regardless of the initial condition. This reflects the
strong recurrence and mixing properties of the system, ensuring stable long-term behavior. More-
over, invoking Theorem 2 of |Hu et al.|(2019)), one can further gain precise insight into the dynamics
of the SDE near non-degenerate local minimizers.

Proposition 7 (rephrased from Theorem 2 in|{Hu et al.|(2019)). Suppose that 0* is a non-degenerate
local minimizer of Ls. Then for any sufficiently small v > 0, there exists an open ball B(6*,r)
such that for any convex open set D inside B(0*,r) containing 6*, there exists a constant Vp > 0
depending only on D such that the expected hitting time

O —inf{t > 0:©(t) € dD with ©(0) = 0}
satisfies

lim 7nlog[ET®] = Vp, forall 6 c D. (21)
n—0+

Further, we have uniform control of the mean exit time: there exist 1 € (0,¢), C1,Cy > 0 and
1o > 0 so that whenever 11 < 1,

C; < inf  plog[ET?] < sup nlog[ET?] < Cs. (22)
0€B(0* 1) 0cB(0* 1)
In particular, we define N® = . Then, there exist C3, Cy > 0 such that the expected steps needed
to escape from a local mmlmlzer satlsﬁes
C3< inf 7nlog[EN?] < sup nlog[EN?] < Cy. (23)
0cB(0~,1) 0cB(6*,e1)
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The preceding theorem shows that, on average, the system remains in the vicinity of a local min-
imizer for approximately exp(Cn~1!) steps before escaping. W Proposition 7| extends the analysis of
Theorem 2 in Hu et al.[(2019): while Theorem 2 estimates the expected residence time of an SDE
near a non-degenerate local minimizer, our result generalizes this by introducing additional param-
eters and more flexible conditions.

These properties of the SDE, such as positive recurrence and residence near local minima, offer
valuable insight into the behavior of the noisy regularized SGD. They help explain, for small step
sizes, how the algorithm is likely to explore the landscape and the typical timescale over which it
escapes from local minima.

H WKB APPROXIMATION OF THE INVARIANT MEASURE

We have established that the SDE (I0) admits a unique invariant ergodic measure ;1 with density
p relative to the Lebesgue measure. However, the exact form of p is generally unknown due to
the difficulty of solving the associated high-dimensional PDE. To address this, we apply the WKB
approximation to derive an asymptotic representation of p Miller Jr & Good Jr (1953)); [E et al.
(2021)).

Assume p takes the form:

p(0) —exp< Za ) (24)

Substituting [Eq.(24)|into [Proposition 4] taking ¢ = 1, and simplifying yields:

M
1 A .
5 E |‘ﬁ63i9j2ij—|—ﬁ69i2 E a"(‘ﬂgS +6892 X* E (Xn@g n
n=0

i,j=1

S 1 S n S n 1 S n o2
+B(2i5 + 05 (aQZa agjsnza agisn+az_%a f%ieanﬂ
+Z(890L5+89L5XZO( 89 ):O,

i=1

where § = I = e represents the noise intensity, 3 =nX, and d;; is the Kronecker delta. Setting
a = [ and collectmg terms of the same order in 3, we obtain a hierarchy of equations for S,,. The
first three are:

1 -
6_1 : <b6 - 5(2 + I)VSO7VSO> =0
B (X +I)VSy — bs, VSy) + Tr (vzvso + = (2 + I)V2S, + V2L5> =0;

B: (B4 I1)VSy — bs, VS,) + 1<v51, (X +1)VS))

(vzvsl + = (2 +1 v2sl> Z 5.9,

ij=1
Analyzing these equations provides insight into the structure of S,,. In particular, for Sy, we have
VSo =22+ I)"tbs = —2(X + I)"'VLs. (25)
Thus,
So = —2/(2 + 1) 'dLs. (26)
Therefore, when § < 1, the WKB approximation yields the following asymptotic expression for p:
p~ e %@ (27)
where 3 = I and S is determined by [Eq.(25)}
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Remark 8. Under the isotropic assumption (i.e., XX = 1), the WKB approximation can yield an
explicit expression for the invariant measure p, which is consistent with the results reported in|Dai
& Zhu|(2020).

