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Abstract

Among the flourishing research of weakly supervised learning (WSL), we recognize the lack
of a unified interpretation of the mechanism behind the weakly supervised scenarios, let
alone a systematic treatment of the risk rewrite problem, a crucial step in the empirical
risk minimization approach. In this paper, we introduce a framework providing a compre-
hensive understanding and a unified methodology for WSL. The formulation component of
the framework, leveraging a contamination perspective, provides a unified interpretation of
how weak supervision is formed and subsumes fifteen existing WSL settings. The induced
reduction graphs offer comprehensive connections over WSLs. The analysis component of
the framework, viewed as a decontamination process, provides a systematic method of con-
ducting risk rewrite. In addition to the conventional inverse matrix approach, we devise
a novel strategy called marginal chain aiming to decontaminate distributions. We justify
the feasibility of the proposed framework by recovering existing rewrites reported in the
literature.

1 Introduction

Accurate labels allow one to generalize to unseen data via empirical risk minimization (ERM) and analyze
the generalization error in terms of the classification risk. In practice, there are various situations in which
acquiring accurate labels is hard or even impossible. One obstacle preventing us from acquiring accurate
labels is labeling restrictions, such as imperfect supervision due to imperceptibility, time constraints, anno-
tation costs, and even data sensitivity. Another obstacle is the disruption by unavoidable noise from the
environment.

To address the first obstacle of restrictions, various formulations have been studied under the notion of weakly
supervised learning (WSL) (Zhou, [2018} [Sugiyama et all 2022). Based on various types of available label
information, it evolves to thriving topics, including the conventional settings (Lu et al., [2019; 2020; [2021}
[Elkan & Noto, 2008; |du Plessis et al.l [2014} |2015; Niu et all [2016} Kiryo et al., 2017; [Sansone et al., |2019)
that investigating the potential of unlabeled data, complementary-label learning (Ishida et al., 2017; 2019;
Yu et al., 2018; [Feng et al., 2020a; |[Katsura & Uchida, 2020; (Chou et al., |2020)), partial-label learning (Cour
et al.,|2011; Wang et al.,2019; Lv et al. 2020; |[Feng et al., 2020b; Wu et al., 2023), learning with confidence
information (Ishida et al. [2018} |Cao et al. [2021agb; Berthon et al., 2021} Ishida et al., |2023)), and learning
with comparative information (Bao et al., 2018} |Shimada et al., 2021} [Feng et al., 2021} |Cao et al.l 2021b)).
Developing to resolve the second obstacle of noise, learning with noisy labels (LNL) can be categorized into
two major formulations; one is called mutually contaminated distributions (MCD) (Scott et al., [2013; Menon|
let all [2015; [Katz-Samuels et al.,2019) in which class-conditional distributions contaminate each other, and
the other is named class-conditional random label noise (CCN) (Natarajan et al.l [2013; [2017) where a label
is flipped by random noise.
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Despite fruitful results and tremendous impact, we recognize a lack of global understanding and systematic
treatment of WSL. From the perspective of formulation, there are only scattered links among WSLs. |Lu
et al.| (2019) and [Feng et al.| (2021) showed that parameter substitution could reduce unlabeled-unlabeled to
similar-unlabeled and positive-unlabeled settings. Figure 1 in \Wu et al.| (2023]) showed relationships among
four WSLs of partial- and complementary-labels. A similar observation can be found in the intersection of
WSLs and LNLs. Several WSLs were shown to be special cases of the MCD model, and some other WSLs
are special cases of the CCN model. For details, please refer to the discussions in Sections 8.2.3 and 9.2.4
of |Sugiyama et al. (2022)). These connections encourage us to consider the possibility that there exists a
unique interpretation that explains the mechanism behind WSL. Luckily, from the methodological viewpoint,
most of the existing WSL research adopted certain forms of the ERM approach. A crucial shared step is
to perform the risk rewrite, a way of rephrasing the uncomputable risk to a computable one in terms of
the data-generating distributions. A successful rewrite is the starting point of many downstream tasks,
including but not limited to the following: Devising a practical or robust objective for training, comparing
the strengths and properties of loss functions, proving the consistency, and analyzing generalization error
bounds. However, many rewrite forms (summarized in Tables and|5)) look independent as if they are tailored
to fit each problem’s unique form of supervision and are not adaptable to each other. These seemingly non-
adaptable estimators post a practical challenge: When facing a new form of weak (or noisy) supervision, we
do not have a guideline or general strategy to leverage developed methods to address the new situation.

These observations raise the following questions we aim to answer in this paper: What is the essence of
WSL? From a formulation perspective, can a unique interpretation be found to explain the mechanism
behind WSL? Does a methodology exist to address as many WSLs as possible?

This paper proposes a framework with the following contributions to answer the research questions.

1. To the best of our knowledge, the framework is the first systematic attempt to address how and why
WSLs are related. The framework consists of a formulation component and an analysis component,
and subsumes fifteen weakly supervised scenarios. Table [10] summarizes the results obtained from
our framework. This paper brings forth the next two new insights.

2. The formulation component, modeling from a contamination perspective, provides a coherent inter-
pretation of the weakly supervised data-generating processes. It produces a comprehensive relation-
ship graph, shown in Figure [I] consisting of Tables[7, B} and [0} Figurdl] summarizes the WSLs and
reveals connections between scenarios that were previously unknown to the community. Figure [I]
is our answer to the second research question. Figure [I] also unveils a distinctive confidence-based
type of WSLs that do not belong to the prominent MCD or CCN categories.

3. The analysis component, leveraging the decontamination concept, establishes a generic methodology
for conducting risk rewrites for all WSLs discussed in this paper. Thus, rewrite derivations that
previously seemed irrelevant can now be systematically analyzed, and the final research question is
answered. In addition, the analysis component also applies to new scenarios.

4. Regarding the technical contributions, the proposed framework distinguishes two approaches, the
inversion method and the marginal chain method presented in Theorems [I] and [2] to implement
the decontamination idea. The marginal chain method is a newly developed invertibility-free loss
correction approach. We also illustrate the subtle adjustments to develop simplified and intuitive
proofs for the existing risk rewrites. These alternative proofs have their own logic stemming from
the proposed framework.

The idea of decontamination has been widely implemented and investigated. There are two major approaches,
loss correction, and label correction, in LNL. Closest to the current paper, |Cid-Sueiro| (2012)), ivan Rooyen &
Williamson| (2017)), [Katz-Samuels et al.| (2019)), [Patrini et al.| (2017)), and jvan Rooyen & Williamson| (2015)
exploited the inverse matrix, sometimes known as the backward method (Patrini et al., [2017)), to construct
a corrected training loss to obtain an unbiased estimator. There were deep learning methods leveraging the
contamination assumption, sometimes called the forward method (Patrini et al., |2017)), to train a classifier
(Patrini et al.l [2017; [Yu et al., |2018} |Sukhbaatar & Fergus, 2015} |Goldberger & Ben-Reuven), [2017; Berthon
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. Besides modifying the loss function, one has two other strategies to manipulate the corrupted
labels. The (iterative) pseudo-label method modified the labels for training (Ma et al., 2018; Tanaka et al.,
2018 Reed et all [2015). Filtering clean data points for training is the other option (Northcutt et al., 2017
2021} Jiang et all, [2018} Han et al 2018; [Yu et al| [2019)). Apart from classification, a different research
branch studies conditions and methods for recovering the base distributions (Katz-Samuels et al., [2019;
Blanchard & Scott} [2014; Blanchard et al [2016)).

The current work is close to the loss correction approach in LNL. Most previous loss correction methods
exploited invertibility to construct the corrected losses. In contrast, the marginal chain approach we propose
in this paper adopts the conditional probability formula to build the corrected losses. Many of the existing
work targeted either the MCD or the CCN models. [Scott & Zhang] (2020)), Berthon et al. (2021)), Patrini
et al.| (2017), Goldberger & Ben-Reuven| (2017)), [Sukhbaatar & Fergus| (2015), Yu et al. (2018)), Natarajan
et al.| (2013)), [Natarajan et al.| (2017), Northcutt et al.| (2017), and Northcutt et al. (2021)) were based on
the CCN model, and Katz-Samuels et al| (2019), Blanchard & Scott| (2014)), and Blanchard et al.| (2016)
were based on the MCD model. Menon et al.| (2015), van Rooyen & Williamson| (2017)), and [Katz-Samuels|
studied multiple noise models at the same time. However, the current paper investigates the
connections between MCD, CCN, and confidence-based settings simultaneously through the lens of matrix
decontamination as broadly as possible to identify a generic methodology for WSLs. Different from the
current paper aiming for risk minimization, research also studied various performance measures, such as the
balanced error rate (Scott & Zhang], 2020} [2019; Menon et all, 2015} [du Plessis et al. [2013)), the area under
the receiver operating characteristic curve (Charoenphakdee et al., [2019; [Sakai et al., 2018; [Menon et al.l
2015)), and cost-sensitive measures (Charoenphakdee et all 2021} Natarajan et al. [2017). We choose the
classification risk as the only measure due to the focus of this paper.

=

The remaining sections are organized as follows. Section [2] reviews ERM in supervised learning, the risk
rewrite problem, and the existing results. Section [3] presents the proposed framework. We show that the
proposed framework provides a unified way to formulate diverse weakly supervised scenarios in Section [
Section [l demonstrates how to instantiate the framework to conduct risk rewrite. We demonstrate the
applicability of the proposed framework to new scenarios in Section [] Finally, we conclude the paper and
discuss outlooks in Section [7} The current organization of Sections [d] and [f] aims at connecting multiple
WSLs under one framework. We note that this paper can serve multiple purposes for the study of WSLs. A
summary of possible use cases of the paper is provided in Appendix [A]

2 Preliminaries

Let (y,z) be a data example where the instance x € X and the label y € ). For binary classification, the
label space Y is {p,n}, and for multiclass classification with K classes, Y = {1,2,..., K} := [K]. The joint
distribution is P (Y, X), the class prior is P (Y"), the class-conditional distribution is P (X|Y'), and the class
probability function is P (Y|X). Given a space of hypotheses G, we denote the loss of a hypothesis g € G
on predicting y of (y,x) as fy=,(g(x)). To accommodate concise expressions and readability for all WSLs
considered in this paper simultaneously, we use alias notations when the context is unambiguous. Table [I]
provides a set of common notations used in this paper.

We use (y, z) instead of the convention (z,y) to represent a data example because, in the current paper, we
focus on discussing different types of supervision. Placing the label before the instance emphasizes the type
of supervision under investigation in theorems and derivations.

2.1 Supervised Learning and the ERM Method

In supervised learning with K classes, the observed data is of the form

n ii.d.
{zf}i2) "~ Pxjy=y, Vy € [K].
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Table 1: Alias of Common Notations.

Name of the notation Expression Aliases

Binary classes {p,n}

Multiple classes {1,...,K} [K]

Compound set of [K] 2K\ {0, [K]} S

Joint distribution PY =y,X=2) | Py=ya, Pr=yx,or Pyx
Hypothesis and its space geg

Loss of ¢ ly—y(g(x)) 4y, 0y (X), or by (g(X))
Classification risk Ey x [¢y(9(X))] | R(g)

The j-th entry of vector V| (V),; V;

Class prior P(Y =y) Ty

Marginal P(X) Px

Class-conditional P(X =z|Y =y) | Pxjy, Pxjy=y O Paly—y
Confidence PY =ylX=2a) | ry(X), ry(z),or r(X)ify=p

Notation ¥ denotes the shorthand of (y, ;). The goal of learning is to find a classifier g € G that minimizes
the classification risk
K

R(g) = Ey,x [ty (9(X))] = Y Py =ya by=y(9()) dz. (1)

y=1 reX

To find such a classifier, ERM first constructs an empirical risk estimator with the data in hand:
K o
R(g) =) - > myly=y(g(a})). (2)
y=1 Y =1

The estimator approximates R(g) consistently since it can be shown that approaches as N — oo
(Tewari & Bartlett} 2014} Kiryo et al.| 2017) and (Sugiyama et al., 2022, Chapter 3). Then, ERM takes R(g)
as the training objective and optimizes it to find the optimal classifier

. _ R 3
g" = argmin (9) (3)

in the hypothesis space G as the output of ERM.

2.2 The Risk Rewrite Problem and Existing Results

Sections to review the learning scenarios including WSLs, MCD, and CCN that will be discussed
in this paper. A knowledgeable reader may refer directly to summary Tables [2] through [6] and proceed to
Section [3l

In every WSL scenario, the goal of learning is the same as supervised learning. However, the observed data is
no longer as perfectly labeled as in supervised learning. That said, there are differences in the formulations of
the observed data and the ways of estimating the classification risk. We begin with reviewing WSLs derived
from binary classes. For K = 2, we denote Y := {p,n}.

2.2.1 Positive-Unlabeled (PU) learning
The observed data in PU learning (du Plessis et al., 2015) is of the form
n, i.i.d.
{af}i 2, "~ Pp = Px|y=p,

u)Mu  idd. .
{=3}2 "~ Py = mp Pxjy=p + ™ Px|y=n;
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where '} is viewed as the shorthand of (u,z;) symbolizing the unlabeled dataﬂ The unlabeled data set
{x}l} j consists of a mixture of samples from Px|y—, and Px|y—, with proportion 7. Since the information
of negatively sampled data is unavailable, is uncomputable, causing directly optimizing infeasibility.
Therefore, to make ERM applicable, the risk rewrite problem (Sugiyama et al., [2022)) asks:

Can one rephrase the classification risk R(g) in terms of the given data formulation?
du Plessis et al.| (2015) rewrote the classification risk in terms of the data-generating distributions Pp and
Pu as

R(g) =Ep [ﬂ'pgp — Fpgn] + Ey [Zn] . (5)

2.2.2 Positive-confidence (Pconf) Learning Learning
The observed data in Pconf learning (Ishida et al., |2018) is of the form

{zir(za) iy
where
iid.
z; ~ Ppi=Px|y=p, (6)
r(xi) = 'Py:p|X:$i.
The function r(z) represents how confident an example x would be positively labeled. [Ishida et al.| (2018)
rewrote the classification risk as

R(g) = m,Ep {ﬁp + 1—7“()%} .

r(X) (™)

2.2.3 Unlabeled-Unlabeled (UU) learning

The observed data in UU learning (Lu et all 2019) is of the form

w i,

{ai 1 K Py, = (1= m1) Pxjy=p + 71 PX|y=n; (8)
Ty L.

{3 ;:21 K Py, =2 Pxjy=p + (1 = 72) Px|y=n;,

where z;" (resp. z;*) being the shorthand of (u1, z;) (vesp. (uz,2;)) represents z; (resp. x;) belonging to the
unlabeled data whose mixture parameter is v; (resp. 72). Notice a difference that the mixture proportion
of the unlabeled data in PU learning is 7. |Lu et al,| (2019) rewrote the classification risk in terms of the
data-generating distributions Py, and Py, as follows: Assume v + v2 # 1. Then,

(1 —y)mp —Y2Tn } { —Y17p (1 —y1)my
R(g) = Ey, 0+ | +E 0+ 0l 9
(9) v L—%—sz 1=y — vz l—-m—7 " 1-m—7 ©)

2.2.4 Similar-Unlabeled (SU) learning

The observed data in SU learning (Bao et al., [2018) is of the form

~ 7) = b
=1 ’ ™+ (10)

2 2
{ (xs xS/) }" Lid. ToPx|y=pPx'|vy=p + Ty Px|y=nPx’|y=n
2Rt}

W idd
{I?};l:l Py = Tp Px|y=p + T Px|y=n
The word “similar” means the examples in every (z°, xs/) pair have the same label; either both are positive,
or both are negative. Under the assumption 7, # 7y, [Bao et al.| (2018) rewrote the classification risk as

{E(X) ;L(X’)}

R(g) = (mp +m3) Es +Eu [£-(X)], (11)

1Seemingly being redundant, but it is helpful to use (u, ;) to distinguish it from the positively labeled instance (p, z;).
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where

2.2.5 Dissimilar-Unlabeled (DU) learning

The observed data in DU learning (Shimada et al.l 2021)) is of the form

A did Pxiv=pPx/|v=n + Px|y=nPx'|y=
{(I?,I?)} 1 /\Jd Pp = X|Y=p/"X'|Y . XY X'lY p7 ( )
1= 12

u)Pu iid. L
{xj }j:1 ~" Py = Tp Px|y=p + T Px|y=n

The word “dissimilar” means the examples in every (z9, xd/) pair have distinct labels. Under the assumption
Tp # T, Shimada et al. (2021) rewrote the classification risk as

LX)+ L(X")

R(g) = 2mpm,Ep {— 5 +Ev [£4+(X)], (13)
where
LX) = — o) - —1 X
=T ¥ Tp—Tn
s s
X) = P (X)— — g (X).
LX) = () - ()

Note that £(X) has been defined in the SU setting. We repeat it here for clarity.

2.2.6 Similar-Dissimilar (SD) learning

The observed data in SD learning (Shimada et al. 2021)) is of the form

{(xs- $$/> }" il T2Px|y=pPx'[y=p T ToPX|y=n Px’|y =n
[ 2Rk ) . : 2 2 ’
i=1 7Tp + Th (14)
{( q df)}”d iid. Pxy=pPx'|y=n + Px|y=aPx'|y=p
x5, x; ~Pp = .
i=1 2
Under the assumption 7, # 7y, [Shimada et al.| (2021) rewrote the classification risk as
Li(X)+ Lo(X' L_(X)+L_(X'
R(g) = (ﬂ'g —|—7TI21) Eg { +(X) 5 + )] + 2m,muEp { (X) 5 (X7) , (15)
where
T Vs
L X - P g X - - gn X 9
HX) = Ty (X) - T (X)
Vs Yis
L_(X) = - 0 (X £y (X).
(0 = — (0 + ()

Note that £, (X) and £_(X) have been defined in the DU and SU settings. We repeat them here for clarity.

2.2.7 Pairwise Comparison (Pcomp) Learning

The observed data in Pcomp learning (Feng et all 2021)) is of the form

2 2
{(xpc zpc/) }”Pc il p T Px |y =pPx'|y=p + TpMuPx|y=pPx|y=n + TaPx|y =nPx/|y=n

Lo i=1 T2+ MpTy + 72
(16)
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The pairwise comparison encodes a meaning that each xP¢ “can not be more negative” than 2P in the
(xP°, zP®) pair. That is, the labels in (zP°, 2P ) are of the form (p,p), (p,n), or (n,n). Feng et al| (2021)

rewrote the classification risk as
R(g) = IESup [Zp - 7T-pén} + IEInf [_anp + En} 5

where the expectations are computed over the following distributions
Psup = PPC d:E/,

Pt = Ppc dz.

2.2.8 Similarity-Confidence Learning (Sconf) Learning

The observed data in Sconf learning (Cao et al., 2021b) is of the form

SC SC/ SC SC/ "
{xi,xi ,r(mi,xi )} g
i

where

sc Lid. .
x; ~ Px =7 Pxy=p + ™ Px|y=n;

se! iid. .

z;° '~ Pxri=mp Pxrjy=p + ™ Px/|y=n,
SC SCI P

T (ZZ y Ly ) = PY:y§C:Y/:y§C/ ‘szic,xl:l":c/ .

Cao et al.|(2021b) rewrote the classification risk as

(XvX/)_ WP_T(XvX/)

Rlg) = B | DT () I g
where
£, 30 o= BB,
a0 = )

2.2.9 Complementary-Label (CL) Learning

(17)

(18)

(19)

One can also formulate weak supervision from multiclass classification. For K classes, we denote Y := [K].

The observed data in CL learning (Ishida et al., [2019) is of the form

_ no iid 1
{iz)liny ™~ Pgx = -1 Z Py x.
Y #8

(20)

As is named “complementary,” s € [K] represents that the true label y of 2 cannot be s. [Ishida et al.|(2019)

rewrote the classification risk as

R(g) = ES,X

K
D> b, — (K~ 1)451 .

(21)
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2.2.10 Multi-Complementary-Label (MCL) Learning
The observed data in MCL learning (Feng et al.l 2020a) is of the form

K-—1 1 . —
i —1 P|§|=a " T° Ty s Py.x, if|S|=d,

(G, ), TR Ps x = d=1 TISl=d (75 Lves |
0, otherwise.

