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Abstract

Among the flourishing research of weakly supervised learning (WSL), we recognize the lack
of a unified interpretation of the mechanism behind the weakly supervised scenarios, let
alone a systematic treatment of the risk rewrite problem, a crucial step in the empirical
risk minimization approach. In this paper, we introduce a framework providing a compre-
hensive understanding and a unified methodology for WSL. The formulation component of
the framework, leveraging a contamination perspective, provides a unified interpretation of
how weak supervision is formed and subsumes fifteen existing WSL settings. The induced
reduction graphs offer comprehensive connections over WSLs. The analysis component of
the framework, viewed as a decontamination process, provides a systematic method of con-
ducting risk rewrite. In addition to the conventional inverse matrix approach, we devise
a novel strategy called marginal chain aiming to decontaminate distributions. We justify
the feasibility of the proposed framework by recovering existing rewrites reported in the
literature.

1 Introduction

Accurate labels allow one to generalize to unseen data via empirical risk minimization (ERM) and analyze
the generalization error in terms of the classification risk. In practice, there are various situations in which
acquiring accurate labels is hard or even impossible. One obstacle preventing us from acquiring accurate
labels is labeling restrictions, such as imperfect supervision due to imperceptibility, time constraints, anno-
tation costs, and even data sensitivity. Another obstacle is the disruption by unavoidable noise from the
environment.

To address the first obstacle of restrictions, various formulations have been studied under the notion of weakly
supervised learning (WSL) (Zhou, 2018; Sugiyama et al., 2022). Based on various types of available label
information, it evolves to thriving topics, including the conventional settings (Lu et al., 2019; 2020; 2021;
Elkan & Noto, 2008; du Plessis et al., 2014; 2015; Niu et al., 2016; Kiryo et al., 2017; Sansone et al., 2019)
that investigating the potential of unlabeled data, complementary-label learning (Ishida et al., 2017; 2019;
Yu et al., 2018; Feng et al., 2020a; Katsura & Uchida, 2020; Chou et al., 2020), partial-label learning (Cour
et al., 2011; Wang et al., 2019; Lv et al., 2020; Feng et al., 2020b; Wu et al., 2023), learning with confidence
information (Ishida et al., 2018; Cao et al., 2021a;b; Berthon et al., 2021; Ishida et al., 2023), and learning
with comparative information (Bao et al., 2018; Shimada et al., 2021; Feng et al., 2021; Cao et al., 2021b).
Developing to resolve the second obstacle of noise, learning with noisy labels (LNL) can be categorized into
two major formulations; one is called mutually contaminated distributions (MCD) (Scott et al., 2013; Menon
et al., 2015; Katz-Samuels et al., 2019) in which class-conditional distributions contaminate each other, and
the other is named class-conditional random label noise (CCN) (Natarajan et al., 2013; 2017) where a label
is flipped by random noise.

Despite fruitful results and tremendous impact, we recognize a lack of global understanding and systematic
treatment of WSL. From the perspective of formulation, there are only scattered links among WSLs. Lu
et al. (2019) and Feng et al. (2021) showed that parameter substitution could reduce unlabeled-unlabeled to
similar-unlabeled and positive-unlabeled settings. Figure 1 in Wu et al. (2023) showed relationships among
four WSLs of partial- and complementary-labels. A similar observation can be found in the intersection of
WSLs and LNLs. Several WSLs were shown to be special cases of the MCD model, and some other WSLs
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are special cases of the CCN model. For details, please refer to the discussions in Sections 8.2.3 and 9.2.4
of Sugiyama et al. (2022). These connections encourage us to consider the possibility that there exists a
unique interpretation that explains the mechanism behind WSL. Luckily, from the methodological viewpoint,
most of the existing WSL research adopted certain forms of the ERM approach. A crucial shared step is
to perform the risk rewrite, a way of rephrasing the uncomputable risk to a computable one in terms of
the data-generating distributions. A successful rewrite is the starting point of many downstream tasks,
including but not limited to the following: Devising a practical or robust objective for training, comparing
the strengths and properties of loss functions, proving the consistency, and analyzing generalization error
bounds. However, many rewrite forms (summarized in Tables 4 and 5) look independent as if they are tailored
to fit each problem’s unique form of supervision and are not adaptable to each other. These seemingly non-
adaptable estimators post a practical challenge: When facing a new form of weak (or noisy) supervision, we
do not have a guideline or general strategy to leverage developed methods to address the new situation.