I INTRODUCTION TO LAPLACE METHOD

I.1 PROOF OF[LEMMA 2|

Proof. Since VSy = 0 if and only if VLs = 0, it suffices to show that Ls has finitely many critical
points. Under[Assumption I] each component of V L is analytic, so its zeros are isolated. Together
with

[VLs(0)] — oo as |0] — oo,
we conclude that L has only finitely many critical points. O

1.2 LAPLACE METHOD

The Laplace method provides asymptotic approximations for integrals whose dominant contribu-
tions come from neighborhoods of maximizers (or minimizers) of a smooth phase function. It is
especially effective when a small parameter 8 > 0 appears in the exponential, creating sharp con-
centration.

Basic one-point formula. Let S € C?(RM) and L € C°(RM), and assume: (i) S attains its
global maximum at an interior point 0* € R, (ii) VS(0*) = 0 and H* := V25(6*) is negative
definite, (iii) there exists ¢ > 0 such that S(0) < S(6*) — |0 — 6*||? for ||@ — 6*|| large (or more
generally S(0) < S(6*) away from 6* with sufficient decay to justify dominated convergence).
Then, as 8 — 0,
I L(6*) eS0")/8

BT
where | - | denotes the determinant. Equivalently, since H* is negative definite,

|12 = |w25(6%)]' 2.

/ L(6)e5D/8 40 ~ (27p)
RM

|- H*

Derivation (sketch). Write a second-order Taylor expansion of S at 8*:

r(0)
10 — 6+
Similarly, L(#) = L(6*) + o(1) near 6*. Split the integral into a small ball around 6* and its
complement. The complement contributes a lower order term due to S(0) < S(6*). Inside the ball,
change variables z = $~'/2(6 — 6*) and neglect () at leading order, yielding a Gaussian integral:

/RM exp(35(0 — 0*)TH (6~ 6)) d0 = (2nB) ¥ |~ H*| V2

S(0) = S(60%) + 30— 0*) T H* (0 — 0%) + (), — 0.

Multiplying by L(6*)eS(?")/5 gives the formula.

Multiple maximizers. If S attains its global maximum at finitely many nondegenerate points
{6} 7_, with negative-definite Hessians H() = V2S(61)), then

<

J L(6W) S0/

L(0) eSO/ 49 ~ (2nB)%
AI\/} ( ) ( ) ng ‘_H(j)|

72 68— 0.

Application to our setting. In our context, p(f) o< e50()/8 with 8 = n/n, Sy € C?, and the
set of maximizers of .Sy is finite and nondegenerate (see Lemma . Taking L(#) as the loss, the
Laplace method yields

e L(000)) £50(69)/8
[ xop0 @ ~ erp* Y
RM 7| V250(60)]

B — 0.
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With a unique nondegenerate maximizer 6*,

So(0*)/8
/650(9)/5d9,v(27r5)M/2 eSo )

|v280(0*)|1/2a
*\ ,S0(0%)/B
/L(@) 500)/B e ~ (27r[3)M/2M.
|v250(9*)|1/2
Taking the ratio gives

£So(0)/5
ELO) = f]]‘(z?wwdade ~ L),

J EVALUATION OF NOISY REGULARIZED SGD

To offer practical insights for readers who may be unfamiliar with the noisy regularized SGD algo-
rithm, we present a series of experiments on several representative problems. In particular, we apply
the algorithm to the Helmholtz equation, the Fisher—KPP equation, and the Allen—Cahn equation.
These experiments are designed to illustrate the effectiveness and practical performance of the pro-
posed approach across a range of partial differential equations. In addition, all experiments in the
paper were conducted on a desktop computer equipped with a single 4060Ti GPU.

Experiment 1: Helmholtz equation

We first solve the following Helmholtz equation using the PINN framework:
AU(I’,y)+U(I7y) :f(xay)7 (Qj’y) € [7171] X [7171]7

where the exact solution is prescribed as u*(z,y) = sin(wx) sin(7y), which determines the source
term f(x,y) and the corresponding Dirichlet boundary conditions.