(22)

Generalized from CL, § C [K] in MCL is a set of classes of size d € [K — 1], representing multiple exclusions.
In other words, CL is the special case of MCL with d = 1. |[Feng et al.| (2020a) rewrote the classification risk
as

K-1

K—1-|9|
R(g) = Z Pi51=dEs, x| 15=d Zﬁy R Z& . (23)
d=1 y¢S 5€8
2.2.11 Provably Consistent Partial-Label (PCPL) Learning
The observed data in PCPL learning (Feng et al.l |2020b) is of the form
n o iid 1
{(Si"ri)}izl ~ PS7X = m Z PY7X. (24)

Yes

A partial-label s C [K] is a set of classes containing the true label y of x. [Feng et al.| (2020b) rewrote the
classification risk as

1 K Py —y1x
R(g) = 5Es x ZZ—&’ : (25)

a€sS PY:“|X

2.2.12 Proper Partial-Label (PPL) Learning

The observed data in PPL learning (Wu et al., 2023)) is of the form

{(siz)by " Psx =08, X) Y Pyx. (26)

YeS

The weight ﬁ in PCPL is generalized to C(S,X), a function of the partial-label and the instance,
allowing one to characterize the “properness” of a partial-label. |Wu et al.| (2023) rewrote the classification
risk as

Py _
LTRSS (27)

R(g) =Es,x m y
ac =a

yeSs

2.2.13 Single-Class Confidence (SC-Conf) Learning
The observed data in SC-Conf learning (Cao et al., [2021a) is of the form

{xi,r1(xs), ... 77"K($i)}?:1 )

where

Z; 1}'\51 Px|y:ys with Ys € [K],

(28)
rk(23) := Py—k|x=q, for each k € [K].

The constraint of SC-Conf is that the examples are sampled from a specific class ys. The key to risk rewrite is
the availability of confident information r(z) about each class. |Cao et al|(2021a)) rewrote the classification
risk as

K

R(9) = 7 Exiy—, [Z ((Xxﬁf] . (29)

y=1 Ys
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2.2.14 Subset Confidence (Sub-Conf) Learning

The observed data in Sub-Conf learning (Cao et al., [2021a)) is of the form

{zi,ri(zi), . e (@) ey

where

T; 11\9 P)ﬂygys with Y, C [K],

(30)
T6(2i) = Py—g|x=s, for each k € [K].

Sub-Conf is a relaxed setting of SC-Conf where the samples come from a set of classes Vs. |Cao et al.| (2021a)
rewrote the classification risk as

K

R(g) = 7 Exiyey, [Z o ey] , (31)

y=1 7=

where 7y, = Zjeys 7j, and 1y, (X) := Pycy,|x = Zje‘ys Py—j|x-

2.2.15 Soft-Label Learning

Ishida et al.| (2023) formulated soft-label learning under the binary setting, in which the observed data is of
the form

{zi,r(za) iy,

where
iid.
z; ~ Px :=Py—px +Py=nx, (32)
T(:EZ) = PY:p|X:xi~
It is straightforward to obtain a corresponding formulation under the multiclass setting:
{Z‘i, 1 (x1)7 s 7TK(xi)}?:1 )
where
K
iid.
x; ~ Px = Py =k, x,
2 -

mk(23) := Py—k|x=q, for each k € [K].

The difference between SC-Conf and multiclass soft-label (resp. the difference between Pconf and binary
soft-label) is the sample distribution of x. We rewrote the classification risk as

R(g) = Ex [Z ry (X )ﬁy] : (34)

2.2.16 Summary of Existing WSL Formulations and Risk Rewrites

We summarize the weakly supervised scenarios discussed and their risk rewrite results. The formulations are
divided into the binary classification settings in Table [2|and the multiclass classification settings in Table
We list the formulations in chronological order, according to their publication order. Tables [ and [f] are the
corresponding rewrites.
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Table 2: Binary WSL formulations.

WSL | Formulation Equation
R
i Ji= = =p>
4
PU wyna Bdop g D ‘I'
{xj j=1 "~ FU=Tp FX|y=p + ™ Px|y=n-
n
{xi,r(xs)};—,, where
iid.
Pconf x; ~ Pp:= PX|Y:I)7
’I"(.’I,‘l) = PY:p\X:zi-
ug ) Muy id.d.
1810) {‘Tz 1}1211 ~ PUl = (1 - ’71) PX‘Y:p + Y1 PX|Y:11> ‘E'
Us M i.i.d. .
{z2};53 ~ Pu, =72 Pxjy=p + (1 = 72) Px|y=n
2 2
{ (xs ms’) }" bid ToPx|y=pPx'|v=p + TaPx|y=nPx/|y=n
i1y ) ~ s = 2 2 )
SU i=1 T+ (L0}
u)Pu  iid. L
{z3},2, "~ Py =m Pxjy—p + ™ Px|y—n-
{(l’d xd/) }”d il Px1y=pPx/1y=n + Px|y=nPx'|y=p
DU V) i 2 ’ (12)
ny, i.i.d.
{9531}47‘:1 ~ Pu :=7p Pxjy=p + T Px|y=n-
2 2
{( i x‘/) }"S b T Px |y =pPx/jy=p + T Px|y=aPx'|y=n
x@? 7 ~ S = 2 2 )
SD =1 ™ T (14)
a N\ iid o, Pxjy=pPx/y=n+ Px|y=nPx/|y=p
xy, @ i Pp = 5 .
N\ e iid.
{(ahe,ab )} P
i=1
2 2 1
Pcomp T Pxiy=pPx/jy=p + T Px |y =pPx/|y=n + T Px|y=nPx'|y=n ‘b
= 2 2 :
Ty + TpTn + T
3 sc’ SC SC/ Mse
{xjc,:vic ,T (xl , X5 )} , where
i=1
sc iid. n
Sconf €z, o~ PX = Tp PX'Y:p + T P)ﬂy:m "
riid.
xic ~ Pxr = Tp PX’\Y:p + T PX/|Y:n7
’
r (33?67 3 ) 1= Py ooy r—yse! | X —ase, X/ =gz’ -

10
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Table 3: Multiclass WSL formulations.

WSL Formulation Equation
_ n o iid. 1
CL {Giszi) ey ~ Py x = 1 Z Py,x - 1;
Y #£5
1=t Plsi=a” rimy Lygs Prx, if1S]=d,
MCL | {(Go,wi)}iy " Py 1= (i) (22)
7 0, otherwise.
iid. 1
pcPL | {(si,2)}e X Psx o= s D Prix. (24)
2 -1 Yes
n iid.
ppL | {(si@a)ioy X Psx = C(8,X) Y Prx. )
Yes
{zi,r1(xy),. .. ,TK(x,-)}?:l , where
SC-Conf | o, "X Py, with g, € [K], (28)
k(i) = Py—g|x=s, for each k € [K].
{@i,r1(xi), ..., 7 (23)},—, , where
Sub—Conf Z; 1’1\51 Pleeys Wlth ys - [K]a "
T6(%i) = Py—g|x=s, for each k € [K].
{@i,r1(xi), ..., 7 (23)},_, , where
Soft-label | ;i Py (33)
mk(23) := Py—g|x=q, for each k € [K].

11
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Table 4: Risk rewrites for binary WSLs.

WSL | Risk rewrite for R(g) = Ey,x [(y (9(X))] (1

Equation

PU R(g) = Ep [mplp — mpln] + Eu [¢n] .

b}

Pconf | R(g) = m,Ep [Ep + 1;(7;))()&1] .

(7)

U R(g)Em{“‘”’”"e o en]wuz{ L A G
2

l—yi—y P 1—my—

b

< [E(X);E(X’)]

SU L(X) = 05(X) —

(11)

LX)+ L(X")

R(g) = 2mpmEp { ] +Ey [£4+(X)], where

2

DU L(X) is defined in the SU setting, and

Lo(X) = =2, (X) — =1, (X).

7Tp — Tn p~— /In
Lo(X)+ Li(X) L_(X)+L_(X")
2 2 + +

D R(g) = (m} +m5) Es [ 5 + 27, Ep 5 , where "

L, (X) and £_(X") are defined in the SU and DU settings.

R(g) = IESup [Ep - szn] + ]EInf [_ﬂ-ngp + En] 3 where
I /

Plnf = / Ppc dx.
reX

Sconf | R(g) =Ex x- [T

Tp — Tn 2 Tp — Tn 2

(X, X') = Mo £ (X) + 6(XT) | mp = r(X, X) 4a(X) + en<X’>} .

E]

12
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Table 5: Risk rewrites for multiclass WSLs.

WSL Risk rewrite for R(g) = Ey,x [¢y (¢9(X))] (1 Equation
K
CL R(g) =Egx | Y by — (K - 1)%] 1D
y=1
K-1 |S‘
MCL | R(g) = Y Pisjca Es xji512a | D by — > ts 1D
d=1 y¢.§' =
1 Py =y|x
PCPL | R(g) = -Es x 0. (125)
2 y=1 ZaGS,PY:“‘X Y l
PPL =Esx |>. _Praux qp
yes ZaGSPY alX !
K
ry(X)
3 =7, Exiy— Y20, .
SC-Conf | R(g) = 7y Ex|y—y, Lz—; o (X) J] 1'
K
ry(X)
Sub-Conf | R(g) =7y E 3 Sy (131))
(9) = m.Ex|yey, Lz_:l o (X) y} l
K
Soft-label | R(g) = Ex Zry(X)ey]. qp
y=1

From the above tables, finding a way to reexpress the classification risk R(g) in terms of the data-
generating distributions becomes the crux when applying ERM for most WSL studies. The rewrites also
replace loss functions /¢y defining with various modified losses (shown inside the expectations). These
modified loss functions are sometimes called corrected losses, which is why the approach is also called loss
correction. Proposing a generic methodology that finds properly corrected losses to achieve risk rewrite in
different scenarios is a main topic we would like to elaborate on in this paper.

2.2.17 Learning with Noisy Labels (LNL) Formulations

Next, we review two related formulations in LNL, the MCD and CCN settings, in Table [f] The observed
instances in MCD and CCN are still labeled by {p,n} but are polluted by certain noise models. We use
Y to represent a polluted label, compared to an unpolluted Y. In MCD, a small portion of the negatively
labeled data v,Px|y—, contaminates the positively labeled data Px|y—,. Likewise, a small portion of the
positive data v,Px|y—, contaminates the negatively labeled data Px|y—, (Scott et al., |2013). In the CCN
setting, a label Y is flipped to become Y with probability Py iy, x (Natarajan et all 2013). Although they
are formulated for the study of noisy labels, their formulations share similar structures with many WSLs
above. In Section 4] we will use the similarities to categorize WSLs and provide a bird’s eye view to reveal
connections among WSLs.

13
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Table 6: MCD and CCN formulations.

Scenario | Formulation

e iid
{xf}zil = PX|Y:p = (1 - ’Yp) PXlY:p + % PX|Y:n~

MCD Fyna i.i.d
{2512, ™~ Pxjyon =" Pxjy—p + (1 = 1) Pxjy=n-

— n iid. —
CCN {@s,zi) iy ™~ Py—g.x = E P?:gi|Y:k,XPY:k,X7Vyi € {p,n}.
ke{pn}

3 A Framework for Risk Rewrite

We illustrate the proposed framework in this section. Its job is to provide a unified treatment and understand-
ing of WSL. It consists of a formulation component and an analysis component. The analysis component
suggests a generic methodology to solve the risk rewrite problem. Moreover, diving into the formulation
component’s logic, we can interpret multiple WSL formulations and the diverse risk rewrites from a single
perspective.

Before introducing the framework, we first define several abstract notations that will be used throughout the
paper. There are three main characters and one supporting character in the framework. The main characters
are the vector of data-generating distributions P, the vector of risk-defining distributions P, and the vector
of base distributions B. The supporting character is the vector of loss functions L. The reason for using
vectorized pseudonyms is that the proposed framework uses matrix multiplication as a basic mathematical

operation. P contains distributions that produce the observational data. For instance, P = (;;E) in PU

learning (Table ) and Pg_,, x is the k-th entry of P in CL learning (Table . We use classification risk 1]
to illustrate our framework. So P consists of joint distributions Px y. We can look at Tables and and see
that there are basic elements that define a data-generating distribution. These are class-conditionals Px |y
in Table [2| and joint distributions Px y in Table @ Since these basic elements do not necessarily coincide
with the entries of P, we denote them as B. L consists of loss functions and its k-th entry is £y—5(g(X))]

3.1 The Formulation Component of the Framework

The construction of the formulation component is to study the connections among WSLs and provide a
foundation for developing the generic methodology. We draw inspiration from Section 22} Each WSL
formulation represents a type of weaken information of the joint distribution Py x in supervised learning.
For instance, unlabeled data discards the label information (Lu et al., |2020; 2021)), the complementary-label
is a label that cannot be the ground truth (Ishida et al., |2017; [Yu et all [2018), and the similarity encodes
a comparative relationship of two ground truth labels (Bao et all [2018; |[Shimada et al.l [2021; |Cao et al.|
2021b)). Thus, we are motivated to search for a general way to link data-generating distributions with the
joint distribution.

We start by linking the data-generating distributions P and the base distributions B. This involves finding
matrix correspondences to Tables [2]and [3] We assume that a matrix M., formalizes the link:

P = McorrB~ (35)

Taking PU learning for example, Moy aims to connect P = (;;E) with B = (PX‘Y:"). To keep the

Px|y=n
framework as abstract as possible, we would like to defer the discussion of all other P and B until we realize
their corresponding M., in Section

The matrix formulation has two advantages. First, it provides a unified way to characterize a wide range of
WSL settings. By studying the entries of a matrix, we can easily link one WSL scenario to another to form

2We reserve P, P, and B for vectors of distributions and L and L for vectors of loss functions. We address them as “the
distributions” and “the losses” to avoid the verbose “the vector of distributions/losses.”
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reduction graphs of WSLs. As the first main topic of this work, Section [ shows, for a given WSL setting,
how to find the corresponding matrix Moy, and Tables [7] - [0] summarize fifteen WSL settings covered by
our matrix formulation and depict a reduction graph rooted from M,q,,. The following subsection illustrates
the second advantage of aiding the construction of a generic methodology for conducting risk rewrite.

3.2 The Analysis Component of the Framework

Note that the conventional expression can be simplified, by the inner product, to be R(g) = fweX LT Pdz.

It is immediately possible to rewrite the risk under data-generating distributions P by showing LTP = LT P,
where L is called the vector of corrected losses and its role will be clarified later. Therefore, it is imperative
to establish the connection between P and P. The goal can be achieved by linking B and P since we have
assumed that P = Mo, B in the previous subsection. Recall from the beginning of this section that the
base distributions B are of the forms Px|y or Px y, and the risk-defining distributions P are of the form
Px y. Given their label-relevant nature (i.e., they are either the joint distribution or the class-conditionals),
we assume that there exists a transformation matrix M. that satisfies B = M.t P. Thus, becomes

P = McorthrsfP- (36)

Having the freedom to choose Mi,ss allows the framework to handle different base distributions B and to
adapt to various performance measures that define P, as we will discuss in Sections [5.1.1} [5.2.1] and [6.1]
respectively.

The reason why connecting P with P helps the construction of the corrected losses is that if we manage
to find a way to compensate for the combined effect of M., and M;,s, we can implement the compensation

mechanism on the “corrected” losses L. Specifically, suppose there exists a matrix M satisfying

P =M} P (37)
Then, the corrected losses defined by
LT :=r0"M],, (38)

allows us to rephrase the classification risk as

/ ITPde
TEX

/ LM _Pdzx
TEX

/ L"Pdz = R(g), (39)
TEX

providing a rewrite for R(g) with respect to P.

The above procedure describes a generic methodology for the risk rewrite problem. As the second main topic,
we instantiate the framework by presenting the corresponding matrices MJ = and M, for each learning
scenario in Section [5] to demonstrate its applicability.

3.3 Intuition of the Framework

The key equations discussed in Sections and are

= (35) (36)
P ! McorrB ! McorthrsfP7

e @7

L'P = LM}, Mo MystP = LT P.
The logic behind them is succinet and interpretive. First, from a formulation perspective, viewing matrix
Moy as a contamination matrix that corrupts the base B to become the contaminated P 1} we inter-
pret this contamination mechanism as sacrificing certain information in exchange for certain saved costs or
privacy, reflecting the essence underlying WSL formulations. In addition to formulating the data-generating
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mechanism, the link between B and the risk-defining distributions P connects P and P to motivate the
methodology design. This novel viewpoint of connecting the data distributions via the explicit two-stage
formulation facilitates the unification work in this paper.

Second, regarding the methodological design, it becomes easier to devise a countermeasure when the con-
nection between P and P is in good shape. The design of LT = LTM] _ involves M . which captures
a common idea behind risk rewrite: Restoration of the risk-defining distributions and the original loss
functions is accomplished by the decontamination provided by L. Furthermore, the instantiations of
LT =L"M . justify that the apparently different forms of corrected losses reported in the literature
(i.e., referred papers that contribute to Tables [4] and [5] and those referred to as recoveries in Section
essentially stem from M . In summary, the proposed framework is abstract and flexible enough that we
use it in the current paper to formulate the contamination mechanisms and provide a generic methodology

for a wide range of WSLs.

3.4 Building Blocks: The Inversion and the Marginal Chain Approaches

We describe two building blocks, the inversion method and the marginal chain method, that will be used to
devise M, . that satisfies in each scenario we study later.
Proposition 1 (The inversion method). Let P and P be vectors. Suppose P = MP holds for an invertible
matriz M. Then, choosing MI = M~', we have P = M P

corr corr °

Proof. For any invertible M, it is easy to see that, by assigning M! = M~ one has

Ml P=M1'P=M'MP=P.

O

We remark that this simple strategy was adopted in many LNL works. A handful of related papers are
Cid-Sueiro| (2012), Blanchard & Scott| (2014), Menon et al.| (2015)), [van Rooyen & Williamson| (2015)), [Patrini
et al.| (2017)), van Rooyen & Williamson| (2017)), and [Katz-Samuels et al.| (2019). Hence, it can be applied to
WSLs that are special cases of certain LNL scenarios.

Proposition 2 (The marginal chain method). Let Y = k € [K]| be a class label, where [K] is the set of
classes associated with the classification risk. Let S = {s1,52,...,55/} C 2[K] be the set of class sets and S
be the random variable of the observational outcome. Denote

Py=1,x Ps—s,.x
P = : and P =
,PY:K7X PS:S|S|,X
Then,
Ps—siiy=1,x Ps=sijy=2,x - Ps=s|y=£r.X
Ps—sylvy=1,x Ps=ssjy=2,x = Ps=ssly=£KX
M= (40)
Ps=sislv=1,x Ps=sglv=2,x - Ps=sgv=Kx
satisfies P = M P, and
Py=i1s=s1,x Py=1s=s,x *+ Pvr=i|s=ss.X
. Py=g|s=s1,x Pv=g|s=ss,x = Py=gs=s5,X
Mcorr = . . i (41)
Py=k|s=s1,x Py=k|s=ss,x - Py=k|s=ss,X
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satisfies P = MJ__P.
The role of S is to represent a weak supervision that encodes some combinatorial information about the
unobservable true label Y. We will discuss this concept in detail in Sections [4.2] and

Proof. It suffices to show (MP) = P; for any j € [|S|]. Taking the inner product of the j-th row of M and
J
P, we have

K K
E Ps=s;|v=k,xPy=k,x = g Ps=s; y=k,x = Ps=s; x

k=1 k=1

that verifies .

Next, we prove P = M}

corr

P by showing (MCTO“P) = P,. For each i € [K],
S| K

Z Py—ijs=s,;,x Z Ps—s,|y=k,xPy=k,x
j=1 k=1

IS|

= ) Py—ijs=s; xPs=s;.x

Jj=1

(Miy,P), = (Ml P),

(2

O

Besides finding the inverse matrix, we propose a new approach called the marginal chain to achieve (37).
The development of this approach begins with the observation that Ps—s, x in P = MP is a distribution
where Y is marginalized out. It inspires an idea that one could perform another marginalization to restore
the original distribution Py, x; specifically, by marginalizing out .S. The design of M}, in aims to carry
out the idea. As shown by (a) and (b) in the proof, two consecutive marginalization steps on Y and then S
give the name of the marginal chain.