These observations raise the following questions we aim to answer in this paper: What is the essence of
WSL? From a formulation perspective, can a unique interpretation be found to explain the mechanism
behind WSL? Does a methodology exist to address as many WSLs as possible?

This paper proposes a framework with the following contributions to answer the research questions.

1. To the best of our knowledge, the framework is the first systematic attempt to address how and
why WSLs are connected. The framework consists of a formulation component and an analysis
component, subsuming fifteen weakly supervised scenarios. Table 10 summarizes results generated
from our framework.

2. The formulation component, modeling from a contamination perspective, provides WSL data gen-
eration processes with a coherent interpretation. It produces three reduction graphs, shown in
Tables 7, 8, and 9, revealing comprehensive connections between WSL formulations. It also un-
veils a distinctive confidence-based type WSLs that do not belong to the prominent MCD or CCN
categories.

3. The analysis component, leveraging the decontamination concept, establishes a generic methodology
for conducting risk rewrites for all WSLs discussed in this paper. The methodology also discovers
the underlying mechanism that forms seemingly different risk rewrites.

4. Regarding the technical contributions, a combined advantage of our framework and Theorem 1
from Wu et al. (2023) distinguishes two approaches, the inversion approach and the marginal chain
approach presented by Theorems 1 and 2, to carry out the decontamination concept. The discovery
of the marginal chain injects a brand-new thought to realize decontamination.

5. We provide alternative proofs to demonstrate how the risk rewrites derived from our framework
recover existing results reported in the literature. These alternatives have their respective logic
stemming from the proposed framework.

The idea of decontamination has been widely implemented and investigated. There are two major approaches,
loss correction, and label correction, in LNL. Closest to the current paper, Cid-Sueiro (2012), van Rooyen &
Williamson (2017), Katz-Samuels et al. (2019), Patrini et al. (2017), and van Rooyen & Williamson (2015)
exploited the inverse matrix, sometimes known as the backward method (Patrini et al., 2017), to construct
a corrected training loss to obtain an unbiased estimator. There were deep learning methods leveraging the
contamination assumption, sometimes called the forward method (Patrini et al., 2017), to train a classifier
(Patrini et al., 2017; Yu et al., 2018; Sukhbaatar & Fergus, 2015; Goldberger & Ben-Reuven, 2017; Berthon
et al., 2021). Besides modifying the loss function, one has two other strategies to manipulate the corrupted
labels. The (iterative) pseudo-label method modified the labels for training (Ma et al., 2018; Tanaka et al.,
2018; Reed et al., 2015). Filtering clean data points for training is the other option (Northcutt et al., 2017;
2021; Jiang et al., 2018; Han et al., 2018; Yu et al., 2019). Apart from classification, a different research
branch studies conditions and methods for recovering the base distributions (Katz-Samuels et al., 2019;
Blanchard & Scott, 2014; Blanchard et al., 2016).
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The current work is close to the loss correction approach in LNL. Most previous loss correction methods
exploited invertibility to construct the corrected losses. In contrast, the marginal chain approach we propose
in this paper adopts the conditional probability formula to build the corrected losses. Many of the existing
work targeted either the MCD or the CCN models. Scott & Zhang (2020), Berthon et al. (2021), Patrini
et al. (2017), Goldberger & Ben-Reuven (2017), Sukhbaatar & Fergus (2015), Yu et al. (2018), Natarajan
et al. (2013), Natarajan et al. (2017), Northcutt et al. (2017), and Northcutt et al. (2021) were based on
the CCN model, and Katz-Samuels et al. (2019), Blanchard & Scott (2014), and Blanchard et al. (2016)
were based on the MCD model. Menon et al. (2015), van Rooyen & Williamson (2017), and Katz-Samuels
et al. (2019) studied multiple noise models at the same time. However, the current paper investigates the
connections between MCD, CCN, and confidence-based settings simultaneously through the lens of matrix
decontamination as broadly as possible to identify a generic methodology for WSLs. Different from the
current paper aiming for risk minimization, research also studied various performance measures, such as the
balanced error rate (Scott & Zhang, 2020; 2019; Menon et al., 2015; du Plessis et al., 2013), the area under
the receiver operating characteristic curve (Charoenphakdee et al., 2019; Sakai et al., 2018; Menon et al.,
2015), and cost-sensitive measures (Charoenphakdee et al., 2021; Natarajan et al., 2017). We choose the
classification risk as the only measure due to the focus of this paper.