The neural network architecture employed is a fully connected network with three hidden layers,
each containing 100 neurons. The training dataset consists of 10,000 collocation points in the in-
terior and 400 points on the boundary. We use the noisy regularized SGD algorithm for training,
where the regularization term is given by §|0|?° with § = 1073, and Gaussian noise /zg (k) with
¢ = 1078, The batch size for interior points is set to 256, and for boundary points to 32. The step
size is set to 0.005, and the model is trained for 1,000,000 iterations. After training, the predicted
solution achieves a relative L? error of 0.00531 with respect to the exact solution. displays
the predicted solution, the exact solution, and the pointwise error.

Ground Truth u(xi, X2) Predicted d(x, Xa)
o0

100 1 100
o5 075 075 075
025 025 025 o
000 000 o0 000
025 25 -0z
o5 —ors o7
100 100
I00 075 050 -025 000 025 050 075 100 2100 075 -050 025 000 025 050 075 100
X1 X1

Figure 5: Predicted solution (left), exact solution (middle), and pointwise error (right) for the
Helmholtz equation.

Absolute error [u(xy, X;) = i(x1, X)|
100

X2
X:
X:

X1

Experiment 2: Fisher-KPP equation
We present experiments on the classical two-dimensional Fisher—KPP equation, a widely studied
reaction-diffusion model. The equation is given by

Uy = AU+U(1 —U) +S(Iayat)7
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where (z,) € [~1,1]2 and ¢ € [0,1]. The exact solution is selected as u(z, y, t) = e~ (=" T4+,
from which the source term S(z, y, t) as well as the initial and boundary conditions can be directly
determined.

Within the PINN framework, we employ a fully connected neural network with three hidden layers,
each containing 50 neurons. The training set comprises 20,000 interior points and 500 boundary
points, with batch sizes of 256 and 32 for interior and boundary points, respectively. Training is
conducted using the noisy regularized SGD algorithm, where the regularization term is §|6|%° with
§ = 1073, and the Gaussian noise term /2g(k) is incorporated with ¢ = 1071, The learning
rate is set to 0.01, and the network is trained for 500,000 iterations. After training, the predicted
solution attains a relative L? error of 0.00617 with respect to the exact solution. shows the
predicted solution, the exact solution, and the corresponding pointwise error at three representative
time points. Additionally, presents the training loss, which decreases rapidly and steadily

Prediction t=0.25 Exact t=0.25 Abs Error t=0.25
100 100
> 0008
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06 050 06 0.50
0.25 0.25 0.004
0s 0s
000 00 0003
04 0
—0.25
03 0 0002
—0.50
01 100 -oo
fo o5 oo 05 -io fo o oo 05 -io
(a)t=0.25
Prediction t=0.50 Exact t=0.50 Abs Error t=0.50

06 100 06 100
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075 3
05 05
050 : 0.005
04 025 y
04 0.004
000
03 03 0.003
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02 0550 02 - 0.002
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01 01
-1.00
10 05 00 05 -10 10 05 00 05 -10

(b)t=0.5
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10 05 00 -05 -10 10 10 05 00 -05 -10

Figure 6: Visualization of the predicted solution, the exact solution, and the pointwise error at three
different time points for the Fisher—KPP equation.

(c) t=0.75

throughout the optimization process.

Experiment 3: Allen—Cahn equation

We consider the two-dimensional Allen—Cahn equation,
up = Au— (u* —u) + S(x,y,t),
on (z,y) € [-1,1] x [-1,1], t € [0, 1], with e = 0.1. The exact solution we set is
t

u(z,y,t) = [sin(mx) cos(my) + 0.1 sin(107x) cos(107y)]e™ ",

from which S(z, y, t), initial, and boundary conditions are determined.
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Loss Curve

100 — noisy regularized SGD Loss

o 100000 200000 300000 400000 500000

Figure 7: Loss evolution during training for the Fisher—KPP equation.