Both the inversion and marginal chain methods have strengths and weaknesses. The inversion method
only requires P as a real vector but needs the invertible assumption on the contamination matrix M. In
contrast, the marginal chain method exploits that P, in fact, is a distributional vector, allowing it to find a
decontamination matrix M _ even for a non-invertible M. A restriction of the marginal chain method is

corr
that the construction of M]_ _ is regulated by probability equations.

corr

We are ready to justify the proposed framework through the following two sections. Section [ discusses
weakly supervised scenarios that can be subsumed by the formulation component . Section |5| verifies the
analysis component by instantiating to conduct the risk rewrite for each scenario mentioned in Section
In both sections, we divide the scenarios into three categories. The first two are WSLs that can be viewed
as special cases in either the prevalent MCD or CCN settings. The third category contains confidence-based
scenarios. The notations listed in Table [l will still be functional. For all notations and their abbreviations
required in the coming sections, please refer to Appendix

4 Contamination as Weak Supervision

In this section, we instantiate the contamination matrix for each weakly supervised scenario listed in Table 2]
and Table 3] Tables [7]—[9] summarize the contamination matrices developed in this section. Each table also
represents a reduction graph of WSL settings. These reduction graphs cluster WSL settings into three main
categories, providing a hierarchy of relationships. With this hierarchy, we can understand, compare with,
and relate to different settings or even grow the hierarchy by adding new branches. Next are the notations
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for reading the graphs. For two contamination mechanisms, U and V, we use My — My to denote “My is
reduced to M~” or “My is realized as Mv”, and My ~» My means “My is generalized to M~

The proposed framework provides a generic strategy for formulating multiple weakly supervised scenarios.
Thus, the proofs will have a certain degree of similarity. To avoid repeating similar proofs, we provide proofs
that appear for the first time. For auxiliary lemmas and results whose proofs are similar to the previous
ones, we refer to the omitted proofs in Appendix [C] In particular, the omitted proofs in Section [4.1] can be
found in Appendix and those in Section can be found in Appendix

Table 7: Contamination matrices of MCD category in Section

WSLs  Entry Parameter Contamination Matrix Reduction path
MCD s Myicp _(]fﬁ Meorr — Mucp
Uu 7,7 Muyu (49 Mcore = Muyu = Mycp
PU 711 =0,72=m Mpy @ Myy — Mpy
SU 71:#3%%5772:% Mgy E Myy — Msy
Pcomp v = ﬂ;f‘,rg, V2 = ,ri;;ﬂn Mpcomp Myuy — Mpcomp
DU my=1/2,v9=m Mpy § Myy — Mpu
SD M= 773%‘2}37 Yo =1/2 Msp Muyy — Msp
Sconf -~ Mscont dgl) Meorr = Mscont
Table 8: Contamination matrices of CCN category in Section [4.2)
WSLs Entry Parameter Contamination Matrix Reduction path
CCN Pyv,x .59. l60] Meorr — Mcon
Generalized CCN  Pgy, x 1) Meorr = Mceon ~ Mgcon
PPL C(S, X)I[Y € 5] li Mgcen — Mppy
PCPL se=r—=1[Y € 5] Mgcen — Mppr, — MpcpL
MCL (%g'l)ﬂ [V ¢ 5] MycL Mgcen — Mppr — MucL
cL 81 =1, g1 [Y € 8] M Hecen = Mepn = Huer

Table 9: Contamination matrices of confidence-based category in Section [1.3]

WSLs Entry Parameter Contamination Matrix ~Reduction path
P ,
Sub-Conf P’;%’Z‘}f Moy = Mgyp
SC Vs = {ys} in Msup Msuw, — Msc
Pconf K =2, ys=pin Msc Msur, — Msc — Mpcont
Soft ! Msgup — Msort

Py =k|x
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4.1 MCD Scenarios

As listed in Table @ in binary classification, the MCD model (Menon et al., [2015) corrupts the clean class-
conditionals Px|y—, and Px|y—, via parameters v, and 7, as follows:

PX|17:p =(1- ’Yp) 7)X\sz + PX\Y:n,

(43)
,PXD?:H = "n PX|Y:p + (1 - Wn) PX\Y:nu

where 4, € [0,1] and v, + v < 1. Viewing the contamination targets Px|y=p and Px|y—, as the base

distributions
Pxy=
B X|Y=p
Px|y=n

and denoting the vector of data-generating distributions as

PXH?:p

)

PXD_’:n

Wwe can express in the following matrix form

7)XIYZP - 1= Tp Px|y=p (44)
Px|v=n M 1=m/) \Pxjy=n
Comparing with P = Mo, B 7 we find that the contamination matrix M., is realized as

Myicp = (1 o e > (45)

W 1=
in the MCD setting.
4.1.1 Unlabeled-Unlabeled (UU) Learning (Lu et al., [2019)
Next, we show how to characterize UU learning by a contamination matrix. Naming
T Px|y=p + ™ Px|y=n

as Py is feasible since 7, Px|y—p +7Tn Px|y=n = Px generates data that statistically equals to data sampled
from Py x with labels removed. Viewing 7, as the mixture rate of samples from Px|y—, and Px|y—n, Pu
is parameterized by m,. Therefore, we can interpret , recalled as follows, as formulating two unlabeled
data distributions w.r.t. mixture rates (1 — 1) and 2, respectively:

Pu, = (1-=m7)Pxjy=p + 7 Px|y=n
Pu, = 72 Pxjy=p + (1 —72) Px|y=n-

Taking the class-conditionals as the base distributions

[ Pxy=p
B:= <ny_n> (46)

and converting to the matrix form, we express the data-generating distributions of UU learning

_ PUl
P:= <7)U2> (47)
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as

Pu, _(t=m 0m Px|y=p (48)
Pu, Y2 1=7 ) \Pxjy=n/’

and we arrive at the following lemma.

Lemma 3. Let B (@ be the base distributions and P be the data-generating distributions. For
Y1,72 € [0, 1] such that v1 + 2 # 1, the contamination matriz

MUU = <1 - n ) (49)

characterizes the data-generating process of UU learning (@ via @

Comparing with the formulation framework P = Mo B , we see that in UU learning, Mo iS
realized as Myvy:

Mcorr — MUU-

Like MCD, we assume 71 + 2 # 1. Our assumption is equivalent to that of MCD since the case of swapping
Peorr and Qeopr in [Menon et al.| (2015) corresponds to v1 + 72 > 1 in our case. For details, refer to the
discussion in Section 2.2 of [Menon et al.| (2015]). The need for 73 +2 # 1 can be explained by examining the
entries in Myy. The constraint v + 2 # 1 guarantees distinct rows in Myy, implying the observed data
sets are sampled from two distinct distributions. On the contrary, allowing v; + v2 = 1 ends up observing
one unlabeled data set (i.e., Py, = Pu,) since 1 — v = 2. [Lu et al| (2019) proved in Section 3 that it is
impossible to conduct a risk rewrite if one only observes one unlabeled data set.

Assigning 71 = v, and 2 = <y, implies that MCD and UU have essentially the same data-generating
process from the contamination perspective, as and have the identical right-hand sides (i.e., the
same contamination targets and the same contamination matrix). However, they bear different meanings in
respective research topics (i.e., distinct notions on the left-hand sides of the equations): In MCD, one still
observes data with labels, nonetheless noisy, while in the UU setting, one observes two distinct unlabeled
data sets. We use “~” to denote their relation in the UU row of Table

Connecting UU learning with MCD, and later the generalized CCN with CCN in Section allows us
to categorize WSLs from the LNL perspective into Sections [£I] and [f:2] In the rest of this subsection, we
collect WSLs whose base distributions are class-conditionals and show Myy instantiates their formulations
via respective assignments of vy; and .

4.1.2 Positive-Unlabeled (PU) Learning (Kiryo et al., [2017)

Recall from that Pp = Px|y—p and Py = Px. The following lemma describes the contamination matrix
of PU learning.

Lemma 4. Let B (@) be the base distributions and

r= ()

be the data-generating distributions. Define the contamination matriz

MPU = (771p 72]) . (50)

Then, P = MpyB, and Mpy characterizes the data-generating process of PU learning .
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Proof. We apply the same proof strategy as in Lemma [3] By definitions,

1 0 Px|y=p 1-Pxjy=p+0-Px|y=n
MpuB = - .
T T | \ Px|y=n Tp - Px|y=p + T - Px|y=n
Since 1 Px|y—p + 0 Px|y=n = Px|y=p and m, - Px|y—p + T - Px|y=n = Px, we obtain MpyB = P. O

Comparing with , we see that the contamination matrix M., is instantiated as Mpy in PU learning.
Further, Mpy can be obtained by assigning v; = 0 and 2 = 7, in Myy , and hence, we obtain the
reduction path

Mcorr — MUU — MPU-

4.1.3 Similar-Unlabeled (SU) Learning (Bao et al., 2018)

Recall Pg generates the pair of data points (z,2") who share the same label. In addition to the pairwise
distribution Pg, a pointwise distribution

2 2
T Px|y=p + TaPxjy=p

Py =

2 2
T+ Ty

is also defined for single data point z (Bao et all 2018, Lemma 1). Therefore, we choose Py as the data-
generating distribution when constructing the contamination matrix in the following lemma.

Lemma 5. Let B @ be the base distributions and

P (Zj) .

Then, the contamination matriz

w2 72
P n
21 .2 21 2
Mgy = | ™+t ™ 7ptm | (51)
T T

which satisfies P = Mgy B, characterizes the data-generating distributions P.

2
Further, Mgy can be obtained by assigning v, = ﬁ and 2 = 7, in Myy 1' and hence, we obtain the
BRI

reduction path

Meorr = Myy — Msy.

4.1.4 Pairwise Comparison (Pcomp) Learning (Feng et al., 2021)

In SU learning, we formulate the pointwise data-generating distributions Pg and Py; likewise, we use the
following pointwise distributions of Ppc to formulate Pcomp learning:

2
Ps = / Ppcda’ = TpPx|y=p + TaPx|y=n
up T = 2 s
' eX Tp + Th
2
P P dr — T Px/jy=p + TaPx/|y=n
Inf = PC = 2 g .
rzeX P n
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Lemma 6. Let B @ be the base distributions and

P (o).
Prut
Then, the contamination matriz

2

7Tp 7Tn
T 72 T 72
P n P n
Mpeomp = . , (52)
Tp T
T2+ w2+

which satisfies P = MpcompB, characterizes the data-generating distributions P.
2 7‘_2
Further, Mp¢omp can be obtained by assigning v = ﬁ and v = ﬁ in Myy 1D and hence, we
p n P n
obtain the reduction path

Mcorr — MUU — MPcomp~

4.1.5 Similar-dissimilar-unlabeled (SDU) Learning (Shimada et al., [2021)

Dissimilar-unlabeled (DU) learning and similar-dissimilar (SD) learning are two critical components of SDU
learning. Hence, we present the matrix formulations of Mpy and Mgp. Similar to the strategy taken in
Sections [£.1.3] and [£.1.4] we use the following pointwise distribution

Puty—p + Paly—n
Pﬁz/m,PDdac’: e

(Shimada et al.l |2021} (36) in Appendix A.1) in the following formulations.

We formulate the contamination matrix of DU learning via the following lemma.
Lemma 7. Let B @ be the base distributions and

e (Z)

Mg — <1/2 1/2>’ (53)

Tp  Tn

Then, the contamination matriz

which satisfies P = MpyB, characterizes the data-generating distributions P.

Furthermore, since Myy reduces to Mpy by assigning v1 = 1/2 and 2 = mp, we have the reduction
path

Mcorr — MUU — MDU-

The next lemma formulates the contamination matrix of SD learning.

Lemma 8. Let B @ be the base distributions and

()
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Then, the contamination matriz

2 2
Tp

Mep = | AT TR (54)
/2 1/2

which satisfies P = Msp B, characterizes the data-generating distributions P.

Moreover, because Myy reduces to Mgp via y; = and vo = 1/2, we obtain the reduction path

Trn
7r§+7rr2‘
Mcorr — MUU — MSD'

4.1.6 Similarity-Confidence (Sconf) Learning (Cao et al., 2021b)

Recall from the Sconf setting (18) that (z,z’) is a pair of data sampled ii.d. from Px x := PxPx:.
On seeing Px, one might wonder if it is sufficient to express the data-generating distribution simply as
Px = Py—p,x + Py=n,x. This approach, however correct, does not consider all available information in the
Sconf setting. Similar to Myy that uses parameters ; and 7, to characterize the data-generating process in
UU learning, we use the following lemma that includes the confidence 7(z,z") := Py—,/|4 . to characterize
Sconf learning. Let us abbreviate r(X, X’) as r, Px|y—p a8 Px|p, and Px/|y—pn as Px/|s-

Lemma 9. Assume m, # 1/2. Let B (@ be the base distributions and

P (X7
PxPx:

Then, the contamination matrix

Wp(ﬂipxl‘pfﬂ'iprln) ﬂp(ﬂgpanfﬂ'ﬁpxqp)
T—Tn T—Tn
Mscont = 5 5 2 2 (55)
ﬂl,(TerX/‘nfﬂ'pPqu) Wr;(ﬂppxl\p*ﬂ'npxﬂn)
7\'p—7' 7\'p—7'
which satisfies P = Mgseont B, characterizes the data-generating distributions P.
Proof. Note that once
L) pyPyr = (72Pxrpp — m2Pxipn) Pxlp + (72Pxrp — 72Pxpp) P (56)
= XrXr — 7Tp X'lp Tn X' |n X|p Th’X'|n ThFX'p X|n
P
and
T, — 1T
( pﬂ_ ) PX’PX/ = (ngan - Wg'PX/\p) Px|p + (ngxqp - WI%PX'\n) 'Px|n7 (57)
n
is obtained, reorganizing the terms gives
wp(wgpxz‘pfwﬁpx/m) ﬂp(wﬁpxz‘nfﬂ'ﬁpxl‘p)
PXPX/ B r—Tn T—Tn PX|p (58)
PxPx: Trn(frgpxz‘nfﬂ'i’ljxqp) Trn(ﬂ'gpxqp*ﬂ'ﬁpx'\n) PX|n

‘ﬂ'p—T' ‘ﬂ'p—'l'
and finishes the proof.

Therefore, we will focus on proving and . According to (2) of |Cao et al.,| (2021b)), the confidence
r(X, X’), measuring how likely X and X' share the same label, is shown to be

WSPX|pPX’|p + Wﬁpx‘npan
PxPx: '

r=r(X,X") =
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It implies
1PxPx: = 12 PxpPx/p + TaPxnPx/n
and
(1—-r)PxPx/ = mpmn (PX|pPX'\n + PX|n73X/|p) )

Ifmp #1/2, mp —r # 0 and r — m, # 0. As a result, is achieved as follows

(T - ”“) PxPx: = (7’ ~Da- r)) PxPx:

Tp Tp

2 2 T
= 7TP’I))(|p7)X'/|p + 71—n’}))(\n,P)(’\n - ﬂ_iﬂ-pﬂ-n (PX|pPX’\n + PX|I1PX’|p)
p
_ 2 2 2 2
= T PxpPxp = TaPxpPxjn + T PxinPxn = TaPxnPxjp-

Also, is achieved by having

(ﬂp - T) PxPxr = <7TP(1 - 7’> PxPxs

Tn Tn

s
_ )% 2 2
- T TpTn (PXIPPX’\H + 7DXIHpX’Ip) — 1 PxpPx/ip = Ta Px|nPx|n
n
_ 2 2 2 2
= mPxpPxin = TPxpPxlp + T PxnPx/jp — T PxinPx/in-

O

The equality implies that the inner product of the first row (resp. the second row) of Mgeons and B
represents a way (resp. another way) of obtaining PxPx-. Although one might suspect that it is redundant
to formulate PxPx: twice, we show in Section this expression is crucial to rewrite the classification
risk via the proposed framework. Furthermore, comparing P = Mgcont B with P = Mo B , we
have the reduction path

Mcorr — MSconf~
Note that Mgcons does not fit the intuition of mutual contamination perfectly; we list Sconf learning in this

subsection as all settings share the same base distributions B (46]).

4.2 CCN Scenarios

The formulation component also applies to the CCN model. Unlike MCD contaminating class-
conditionals (distributions of X), CCN corrupts class probability functions (labeling distributions). Next, we
show how to formulate CCN via and extend the formulation to characterize diverse weakly supervised
settings.

In binary classification, CCN (Natarajan et al., 2013; 2017 corrupts the labels by flipping the positive (resp.
negative) labels with probability Py_,, |y, x (resp. Py_,jy—, x). Specifically,

Py—pix = Py—ply=p.x Py=pix + Py—py—n,x Pr=n|x (59)
Py —nix = Py—njy=p,x Py=p/x + Py—njy=n,x Pv=nx

define the contaminated class probability functions. Taking the contamination targets Py _, x and Py _, x

as the base distributions
Py —p|x
B.— p|
Py —n|x
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and denoting the label-generating distributions Py_ y and Py_, x as

Py —pix
= )
P?:n|X
we express (59)) in the matrix form as follows
Py —pix Py —piy=p,x Py—ply=nx )\ [Py=px
,PY/:n\X ,Pf’:n\sz,X P?=n|Y=n,X PY:n|X

Comparing with the abstract form P = Mo, B , we see that

7317:p\Y:pJ( 7)f/:ph/:n,x
MCCN = (60)
,PYZH\Y:I),X PY:n|Y:n,X

instantiates the contamination matrix M., in the CCN setting.

4.2.1 Generalized CCN

The concept of contaminating a single label can be extended to generating a compound label in the multiclass
classification setting. Let 2 be the power set of the label space Y = [K]. Define S := 2Y\ {0, Y} as the
observable space of compound labels El Since a compound label S € S consists of an arbitrary number
of class indices, one can view the probability of observing S for a given X is governed by several class
probabilities Py_y x. Therefore, generalizing the CCN formulation , we define the label-generating
process of a compound label S as

K
Psix = E Psiy=k,x Py=k|x>
k=1

where the role of Pgjy,x is the probability of converting a single label Y to a compound label S € S.
Moreover, in CCN, the distribution Px is not contaminated. Thus, by multiplying Px on both sides, we
obtain the data-generating distribution

K

Ps.x = ZPS\Y:k,XPY:k,Xa (61)
k=1

Viewing Pg|y,x as a contamination probability, we arrange Pg—_,|y—, x into a matrix in the following lemma
to formulate the contamination matrix for our generalized CCN (gCCN) setting.

Lemma 10. Let the elements in S be {81782, . s|5‘}. For the gCCN setting, denote the data-generating
distributions as

Ps—=s,,x
P .= (62)
Ps=ss,x
and the base distributions as
Py—1,x
B:= =P (63)
Py—k,x

3Removing () and Y is that the empty set does not contain any label information and Y is a trivial case.

25



Published in Transactions on Machine Learning Research (01/2025)

Define
Ps=sily=1,x Ps=sijy=2,x ° Ps=s|y=£,x
Ps=syly=1,x  Ps=ssjy=2,x ° Ps=sy|y=k,x
MgCCN = . . . . (64)
Ps=sis)ly=1,x Ps=sis/ly=2,x -+ Ps=ss|y=KX

Then, P = MgccenB.

The lemma implies that Myccn is the contamination matrix characterizing P of the gCCN setting. Also,
note that P = MgconB is essentially the matrix form of . Moreover, Mgcen generalizes Mcon by
extending the label spaces: Both the clean label Y and the contaminated label Y belong to {p,n} in CCN,
while in the gCCN setting, the clean label Y € {1,---, K} and the compound label S € {s1,--- , 55}

Proof. For each j € [|S]], we have

K K
(MgCCNB) = E Ps=s;|v=k,xPy=k,x = E Ps=s; y=k,x = Ps=s; x = Fj.
J
k=1 k=1

O

Comparing P = MgcenB with the formulation framework P=M..B , we have the reduction path

Mcorr — MCCN ~ MgCCN-

Similar to Myy , which induces multiple contamination matrices as special cases of the MCD model,
M,ccen also derives several contamination matrices formulating partial- or complementary-label settings, as
we will show in the rest of this subsection.

4.2.2 Proper Partial-Label (PPL) Learning (Wu et al., [2023)

For a given example (y,z) and a compound label s € S, we call s a partial-label of x if y € s. Statisti-
cally speaking, we assume Pycggx = 1. Formally, according to Definition 1 of Wu et al. (2023), if the
contamination probability can be defined as

,PS\Y,X = C(S,X)]I [Y S S] s (65)
via a function C': § x X — R, we call such a partial-label scenario proper.

Since the discussion above only involves specifying Pg)y, x, we replace the entries of Mycen according
to to construct Mppr:

C(s1, X)I[Y =1 € s4] C(s1,X)I[Y =2€s1] -+  Cs1,X)I[Y =K € 51]
C(SQ,X)H[Y:1€SQ] C(SQ,X)]I[Y:2682] C(SQ7X)]I[Y:K€SQ]
(66)
C(S\&,X)]I [Y:1€5|5‘] C(S\&,X)H [Y:2€S|Sd C(S‘S‘,X)H. [YiKES‘S‘]

The following lemma justifies Mppr, as the contamination matrix for PPL learning.