The remaining sections are organized as follows. Section 2 reviews ERM in supervised learning, the risk
rewrite problem, and the existing results. Section 3 presents the proposed framework. We show that the
proposed framework provides a unified way to formulate diverse weakly supervised scenarios in Section 4.
Section 5 demonstrates how to instantiate the framework to conduct risk rewrite. Finally, we conclude the
paper and discuss outlooks in Section 6.

2 Preliminaries

Let (y, x) be a data example where the instance x ∈ X and the label y ∈ Y. For binary classification, the
label space Y is {p, n}, and for multiclass classification with K classes, Y = {1, 2, . . . , K} := [K]. The joint
distribution is P (Y, X), the class prior is P (Y ), the class-conditional distribution is P (X|Y ), and the class
probability function is P (Y |X). Given a space of hypotheses G, we denote the loss of a hypothesis g ∈ G
on predicting y of (y, x) as ℓY =y(g(x)). To accommodate concise expressions and readability for all WSLs
considered in this paper simultaneously, we use alias notations when the context is unambiguous. Table 1
provides a set of common notations used in this paper.

Table 1: Alias of Common Notations.

Name of the notation Expression Aliases
Binary classes {p, n}
Multiple classes {1, . . . , K} [K]
Compound set of [K] 2[K]\ {∅, [K]} S
Joint distribution P (Y = y, X = x) PY =y,x, PY =y,X , or PY,X

Hypothesis and its space g ∈ G
Loss of g ℓY =y(g(x)) ℓy, ℓy(X), or ℓY (g(X))
Classification risk EY,X [ℓY (g(X))] R(g)
The j-th entry of vector V (V )j Vj

Class prior P (Y = y) πy

Marginal P (X) PX

Class-conditional P (X = x|Y = y) PX|Y , PX|Y =y, or Px|Y =y

Confidence P (Y = y|X = x) ry(X), ry(x), or r(X) if y = p
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We use (y, x) instead of the convention (x, y) to represent a data example because, in the current paper, we
focus on discussing different types of supervision. Placing the label before the instance emphasizes the type
of supervision under investigation in theorems and derivations.

2.1 Supervised Learning and the ERM Method

In supervised learning with K classes, the observed data is of the form

{xy
i }ny

i=1
i.i.d.∼ PX|Y =y, ∀y ∈ [K].

Notation xy
i denotes the shorthand of (y, xi). The goal of learning is to find a classifier g ∈ G that minimizes

the classification risk

R(g) := EY,X [ℓY (g(X))] =
K∑

y=1

∫
x∈X

PY =y,x ℓY =y(g(x)) dx. (1)

To find such a classifier, ERM first constructs an empirical risk estimator with the data in hand:

R̂(g) =
K∑

y=1

1
ny

ny∑
i=1

πyℓY =y(g(xy
i )). (2)

The estimator approximates R(g) consistently since it can be shown that (2) approaches (1) as N → ∞
(Tewari & Bartlett, 2014; Kiryo et al., 2017) and (Sugiyama et al., 2022, Chapter 3). Then, ERM takes R̂(g)
as the training objective and optimizes it to find the optimal classifier

g∗ = arg min
g∈G

R̂(g) (3)

in the hypothesis space G as the output of ERM.