Within the PINN framework, we employ a fully connected neural network with three hidden layers,
each comprising 100 neurons. The training dataset consists of 20,000 interior points and 500 bound-
ary points, with batch sizes of 256 and 32 for interior and boundary points, respectively. Training
is performed using the noisy regularized SGD algorithm, where the regularization term is §|6|%°
with § = 1073, and the Gaussian noise term /g(k) is added with ¢ = 1071°. The step size
is set to 0.005, and the network is trained for 1,000, 000 iterations. After training, the predicted
solution achieves a relative L? error of 0.11234 compared to the exact solution. illustrates
the predicted solution, the exact solution, and the pointwise error at three different time points.
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Figure 8: Visualization of the predicted solution, the exact solution, and the pointwise error at three
different time points for the Allen—Cahn equation.
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We acknowledge that the achieved solution accuracy for this problem is relatively limited. One
reason is the computational constraints, which prevent us from performing more extensive training;
in some existing works, for example, over five million iterations are used to solve the Allen—Cahn
equation. In addition, the inherent multiscale nature of the Allen—Cahn equation makes it partic-
ularly challenging to solve with standard approaches and often requires specialized techniques to
achieve higher accuracy.

K DETAILED DESCRIPTION OF THE EXPERIMENTS: IMPACT OF
STOCHASTICITY ON SGD PERFORMANCE

To facilitate our investigation into the role of stochasticity, we consider a second-order ordinary
differential equation problem,

u’(z) = f(z), =e[-11],

where the exact solution is prescribed as u(x) = tanh(2z + 1). The corresponding source term
f(x) and boundary conditions are derived from this choice. Importantly, this solution can be exactly
represented by our chosen neural network architecture, allowing us to explicitly characterize all
global minimizers in the parameter space.

Within the PINN framework, we employ a fully connected two-layer neural network of width 10, to

approximate the solution:
10

u(x; 0) = Z ay tanh (wiz + by) .
k=1
The training data consists of 1,000 points uniformly sampled from the interval [—1, 1].

Our goal is to experimentally investigate the impact of stochasticity in SGD by comparing the perfor-
mance of SGD and deterministic GD under identical settings. Specifically, we focus on two distinct
regimes: (1) near a global minimizer with small sharpness, and (2) near a global minimizer with
large sharpness. Our results reveal that the relative advantages of SGD and GD vary significantly
between these two regimes.

K.1 REGIME 1: NEAR A GLOBAL MINIMIZER WITH SMALL SHARPNESS

In this experiment, we study the performance of SGD and GD in the vicinity of a global minimizer
0%, where the parameter vector is given by ag = 1, wg = 2, by = 1 for the first neuron and all other
parameters are set to zero. The sharpness at this point is 31.14363, yielding a theoretical critical
learning rate for gradient descent of n** = 0.06422.

K.1.1 EXPERIMENT 1: STABILITY DOMAINS OF LEARNING RATES FOR SGD AND GD

To investigate the stability properties, we conduct 50 independent trials. In each run, the parameters
are initialized randomly in a neighborhood of 8*. Specifically, the first neuron is set as previ-
ously described, while the remaining parameters are initialized with Gaussian noise of mean 0 and
standard deviation 10~8. This initialization ensures that the parameters are very close to 6*, and
consequently, the sharpness closely matches that at 8*. For each initialization, we consider a grid of
50 learning rates, uniformly spaced from 0.001 to 1.5n*. Both SGD (with batch size 32) and full-
batch GD are run for 300 steps at each learning rate. After training, we record the loss at the 300-th
step for both algorithms across all learning rates. For greater clarity, we present the pseudocode
Algorithm 1]

The results consistently show that GD remains stable for all learning rates tested, never diverging
in any of the 50 runs. In contrast, SGD becomes unstable and exhibits explosion when the learning
rate exceeds a certain threshold, a phenomenon observed in every trial. Here, “explosion” refers to a
sharp increase in the loss at the 300-th iteration compared to the loss observed at the 300-th iteration
with smaller learning rates. The Representative result from one typical run is shown in
clearly illustrating that the stability regime for SGD is substantially smaller than that of GD, which
is consistent with the result of Wu et al.|(2018). Consequently, careful tuning of the learning rate is
necessary for SGD in this setting.
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Main Iter 22: Loss at Step 300 vs. Learning Rate
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Figure 9: Two typical runs comparing the stability domains of SGD and GD near 6*.