Lemma 11. Let the elements in S be {51752, e s|5‘}. For each j € [|S|], let the j-th entry of P be

Py =Ps—y,x =C(S=5,.X) Y Proix

keEs;
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which denotes the data-generating distribution of (s;, X). Assume the base distributions B and the con-
tamination matrix Mppr, are given by @ and , respectively. Then, Mppy, satisfies P = Mppr, B and
characterizes PPL learning (@

The entry replacement that converts to through gives the reduction path

Meorr = Mgcen — MppL.

4.2.3 Provably Consistent Partial-Label (PCPL) Learning (Feng et al., [2020b)

In PCPL, the probability of each partial-label is assumed to be sampled uniformly from all feasible partial-
labels. Since there are 25 =1 —1 feasible partial-labels for every y, the label-converting probability Ps—siy=y,x
is 2}(,711_1 ifye sﬂ It corresponds to assign C(S, X) = ﬁ in . Hence, we obtain

O(S, X)I[Y € 8] = I[Y € 8], (67)

2K-1 1
which reduces the label-converting process of PPL to that of PCPL and recovers (5) of [Feng et al.| (2020b)).
Then, replacing entries in via 7 we obtain the contamination matrix of PCPL learning

H[Yzlésl] ]I[Y:2681] ]I[YZKGS1]

1 IY =1lesy] DY =2€sy] -+ I[Y =K € sy
MPCPLZZm (68)

I[Y=1lesg] I[Y=2€sg] -+ I[Y =KE€ssg|]

and the reduction path
Mcorr = Mgcen — Mppr, — MpcpL-

Mpcpr characterizing the data-generating process of PCPL is justified by the following lemma, whose proof
follows the same steps as that for Lemma [T1]

Lemma 12. Let the elements in S be {81,82, e s|5‘}. For each j € [|S|], let the j-th entry of P be

— 1
Py = PS:sj,X = 9k—1_1 Z Py =k x,
k€Es;

which denotes the data-generating distribution of (s;, X). Assume the base distributions B and the contam-
ination matrix Mpcpr, are given by @ and , respectively. Then, Mpcpy, satisfies P = Mpcpr, B and
characterizes PCPL learning .

4.2.4 Multi-Complementary-Label (MCL) Learning (Feng et al.| [2020a)

Recall the discussions in Sections [2:2.9] and [2:2.10] that a complementary-label contains the exclusion infor-
mation of a true label. That is, for a data example (y,z), we call a set of class indices 5 € S = 2Y\ {(), V}
an MCL of z if 5 does not contain y.

Denote S := {31, 52,...5n}. The equivalence

Kol K-1p 1 e E
1 5 —1 Pig—q TR O s Py x, if |S| =d,

N Psiea e O Prxl[|S]=d] ={ T ISl=d " (57 ~Y¢S

=1 ( 1] ) Y¢S 0, otherwise

4There are 2Y MY\ {D\{y}} = 2K~ — 1 combinations whose union with {y} are partial-labels of y.
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allows us to define the data-generating distribution of MCL as

P5:§1,X
P:.= (69)
P§:5N X
where for each j € [NV],
Klp
Psos,x = 3 ey o Proxllis;] =d (70)

Let (y, z) be fixed. The data-generating process of MCL proposed by [Feng et al.|(2020al) is that one first sam-

ples a size d with probability 77‘ Sl=d> and then samples a 5 uniformly at random from {541, 54,2, . - -

S, where 54,. means a set of size d excluding y and Ny is the total number of those sets. Note that Ny = (
since we remove y from ) and then choose a set of size d to form a 54,..
cated lower index system to distinguish {541, 54,2, - -

,8d,N, } from S = {51,359, ...

) gd,Nd} C
K—1
.
Furthermore, we need a more compli-
Sy} since d ranges from 1

to K —1 and 22(:_11 Ny = 2(:_11 (K_l) = 2K —2 =8|. According to this mechanism, we construct Myscr:
7’&5| \e)uﬂ[ =1¢5)] Pis= Dissimipy =2 ¢ 5] Pis= Plsslaipy = K ¢ 5]
1511 \ 1l \‘?1|
Doistolly —1¢5,) DS=lell)y =2¢ 5) Dsizlel] [y = K ¢ 5)
(\§2|) 1521 1521 (71)
Rty —1¢sy] Ty —2¢sy) o SRl K g sy
(jin ) (jon ) (jon))

The following lemma justifies Mycr, as the contamination matrix for MCL learning.

Lemma 13. Suppose the base distributions B, the contamination matriz Mycw, and the data-generating
distributions P are given by (@ (.) and (@) respectively. Then, Mycy, satisfies P = MycLB and
characterizes MCL (@

At the first sight, MycL does not resemble Mpcpy, or MppL . The subtle connection can be
established via a relation between partial-label and complementary-label. Recall

2\ {0,Y} =S = {51,52,...5n},
where 5; is a MCL. From the partial-label perspective, we can establish the following set equality relationship:

23}\ {(2)73}} = S = {51752,. ..§N} = {81 = y\§1,82 = y\§27. ..y SN = y\gN} . (72)

This is because for every 5 € S, there is a s € S such that s := Y\s. The intuition behind is that if 5 is
an MCL of z, then s := Y\5 must be a partial-label of x. Therefore, we can also use the set of partial-labels
{51, 82,...,8n} to denote S. The following lemma exploits this relation to show that Mycy is indeed a
special case of Mppy,.

Lemma 14. Assign each (s, k) entry of Mppy, (@) with

Pis|=ls|

)
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Then, the resulting matrix

772'%‘?';1)‘ I[Y =1€ sy 772'%‘?';1)‘ Iy =2€s] - %‘i‘i‘fl)‘ 1Y = K € 51
[s1—1 [s1l—1 [s1]—1
%‘i‘f'f?‘ 1Y = 1€ s ?'i‘f'f?)‘ 1Y =2€sy] - Li‘f‘f?)‘ 1Y = K € 5]
so|—1 so|—1 so|—1
Mﬁ/ICL _ ls2] ls2] |s2] (74)
Pigi— Pigi— Pigi=
el ly =1 e sy] SEIY =2€sy] -0 S HNIY = K € sy]
(\5N|—1) (‘Slel) (|5N\71)

is equivalent to Myicr, under the relationship (@

Proof. Note that for every j € [N], s; = Y\5;. This implies Pisi=i5,;1 = Pisi=ls;1» (‘gf_ll) = (Il(ézll)’ and

IY € s;] =1[Y ¢ 54] hold for every j € [N]. Therefore, for each (j, k) entry in My~ and Mucr , we
have

Pisi=ls;l |

Pis1=15,1 _
(Ifr_ll) [Y =ke Sj] = —217 [Y =k §é Sj] . (75)

(1)

O

The assignment rule implies the reduction path
Meorr = Mgcon — Mppr, — MucL-

Comparing with of PCPL, we see that MCL and PCPL can be viewed as different ways of composing

Py x to generate a partial-label, with weights P‘,i‘fl‘i' and 5z—, respectively.

[s]—1

4.2.5 Complementary-Label (CL) Learning (Ishida et al., 2019)

As a special case of MCL (Section 7 we can construct the contamination matrix Mgy, from Myrcr,.
The set of all CLs is composed of MCL with size 1: {1},...,{K}. Therefore, we assign values in Mycr,
as follows. For each s € S, Pjgo5 = 1if [s] = 1 and Pig|=s) = 0 if |s| > 1. Dropping all-zero rows, we
obtain from the contamination matrix of CL learning

AIlY =1¢ {1)] 1Y =2¢ {1}] AIY = K ¢ {1}]
AAIlY =1¢ 2] 1Y =2¢ {2)] A1 = K ¢ {2}]
MCL =

Al =1¢ (K} 251y =2¢ (K} - g1V =K ¢ {K}]
0 1 1

|t oo

Syl P (76)

1 1 0

and the reduction path
Meorr = Mgcen — Mppr, — Mycon — M.

Furthermore, it is easy to verify that given B (63)), for any j € [K],

1
(MCLB)j = Z w1 vx =Psx
Y#j

which corresponds to formulation (20). Hence, we have the following.
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Lemma 15. Mcy, is the contamination matriz characterizing the data-generating distribution Pg x

(@) of CL learning.

4.3 Confidence-based Scenarios

At first sight, there seems to be no connection between “contamination” and single-class classification (Caol
et al.l |2021al). However, the following derivation

Py=y.ix _ Proyix

“Py=jx = “Py—jix Px = Py=y.,x (77)
Py =jx Py=jix
reveals a way to contaminate a clean joint probability Py —; x to the joint probability Py —,_ x of a designated
class ys via confidence weighting 7;’;:%‘;( As we will see in the rest of this subsection, the confidence weights
=j

are the key elements in formulating the contamination matrices for the confidence-based WSL settings.

4.3.1 Subset Confidence (Sub-Conf) Learning (Cao et al., [2021a)

Let Vs C [K] be a subset of classes. Viewing )y as a “superclass”, such that every instance x of (y, ) will
be labeled Vs if y € s, we can define its class prior as Pyey. = Ty, 1= >_, oy, 7, and its class probability
function as Pycy, |x := Zyeys Py —y|x- Substituting the designated class ys in with the superclass Vs,

Py ey.ix Pyey.ix
| “Py=jx = YeYIX “Py—jix Px = Prey, x (78)
Py—jix Py—jix
shows that no matter what joint distribution Py_; x to begin with, the confidence weight 7;"‘/673"? twists
=j

that joint distribution so that every observed data appears to be sampled from the same superclass distri-
bution Py, x. The following lemma leverages the observation to specify the contamination matrix Mgy
characterizing Sub-Conf learning.

Lemma 16. Denote the base distributions as

Py=1,x

Py—k,x
and the data-generating distributions as

Py ey, x

7DYeys,X

Inserting the confidence weights into the identity matriz, we define the contamination matriz

Pyeysix
Py=11x 0
MSub = (80)
0 .. PYEys\X
Py=k|x

Then, P = Msu,B, and Mgy, characterizes the data-generating process of Sub-Conf learning (@)

Proof. For each j € [K], (MsubB) = Pyey, x follows from . Thus, P = Mgy, B. It further implies all

observed instances are labeled with the same superclass )5, meaning we can drop the observed labels, and
the observed examples {x;}i_, is equivalent to a set of i.i.d. samples from Px|y¢y, (30). O
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Comparing P = Mgy, B with the formulation framework P = Mo, B |) we observe that in Sub-Conf
learning, Mo, is realized as Mgyp:

Mcorr — MSub .

4.3.2 Single-Class Confidence (SC-Conf) Learning ((Cao et al., 2021a)

We compare the formulation of SC-Conf with Sub-Conf and observe that SC-Conlf is a special case
of Sub-Conf when )5 = {ys} being a singleton. Thus, we straightforwardly obtain the matrix formulation of
SC-Conf from Lemma |16| be replacing Vs in with ys:

Lemma 17. Let the base distributions B be defined by (@ and the data-generating distributions be defined

by
Py =y, x
P .=
Py =y..x
Define the contamination matriz
Pyoyix |
Py=1|x 0
Mg = (81)
oo Py=wx
0 Pyzzﬂx

by substituting Vs in with ys. Then, P = MgcB and Msc characterizes the data-generating process of
SC-Conf learning @

Since SC-Conf is a special case of Sub-Conf, we have the reduction path

Mcorr — MSub — MSC-

4.3.3 Positive-confidence (Pconf) Learning (Ishida et al., 2018)

Comparing (6) with (28)), we see that Pconf is a special case of SC-Conf when K = 2 and ys = p since
rn(X) = 1—ry(X). A further modification to we obtain the contamination matrix Mpeons characterizing
Pconf learning.

Py — _ Py =
Lemma 18. Let B:= | ") =P ana P:= [ "), Define
Py =n,x Py —p,x

Py=p|x 0
Py=p|x
MPconf = Py _pix . (82)
=p
0 Py =n|x

Then, P= Mpeont B, and Mpeons characterizes the data-generating process of Pconf learning (@
The entry replacement that converts to implies the reduction path

Mcorr — MSub — MSC — MPconf-
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4.3.4 Soft-Label Learning (Ishida et al., 2023)

The difference between the soft-label and the previous confidence-based settings (Sub-Conf, SC-Conf, and
Pconf) is how x is sampled. The sample distributions condition on the label information in the previous

settings, while that in soft-label is Px. Replacing the confidence weight 7;‘;::71"'5 in with

Py=jix’
1
—— Pyv=jx = Px
Py—jix

explains how to convert Py—; x to Px. Therefore, filling the j-th diagonal entry of the identity matrix with

ﬁ7 we obtain the contamination matrix Mgeg for soft-label learning:
=J

Lemma 19. Let the base distributions B be defined by (@/ Denote the data-generating distribution as
Px
]| | ()
Px

Define the contamination matriz

Py=11x

Msgofy := : L ; . (84)

0 1

Py=K|x
Then, P= Msop B, and Msogy characterizes the data-generating process in ,

Unlike SC-Conf and Pconf, which are special cases of Sub-Conf with )5 taking only one label, the generation
process of a soft-label can be viewed as assigning )5 := [K]. Considering the entire label space results
in Pyeik)x = 1; it coincides with the meaning of Px that samples x regardless of the labels. Although
technically the soft-label setting is not a special case of Sub-Conf (recalling the Vs C [K] assumption from
Section , Mot is reduced from Mgy, by realizing Pycy,|x as Py¢[x)x = 1. Therefore, we
obtain the following reduction path

Mcorr — MSub — MSoft~

5 Risk Rewrite via Decontamination

We have demonstrated the capability of the proposed formulation component in the last section. This
section shows how the proposed framework provides a unified methodology for solving the risk rewrite
problem. Specifically, given each contamination matrix described in Section [d] we show how to construct the
corrected losses to perform the risk rewrite via . We then recover each rewrite to the corresponding
form reported in the literature to justify its feasibility. Because this paper focuses on a unified methodology
for rewriting the classification risk instead of the designs of practical training objectives, we assume the
required parameters are given or can be estimated accurately from the observed data.

Similar to the previous section, we only provide proofs that appear for the first time to avoid repeating
similar proofs. For auxiliary lemmas and results whose proofs are similar to the previous ones, we refer
to the omitted proofs in Appendix In particular, the omitted proofs in Section [5.I] can be found in
Appendix those in Section [5.2] can be found in Appendix and those in Section [5.3] can be found in

Appendix
5.1 MCD Scenarios

We apply the framework to conduct the risk rewrites for WSLs formulated in Section and summarized
in Table[7] A general approach is to show that the inversion method discussed in Proposition [I] provides the
decontamination matrix M, required in (38).
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5.1.1 Unlabeled-Unlabeled (UU) Learning

We justify the proposed framework for UU learning via the following steps.

Step 1: Corrected Loss Design and Risk Rewrite.

The three milestones in the proposed framework are (1) finding the contamination matrix M., that char-
acterizes the data-generating process of a weakly supervised scenario, (2) finding the decontamination
matrix MJ . that compensates for the contamination effect , which is then used in (3) the construction

corr

of corrected losses for the risk rewrite (39)).
Section has reached the first milestone as of the form P = MyyB finds

1-m g4t
MUU:<
Yo 11—

. . . . = PUl . . . PX|Y=p
that connects the data-generating distributions P = and the base distributions B = P .
Usz X|Y=n

Py—p,x

Py—n,x

)

Note that B is not the risk-defining distributions P = ( ) , we need an additional step before reaching

the second milestone. To further link P with P, we still need a M. that satisfies B = M P. Introducing

s 0
the prior matrix II = ( P > , we see that choosing M, := I fulfills the need:

0 m
Py =p,
oo [Tt 0 (Pronx Froe Pxiv=p\ _ 5
rsf4” = - - -
¢ 0 ﬂ-;l PY:n,X 7?;:7")( PX|Y:n
Y=n

Hence, we can instantiate P= Meorr Mirss P | as

P PY: X
R P VS s o P (85)
Pu, Py —n,x
in UU learning.

Next, we use Proposition 1] to derive the decontamination matrix M

I .. to reach the second milestone (37)).

Corollary 20. Assume Myy in is invertible. Then, defining the decontamination matrix for UU
learning as

M = TIMG
gives rise to MI]}UI5 =P
Proof. Suggested by Proposition (1} the inverse matrix HMI}[lJ cancels out the contamination brought by
MyuIl~! in . Assigning MLTIU = HMG%I and repeating the proof of Proposition |1} we have
M P =TIMG,P = MG Myl P = P
that completes the proof. O

Now we will move on to the third milestone. With M&U in hand, we devise the corrected losses L to achieve
the risk rewrite for UU learning. We denote the corrected loss at the k-th entry of L as £ := ly_z(9(X)),
where k € ) is a class of the observed dat In UU learning, Y = {U;, Us}. The following theorem proves

rewrite @[) in Section m

5The definition of the corrected loss £; is in contrast to the original loss £, := £y —x(g9(X)).
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Theorem 21. Let 1,72 > 0 and 1 + 2 # 1. Then, MITJU defined in Corollary is feasible. Moreover,
the vector of corrected losses suggested by @

(ZUl ZUz) = ET = LTM[TIU

with
_ 1— — oy
ZUI = ( 72)7Tp Ep + 12T n,
L—m =72 L—m =7
_ — 1— N
ly, = N> o4 (L= ) I (86)

R s S B T 0
achieves the following risk rewrite:

R(9) = Eu, [tu,] + Eu, [fu,] . (87)

Proof. Since v1 + 2 # 1,

-1 1=72 e 21
Mol — <1 -MN T ) N B St e St - B Sl F i 0
U= =

Y2 1= —72 l-m
I=v1i=v2 1=71—72

exists. Thus, it is feasible for us to define M[TJU = HM&IJ according to Corollary Following , we

construct

FT T
LT =L M,
and obtain
Z i _ T —-1
(ful ZUZ) = L 1IMyy (88)
1—vo -7
_ (Z ) ) Tp 0 l1—yi—=v2 1-71—72
b 0 m —Y2 1-m
1—y1—v2 1-71—72
(A=y2)mp —nmp
_ (Z €> l=v1i=72  1-71—-72
P —Y2Tn (1—=y1)mm

l=-v1—=v2  1-71—72

that gives .

Next, with the critical component LT in hand, applying (39)), we obtain

R(g) = /X L"Pdx (89)

= / ('PU1 ZU1 + PU2 EUQ) dz
X
= Eu, [u,] +Eu, [tu,],
where the first equality holds since according to Corollary [20]

L"P=L"M},P=L"P.
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In , we do not need to specify the instance in ¢, and ¢, to be z"* or z"? since the equality holds for
any instance x. We only need to distinguish z"* from z"2 when the corrected losses multiply the data
distributions. In particular, the detailed form of rewrite using (8)) is

R(g) = Euy, [ZUI] + Ev, [EU2]
(1 —2)m, —727n ]
= Bpuopy |2 ywy T2y
PI{I%VZM ) 1*%*72( )

_’ylﬂp u (]' - ’71)7'('11 u :|
+ Epuon —— (X" — 1 (X2 .
. [1_%_72 () LT s

The freedom from specifying x in eliminates the notational burden of distinguishing ¢y (X"!) from
ly (X2), allowing us to exploit the advantage of matrix multiplication while constructing the corrected losses.
The freedom also enables separated treatments for the data distributions (e.g., formulating P = MyyII~'P)
and the corrected losses (e.g., devising LT = LTM[TJU).

Step 2: Recovering the previous result(s).

Lastly, we verify the feasibility of our rewrite by showing that our rewrite corresponds to an existing result.
By parameter substitution, we replace v, with 1 — 6, v, with ¢, m, with 1 — 7, ¢, with ¢(g(X)), and ¢,
with £(—g(X)). Then, becomes

%WMHW@(—M» = L(g(X)),

(1 —mp)

1o m)y g + U0 p(x)) = - (-gx)),

0—0

recovering the corrected loss functions (8) and the constants reported in Theorem 4 of [Lu et al.| (2019)).

5.1.2 Positive-Unlabeled (PU) Learning

Recall that all WSLs discussed in Section share the same base distributions B . Further, as shown
in Table |Z|, the contamination matrix of every WSL scenario beneath UU learning except Mgcont is a child

of Myy on the reduction graph. It means P = Myyll~'P is a general form for every child scenario
in Table m (with different realizations of v; and ~3). Hence, we can reuse Theorem [21| to conduct the risk
rewrite for every child scenario on the reduction graph. PU learning is the first of such examples.