2.2 The Risk Rewrite Problem and Existing Results

Sections 2.2.1 to 2.2.17 review the learning scenarios including WSLs, MCD, and CCN that will be discussed
in this paper. A knowledgeable reader may refer directly to summary Tables 2 through 6 and proceed to
Section 3.

In every WSL scenario, the goal of learning is the same as supervised learning. However, the observed data is
no longer as perfectly labeled as in supervised learning. That said, there are differences in the formulations of
the observed data and the ways of estimating the classification risk. We begin with reviewing WSLs derived
from binary classes. For K = 2, we denote Y := {p, n}.

2.2.1 Positive-Unlabeled (PU) learning

The observed data in PU learning (du Plessis et al., 2015) is of the form

{xp
i }np

i=1
i.i.d.∼ PP := PX|Y =p,{

xu
j

}nu

j=1
i.i.d.∼ PU := πp PX|Y =p + πn PX|Y =n,

(4)

where xu
j is viewed as the shorthand of (u, xj) symbolizing the unlabeled data1. The unlabeled data set

{xu
j }j consists of a mixture of samples from PX|Y =p and PX|Y =n with proportion πp. Since the information

of negatively sampled data is unavailable, (2) is uncomputable, causing directly optimizing (3) infeasibility.
Therefore, to make ERM applicable, the risk rewrite problem (Sugiyama et al., 2022) asks:

Can one rephrase the classification risk R(g) (1) in terms of the given data formulation?
1Seemingly being redundant, but it is helpful to use (u, xj) to distinguish it from the positively labeled instance (p, xi).
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du Plessis et al. (2015) rewrote the classification risk in terms of the data-generating distributions PP and
PU as

R(g) = EP [πpℓp − πpℓn] + EU [ℓn] . (5)

2.2.2 Positive-confidence (Pconf) Learning Learning

The observed data in Pconf learning (Ishida et al., 2018) is of the form

{xi, r(xi)}n
i=1 ,

where

xi
i.i.d.∼ PP := PX|Y =p,

r(xi) := PY =p|X=xi
.

(6)

The function r(x) represents how confident an example x would be positively labeled. Ishida et al. (2018)
rewrote the classification risk as

R(g) = πpEP

[
ℓp + 1 − r(X)

r(X) ℓn

]
. (7)

2.2.3 Unlabeled-Unlabeled (UU) learning

The observed data in UU learning (Lu et al., 2019) is of the form

{xu1
i }nu1

i=1
i.i.d.∼ PU1 := (1 − γ1) PX|Y =p + γ1 PX|Y =n,{

xu2
j

}nu2
j=1

i.i.d.∼ PU2 := γ2 PX|Y =p + (1 − γ2) PX|Y =n,
(8)

where xu1
i (resp. xu2

j ) being the shorthand of (u1, xi) (resp. (u2, xj)) represents xi (resp. xj) belonging to the
unlabeled data whose mixture parameter is γ1 (resp. γ2). Notice a difference that the mixture proportion
of the unlabeled data in PU learning is πp. Lu et al. (2019) rewrote the classification risk in terms of the
data-generating distributions PU1 and PU2 as follows: Assume γ1 + γ2 ̸= 1. Then,

R(g) = EU1

[
(1 − γ2)πp

1 − γ1 − γ2
ℓp + −γ2πn

1 − γ1 − γ2
ℓn

]
+ EU2

[
−γ1πp

1 − γ1 − γ2
ℓp + (1 − γ1)πn

1 − γ1 − γ2
ℓn

]
. (9)

2.2.4 Similar-Unlabeled (SU) learning

The observed data in SU learning (Bao et al., 2018) is of the form{(
xs

i , xs′

i

)}ns

i=1

i.i.d.∼ PS :=
π2

pPX|Y =pPX′|Y =p + π2
nPX|Y =nPX′|Y =n

π2
p + π2

n
,{

xu
j

}nu

j=1
i.i.d.∼ PU := πp PX|Y =p + πn PX|Y =n.