29



Under review as a conference paper at ICLR 2026

Algorithm 1 Experiment 1: Stability domains of learning rates for SGD and GD

1: Input:
Number of trials Nipia1 = 50;
Learning rate grid {n;}>2, uniformly spaced in [0.001, 1.57*];
Number of training steps 7' = 300, Batch size for SGD: 32.
2: for i = 1 to Niya) do
3: Initialize parameters (") in a neighborhood of 6*:
e Set the first neuron as described in the main text
 Initialize remaining parameters with Gaussian noise N\ (0, 10716)
4 for j = 1to 50 do
5 Set learning rate 1 = 7;
6: Oél();D Yy 0]
7: fort =1to T do
8 Sample a mini-batch of size 32

9: Update OégD by one step of SGD with step size n
10: end for
11: Record Losssgp[i, 7] as the loss at step T
12: 84 6"
13: fort =1to 7T do
14: Compute the full gradient over the dataset
15: Update 08])3 by one step of GD with step size n
16: end for
17: Record Lossgp|i, 7] as the loss at step T’
18:  end for
19: end for

20: Output: Loss arrays Lossgep and Lossgp for all runs and learning rates

To further investigate the stability in practice, we record the critical learning rate at which SGD first
diverges in each of the 50 independent runs. The distribution of these critical step sizes is shown in
Figure 10

Distribution of SGD Explosion Learning Rates (50 Initializations)
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Figure 10: Distribution of the critical learning rates for SGD over 50 independent runs.

Remark 9. Although the theoretical stable step size for GD is n**, in practice, training often re-
mains stable with a slightly larger step size (e.g., 1.50**), because the theoretical bound is conser-
vative and actual parameter updates rarely reach the worst-case curvature assumed in the analysis.
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K.1.2 EXPERIMENT 2: EFFECT OF STOCHASTICITY WITHIN THE STABLE LEARNING RATE
REGIME

We further investigate the effect of stochasticity within the stable domain of learning rates. In this
experiment, we consider five increasing learning rates, 0.001, 0.002, 0.003, 0.004, and 0.005, all of
which are smaller than n**. For each learning rate, we conduct 50 independent runs. In each run, the
parameters are initialized by adding noise to 8*, where the covariance matrix of the noise is given
by 1 3(0*). SGD with batch size 32 is then run for 3000 iterations. For greater clarity, we present

the pseudocode

Algorithm 2 Experiment 2: Effect of stochasticity within the stable learning rate regime

1: Input:
Learning rates {7; ?:1 = {0.001, 0.002, 0.003, 0.004, 0.005};
Number of trials Ny;i,) = 50; Number of training steps 1" = 3000;
Batch size for SGD: 32; Reference parameter 8*; Covariance function X (6*).

2: for j =1to5do

3:  Setlearning rate ) = 7);

4:  fori=1to Nia do

5: Sample initial parameters 8(7) from N (8%, n X(6*))
6: Oscp «— 607

7: fort=1to T do

8: Sample a mini-batch of size 32

9: Update Osgp by one step of SGD with step size 7
10: end for
11: Record Outputgap i, j] as the prediction on test points at step 7'
12:  end for
13: end for

14: Output: Output array Outputggp for all runs and learning rates

After training, for each of the 50 runs and each learning rate, we record the output of the learned
function on 10,000 test points uniformly sampled from the interval [—1, 1]. For each learning rate,
we take the mean of the outputs from the 50 runs as the solution learned by SGD at that step size.
We then compute the variance and standard deviation of the 50 outputs with respect to this mean
function. The results for the five learning rates are summarized as follows.

First, [Table 1|in the main text reports the L? error of the mean function with respect to the ground
truth at each learning rate.

Next, the variance and standard deviation curves of the 50 outputs relative to the mean function
are depicted in Additionally, we plot the mean function along with the standard devi-
ation band, as well as the ground truth function, in To further highlight the impact of
stochasticity, we performed 50 runs of gradient descent (GD) with a learning rate of 0.005 under the
same experimental setup. The relative L? error of the mean output function across these GD runs
is 7.451 x 1075, which is an order of magnitude smaller than that obtained by SGD at the same
learning rate. This striking contrast underscores how the inherent randomness in SGD significantly
impacts both the learned solutions and the magnitude of their fluctuations.