Step 1: Corrected Loss Design and Risk Rewrite.
By the following corollary, we prove the rewrite in Section m

Corollary 22. For PU learning, the classification risk can be rewritten as
R(g) = Ep [bp] + Ey [tu], (90)

where

lp = mply — mpln,
by = by,

Step 2: Recovering the previous result(s).
Since Pp is Px|y—p and Py is Px, we swap the notations to obtain

R(g) = Ep [lp] +Ey [fu]
= Ep [Wpfp — Wpfn] + Euy [fn]
= mpExjy=p [6p] — TpEx |y =p [€n] + Ex [£]

from (90, which corresponds to the risk estimators (2) in Kiryo et al| (2017) and (3) in |du Plessis et al.
(2015).
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Moreover, with an additional symmetric assumption of ¢, + £, = 1, one further obtains

R(g) = 7"'DEX\Y:p [fp] - ﬂ'p]EX|Y p[ o] + Ex [fn]

ToEx |y =p [lp] — mpEx|y—p [1 — ] + Ex [(n]

TpEx|y=p [6o] — TpEx|y=p (1] + TpEx |y =p [p] + Ex [fn]
= 2mpEx)y—p [lp] — mp + Ex [(n].

This expression recovers several risk rewrites such as (4) of [Kiryo et al.| (2017)), (3) of [Niu et al.| (2016]), (2)
of [du Plessis et al. (2015)ﬂ and (3) of [du Plessis et al.| (2014]).

5.1.3 Similar-Unlabeled (SU) Learning

According to Table [7}, Mgy is a child of Myy on the reduction graph. Thus, we can follow the same steps
illustrated in Section to justify the proposed framework.

Step 1: Corrected Loss Design and Risk Rewrite.
The following corollary combines and to conduct the risk rewrite.

Corollary 23. Assume mp # 1/2. For SU learning, the classification risk can be rewritten as

R(g) = Eg [¢5] +Ev [u]

where
- s+ 7T121 T+ 71'3
S = gp - by,
ly=——T0 4y 4 T 4
VT o 1 a1 ™

Step 2: Recovering the previous result(s).
To recover Theorem 1 of Bao et al.| (2018), we first need to restore Eg [-] from Eg [-] in Corollary The
following lemma provides a means for us to do so.

Lemma 24. Given B (@) and following the SU learning notations, we have

M{,B = (PS> ~P
SU+~ — PU — 4

where
71'[2, fw’GX Pm/‘y:pdz/ ﬂ'z fz’eXP1,|Y:“dI/
MéU = ﬂ'g—‘rﬂg 7'rr2)+7rr2]
7Tp Tn
Proof. Since [,y Pujy—pda’ =1 and [, s Pojy=—ndz’ = 1, we have M{; = Msy, and hence Mgy B =
7)~
MgsyB = 5). The last equality follows from Lemma [5 O
U

6 As the 0-1 loss is symmetric.
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Lemma [24] allows us to slightly revise the derivation as follows:

R(9) :/ ETdez/ LT M, Bdx
zeX reX

_ _ W‘Z’ fm'ex PI/‘Y:pdx/ ™ f.z’ex PI/"/:“dx/ Pzr\Y:P
- / (65 ) ~Z 2 R dz
zeX

Tp Tn

/ ’Psgg da'dz + / Pu ZU dx
rzeX Ja'eX reX

Es [{s] + Eu [tu] ,

,P:r\Y:n

—
&

)

where equality (a) follows from the SU formulation (10).
Then, denoting

2
and
Eu[fo] = o [ s L 1&‘]
= Eu[L-(f(X))] (95)

that prove rewrite in Section and recover Theorem 1 of (2018) by matching notationg’}

The following lemma justifies equality (b).
Lemma 25. Let (x,2") ~ Ps defined by . Then, Eg [%X)] = [Eg [%X/)] .

The derivation demonstrates the flexibility of the proposed framework in which a slight modification of Mgy
recovers the pairwise distribution Pg required for Eg [-]. Moreover, the technique developed here significantly

reduces the proof length in Appendix B of (2018). Later in Section [5.1.5, we apply the same trick
to recover Theorem 1 of Shimada et al.| (2021 for SDU learning.

We remark that the result recovered in this paper is merely Theorem 1 of (2018)) but not the last
expression in (5) of Bao et al.| (2018]), which later was implemented as the objective (10) for optimization. It
is because, pointed out by Negishi| (2023)), the additional assumption Pg(z,z’) = Pg(x)Ps(«’) required for

achieving (5) of |[Bao et al.| (2018) is impractical. We note that the remedy proposed by (2023) can

be analyzed by the proposed framework, but we omit it due to the amount of overlap with the analyses in

Sections [5.1.1] and [5.1.3
"The matching to the notations of (2018)) is as follows: mp is w4, My is m—, Trg + 72 is 7g, Ps is ps, Py is p,

£y is £(f(X),41), £n is L(F(X),—1), L(X) by definition is s—— (£(f(X),+1) — £(f(X), —1)), and L_(f(X)) by definition is

27y —1
727_:;77715(.}(()(), +1) + QTFTIll@(f(X), 71)'
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5.1.4 Pairwise Comparison (Pcomp) Learning

We follow the steps illustrated in Section to justify the proposed framework since, by Table |Z|, Mpcomp
is reduced from Myy.

Step 1: Corrected Loss Design and Risk Rewrite.
The following corollary combines and to achieve rewrite in Section [2.2.7]

Corollary 26. For Pcomp learning, the classification risk can be rewritten as
R(g) = IESup [ZSup] + Elnf [Zlnf] )
where

ZSup = Ep - 7Tpgna
‘ —Tnly + L. (96)

glnf

Step 2: Recovering the previous result(s).
It is straightforward to recover Theorem 3 of [Feng et al.| (2021]) by matching notationsﬂ Since z is a variable
and can be substituted by z’, we express Corollary [26] as

R(g) = Bonps,, [bp(7) = mpln(2)] + Barnpy [la(2) — malp (27)] (97)

recovering (5) of [Feng et al.| (2021).

5.1.5 Similar-dissimilar-unlabeled (SDU) Learning

We justify the applicability of the proposed framework for DU and SD separately. Firstly, we start with
DU learning, which is similar to SU learning in the sense that pairwise information is provided. From
Lemmas [5] and [7] we see that the pairwise distributions are treated similarly. Thus, following the same steps
in Section we conduct the risk rewrite for DU learning.

Step 1: Corrected Loss Design and Risk Rewrite for DU Learning.
The following corollary is a variant of Corollary

Corollary 27. Assume mp, # 1/2. For DU learning, the classification risk can be rewritten as
R(9) =Ep [(p] +Eu [fu],

where

- 1 1
5 = 2mpm ( 4y — €n> ,
Ty — Tp T — Tp

by = ——2 ¢ + 0. (98)

Ty — Tp Tn — Tp

Step 2: Recovering the previous result(s) for DU Learning.

We reuse the trick in Lemma[24] for restoring the pairwise distribution Ps to restore Pp needed here, allowing
us to recover the rewrite (15) in Theorem 1 of |Shimada et al| (2021) and the first result in Theorem 7.3
of |Sugiyama et al.| (2022). The derivation resembles that of SU learning. We start with the next lemma,
adapted from Lemma

Lemma 28. Given B (@) and following the DU learning notations, we have

/ Pp 5
MDUB = = Pa
Py

8The matching is as follows: Psyp is P+ (z), Pnf is H— (), &p is £(f(z), +1), and £y is £(f(z), —1).
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where
i ’
/ Lo Poriyende’ [ Pury_pda
Mpy = 2 2
Tp T

We apply Lemma 28] to slightly revise the derivation of as follows:

R(g) = / ETde:/ L' M}y, Bdx
reEX TEX
o Loon Porivende’ [ Py _pda’ Poy—p
= / (f) U) 2 2 dz
TeEX Tp T Pﬂc|Y:n

= / Pb ZD dz'dx + / Pu ZU dx
rzeX Jx'eX reX
= ED Vf)] + EU VU] )
where the second to last equality follows from the DU formulation . Denoting

s ™
L (X):= P ¢, (X)— (X 99
() = Ty () - T (), (99)
recalling £(X) from (93)), and continuing with (98)), we have
~ 1 1
Ep [l5] = 2m,mE 4, — ly
P [ D] TR ED [Wn_ﬂp P Tm — Tp :|

= 2mpmuEp [—L(X)]

and

Tp

fuli] - B[R )
Tn — Tp Tn — Tp
= Ey[£4(X)) (100)

that prove rewrite in Section m By matching notations, we recover (15) in Theorem 1 of [Shimadal
et al.| (2021) H . Equality (a) follows from the next lemma.

Lemma 29. Let (x,2") ~ Pp defined in . Then, Ep [#] =Ep [%X,)} .

Secondly, we consider the rewrite of SD learning. To do so, we apply the knowledge acquired from SU and
DU learning (Corollaries 23] and [27).

Step 1: Corrected Loss Design and Risk Rewrite for SD Learning.
We provide another variant of Corollary 23] to conduct the risk rewrite.

Corollary 30. Assume mp # 1/2. For SD learning, the classification risk can be rewritten as
R(g) =Eg [5] +Ep (5],

where

s

s Tn
(wngWE)( - epﬁp_ﬂnen>,

Tp — Tn

Tn

— T,

by = 2m,my < b+ —2 £n> . (101)
Tp — T Tp — T

9The matching to the notations of |Shimada et al|(2021)) is as follows: Tp is T4, T is T, ﬂ'g + 72 is 7g, 2mpmy is mp, Ps

is ps(z,2’), Pp is pp(z,2’), Py is pu(e), lp is £(f(X),+1), €n is £(f(X), 1), L(X) is f(f(X)), Ly(X)is L(f(X),+1), and
L_(X)is L(f(X),—1).
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Step 2: Recovering the previous result(s) for SD Learning.

We apply the same strategy as in Lemma to obtain the needed Pg and Pp. We begin with the next
lemma, adapted from Lemma to recover (16) in Theorem 1 of [Shimada et al.| (2021) and the second
result in Theorem 7.3 of |Sugiyama et al.| (2022).

Lemma 31. Given B (@) and following the SD learning notations, we have
Ps _
M4, B = ( S) =P,
Pp

2 ’ 2 ’
w2 fz,exm,‘yzpdz 2 fz/ex Pty —nd

where

Ml e 7TI2)+7r§ Trg-i-ﬂ'?l
SP [P da’ J. P da’
wlex @' |Y=n olex ' lY=p
2 2

We apply Lemma [31] to slightly revise the derivation of as follows:

/ ETde:/ LT M, Bdx
reX TEX

2 / 2 4
o fI,EXPw’\Y=de Tn fz/expw/lled‘T

/ (@ 7- ) o+ m2+m2 (Pxnf_p) e
S D
reX fm’ex Pm/‘y:ndz' fwleX’Pz/‘y:pdz’ Px|Y=n

2 2

/ / Ps lg da’dx + / Pp g da’dx
zeX Ja'eX zeX Jx'eXx’
= Es[ls] +Ep [f5],

where the second to last equality follows from the SD formulation (T4). Recalling £ (X) and L£_(X)
and continuing with (101)),

Bl = (e Es [ T
= (mp+ ) Es [L4(X)]

£+(X)+£+(X')]
2

R(g)

Tp

= (71'?, —|—7Tr21) Eg {

and

T Tp

ED[D} = 2mpymEp [—W — Ep—i—ﬂ_ — fn]
P n P n

= 2mpmEp [L_(X)]
L_(X)+L_(X')
-

prove rewrite in Section We also recover (16) in Theorem 1 of Shimada et al. (2021 via matching
notations. The required matches can be found in the paragraph before Lemma The equality (b) holds
by applying Lemma [25| with £(X) replaced by £4(X), and (c) follows from Lemma 29 with £(X) replaced
by £L_(X).

An intriguing observation worth mentioning is that the losses £, (X) and £_(X) applied to decontaminate
the unlabeled data in SU and DU learning ( and ) are now used to decontaminate the similar
and the dissimilar data in SD learning, respectively. One can also quickly draw the same conclusion from
Table[d] Knowing the reason behind this observation would help to transfer one corrected loss developed in
one scenario to another weakly supervised scenario.

—~
2]
~

= 2mymEp [
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5.1.6 Similarity-Confidence (Sconf) Learning

Since Mgcont is not a child of Myy on the reduction graph, a direct application of Theorem [21]is
infeasible. Nevertheless, we demonstrate how our framework is applied to rewrite the classification risk for
Sconf learning. We make a small adjustment to the framework that instead of showing L"TP=L"M'P=
LT P, we show that for loss vector L with a certain property,

/ LTPds' = LT Mgont P. (102)
T’ eX

The idea behind this approach is to accommodate z’ sampled from Py (18)). Suppose, informally, we have the
equation above. Then, the rlght hand side of . will produce LT P if we can compute a decontamination
matrix MSconf satisfying Msconstconf = I and assign LT := L—'—MgConf Lastly, integrating over x on both
sides, we obtain the key equation

/ / L'P dx'dx:/ LTPdx
rzeX Jz'eX reX

Step 1: Corrected Loss Design and Risk Rewrite.

Let us follow the notations in Section We begin with two technical lemmas and leave their proofs to
Appendix The first technical lemma shows how to achieve (102)).

Lemma 32. Assume the formulation P = Mgcons B (@ is given. Suppose a vector of corrected losses LT

of the form (El(x) 172(3;)> is independent of x'. Then, we have

for risk rewrite.

/ LTP dz’ = LT Mscont P, (103)
' eX

where

2 2 2 2
TPt o —T5 Pt TPt in— T Pt
p’ z'|p n’ z’/|n / f n’ z/|n n’ z/|p !/
R [y A [, e ede
Mscont = 25 2 2 25
s I — T / s Hp— T ’

x’ |n x / T n’ z’|n /

fx, de fw, %dx

Tp—T Tp—T

The second technical lemma computes the decontamination matrix.
Lemma 33. Let

T—Tn O
Tp—Tn

MT _

Sconf * Tp—T

Tp—Tn
Then,
MgconfMSconf =1

Next, we follow the sketch above to instantiate the corrected losses as

L - LTMSTconf (:p—ﬂ-;n KP(X) ;;p_::n £y (X)> .

Putting Mgconf, L, and 1' together, we have the following rewrite.

Theorem 34. Assume m, # 1/2. The classification risk of Sconf learning can be expressed by

T7M g (X)) + WEH(X)] . (104)

7Tp77Tnp Tp — Tn

R(9) =Ex x- {
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Proof. Integrating both sides of (103) over = and applying Lemma we obtain

/ / LTPds'dx
zeX Jz'eX

/ ETMSCOan dz
zeX

/ LTNIZ. MseontP da = R(g).
reEX

— To—1 — . 7) ’
On the other hand, substituting L with (mﬁp(X) ﬂppﬂnfn(X)) and P with (PX X >7

PxPx:
/ / LTPdddz = / / PP ( i Op(z) + To 7 En(x)> dz'dx
vex Jarex zeXx Jarex Tp — T Tp — Tn
= Exx [ T (X)) 4 et en(X)}
Tp — Tn Tp — Tn
completes the proof of the theorem. O

Step 2: Recovering the previous result(s).
From the above derivation, we have achieved the first half of the rewrite in . Notice that can be
rephrased as

T — Thn
(Z552) PP = (12Paty = 72Pxin) Pocip + (52Pxia = 72Pis) P

Tp

and that can be rephrased as

T, — T
( > ) PxPx: = (Wf)PXIn - 7lefPXIP) Pxijp + (WE)PX\D - 71'1(2173)(|n) Pxjn-

Tn

Thus, when 7, # 1/2, we can repeat the proof steps in Lemma |§| to rephrase as

PxPx: ﬂn(ﬂipxm—ﬂg"’x\p) Trn(‘frﬁpx\p—ﬂﬁpxm) PX/|n

Tp—T Tp—T

o (72 Pxip—ToPxin) (T Px|a—TaPxIp)
(PXPX/> = p— (PX’h))

Comparing the equation above with P = Mgcont B, we see that it is still feasible to formulate P with X and
X’ in Mscons and B of swapped. Then, repeating the same argument in Step 1 with z and 2’ swapped,
we obtain

T — T Tp — T

£ (X7) +

Tp — Tn Tp — Tn

Rlg) = Ex.x | () (105)

Therefore, the following combines (104]) and (105) to obtain

1
R(g) = 5(R(g)+R(g))
1 r—m T, — 7T 1 r—T Ty — T
= -Ex x/ (X P fa (X —Ex x/ o (X! P 0, (X’
0 | () + T 0(0)] + B | E (0 + T ()
|:’I"71'n (X)) + 4, (X)) mp— EH(X)+€H(X’)]
= IEX,X/ +
Tp — Tn 2 Tp — Tn 2

that recovers rewrite in Section 2.2.8f By matching notations, we recover Theorem 3 of [Cao et al.

(2021D) [

10The matching to the notations of [Cao et al| (2021b)) is as follows: mp is T4, mn is m—, r is s, £p(X) is £(g(X),+1), and
0 (X) is £(g9(X), —1).
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5.2 CCN Scenarios

The proposed framework is now applied to conduct the risk rewrites for WSLs discussed in Section and
summarized in Table Counterintuitively, we demonstrate that finding an inverse matrix (e.g., Proposi-
tion|1)) is not the only way to solve the risk rewrite problem. Introduced in Proposition [2 the new technique
exploited in this subsection, marginal chain, calculates the decontamination matrix for via applying the
conditional probability formula twice during a chain of matrix multiplications.

5.2.1 Generalized CCN

We justify the proposed framework for generalized CCN learning via the following steps. Derived equations
will be applied to solve the risk rewrite problem for WSLs discussed in Section [£.2]

Step 1: Corrected Loss Design.

Let us follow the notations in Section[f:2.1] Same as what we have illustrated in the beginning of Section[5.1.1]
the proposed framework achieves three milestones to rewrite the risk. We apply Lemma [I0] to achieve the
first milestone, P = MyccenP. This is done by noting that for generalized CCN, P = MgconB and B = P
are given by Lemma (i.e., do not need to handle My, discussed in Section since Mt is the identity
matrix when B = P).

The second milestone is to find MCCN to achieve MgCCNP = P. Since Mycen is identical to M 1)
a direct application of Proposition gives the decontamination matrix

Py=1)s=s1,x Pv=i|s=ss,x -+ Py=1|s=s,5,X

; Py=2s=s1,x Py=25=ss,x ** Py=g|s=s3s,X
Mgon = | | . (106)

Py=k|s=s1,x Pv=k|s=s,x - Py=k|s=ss,X

that satisfies the M;CCNP = P requirement.

The final milestone is achieved by instantiating the corrected loss as LT := LTMgTCCN. We denote the
k-th entry of L is ¢y—, with k € [K] and the j-th entry of L is £g—,, with j € [|S|].

Despite Proposition s simplicity, the construction of MgCCN is somewhat surprising. MgTCCN, to our best
knowledge, contributes to a first loss correction result relaxing the invertibility constraint. Unlike M[TJU

(Corollary , which needs to compute an inverse matrix, one can construct MQCCN by calculating each
entry Py|s,x in (106), to which, we point out a systematic way in Section

Step 2: Classification Risk Rewrite.
With L in hand, the following theorem provides an intermediate form of risk rewrite.

'}‘hoorem 35. Let P and P are given by @) and (@), respectively. Denote LT = LMgTCCN. Then,
L"P=L"P and

R(g) = / LT Pdz = / LT Pdz. (107)

X X
I_Jroof. Since M gTCC_N is given by Proposition MgTCCNP = P. Thus, following the framework li we have
LTP = LT M/ P = LT P implying (107). O

Theorem [35] will be applied to derive the respective rewrites for WSLs discussed in Section [£.2]in the rest of
this subsection. In particular, we explain how to realize MgCCN {D for a given CCN scenario. Then, the

risk rewrite (107) automatically carries over for the scenario considered, and the respective L specifies the
corrected losses in the rewrite.
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5.2.2 Proper Partial-Label (PPL) Learning

MgTCCN provides an abstraction for us to construct the corrected losses L. Next, we focus on deriving the

actual form of Py g x in M 4CON to explicitly express ¢g for PPL.

Step 1: Corrected Loss Design and Risk Rewrite.
Let us follow the notations in Section The following lemma specifies the form of Py g x to instantiate

t

MgCCN‘

Lemma 36. MILPL corresponds to realizing MgTCCN with

,PY:i\XH [Y =3 € Sj]
ZQGSJ' PY:G“X

Py—ijs=s;, x = (108)

Proof. Recall that the decontamination matrix of Mgccon (64)) is Vsl 2CCN and Mppy, is a reduction of

Mgcen via Pgy,x = C(S, X)I[Y € 5] . Thus, to find out the (i,7) entry of MIZPL, we need to find out
the form of Py_;s=s, x subject to .