(10)

The word “similar” means the examples in every (xs, xs′) pair have the same label; either both are positive,
or both are negative. Under the assumption πp ̸= πn, Bao et al. (2018) rewrote the classification risk as

R(g) =
(
π2

p + π2
n
)
ES

[
L(X) + L(X ′)

2

]
+ EU [L−(X)] , (11)

where

L(X) := 1
πp − πn

ℓp(X) − 1
πp − πn

ℓn(X),

L−(X) := − πn

πp − πn
ℓp(X) + πp

πp − πn
ℓn(X).
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2.2.5 Dissimilar-Unlabeled (DU) learning

The observed data in DU learning (Shimada et al., 2021) is of the form{(
xd

i , xd′

i

)}nd

i=1

i.i.d.∼ PD :=
PX|Y =pPX′|Y =n + PX|Y =nPX′|Y =p

2 ,{
xu

j

}nu

j=1
i.i.d.∼ PU := πp PX|Y =p + πn PX|Y =n.

(12)

The word “dissimilar” means the examples in every (xd, xd′) pair have distinct labels. Under the assumption
πp ̸= πn, Shimada et al. (2021) rewrote the classification risk as

R(g) = 2πpπnED

[
−L(X) + L(X ′)

2

]
+ EU [L+(X)] , (13)

where

L(X) = 1
πp − πn

ℓp(X) − 1
πp − πn

ℓn(X),

L+(X) := πp

πp − πn
ℓp(X) − πn

πp − πn
ℓn(X).

Note that L(X) has been defined in the SU setting. We repeat it here for clarity.

2.2.6 Similar-Dissimilar (SD) learning

The observed data in SD learning (Shimada et al., 2021) is of the form{(
xs

i , xs′

i

)}ns

i=1

i.i.d.∼ PS :=
π2

pPX|Y =pPX′|Y =p + π2
nPX|Y =nPX′|Y =n

π2
p + π2

n
,{(

xd
i , xd′

i

)}nd

i=1

i.i.d.∼ PD :=
PX|Y =pPX′|Y =n + PX|Y =nPX′|Y =p

2 .

(14)

Under the assumption πp ̸= πn, Shimada et al. (2021) rewrote the classification risk as

R(g) =
(
π2

p + π2
n
)
ES

[
L+(X) + L+(X ′)

2

]
+ 2πpπnED

[
L−(X) + L−(X ′)

2

]
, (15)

where

L+(X) = πp

πp − πn
ℓp(X) − πn

πp − πn
ℓn(X),

L−(X) = − πn

πp − πn
ℓp(X) + πp

πp − πn
ℓn(X).

Note that L+(X) and L−(X) have been defined in the DU and SU settings. We repeat them here for clarity.

2.2.7 Pairwise Comparison (Pcomp) Learning

The observed data in Pcomp learning (Feng et al., 2021) is of the form{(
xpc

i , xpc′

i

)}npc

i=1

i.i.d.∼ PPC :=
π2

pPX|Y =pPX′|Y =p + πpπnPX|Y =pPX′|Y =n + π2
nPX|Y =nPX′|Y =n

π2
p + πpπn + π2

n
.

(16)

The pairwise comparison encodes a meaning that each xpc “can not be more negative” than xpc′ in the
(xpc, xpc′) pair. That is, the labels in (xpc, xpc′) are of the form (p, p), (p, n), or (n, n). Feng et al. (2021)
rewrote the classification risk as

R(g) = ESup [ℓp − πpℓn] + EInf [−πnℓp + ℓn] , (17)
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where the expectations are computed over the following distributions

PSup :=
∫

x′∈X
PPC dx′,

PInf :=
∫

x∈X
PPC dx.

2.2.8 Similarity-Confidence Learning (Sconf) Learning

The observed data in Sconf learning (Cao et al., 2021b) is of the form{
xsc

i , xsc′

i , r
(

xsc
i , xsc′

i

)}n

i=1
,

where

xsc
i

i.i.d.∼ PX := πp PX|Y =p + πn PX|Y =n,

xsc′

i
i.i.d.∼ PX′ := πp PX′|Y =p + πn PX′|Y =n,

r
(

xsc
i , xsc′

i

)
:= PY =ysc

i
=Y ′=ysc′

i
|X=xsc

i
,X′=xsc′

i
.