These results provide a comprehensive perspective on both the learned solutions and the magnitude
of their fluctuations under varying levels of stochasticity. As the learning rate increases, the impact
of stochasticity becomes more apparent, since the covariance matrix n3 is directly scaled by n
itself. This amplification of randomness is reflected in the output functions: at learning rates of
0.004 and 0.005, the variance among the 50 runs increases by one or more orders of magnitude.
This substantial increase in variance leads to a notable decline in the accuracy of the mean solution
at these higher learning rates. Overall, these results highlight the crucial influence of stochastic
fluctuations on both the variability and reliability of the solutions learned by SGD within the stable
learning rate regime.
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Figure 11: Variance and standard deviation curves of the 50 SGD outputs relative to the mean
function, for each learning rate.
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Figure 12: Mean function (solid line), standard deviation band (shaded area), and ground truth
(dashed line) for each learning rate.

K.2 REGIME 2: NEAR A GLOBAL MINIMIZER WITH LARGE SHARPNESS

Specifically, we select a global minimizer 8** with large sharpness, constructed as in At

Table 2: Construction of the global minimizer 8**

k| an | we | bk

0 51.0 | 2.0 | 1.0
1,2 —25.0 | 20 | 1.0
k>3 0 0 0

this minimizer, the sharpness is about 1.139855 x 10°, implying a theoretical critical step size for
GD of about 1.7546 x 1075,

This experiment follows a design similar to Experiment 1; the detailed setup is provided in the main
text. Here, we primarily present additional experimental results. First, reports the relative
L? error of the averaged solution across 50 runs for both algorithms. We observe that SGD achieves
significantly higher accuracy than GD. Then, in we plot the averaged solution obtained

Table 3: Relative L? error of the mean function under different algorithms .

Optimizer SGD GD
Relative L? Error | 1.231e-06 4.081e-03

by the two algorithms and overlay the variance band computed from the 50 runs. Finally, we present
the variance curves of the solution functions from the 50 runs relative to the averaged solution for
both algorithms; see These results clearly indicate that near the global minimizer with
high sharpness, SGD can in fact be more stable and yield better performance.
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K.3 EXPERIMENTS ON HELMHOLTZ AND ALLEN-CAHN EQUATIONS

In this subsection, we provide additional numerical results on two prototypical second-order PDE:s:
the Helmholtz and Allen—Cahn equations. Both equations are considered on the domain (z,y) €
[—1,1] x [—1, 1]. Their explicit forms are given by

(i) Helmholtz equation:
Au(z,y) +u(z,y) = f(z,y), (28)

(i) Allen—Cahn equation:

Au(a,y) = u(z,y)’ + u(z,y) = f(z,y), (29)
where A is the Laplacian operator. In our experiments, we choose the ground-truth solution
u(x,y) = tanh(z + y + 1) and compute the corresponding right-hand side f(z,y) analytically.
We employ a two-layer neural network with width 10, specifically,

10

up(z,y) = Z aj tanh(wjz + w3y + b;), (30)
=1

where 6 collects all trainable parameters.

For each equation, we utilize the PINN framework to investigate the dynamics of GD and SGD
optimizers via three key experiments:

1. We demonstrate that, near a sharpness-moderate minimizer, the step size stability region
for SGD is smaller than for GD;

2. We show that, at larger step sizes, SGD instability (i.e., loss explosion) is closely connected
to the covariance matrix of the stochastic gradients;

3. We reveal that, in the neighborhood of a highly sharp local minimizer, the step size stability
region for SGD becomes larger than for GD.

K.3.1 EXPERIMENT 1: STABILITY AT A MODERATE SHARPNESS MINIMIZER

In this experiment, we select a global minimizer 8* with parameters a; = 1, w; = (1,1), by = 1
and all other parameters set to zero. Following the logic of we perform experiments
at various step sizes, with 3000 iterations at each step size. For each PDE, we randomly initialize
parameters in the neighborhood of 6* and compare the behavior of GD and SGD optimizers.