Applying Theorem 1 of [Wu et al.| (2023) directly gives
_ Py—ixI[Y =i € sj]
Zaesj PY:CL\X 7
which completes the proof. For completeness, we provide a derivation as follows.

Note that Pgjy,x = C(S, X)I[Y € 5] implies

Py —i|s=s;,X

Z Psy=px = Z Psjy=b,xPy=px
beY\S beY\S
= ) C(SX)be S| Pyyx
beY\S
= 0.

Therefore, Pg|x = ZaES Psy=aix + Zbey\s Psy=px = Zaes Ps,y—a|x- Utilizing this fact, we obtain

Psyix Psiv,xPy|x

Psix > wes Ps|y=a,xPy—a|x
C(S, X)L[Y € 8] Py x
S s O XY =a € 5 Py_ux
'PY‘XH [Y S S]
ZaES Py—a|x

that finishes the proof for Theorem 1 of [Wu et al.| (2023]). O

We have shown that MPPL is derived from M/ 2CON- Thus we can follow Theorem to construct the
corrected losses using and obtain the risk rewnte ) for PPL in Section [2.2.12

Corollary 37. Given MPPL defined by , we denote the corrected losses LT := LTMFT,PL. Then, for
PPL learning, the classification risk can be rewritten as

R(g) = Eg x [ls],

where

PY i X
lg = E —_ly—;. 109
5 > aes Py=ax Y (109)
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Proof. Given (108)), the j-th entry of LT is of the form

_ Py z\XH =1E€s ]
lsmo, = (LTMp) = §j Doy,
e PPl J Zaes PY alX v

Py—iix
Zae Sj Y:CL‘X

1€
Then, since MPPL is a realization of M CCN according to Lemma we continue 1| to express the risk
as
S|

Rio) = [ LTde—/ Y Pomsabocsdo =B [fs].
reX

Step 2: Recovering the previous result(s).
We finish this part by pointing out Corollary [37| recovers Theorem 3 of Wu et al.| (2023)).

5.2.3 Provably Consistent Partial-Label (PCPL) Learning

It is fairly straightforward to apply the proposed framework to rewrite the classification risk. However, it is
more involved in recovering the existing result.

Step 1: Corrected Loss Design and Risk Rewrite.

The argument for obtaining the risk rewrite for PCPL is similar to that of PPL. From Section [£.2.3] we know
that PCPL is a special case of PPL that only differs in the choice of C'(S, X). Since C(S, X) is independent
of , MPT’CPL and MIEPL are identical. Hence, following the notations in Section and repeating the
proof of Corollary we obtain the risk rewrite for PCPL:

Corollary 38. The decontamination matriz M;CPL for PCPL equals ME,PL. If we define the corrected
losses as LT := LTMPT,CPL, the classification risk for PCPL learning can be rewritten as

R(9) =Es,x [¢s] .

where

Py=i|x
lg = e AT 110
57 Z Zaes PY alX v ( )

Step 2: Recovering the previous result(s).

In order to recover (8) of [Feng et al.| (2020b), we need to reorganize the sum in by leveraging a unique
property of a pair of partial-labels (s, s’) that complement each other. The following technical lemma states
the required property, with proof deferred to Appendix

Lemma 39. Let (s,s') be a pair of partial-labels satisfying s = Y\s'. Then,

X Py—ijxly=i
PS SXKS 5+PS s’XES s’—PS SXZ 4 :

Zaés Py = ‘I\X
Denote s} := Y\s; for every s; € S. Then, Lemma [39] implies
S| - S| - -
Z 2PS:sJ-,X€S:sJ' = Z (PS:SJ7X€S:SJ' + PS:S;.7X€S:5;)
j=1 j=1

|S| K

Py —ijxly=i
ZPS SJ’XZ:z:aEs7 PY a|X
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Hence, continuing from Corollary

S|

]ES,X [ES] = / ZPSiSj,IES:dex
zeEX

j=1
S| K
PY 1\x‘€Y %
= PS 85, —_dz
/ Z Z ZaesJ PY alz

Z Z:PY_“ng_i

a€sS ,PY:a\X

shows that the rewrite from the framework recovers in Section [2.2.11] By matching notations, we also
recover (8) of [Feng et al. (QOQObE

5.2.4 Multi-Complementary-Label (MCL) Learning

Step 1: Corrected Loss Design and Risk Rewrite.

Let us follow the notations in Section [£.2.4] As discussed in Section [£.2.4] MCL is a special case of PPL.
Thus, we can modify Lemma [36] based on the notations in Section [£:2.4] - to construct the decontamination
matrix MMCL for MCL. Then, following the same steps for proving Corollary [37, we instantiate L to conduct
the risk rewrite for MCL:

Corollary 40. The (i,j) entry of the decontamination matrix MI&CL is of the form

Py_ixI[Y =i ¢ 5]

Py _ilges. x = 111
Y=i|S=5;,X Eaegj Py —alx (111)

Define the corrected losses LT := LTMI]\L/[CL' Then, for MCL learning, the classification risk can be rewritten
as

where

ls=> Z:Pi/_iXZY_i- (112)

Step 2: Recovering the previous result(s).

Although legitimate, the risk rewrite - 112)) following the marginal chain approach appears different from
Theorem 3 of Feng et al.| (2020a), to which we resort to the inversion approach (Proposition (1 ' that finds
another decontamination matrix, termed MMCL, to recover. As a preparation Step, we denote Ny as the
number of multi-complementary-labels with size d and group rows of Mycr, (71) by the size of labels as
follows.

Pisj=1 M

Pi5|=2 M2
Myicr = . ; (113)

P\5’|:K71MK*1

1 The matching to the notations of [Feng et al| (2020b) is as follows: Pg, x is p(z,Y), Py—ix is ply = i|z), and Ly—; is

L(f(2),9)-
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where for d € [K — 1], each block is of the form["]

I[Y =1¢3q41) 1Y =2¢551] - IY=KG¢54)
. I[Y =1¢ 345 1Y =2¢555 - I[Y=K¢54s
My = —— . (114)
"2 : : :
IY =1¢34n,] LY =2¢54n,] - LI[Y=K¢54n,]

To maintain the equality P = Mycr, P established in Lemma we also rearrange P as

T
(P§=§1,1,X ’ ”PS’=§1,N17X ”.P§=§K71,17X ”.,PSZEK*LNK—NX) : (115)

As a sanity check, we see that for any d’' € [K — 1] and j' € [Ny],

1
(P‘S‘:d'Md,P> , = P‘Sl*d’ o1 Z]I [Y ¢ Sq’ Jl} PY,X
J ( a ) Y
K—1
1 _
= Plsy ji1=d " D] > Pyxlsa | = d
d=1 d’ Y¢§d/,_7"
= Ps=s,,x- (116)

The next lemma is crucial for us to devise the decontamination matrix MI\ZICL via the inversion approach.
We defer its proof to the later part of this sub-subsection.

Lemma 41. Leti* € Y be fized. Then, for every d € [K — 1],

Ng
K-1 . G -
PY:i*,X = Z <1 — TH [Y = eSS = Sd’j]) IPS:ELJ',XHS'\:d'

Jj=1

Moreover, the inverse matriz M; " of My is of the form

BNy =1€541] 1-E2I[Y =1€54 - 1-EZAI[Y =1€354n,]
7%H[Y:2€§d71] 7%}1[)/:265(172] 7%11[)/:265(171\%]
(117)
1- BTy =K €541] 1-E2I[Y =K €540 -+ 1-EZI[Y = K €540,
Applying the lemma, we construct
Myey, = (Mfl Myt Mgl_l) (118)

and obtain M&éLP = P since P = MycLP 1j and

K-1 K-1 K-1
Myt Mycy = Y My "Pig_gMa = > PlgmgMy " Ma =Y Pig_gl = 1.
d=1 d=1 d=1

We remark that M1\7[10L plays the same role as MK/ICL realized by 1) as they both are decontamination
matrices (designed to convert P back to P and used to construct the corrected losses L). Distinct symbols

12Comparing to (71)) where we use one index to denote a total of |S| partial-labels, My uses a pair of indices d and j to denote

the j-th partial-label with size d. It is easy to verify that 22{:_11 Ny = f:_ll (K(;l) =2K_2=|5|.
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are merely used to reflect the difference that MJACL results from the marginal chain method while M1\7[(1]L
comes from the inversion approach. Then, applying the framework , LT := LTMl\Z(le leads to

L'P=L"My,, P=L"P.

With the corrected losses L in hand, the following theorem provides the risk rewrite for MCL via the
inversion approach and recovers Theorem 3 of [Feng et al. (2020a)|ﬂ

Theorem 42. For MCL learning, the classification risk can be expressed as follows.

K-1

R(g9) =E5 x (5] = Z P51=aEs x151=a [£5] »
d=1

where
. K-1-18
S = ZEY:i - |S|| ZKY:i
i¢S seS
Proof. We first establish

Rig) = [ 17 Pdz = Bgx [1g]

since LT P = LT P, where P is specified in I) and LT = LTM1\7[(13L with the S-th entry being Eg. Also,
recall that Pg y = 2(:711 Py51=aPs, x||5|=q I Section Thus, decomposing the probability by the size
of S, we have

K-1
Esx [(s] = > Pisj=aBs xi5=a [¢5] -
d=1
. = —1 . 5 -
Lastly, My;cq 1) and M l) imply, when S = 54 ;,
K K
- K-1 K-1
_ — Tas—1 — . _ —ic 5, — PR .
Gy, = (2707) =300 (1 iy —ie sd,]]) =Y - S Y
i=1 i=1 €84, j
A simple reorganization and substituting d with |S| shows

5= ZEY:i +ny=i - K|S|12€Y=i = Zme' - K|E||S|Z£Y=i-

i¢S i€S i€S i¢S i€S

Now we return to the postponed proof.

Proof. of Lemma We start with identifying Md_l. Denote {541,...,54,n,}, the set of multi-
complementary-labels of size d, as S4. Let us focus on the sized-d data-generating distribution

szgd,l,X‘lglzd

Py =

P5—54n,.X|15|=d

13 The matching to the notations of [Feng et al| (2020a) is as follows: P35 x||5|=d I8 p(x,Y|s = d), Pi5|=a is p(s =d), and E_g
is La(f(x),Y).
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Note that Py corresponds to extracting the entries from 1' that generate sized-d data and then dividing
them by P\S\:d' Thus, P = Myicr, P in Lemma (13 implies Py = My P and its j-th entry is expressed as

Ps—s,,,x||5|=d = Y =i¢5a;]Py=ix. (119)

The equality hints to us that if one manages to collect certain multi-complementary-labels 5 to form an
equation resembling > o, Py x|js/|=a = €3 - Py=i,x for some constant cs, then a reciprocal operation é

recovers Py=; x we need (recall we want to find My achlevmg My 1Pd = P). To achieve such a goal, we
fix on class i* and collect elements in S; that do not contain i* to form Ed = {sd]|sdj S Sd, ¢ sdj} to

connect Pg x| 5j=a With Py—; x as follows. Summing (119) over all elements in Y, we obtain

Y Picaxisi=a = D (K T ZH =1 ¢8| Py=ix

seel” segir \ d

K
1 K -2 K—-1
= (Ki,l) ( d ) ZPY:i,X + ( d )PY—i*,X
d i=1
iAi*
The last equality holds since there are (ng) multi-complementary-labels § € Sy such that i # i* and neither
of them is in 5 (i.e., i ¢ 5 and i* ¢ 5), and there are (') multi-complementary-labels 5 € Sy such that
i = i* and i is not in 5. Then, we regroup the sums by pulling (*;?)Py_; x out of (“;)Py_ix x to
combine with (Kd_Q) Zé{:l Py =i x. It leads to
iAi*

K
1 K-2 K-2
> Posxisi=d = 7Romy [( d > > Pr=ix+ <d— 1>PY—“’X]
seer (! i=1
K—-1-d d
- ¢ — % Py . 12
K-1 Xt goqPverx (120)
Denoting Sd\é'g = {5q,j]5q; € Sq,i* € 54} as If; and rearranging terms in the above equation according
to the reciprocal idea illustrated above, we have

K-1 K—-1-d
Py—inx = —F— > Pses x||5/=a — —x_1 X (121)
sES‘
(a) K K-1-d
= Z Ps— sX|IS)=d = T _1 Px
9617*

K -1

= Px——5— > Pses x151=a-
sezi’

Equality (a) holds since |S| and X are independent (Feng et al., 2020a), which implies
Px =Pxisi=a = D Ps—sx§l=a= D_ Ps=sx|isl=a T D Pé=sx|§l=d-
5€8q seg” sezi’

Continuing the derivation, we have

4K -1
Py—ixx = ZPS 54,5,X||S|=d Z d ]I[Y:i*65d7j]P§:§d,j7X||§|:d
Ng
K-1 .
= Z (1 — TH [Y =1 € 8d7j]> P§:§d,j,X||5'|:d7 (122)

j=1
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proving the first part of the lemma.

The derivation of turning to is a reciprocal action. Thus, if we view 1 — £AT[Y = i* € 54]
as the (¢*,7) entry of some matrix M’, can be interpreted as Pjx = (M’Pd> _, suggesting MM;=1
since Pd = MyP. We formalize this intuition in the next lemma. Z

Lemma 43. Let M’ be of the form , and recall My is defined by . Then, M'M, = I, meaning
M' =M.

The above lemma finishes the proof of Lemma [1] O

Proof. of Lemma Let d be fixed. Denoted by A, i, the (i, k) entry of M’Mjy, is the inner product of
i-th row of M’ (117)) and the k-th column of My (114))

Ny _ Ng
Az‘,k - Z <1 - %H [Y =1 S 5,17]']) ((KI—I)H [Y = k ¢ gd,j]) = Zci’k'

j=1 d j=1

In the following, we will show that the calculation results in the identity matrix

A = L Tfl.:]%
’ 0, ifi#£k,

to complete the proof.

When ¢ # k, we have 4 possible cases: (i) Both ¢ and k are in 54, (ii) Both of them are not in 54 ;, (iii)
i €545 and k ¢ 545, and (iv) i ¢ 54, and k € 54;. For cases () and (iv), the coefficients ¢; i are 0 since
[[k ¢ 5q44] = 01if k € 54,. For case (ii), the coefficient ¢; j, is (K . The number of such 3,4 ; is (K(Iz) since

we are countmg the ways of forming a set of size d from K — 2 elements. For case (iii), the coefficient ¢; 5, is

( — %) = . The number of such 54 ; is (dil) since we are counting the ways of forming a set of size
d

d — 1 from k — 2 elements. Thus, if i # k,

tw = (U 0= ) (6 )
() G KTell)_

D) T

since (T (520 = (57 =5 (50D,

When i = k, we have 2 possible cases: (i) Both i and k are in 54 ;, (ii) Both are not in 54 ;. For case (i), the
coefficient ¢; j is 0. For case (ii), the coefficient ¢; 5, is K1 v, and the number of such 54 ; is (Kd 1), as we

want to form a set of size d from K — 1 candidates. Therefore ifi =k,

1 K-1
hom e (577
("aH\

O

We want to elaborate more on the role of Theorem 1 of |[Wu et al| (2023)) in the analyses discussed in
Section Firstly, as shown in the proof of Lemma it aids the execution of the inversion approach
(Proposition [I)). The properness C(S, X)I[Y € 5] can be instantiated to define the entries of My (114)),
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which in turn establishes the key equation (120)) enabling us to identify the entries of M . Composing
My ! we obtain ZWMCL7 a crucial element for applying our framework

Secondly, Theorem 1 of |[Wu et al. 2023 contributes to the marginal chain approach (Proposition ' as
well. The key equations @ and ) realised from Theorem 1 of [Wu et al. (2023) provide the entries
of MPT,PL (Lemma Section Mpepr, ( Sectlon , and MK/ICL (Section |5. when applying .
Therefore, the combined advantage of our framework and Theorem 1 of [Wu et al (2023) provides CCN
scenarios unified analyses whose key steps can also be rationally interpreted. Moreover, as will be shown
later, we compare the marginal chain and the inversion approaches via a CL example in Section[5.2.5] A CL
example is the simplest way to convey the differences between the two methods without burying the essence
in complicated derivations.

5.2.5 Complementary-Label (CL) Learning

Step 1: Corrected Loss Design and Risk Rewrite.

Note that the parameters chosen for the construction of Mcy, in Section reduces Mycr (113) to
be M; of . That is, assigning Pjg_q = 1 for d = 1, P54y = 0 for d > 1, and 1 ; = {j} for all j € [K]
in , we have

0 1 1
1 1 0 --- 1
M, M = —— = Mc¢y,.
MCL — M1 k-1l o CL
1 1 --- 0

Hence, the proof steps of Theorem [42] carry over to CL learning. With a simple rearranging on

Y=

I
gl
3

20

and assigning \5’| =1, we arrive at :

Corollary 44. For CL learning, the classification risk can be expressed as
B K
R(g) =Egx [ls] =Egx | ly—i— (K —1)lg

Step 2: Recovering the previous result(s). B B B

The rewrite above recovers Theorem 1 of Ishida et al.| (2019) if we substitute S with Y and ¢g with £(Y, g(X)).
Moreover, if we choose d =1 and 5, ; = {j} for all j € [K], the decontamination matrix provided by (117)
becomes

—(K —2) 1 1
1 (K —2) - 1
=] b (123)
L ko

which translates the corrected losses LT = LT M; !
LT (—(K —2)Ig +117),

recovering (9) of Ishida et al.| (2019).
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Comparing inversion with marginal chain via an example.

We use a simple CL example to demonstrate the differences between the inversion (Proposition [1)) and the
marginal chain (Proposition approaches and explain how the intuition of decontamination is implemented.
Here, we focus on comparing how a decontamination matrix M  achieves M P = P since when
the equality is established, the downstream construction of the corrected losses and the risk rewrite follow
the framework. For this example, let us choose K = 4 and simplify Py— x as pr. Applying (76), the
contamination process defining the data-generating distributions is expressed as

Pp2+p3s+pa

01 1 1\ [m +3+
_ 1 P1TP3TP4
P MoP =2t L 01 1ffp2f_|"5
311 1 0 1 D3 %
1 1 1 0/ \pa T

3

Equation ([123)), simplified from (117]), provides the decontamination matrix from the inversion approach:

-2 1 1 1
1 -2 1 1
M=
L 1 -2 1
1 1 =2

-2 1 1\ /0 1 1 1\ [m
. 111 -2 1 101 1] [p2
MI'P = = 124
CL 311 1 -2 1 11 0 1] ]ps (124)
1 1 1 -2/ \1 11 0/ \m
30 0 0\ [m D1
_1fo 3 0 0 pf_|r2|_p
310 0 3 of|ps|  |ps|
00 0 3/ \pa P4

On the other hand, equation (111]) produces the decontamination matrix from the marginal chain approach:

0-p1 pP1 P1 P1
p2+p3+ps  p1+p3+ps P1+p2+ps p1+p2+ps

P2 0-p2 P2 P2
p2+p3+pa P1+p3+pa p1+p2+pa p1+p2+p3

Ml =
CL P3 p3 0-ps P3
p2+p3+pa P1+p3+pa p1+p2+pa p1+p2+p3

2 P4 2 0-pa
p2+p3+pa p1+p3+pa p1+p2+pa p1+p2+ps3
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Then, the marginal chain approach (Proposition [2]) achieves the decontamination by showing

0-p1 P1 P1 P1 tpst
p2+p3+tps  p1+p3+ps p1t+p2+ps prtp2tps w

b2 0-p2 P2 P2 P1+P3+p4

5 p2+p3+pa p1+p3+pa p1+p2+pa p1+p2+p3 3
Mg P , , , (125)

P3 p3 0-ps P3 P1t+p2+pa
p2+p3+ps p1+p3t+ps  pi+p2+ps p1+p2+p3 3

2 P4 P4 0-pa Pit+patps
p2tps+ps  pitpstps  pitp2tps  pitp2tps 3
pi+pi1+p1

3 Y41
p2+p2+p2 D

3 2

= = P.

P3+p3+p3 P3

3
Pa+tpatps P4

3

Comparing (|124]) and , we see that the intuition of decontamination is realized differently. The inversion
approach irectly cancels out the effect of M.y, without relying on any property of P. In contrast, the
marginal chain method leverages the fact that P is a probability vector and carries out a procedure
similar to importance reweighting to resolve the contamination. Both methods have respective merits, and
we hope the comparison will inspire new thoughts leveraging certain properties of P for the corrected loss
design and the study of decontamination.