(18)

Cao et al. (2021b) rewrote the classification risk as

R(g) = EX,X′

[
r(X, X ′) − πn

πp − πn
Lp(X, X ′) + πp − r(X, X ′)

πp − πn
Ln(X, X ′)

]
, (19)

where

Lp(X, X ′) := ℓp(X) + ℓp(X ′)
2 ,

Ln(X, X ′) := ℓn(X) + ℓn(X ′)
2 .

2.2.9 Complementary-Label (CL) Learning

One can also formulate weak supervision from multiclass classification. For K classes, we denote Y := [K].

The observed data in CL learning (Ishida et al., 2019) is of the form

{(s̄i, xi)}n
i=1

i.i.d.∼ PS̄,X := 1
K − 1

∑
Y ̸=S̄

PY,X . (20)

As is named “complementary,” s̄ ∈ [K] represents that the true label y of x cannot be s̄. Ishida et al. (2019)
rewrote the classification risk as

R(g) = ES̄,X

[
K∑

y=1
ℓy − (K − 1)ℓS̄

]
. (21)

2.2.10 Multi-Complementary-Label (MCL) Learning

The observed data in MCL learning (Feng et al., 2020a) is of the form

{(s̄i, xi)}n
i=1

i.i.d.∼ PS̄,X :=


∑K−1

d=1 P|S̄|=d · 1
(K−1

|S̄| )
∑

Y /∈S̄ PY,X , if |S̄| = d,

0, otherwise.
(22)

Generalized from CL, s̄ ⊂ [K] in MCL is a set of classes of size d ∈ [K − 1], representing multiple exclusions.
In other words, CL is the special case of MCL with d = 1. Feng et al. (2020a) rewrote the classification risk
as

R(g) =
K−1∑
d=1

P|S̄|=dES̄,X||S̄|=d

∑
y /∈S̄

ℓy − K − 1 − |S̄|
|S̄|

∑
s̄∈S̄

ℓs̄

 . (23)
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2.2.11 Provably Consistent Partial-Label (PCPL) Learning

The observed data in PCPL learning (Feng et al., 2020b) is of the form

{(si, xi)}n
i=1

i.i.d.∼ PS,X := 1
2K−1 − 1

∑
Y ∈S

PY,X . (24)

A partial-label s ⊂ [K] is a set of classes containing the true label y of x. Feng et al. (2020b) rewrote the
classification risk as

R(g) = 1
2ES,X

[
K∑

y=1

PY =y|X∑
a∈S PY =a|X

ℓy

]
. (25)

2.2.12 Proper Partial-Label (PPL) Learning

The observed data in PPL learning (Wu et al., 2023) is of the form

{(si, xi)}n
i=1

i.i.d.∼ PS,X := C(S, X)
∑
Y ∈S

PY,X . (26)

The weight 1
2K−1−1 in PCPL is generalized to C(S, X), a function of the partial-label and the instance,

allowing one to characterize the “properness” of a partial-label. Wu et al. (2023) rewrote the classification
risk as

R(g) = ES,X

∑
y∈S

PY =y|X∑
a∈S PY =a|X

ℓy

 . (27)

2.2.13 Single-Class Confidence (SC-Conf) Learning

The observed data in SC-Conf learning (Cao et al., 2021a) is of the form

{xi, r1(xi), . . . , rK(xi)}n
i=1 ,

where

xi
i.i.d.∼ PX|Y =ys with ys ∈ [K],

rk(xi) := PY =k|X=xi
for each k ∈ [K].

(28)

The constraint of SC-Conf is that the examples are sampled from a specific class ys. The key to risk rewrite is
the availability of confident information rk(x) about each class. Cao et al. (2021a) rewrote the classification
risk as

R(g) = πysEX|Y =ys

[
K∑

y=1

ry(X)
rys(X)ℓy

]
. (29)

2.2.14 Subset Confidence (Sub-Conf) Learning

The observed data in Sub-Conf learning (Cao et al., 2021a) is of the form

{xi, r1(xi), . . . , rK(xi)}n
i=1 ,

where

xi
i.i.d.∼ PX|Y ∈Ys with Ys ⊂ [K],

rk(xi) := PY =k|X=xi
for each k ∈ [K].