We observe that, as the learning rate increases, the loss at 3000-th step for SGD exhibits an abrupt
jump at a certain threshold, indicating instability of SGD at large step sizes. In contrast, GD remains
stable across all tested step sizes. This demonstrates that, near a moderate-sharpness minimizer, the
stability region of SGD with respect to the step size is strictly smaller than that of GD.

[Figure 15]and [Figure 16| present the results for the Helmholtz and Allen—Cahn equations, respec-
tively, each with two independent runs initialized randomly around 6*.

K.3.2 EXPERIMENT 2: COVARIANCE AND INSTABILITY AT LARGE STEP SIZE

In this experiment, we again consider the global minimizer 6* with a; = 1, wy; = (1,1), by = 1,
and all other parameters set to zero. We first analytically compute the critical step size for GD at
6*. Both GD and SGD are then trained with a learning rate set to 1.5x the theoretical critical step
size. During SGD training, we also record the Frobenius norm of the covariance matrix of stochastic
gradients at each step.

As shown in [Figure 17| and [Figure 18] for both the Helmholtz and Allen-Cahn equations, the tra-
jectory of the covariance matrix norm closely aligns with the loss trend in SGD, exhibiting simulta-
neous increases and instability. This strong correlation suggests that the variance of the stochastic
gradients plays a central role in SGD divergence at larger step sizes.
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Figure 15: Experiment 1 on the Helmholtz equation: Loss at 3000-th step for various learning rates,
under two random initializations near 6*. Left: Run 1, Right: Run 2.

Main Iter 0: Loss at Step 3000 vs. Learning Rate

100 {

—— SGD at Step 3000 |
GD at Step 3000
1029 & SGD Explosion
== " (critical LR)
10 1
107
10°¢ 1
10-104
10-12 4

144
10 >

Loss at Step 3000

0.00 0.05 0.10 0. 15 O.ZD D.ZS
Learning Rate

Main Iter 1: Loss at Step 3000 vs. Learmng Rate

100 1

—— SGD at Step 3000
GD at Step 3000

10?1 % SGD Explosion

== " (critical IR)
107 4
1076 4
1070 4
10-10 4
107124
107144 .

eSS R RN S N

Loss at Step 3000

0.00 0.05 0.10 015 0.20 0.25
Learning Rate

Figure 16: Experiment 1 on the Allen—Cahn equation: Loss at 3000-th step for various learning
rates, under two random initializations near 6*. Left: Run 1, Right: Run 2.
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Figure 17: Experiment 2 on the Helmholtz equation: The loss and covariance matrix show highly
consistent rising trends and instability.
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Figure 18: Experiment 2 on the Allen—Cahn equation: The evolution of the covariance norm mirrors
that of the loss, supporting the key role of gradient variance in SGD instability.
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K.3.3 EXPERIMENT 3: STABILITY AT A HIGHLY SHARP MINIMIZER

In this experiment, we focus on a minimizer 6** of higher sharpness, where the parameter values are
set as follows: a1 = 51, wy = (1,1), by = 1, a5 = =25, we = (1,1), by = 1, a3 = —25, wz =
(1,1), b3 = 1, and all remaining parameters are zero. Around this point, we perform 20 independent
random initializations. For each run, we first calculate the theoretical critical step size for GD at 6**,
then train PINNs with GD and SGD using a step size exceeding the critical value by 106 for 3000
iterations.

We observe that, across all runs for both the Helmholtz and Allen—Cahn equations, the GD loss
typically exhibits a sudden increase at the beginning, followed by a very slow decrease, while SGD
achieves rapid loss reduction and converges much faster. By the end of training, the final losses
of SGD are often several orders of magnitude lower than those of GD. This indicates that, in the
vicinity of highly sharp minimizers, the stochasticity in SGD can significantly enhance convergence
properties compared to GD, even when the step size slightly exceeds the classical stability threshold
for GD. [Figure 19|and [Figure 20| present representative loss curves from two random initializations
for each equation.
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Figure 19: Experiment 3 on the Helmholtz equation: Loss curves of GD and SGD using a step size
just above the critical threshold, for two random initializations near 6**.
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Figure 20: Experiment 3 on the Allen—Cahn equation: Two illustrative runs.
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