5.3 Confidence-based Scenarios

The proposed framework is now applied to conduct the risk rewrites for WSLs discussed in Section [£:3] and
summarized in Table

5.3.1 Subset Confidence (Sub-Conf) Learning

Step 1: Corrected Loss Design and Risk Rewrite.
Let us follow the notations in Section Recall that Lemma has reached the first milestone
by showing P = Mg, P. To reach the second milestone , we apply Proposition 1| to construct the

decontamination matrix Mgub to cancel out the contamination caused by Mgup as follows.

Lemma 45. Assume Pycy,x > 0 for all possible outcomes of X. Choosing

Py eysix 0
[ Ve S . .
MSub T MSub - : T . ’ (126)
... Pr=xix
0 Py eys|x

we have MSTubP = P, where P and Msu, P are given by Lemma .

Proof. The assumption Pycy, |x > 0 implies Mgy, is invertible. As suggested by Proposition |I} we define
M, = Mg} . Then,

Py=yx . Pyreysix ..
Py eysix 0 Py=1/x 0
M, Mg, = : : : : =1
0 Py evsix 0 Py=K|x
implies Mérubp = Ms_uleSubP = P that proves the lemma. O
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With Mgub in hand, the next theorem defines the corrected losses L and achieves the risk rewrite |i
Theorem 46. For Sub-Conf learning, the classification risk can be written as

K

R(g9) = my.Exjyey. [Z Ti((XX))&l .

r
i=1 Y

Proof. Given Lemma 45 we can define LT := LT M{ , so that

Py—i|x

=T
Li o (LTMgub) €1

i Pyey,x
for each i € [K] and

L"P=L"Ml P=L"TP
Therefore, we can apply to obtain as follows.

K
S Py —;
R(g) = / LTde:/ LTPdw:/ > Sl Pyey, Pxjvey.da
zEX zeEX T€X 4 ,PYeyS\X

K

Z Py—ix Ki]

= Preyv.Exvey. 7
o1 TYeyXx

K

= 7y Exjvey, [Z ;;z((XX))&] )

=1 s

The last equality follows the notations in Section [2.2.14 O

Step 2: Recovering the previous result(s).
Notation matching gives

K

R(g) = 7. Ep(ajyen,) [Z ng)f(g(w),y)] ;

y=1

recovering Theorem 6 of |Cao et al. (2021a)|ﬂ

5.3.2 Single-Class Confidence (SC-Conf) Learning

Step 1: Corrected Loss Design and Risk Rewrite.
The SC-Conf derivation resembles that in Section [5.3.1]since Mgc is a child of Mgy, on the reduction graph.
Thus, following the notations in Section @, assuming Py, |x > 0 for all possible outcomes of X, and

replacing the set )s in Mgub 1) with a singleton ys, we have

Py=1x
PY:yS|X O
T
Mg =
Py=K|x
0 Py —ys|x

satisfying MgCP = P. We also obtain LT = L—'—MSTC and LT P = LT P by inheriting the proof of Lemma
Then, a modification to Theorem |46| by replacing I_/ZT = Py;”x& with

T Preyx

2

; Pyoix , _ mi(X)
LT = (1,7 pft — (=
i (L Msc)i Py—|x ry. (X)

proves the risk rewrite for SC-Conf learning:

4The matching is as follows: Px|yey, is p(zly € ¥s), ri(X) is (X)), ry, (X) is 75 (X), and £; is £(g(X), 7).
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Corollary 47. For SC-Conf learning, the classification risk can be written as

K

R(g) = 1. Ex(yy. [Z ri(if)()) &] .

i=1 Tys

Step 2: Recovering the previous result(s).
By matching notations, we obtain

=

r¥(x
R(g) = 7y Ep(aly.) [Z ( )g(g(m)ay)l )
recovering Theorem 1 of |Cao et al. (2021a)|ﬂ

5.3.3 Positive-confidence (Pconf) Learning

Step 1: Corrected Loss Design and Risk Rewrite.

Let us follow the notations in Section Recall that Mpcont is a child of Mgc on the reduction graph
with K = 2 and ys = p. Thus, assuming Py_, x > 0 for all possible outcomes of X and replacing K and ys
in Section [5.3.2] accordingly, we obtain the decontamination matrix

Py—p|x
| Py 0 (! 0
Pconf "™ 0 Py —nix - 0 1;(7)(())()

Py=p|x

and the rewrite reviewed in Section m
Corollary 48. For Pconf learning, the classification risk can be written as

1—7r(X)
=m,Ep |£ ——2l .
R = |1, +
Step 2: Recovering the previous result(s).
By matching notations, we obtain
1—r(x)

Rlg) = w2 [lote) + 10
recovering Theorem 1 of [Ishida et al. (2018)|E

5.3.4 Soft-Label Learning

Step 1: Corrected Loss Design and Risk Rewrite.

We follow the notations in Section As discussed in Section Msot is a special case of Mgyup
when )y := [K|. Thus, reducing M, by assigning Pycy,x = Pyek]x = 1, we obtain the the
decontamination matrix

Py—ix 0
Mg ft -
0 o Pyokix

Then, we follow the same argument in Theorem [46| to achieve the rewrite by the next corollary.
Corollary 49. For soft-label learning, the classification risk can be written as

K K
> Py_ixli ZH(X)&} :
i=1 i=1

15The matching is as follows: Px|y=y, 15 p(x|ys), r:(X) is (X)), 7y, (X) is 7¥5(X), and £; is £(g(X), ).

16The matching is as follows: mp is 7y, Px|y=p i p(zly = +1), Py—p|x is 7(x), Py—n|x is 1 —7(x), & is £(g(z)), and ¢y is

t(—g(x))-

R(g) = Ex =Ex
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Step 2: Recovering the previous result(s).

Ishida et al.| (2023]) did not focus on the classification risk rewrite problem. We can modify Corollary [49|to
provide a risk rewrite for binary soft-label learning mentioned by [Ishida et al| (2023]). Taking K = 2, we
have

R(g9) = Ex [Py—p|xlp + Pyonjxtn] =Ex [r(X)l, + (1 — r(X))l] .
6 New Risk Rewrites

The proposed framework can be applied to derive risk rewrites for new scenarios. In this section, we show how
the proposed framework accommodates a different performance metric and adapts to a noisy environment.

6.1 The Balanced Error Rate

In the previous sections, we chose the most common metric, the classification risk, to elaborate our framework.
Here, we demonstrate that the framework adapts to another common but different performance metric. The
balanced error rate (BER) is defined as

Ex~Pyiyp [Bp(9(X)] + Exapy )y [Ia(9(X))]
2

(Scott & Zhang) [2020). Next, we show how to apply the framework to obtain the risk rewrite of UU learning
under BER.

Rpgr(g) = (127)

1/m, 0

Recall that in Section [5.1.1} for classification risk, M. = ( 0 1
Tn

) was chosen to link the base

o Pxy=p . e Py=p,x
distributions B = and the risk-defining distributions P = :
Px|y=n Py —n,x
Pxjy=p\ (1/m 0 \ [Pr=px
Px|y=n 0 1/m) \Py=nx/
. . o Pxiy=p/2\ . N
By definition (127]), the risk-defining distributions become /9 . Since the base distributions B
X|Y=n

remain unchanged, we must redefine M, := <(2) g) , so that

Px|y=p _(2 0> Px|y=p/2
Px|y=n 0 2/ \ Pxiy=n/2

satisfies B = M+ P for the BER setting.

With the newly defined Mot = (g g) in hand, we can follow Step 1 in Section [5.1.1] to obtain the

Pu, (2 0) Px|y=p/2
= Muyy

Pu, 0 2/ \ Px|y=n/2

1/2 0

0 1/2

Theorem [2I] we achieve the risk rewrite for UU learning under BER:
RBER(g) = ]EUl [EUI] +EU2 [ZUz} )

data-generating process
Then, by assigning M[T_JIFBER =

> MJIIJ and following the similar derivation in the proof of
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where

7 L= —2

Y4 = ly + £y

u 20— —m) " 20—y —)
_ 1_

- SE 1

20=m=—m) " 20-m—"7)"

7o,
6.2 Learning with Label Noise

In this section, we show that the framework can easily handle the risk rewrite under label noise. We will
take PU learning as an example. We use P to denote the clean distributions and Q for the noisy ones.
The scenario is formulated as follows. According to Lemma [4] the data-generating process of the noisy PU

learning is of the form
Qp\ (1 0 Qx|y'=p
QU’ B 7T£) Tr;l QX\Y’:n ’

where ﬂ'; = Qy/=p and 7, = Qys—,. We choose the MCD setting (Section [2.2.17) to formulate the label

noise:
! /
QXW/:p _ 1-— a, aj, PX|y:p
- )
Qx|y’=n af  1—al ] \Px|y=n
where a; > 0 and o] > 0 are parameters describing the degree of noise perturbation. As in the previous
section, we also choose BER as the performance metric.

By cascading matrices, the framework effortlessly links the data-generating distributions and the risk-defining

distributions:
QP/ . 1 0 1-— (X;) a; <2 O) PX\Y:p/2
Qu/ o T al 1—af ] \O 2/ \ Pxjy—u/2

Knowing the contamination process, we apply the inversion method (Proposition [1f) to construct the decon-
tamination matrix

! /
PU-BER / / /
0 1/2 1- OZ; - aél —()(;1 1-— Oé;) _T(p/ﬂ-n 1/ﬂ-n
(l—a:])ﬂ':]-&-a;w; —a;
B 2(1—041’[)—044‘)77;‘ 2(1—04;3—04])#;] . c1 ¢y
—opm—(1—ap)m 1oy Co\es a)’
2(1-af,—af)m, 2(1-af,—af)m),

Then, applying equations (38)) and 7 we can rewrite the BER for PU learning as
Rpgr(9) = Ex~o, [lp/] + Ex~o, [(u],
where

ZP/ = lep + c3ly,
ZU/ = Cgfp + C4£n.

In the two subsections above, we have shown that the proposed framework can address risk rewrite under a
different performance metric and a complex system. In the outlook part of the next section, we will further
discuss the potential of the framework.
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7 Conclusion and Outlook

We set out with the questions wishing to determine if there is a common way to interpret the formation of
weak supervision and search for a generic treatment to solve WSL, to understand the essence of WSL. In
response, we proposed a framework that unifies the formulations and analyses of a set of WSL scenarios to
provide a common ground to connect, compare, and understand various weakly-supervised signals. The for-
mulation component of the proposed framework, viewing WSL from a contamination perspective, associates
a WSL data-generating process with a base distribution vector multiplied by a contamination matrix. By
instantiating the contamination matrices of WSLs, we revealed a comprehensive reduction graph, Figure
connecting existing WSLs. Each vertex contains a contamination matrix and the section index of the WSL
scenario which the matrix characterizes. Each edge represents the reduction relation of two WSLs. We
can see three major branches from the abstract Mo, corresponding to Tables |Z[, |§|7 and |§| we discussed in
Section [l The analysis component of the proposed framework, tackling the problem from a decontamina-
tion viewpoint, working with the technical building blocks Theorems (1| and [2| constitute a generic treatment
to solve the risk rewrite problem. Section [5| discussed in depth how the analysis component conducts risk
rewrite and recovers existing results for WSLs.

N

Mpy (50)
(_ Sec.2.2.1 ) Mpy (53)
s 21N )
Myy (49) Mgy (51) Sec. 2.2.5
Sec.2.2.3 _ Sec.2.24 My (54)
Mycp (45) | [Mpcomp (52) Sec.2.2.6
Sec. 2.2.17

MSconf (55)
Sec.2.2.8 P
Mcorr (35) AZPCPsz(??)
MgCCN (64) MPPL (66) _o¢C. 2211
Sec. 4.2.1 Sec. 2.2.12 My (71) My (76) }
MCCN (60) Sec.2.2.10 ) Sec. 2.2.9
Sec. 2.2.17 N
Msc (81) Mpconf (82)
Msyp (80) Sec. 2.2.13 ( Sec.222 )
Sec. 2.2.15

Figure 1: Depicting the reduction map from Tables[7] B and [9]

The application of the proposed framework results in a set of theorems. We summarize them in Table
The Formulation column consists of the results of the formulation component . The Decontamination
and the Corrected losses columns correspond to the results of the analysis component (7 , and )
The Recovery column justifies the framework by recovering results from the literature. Crucial results are
marked red. Since the analyses of different scenarios are subsumed under a single framework, we now have
a basis for transferring a technique developed for one scenario to another. In addition, these alternative
proofs provide different ways of dissecting the risk, which in turn could aid in the development of a training
objective by examining multiple risk decomposition approaches.
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Table 10: Theorem Structure.

Model Formulation Decontamination Corrected losses Recovery
(Find M s.t. (Find M7 s.t. (Rewrite via
P=MB) P=MP) LT =L"M" and P.)
Abstract @ M @ and @
model Proposition |1} and Proposition
MCD
UuU Lemma Corollary Theorem (Notation swap.)
PU Lemma (Immediate reduction.) Corollary (Notation swap.)
SU Lemma (Immediate reduction.) Corollary Lemmas [24 and
Pcomp Lemma [6] (Immediate reduction.) Corollary (Notation swap.)
DU Lemma 7] (Immediate reduction.) Corollary Lemmas 28 and
SD Lemma |8 (Immediate reduction.) Corollary Lemma
Sconf Lemma [9 Lemmas 32| and Theorem (Notation swap.)
CCN B |
gCCN Lemma (10 and Proposition Theorem (Notation swap.)
PPL Lemma (11 Lemma Corollary (Notation swap.)
PCPL Lemma (12 Corollary Corollary Lemma
MCL Lemma |13 Corollary Corollary Theorem
- Lemmas (41 and
CL Lemma |15 (Immediate reduction.) Corollary (44 (Notation swap.)
Sub-Conf | Lemma [16 Lemma Theorem M6 (Notation swap.)
SC-Conf | Lemmall7 (Immediate reduction.) Corollary |4 (Notation swap.)
Pconf Lemma [18 (Immediate reduction.) Corollary |48 (Notation swap.)
Soft Lemma |19 (Immediate reduction.) Corollary 49 (N/A))

The proposed framework is abstract and flexible; hence, we would like to discuss its potential from the
following aspects. Firstly, the performance measure focused on in this paper is the classification risk. With
proper choices of P and L, our framework can be extended to other performance metrics, such as the balanced
error rate, one-versus-rest risk, and cost-sensitive measures (Rifkin & Klautau, 2004; Zhang, [2004; Brodersen
et al.l 2010} [du Plessis et all, 2014} [Menon et all, 2015} [Blanchard et all, 2016} [Natarajan et al. 2017 [Scott
& Zhang) 2020). We have demonstrated the applicability of the proposed framework for the balanced error
rate in Section [6] Secondly, we can explore the formulation capability by exploiting the power of matrix
operations. Cascading matrices allow us to formulate complex scenarios, such as data containing preference
relations collected in a noisy environment. Matrix addition allows us to categorize different contamination
mechanisms into cases to capture the structural properties of a problem. A complicated scenario could
undergo a sophisticated formulation procedure, but once we have the resulting contamination matrix, the
problem boils down to calculating the corresponding decontamination matrix. Thirdly, the MCD scenarios
discussed in this paper (Sections and belong to binary classification. A way of extending an MCD
formulation to multiclass classification is to extend Mycp from a 2 x 2 matrix to a K x K one, in
which K? — K mixture rates are used to characterize the extended Mgnicep: the (4, 7) entry is ; ; if @ # j
and is 1 — i Vi, for the i-th entry on the diagonal. Fourthly, the label-flipping probabilities Py |y in
Natarajan et al.| (2017) and [Feng et al.| (2020b) assume that the contaminated label Y is independent of X
condition on the ture label Y. The formulation matrices, Mcon and Mgceon , in contrast, take X
into consideration. This formulation enables us to tackle the instance-dependent problem (Berthon et al.
2021) and the effect of sampling strategies such as SAR and SCAR (Elkan & Noto, |2008; |Coudray et al.
2023) in the future. Fifthly, we hope that the analysis technique developed in Section 5.2, which combines
marginal chain and properness, opens up a new possibility to search for invertibility-free methods for the
risk rewrite problem. We also project its potential in research regarding the broader sense of contamination
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and decontamination. Sixthly, the properness of [Wu et al.| (2023)) provides an efficient technique to compute
Py |s,x needed in Mgcon . It would be intriguing to know if there are any other alternatives. Finally
but not least, the proposed framework operating under matrix multiplication belongs to a broader question
of under what circumstances does a function f1 exist with P = ft(P) if P = f(P).
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A Use Cases for This Paper

There are several ways to use this paper in the study of WSLs. We provide some common use cases as
follows:

Use Case 1: If you want a quick overview of WSL. Reading Section [2| would provide a quick catch-up on the
formulations and results of various WSL scenarios.

Use Case 2: If you want to get the high-level idea of this paper. One could start with Section [3] which provides
the abstract form of the proposed framework. Then, Sections[4.1.1]and give the practical application of
the framework to UU learning. If you are more familiar with PU learning, then you are welcome to proceed
to Sections [4.1.2)and to see how our framework interprets PU learning. In addition, these reading steps
will reveal the connection between UU and PU.

Use Case 3: If you want to know how to apply the framework to a specific scenario. One could read Sections
4.a.b and 5.a.b at the same time, and come back to the rest of Sections [4] and [5] only as needed. Note that
“a.b” represents the index of a subsubsection.

Use Case 4: If you want to know the connections discovered and the analysis techniques developed in this
paper. Section[d provides detailed discussions of the formulations, and Figure [I| summarizes the relationship.
Section [5] provides detailed explanations of how our framework is applied to rewrite the classification risk.
The extensive analyses from Section [5| are summarized in Table

B Notations

Table 11: Notations and Aliases.
Name of the notation Expression Aliases Convention
Example (y,x) (z,9)
Binary classes {p,n} {+1,-1}
Multiple classes {1,--- K} [K]
Compound classes of [K] 2K\ {0, [K} S
A subset of classes Vs C [K]
Joint distribution Pr(Y =y, X =2) | Pyr=ya, Py=y.x,0r Pyx Pr(z,y)
Class prior Pr(Y =y) Ty
Marginal Pr(X) Px
Class-conditional Pr(X =z |Y =9) | Pay» Pxly> Paly=ys OF Px|y—y
Class probability Pr(Y =y | X =2) | Py—yjz, Py—y|x, oF Py|x n(x)
Confidence Pr(Y =y | X =2) | ry(X), ry(x), or r(X)ify=p | r¥(x) or r(x)
Sample size probability Pr(|S| = d) P|s|=d or q|s
Hypothesis and its space geg
Loss of g tr—y(9(@) 0y, £,(X), or by (g(X)) {g(X),Y)
Classification risk Ey x [ty (9(X))] R(g) Exy [£(9(X),Y)]
The j-th entry of vector V| (V), V;
Indicator function of E I[E]
Complement of set s V\s s
Identity matrix I
MCD parameters v¥p and vy
UU parameters ~v1 and ¥ 1—6and @
CCN parameters Pyv.x Psiv,x or Pgly,x p+ and p_
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C Omitted Proofs in Section [4]

Omitted proofs in Section [ are provided in this appendix. We first restate a claim in the main body of the

paper, and then provide the corresponding proof.

C.1 Omitted Proofs in Section [@.1]
Proof of Lemma

Lemma 5. Let B @ be the base distributions and

P (jj) .

Then, the contamination matrix

s A

2 2 2 2
MSU = 7'rp—‘,-7'rn 7'rp—‘,-'rrn ,

Tp Tn

which satisfies P = MsyB, characterizes the data-generating distributions P.

Proof. The proof steps follow that of Lemma [4l By definitions,

2 2
Tp Ty P _
MgyB = [ m™+m m+m ( Kh=p .

Tp Tn Px|y=n
Since
Lgp + m P _ T Px|y=p + TaPx|y=p — P,
m2mg NVEP T g PXIYE T 2+ -
and

T Pxy=p + ™Px|y=n = Px = Pu,

the first entry of the resulting vector equals Pg and the second entry equals Py, we achieve P = MguB.