(30)

8
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Sub-Conf is a relaxed setting of SC-Conf where the samples come from a set of classes Ys. Cao et al. (2021a)
rewrote the classification risk as

R(g) = πYsEX|Y ∈Ys

[
K∑

y=1

ry(X)
rYs(X)ℓy

]
, (31)

where πYs :=
∑

j∈Ys
πj , and rYs(X) := PY ∈Ys|X =

∑
j∈Ys

PY =j|X .

2.2.15 Soft-Label Learning

Ishida et al. (2023) formulated soft-label learning under the binary setting, in which the observed data is of
the form

{xi, r(xi)}n
i=1 ,

where

xi
i.i.d.∼ PX := PY =p,X + PY =n,X ,

r(xi) := PY =p|X=xi
.

(32)

It is straightforward to obtain a corresponding formulation under the multiclass setting:

{xi, r1(xi), . . . , rK(xi)}n
i=1 ,

where

xi
i.i.d.∼ PX :=

K∑
k=1

PY =k,X ,

rk(xi) := PY =k|X=xi
for each k ∈ [K].

(33)

The difference between SC-Conf and multiclass soft-label (resp. the difference between Pconf and binary
soft-label) is the sample distribution of x. We rewrote the classification risk as

R(g) = EX

[
K∑

y=1
ry(X)ℓy

]
. (34)

2.2.16 Summary of Existing WSL Formulations and Risk Rewrites

We summarize the weakly supervised scenarios discussed and their risk rewrite results. The formulations are
divided into the binary classification settings in Table 2 and the multiclass classification settings in Table 3.
We list the formulations in chronological order, according to their publication order. Tables 4 and 5 are the
corresponding rewrites.

9
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Table 2: Binary WSL formulations.

WSL Formulation Equation

PU
{xp

i }np
i=1

i.i.d.∼ PP := PX|Y =p,

{xu
j }nu

j=1
i.i.d.∼ PU := πp PX|Y =p + πn PX|Y =n.

(4)

Pconf
{xi, r(xi)}n

i=1 , where

xi
i.i.d.∼ PP := PX|Y =p,

r(xi) := PY =p|X=xi
.

(6)

UU
{xu1

i }nu1
i=1

i.i.d.∼ PU1 := (1 − γ1) PX|Y =p + γ1 PX|Y =n,

{xu2
j }nu2

j=1
i.i.d.∼ PU2 := γ2 PX|Y =p + (1 − γ2) PX|Y =n.

(8)

SU

{(
xs

i , xs′

i

)}ns

i=1

i.i.d.∼ PS :=
π2

pPX|Y =pPX′|Y =p + π2
nPX|Y =nPX′|Y =n

π2
p + π2

n
,{

xu
j

}nu

j=1
i.i.d.∼ PU := πp PX|Y =p + πn PX|Y =n.

(10)

DU

{(
xd

i , xd′

i

)}nd

i=1

i.i.d.∼ PD :=
PX|Y =pPX′|Y =n + PX|Y =nPX′|Y =p

2 ,{
xu

j

}nu

j=1
i.i.d.∼ PU := πp PX|Y =p + πn PX|Y =n.

(12)

SD

{(
xs

i , xs′

i

)}ns

i=1

i.i.d.∼ PS :=
π2

pPX|Y =pPX′|Y =p + π2
nPX|Y =nPX′|Y =n

π2
p + π2

n
,{(

xd
i , xd′

i

)}nd

i=1

i.i.d.∼ PD :=
PX|Y =pPX′|Y =n + PX|Y =nPX′|Y =p

2 .

(14)

Pcomp

{(
xpc

i , xpc′

i

)}npc

i=1

i.i.d.∼ PPC

:=
π2

pPX|Y =pPX′|Y =p + πpπnPX|Y =pPX′|Y =n + π2
nPX|Y =nPX′|Y =n

π2
p + πpπn + π2

n
.