Proof of Lemma [0

Lemma 6. Let B (@ be the base distributions and

P (Towe)
Prnt

Then, the contamination matriz

Tp T
mp+my mp+my
MPcomp = 2 )
D Tn
7'rr2)+7rn 7'rr2)+71'n

which satisfies P = MpcompB, characterizes the data-generating distributions P.
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Proof. By definitions,

2
Tp s

Tp+Ta 7"p+nﬂ'§ 7DX\Y:p
MPcompB = 2 .
Tp Tn PX\Y:n
Trg—l-ﬂ'n 7r§+7‘rn
Since ) )
Tp P n 7TP,PX|Y:}) + 7Tn,PX|Y:n
—+ ——=Px|y=n = =P
7Tp+7TI21 X‘Y P 7Tp+71—r21 X|Y n 7Tp+7TI21 Sup
and ) )
7T 7r ToPx)y=p + T™Px|y=n
L Pyiyep+ —5——Px|yen = — = =P
7TI2) T, X|Y=p 71_12) T X|Y=n 7Tr2, T Inf,
the first entry of the resulting vector equals Psyp and the second entry of the resulting vector equals Pry,
which establishes MpcompB = P. O

Proof of Lemma[7]

Lemma 7. Let B (@) be the base distributions and
p=("0).
Pu

Mg — <1/2 1/2) | (53)

Then, the contamination matriz

Tp  Tn

which satisfies P = MpyB, characterizes the data-generating distributions P.
Proof. Similar to the proofs of Lemmas [f] and [6] we begin with
1/2 1/2\ (Pxjv=
MpoB = (2 Y =)
T T ) \Px|y=n
Since (Px|y—p + Px|y=n) /2 = Pp and m,Px|y—p + T™Px|y—n = Px = Py, we have MpyB = P. O

Proof of Lemma [

Lemma 8. Let B (@) be the base distributions and

)

Then, the contamination matriz

w2 2
P T

Mep = | T TR (54)
12 1/2

which satisfies P = MspB, characterizes the data-generating distributions P.
Proof. First, we begin with

w2 2
- [ ) (o)
D e n n .
12 172 | \Pxiy=n

Then, we have the lemma by reusing the calculations in the proofs of Lemmas [5] and [7} O
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C.2 Omitted Proofs in Section
Proof of Lemma [I1]

Lemma 11. Let the elements in S be {51752, e s|5‘}. For each j € [|S|], let the j-th entry of P be

Pj = PS:SJ'7X = C(S = 57,X) Z PY:k,X?
k€Es;

which denotes the data-generating distribution of (s;, X). Assume the base distributions B and the con-
tamination matrix Mppr, are given by @ and , respectively. Then, Mppy, satisfies P = Mppy, B and
characterizes PPL learning @

Proof. For each j € [|S]],

K
(MPPLB) = ZC(Sj,X)]I [Y =ke Sj]’Py:}c’X = C(Sj,X) Z 'Py:k,x == Pj.

J =1 kEs;

Note that C(s;, X) Zkesj Py =k, x corresponds to when the observed partial-label is s;. O

Proof of Lemma

Lemma 12. Let the elements in S be {81,82, e s|5‘}. For each j € [|S]], let the j-th entry of P be

_ 1
Pj =Ps=s; x = oK—1 _ 1 Z Py =r.x
kes;

which denotes the data-generating distribution of (sj, X). Assume the base distributions B and the contam-
ination matric Mpcpr, are given by @ and @, respectively. Then, Mpcpr, satisfies P = Mpcpr, B and
characterizes PCPL learning .

Proof. For each j € [|S]],

K
1 1 _
(MPCPLB) =) g Y =k eS| Prarx = g D Pr=kx =P
7= kes;
Note that ﬁ Zkesj Py —k,x corresponds to when the observed partial-label is s;. O

Proof of lemma [I3]
Lemma 13. Suppose the base distributions B, the contamination matrix Mycy, and the data-generating

distributions P are given by (@), , and (@, respectively. Then, Mycr, satisfies P = Mycr,B and
characterizes MCL (@
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Proof. For each j € [N], we have

(Mer), = YRR 5P
’ Y U
K1 § :d 5:|=
= ) == H[(;('_l) e 1Y ¢ 5] Py.x

Y |54]
K—1 ,PI_ |—d
= > (E:I) STIIY ¢ 5] Prxlll5] = d]
d=1 |55] Y
K—-1

Ps;= _
_ 3 Pt S o sy =
d=1 ( 551 ) Y¢s;

D Omitted Proofs in Section

Omitted proofs in Section [5f are provided in this appendix. We first restate a claim in the main body of the
paper, and then provide the corresponding proof.

D.1 Omitted Proofs in Section [5.1]

Proof of Corollary [22]

Corollary 22. For PU learning, the classification risk can be rewritten as
R(g) = Ep [lp] + Ey [lu] (90)
where
lp = Tplp — Tpln,

_ 91
by =4ty (1)

Proof. According to Table[7] Mpy is a child of Myy on the reduction graph. Thus, replacing the subscripts
{U1, Uy} of P and L with {P,U} and assigning 7; = 0 and v, = T as what we choose in Section
we follow the proof of Theorem [21| to conduct the risk rewrite: We first obtain the corrected losses (91) by
plugging the assigned values int. Then, repeating the steps in , we achieve . O

Proof of Corollary [23]

Corollary 23. Assume mp # 1/2. For SU learning, the classification risk can be rewritten as

R(g) = Eg [{5] + Ey [¢u],

where
__:ﬂ'ngﬂ'gé _7T12>+7Tr21£
ST o, -1 2m, -1 (92)
ly=—="T" 4 —P g
VT o, 1 o, — 1 ™

Proof. By Table Mgy is a child of Myy. Substituting the subscripts {Uy, Us} with subscripts {g, U} and

choosing 71 = 2= and 72 = 7, as we did in Section [4.1.3] we obtain the corrected losses 1' by plugging
o

the assigned values into . We note that m, 1/2 ensures the choices of 71 and 72 above satisfy the

Y1 + 72 # 1 assumption discussed in Section Then, we achieve the rewrite R(g) = Eg [Eg] + Ey [KU]

by repeating the derivation for (89). 0O
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Proof of Lemma
Lemma 25. Let (x,2") ~ Ps defined by . Then, Eg [%} = Eg [%X/)] .

w2 2

Proof. For clarity, we simplify Ps as ¢1Px|y—pPx/|y=ptC2Px|y=nPx/|y=n, With c1 = P~ and c; = P e
o+

2 2
7rp+7rn

The lemma follows from

Eg [£(X)]

_ / PsL(z) da’ da
zeX Ja'eXx

N / X/ Py (c1Pajy =pPar|y =p + 2Pay =uPur|y =n) L() da’ dz
A x' e

= Cl/ ’Pﬂy:pﬁ(x) da:/ 'Pwl‘yzp dxl + 02/ Pm|Y:n£(iE) dl’/ ’Pll|yzn d:C/
TEX ' eX reX ' eX
=C / 'Pﬂy:pﬁ(iﬁ) dz + 82/ ,Pw‘y:nﬁ(l') dLE,
reX zeX
and similarly,

Es [£(X)] = cl/ Porly =pL(a’) dz’ + 02/ Py =nL(z') da'.
T'eX

z'EX
O
Proof of Corollary [26]
Corollary 26. For Pcomp learning, the classification risk can be rewritten as
R(g) = IESup [ESup] + Emnt [Zlnf] y
where
lsup = €p — mpln,
glnf = _erép + en- (96)
2 2
Proof. Since Myy reduces to Mpcomp With 71 = - 7:_772 and v = % according to Tableﬂ, we replace
P n P n

the subscripts {Uy, Up} with {Sup, Inf} and instantiate with the assigned values to obtain the corrected
losses fsup and Cing 1%) Then, repeating the same steps in , we have the corollary. O

Proof of Corollary [27]

Corollary 27. Assume m, # 1/2. For DU learning, the classification risk can be rewritten as

R(g) = Ep [£p] + Ev [fu] ,

_ 1 1
5 = 2mpmy ( 4, — €n> )

T — Tp Ty — Tp

where

- s
by = ——2—4,+
Ty — Tp T — Tp

ln. (98)

Proof. By Table Mpy is reduced from Myy. Thus, replacing {Uy, Uy} with {D, U}, and assigning v; = 1/2
and 2 = m,, we obtain the corrected losses by plugging the assigned values into (86). Note that
7p # 1/2 implies that the v, and 2 assignments are feasible. Then, repeating the steps in (89)), we have the
corollary. O
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Proof of Lemma

Lemma 28. Given B (@) and following the DU learning notations, we have
Ps _
MhsB=|"P|=p
Pu

’
fmleX'PgC/lY:ndJ/’/ fm’e){pml“/:pdw
2 2

where

M]/:)U =
T T
Proof. Since fm/eX Pyjy=ndz’ = 1 and fr’eX Pujy=pda’ = 1, we have M{,; = Mpy and hence My,;B =

7)~
MpuB =[P |. The last equality follows from Lemma O
U

Proof of Lemma
Lemma 29. Let (z,2') ~ Pp defined in . Then, Ep [ﬁ(éx)] =Ep [%X/)} .

Proof. Recall Pp = %(Pﬂy:pPI,WZH + Pajy=nPar|y=p). Following the similar argument in Lemma

L(X L
Ep [()} - / / (Papy=pPary=n + Pojy=nPary=p) A0 gt
2 rzeX Jr'eX 4
L
= / (Px\Y:p + Px\Y:n) %) dz
reX

and

L(z'
= //GX (Px’\Y:n + P;c’\Y:p) % da’

[

2

prove the lemma. O

Proof of Lemma
Corollary 30. Assume mp # 1/2. For SD learning, the classification risk can be rewritten as
R(g) = Eg [(s] +Ep, [¢5],

where

- s Tn
T

Tp — Tn

ls = 2mym (— ™ g, +—"P £n>. (101)

Tp — Tn Tp — Tn

Proof. By Table (7l Msp is reduced from Myy. Thus, replacing {Uy, Us} with {S,f)}, and assigning ~v; =
2
ﬁ and v, = 1/2, we obtain the corrected losses |D by plugging the assigned values into 1@' Note

that 7, # 1/2 implies that the 71 and v assignments are feasible. Then, repeating the steps in (89)), we
have the corollary. O
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Proof of Lemma [31]

Lemma 31. Given B (@) and following the SD learning notations, we have

M. B = <P§> - p
SD - PD — 4,

where

Ml e w2472 w2472
SP [, .P da’ f. .7 da’
2 eXx z/|Y=n o eX z/|Y=p
2 2

Proof. Since [, 5 Pujy—pda’ = 1 and [, , Pujy—ndz’ = 1, we have Mg, = Msp and hence M, B =

Ps

MspB =
D

) . The last equality follows from Lemma H O

Proof of Lemma
Lemma 32. Assume the formulation P = Mgcons B @ is given. Suppose a vector of corrected losses LT
of the form (Zl(x) 172(37)) is independent of x’. Then, we have

/ LTPds' = LT Mgeont P, (103)
' eX

where

2 2 2 2
TEPyt1o—Ta Pyt TPl in—To Pyt
o7z lp " Ta "z In 1.1 f 0 In " T x! |p 1.0
~ [y A [, e ede
lMSconf =
2 2 2 2

™ Pm’ n— T Pz’ / 7\' Pw’ _ﬂnPw’ n /

fw, de fw, %dx

Tp—T Tp—T

Proof. of Lemma We replace P using P = Mgeont B . Since L is independent of 2/, we can move
the integral over z’ into Mgcont to obtain

2 2
o/ In) (72Pot =T Pt ) P ‘
—T = - r—1mn r—Tn X|p
/ L'Pdd = / L' , , , , da’
' eX x’ Tn (ﬂppz’\n_wppqu) Tn (ﬂppx/\p_ﬂtxpz’\n) PX‘II

Tp—T Tp—T
2 2 2 2
f prqu_ﬂnpa:/\n dx/ f Trn’Pac/\n_ﬂ-n'Pz/\p dxl P
iT x’ r—Tn x’ T—Tn ’/TP X|p
- 2 2 2 2 .
I TP in =T Pt p 0t [ T Perip =™ Porin g0 | \TnPxn
x’! Tp—1T z’ Tp—T

TpPx
Since m,Px|p = Px,y=p and m,Px |y = Px y=n, ( : lp) = P. Furthermore, comparing the equality in

WnPX |n
the above derivation with (103]), we have

2 2 2 2
TPt 1o—Ta Pyt TEPotin—Ta Pyt
p’ z|p n’ a/|n !/ n’"a/|n n' 2'|p !
fw, L= =t dr fl_, -y

M r—Ty r—Ty
Sconf = 2 2 2 5
wppml‘nprpm/lp ’ prm/lpfﬂan/‘n ’
fz’ Tp—T da fx’ Tp—T dz
that completes the proof. O
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Proof of Lemma 33
Lemma 33. Let
T—Tn 0

MT Tp—Tn

Sconf Tp—T

Tp—Tn
Then,
Yl Y _
MsconfMSConf =1

Proof. We prove the lemma by examining each entry of Ml Mseont. The value of (1,1) entry is

Sconf
2 2
T — Tn T ,Pz’p_ﬂnpz’n 1
o e = [ Pupds’ =k | Peuds’
Tp — T S r— T Tp — Tn
2 2
_ Tp "M _
Tp — Tn

The (2,2) entry has value

2 2
T —T 75 Parip = TaPa'ln 1 ’ /
= ! ] | dz’ = 71'3 Py pdz’ — 7r121 Pyrjnde
Tp — Tn Jgr Tp — T Tp — Tn 2 2/
2 2
- 7Tp — Ty _
Tp — Tn

The (1,2) entry is zero since [, (7r Porjn — 2P, /|p) dz’ = 0. Similarly, since [, (71'57330/‘“ — Wng/‘p) dz’ =0,
the (2,1) entry is also zero. O

D.2 Omitted Proofs in Section [5.2

Proof of Corollary 38|

Corollary 38. The decontamination matriz M;CPL for PCPL equals ME,PL. If we define the corrected
losses as LT := LTMPT,CPL, the classification risk for PCPL learning can be rewritten as

R(9) =Es,x [¢s],

where

_ Py_,;
ls=> = 4y, (110)

Proof. The proof follows the standard argument: First, find out Mlichv then construct the corrected losses
to rewrite the risk.

Since Mpcpy, is reduced from Mppy,, we can exploit Lemma Note that the only difference C(S, X)
between the formulations of PCPL and PPL cancels itself out in the derivation of Py_;s—s, x (please refer

to the proof of Lemma |36 for a detailed derivation), the (¢, j) entry of M;CPL coincides with that of MPT,PL
for all 7 and j, proving the first assertion.

Since MFT,PL and ME,CPL are identical, LTM%L,PL = LTMI];CPL gives 1}

_ Py 1\XH =1€s ]
ls=s, = (L7 M, = §j Ly
S=s; ( PCPL)], Zaes ,PY al X Y

Py—i|x
S T P
acs; Y:a‘X

€5,
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Being identical to MPPL also means that MPCPL is derived from M 2CON- Thus, we can continue to
rewrite the risk by repeating the proof of Corollary [37}

S|

R(g):/ LTde—/ ZPS sy alsms,dv = Eg x [ls] .
TeX

O
Proof of Lemma
Lemma 39. Let (s,s") be a pair of partial-labels satisfying s = Y\s'. Then,
Py —ijxly =i
Pses,xlss + Ps—y xls—s = Ps— 5XZ%
Proof. Given Mpcpr, , we apply P = Mpcpr, B to obtain
P Y IY =k € Py BX
S=s",X — oK—1 _ 1
We also have
fou = Yics Py—ijxty=i
- Zaes’ 7)Yv:tll)(
according to (110]). Since
SR LIY =k €8] Pyop.x _ Py = SE LY =k €8] Pyop.x
Eaés’ ,PY:a\X Zaes PY:a|X ’
Pow xlsey — 2521 I[Y =k € 8| Py—i,x Dics Py=ijxly=i
=5, =s 2K71 -1 ZaES’ PY:a|X
_ 25:1 IY =k € 8] Py=k x Dics Py=ilxly=i
2K-1—1 Y acs Py—alx
Thus,
/ 7 ZkK—1 LY =k € 8] Py—kx D ics Py=ijxfy=i
PS:S, éS’:s + PS:S/, ES:S/ - — - st
x X 2K-1 ] Zaes PY:a|X
+ZkK:1 I[Y =k € 8] Py—k,x Dicy Pr=ilxly=i
2K=1 1 ZaEs PY:“|X
Zieg PY:i\XgY:i + Zies’ PY:i\XgY:i
= PS:S,X
> acs Py—alx
5 Py_ixly=
= PS 5,X : :
Z “ > aes Py=a|x
proves the lemma. U
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Proof of Corollary [40]

Corollary 40. The (i,j) entry of the decontamination matriz MK/ICL is of the form

b Py—ixI[Y =i ¢ 5]
Y=i|S=5;,X Za¢§j PY:a\X

. (111)

Define the corrected losses LT := LTMI]\L/ICL. Then, for MCL learning, the classification risk can be rewritten
as

where

_ Py_;
=Y Xy (112)

Proof. The proof follows the standard strategy in Section We will first find out MK/ICL, and then construct
the corrected losses L to rewrite the risk.

Based on the notion in , we denote the (j,7) entry of Mycr, as

PScisil ity — i ¢ 5] = 0, LY =i ¢ 5] = Pos 1y,
(K—l) J 7 J S=5;|Y=i,X"

551

(128)

Expressing Mycr, via 1| allows us to apply the argument for 1' to show that the (i, 7) entry of MJACL
is of the form Py _; g_5, x- Specifically, assigning (M), ; in as Pg_s,|y—;,x and applying marginal chain
(i.e., Proposition , we obtain
S| .
(itinr), = 3 (k).
i=1 ’

M=

(Micr), i, Pr

%

x>
—

S|
= E PY:i\S’:gj,XE PS:§_7|Y:k,XPY=k,X
j=1 k=1

= Py=ix =P

=

Then, we follow the same argument in Lemma to calculate PY:i‘ S—5,,X subject to li Note that
Psjy,x = C(S, X)I[Y ¢ S] in (128) implies

E PS‘,Y:HX = E P§|Y=b,X7DY:bIX
besS beS

= > CS XY =b¢ S| Pyoyx
besS
= 0.
Thus, Pgjx =2 4e5 Psy=s/x + 2a¢s Psy=alx = 2oa¢s Ps,y—a/x- The fact further implies

Psyix Psy,x Py|x

S|x Ea¢§ p§|Y:a,XPY:a|X
C(S, X)L[Y ¢ S] Py x
> ags C(S, XY =a ¢S] Py_yx
Pyix1[Y ¢ 5]
g5 Py=alx
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Therefore, for Y =i and S = 5;, we achieve

b :Pyzi\XH[Y:i¢§j]
Y=i|S=5;,X Zaeﬁj 'Pyza\X

that proves (111)).

With MJ/ICL in hand, we repeat the same argument in Corollary ﬁ to obtain

ZPY z|X]I Zigégj]

ls . — (LTMT ) - Oy
5=5; MCL ), Za¢9 Py—ax Y
Py—ix
= == {ly=;
i¢5; Zai% Py =alx
and
_ T _ Tast
R(g) = / L de_/ LT Mo MyicL P dz
reX rzeX
|S|

- / ETﬁdxz/ ZPS 5, ol5=s,dx = Eg x (5]
zeX

to complete the risk rewrite of MCL.

D.3 Omitted Proofs in Section 5.3

Proof of Corollary [47|

Corollary 47. For SC-Conf learning, the classification risk can be written as
K

R(g) = 7y, Ex|y—y, [Z Tri(()()g) 51'] .

i=1"Ys

Proof. The corollary follows from notation substitution and the same argument for Theorem [46] Specifically,

we replace Mgy with Mgc, Vs with ys, and Py —iix ¢; with ;DY X g

Py evs|x Y =ys| X

Proof of Corollary 48|

Corollary 48. For Pconf learning, the classification risk can be written as

R(g) = mpFp [ep ; 1‘(5%} .

Proof. Since

Py — Py —
o 0 Py 0
t _ =p =p _
MpconfMPconf - - 17
O 73Y:p\X O pY:n\X
Py =n|x Py=p|x

we define LT := LT M}

Pcon

¢ and apply to rewrite the risk as follows

o Py
o - [ e [ wmee [ (o ) (3
reX rcX TEX PY:I)’X
1—r(X
= Pr=pExy=p [zp + (X(,))én]
1-r(X)
= WPEP |:€p + T()()fn] .
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Proof of Corollary [49]

Corollary 49. For soft-label learning, the classification risk can be written as

K K
ZPY:HX& ZTi(X)Ei} .

i=1 i—1

R(g) =Ex =Ex

Proof. Defining LT := LT Mgoft and recalling P in |) we apply 1' to obtain
o K
R(g) = / LT Pdx :/ LT Pdzx :/ > Py_ixli- Pxdx
reX reX reX

i=1
K
IEX lz Py_i|X£i‘| .

=1
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