(16)

Sconf

{
xsc

i , xsc′

i , r
(

xsc
i , xsc′

i

)}nsc

i=1
, where

xsc
i

i.i.d.∼ PX := πp PX|Y =p + πn PX|Y =n,

xsc′

i
i.i.d.∼ PX′ := πp PX′|Y =p + πn PX′|Y =n,

r
(

xsc
i , xsc′

i

)
:= PY =ysc

i
=Y ′=ysc′

i
|X=xsc

i
,X′=xsc′

i
.

(18)

10
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Table 3: Multiclass WSL formulations.

WSL Formulation Equation

CL {(s̄i, xi)}n
i=1

i.i.d.∼ PS̄,X := 1
K − 1

∑
Y ̸=S̄

PY,X . (20)

MCL {(s̄i, xi)}n
i=1

i.i.d.∼ PS̄,X :=


∑K−1

d=1 P|S̄|=d · 1
(K−1

|S̄| )
∑

Y /∈S̄ PY,X , if |S̄| = d,

0, otherwise.
(22)

PCPL {(si, xi)}n
i=1

i.i.d.∼ PS,X := 1
2K−1 − 1

∑
Y ∈S

PY,X . (24)

PPL {(si, xi)}n
i=1

i.i.d.∼ PS,X := C(S, X)
∑
Y ∈S

PY,X . (26)

SC-Conf
{xi, r1(xi), . . . , rK(xi)}n

i=1 , where

xi
i.i.d.∼ PX|Y =ys with ys ∈ [K],

rk(xi) := PY =k|X=xi
for each k ∈ [K].

(28)

Sub-Conf
{xi, r1(xi), . . . , rK(xi)}n

i=1 , where

xi
i.i.d.∼ PX|Y ∈Ys with Ys ⊂ [K],

rk(xi) := PY =k|X=xi
for each k ∈ [K].

(30)

Soft-label
{xi, r1(xi), . . . , rK(xi)}n

i=1 , where

xi
i.i.d.∼ PX ,

rk(xi) := PY =k|X=xi
for each k ∈ [K].

(33)

11
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Table 4: Risk rewrites for binary WSLs.

WSL Risk rewrite for R(g) = EY,X [ℓY (g(X))] (1) Equation

PU R(g) = EP [πpℓp − πpℓn] + EU [ℓn] . (5)

Pconf R(g) = πpEP

[
ℓp + 1 − r(X)

r(X) ℓn

]
. (7)

UU R(g) = EU1

[
(1 − γ2)πp

1 − γ1 − γ2
ℓp + −γ2πn

1 − γ1 − γ2
ℓn

]
+ EU2

[
−γ1πp

1 − γ1 − γ2
ℓp + (1 − γ1)πn

1 − γ1 − γ2
ℓn

]
. (9)

SU

R(g) =
(
π2

p + π2
n
)
ES

[
L(X) + L(X ′)

2

]
+ EU [L−(X)] , where

L(X) := 1
πp − πn

ℓp(X) − 1
πp − πn

ℓn(X),

L−(X) := − πn

πp − πn
ℓp(X) + πp

πp − πn
ℓn(X).

(11)

DU

R(g) = 2πpπnED

[
−L(X) + L(X ′)

2

]
+ EU [L+(X)] , where

L(X) is defined in the SU setting, and

L+(X) := πp

πp − πn
ℓp(X) − πn

πp − πn
ℓn(X).

(13)

SD
R(g) =

(
π2

p + π2
n
)
ES

[
L+(X) + L+(X ′)

2

]
+ 2πpπnED

[
L−(X) + L−(X ′)

2

]
, where

L+(X) and L−(X ′) are defined in the SU and DU settings.
(15)

Pcomp

R(g) = ESup [ℓp − πpℓn] + EInf [−πnℓp + ℓn] , where

PSup :=
∫

x′∈X
PPC dx′,

PInf :=
∫

x∈X
PPC dx.

(17)

Sconf R(g) = EX,X′

[
r(X, X ′) − πn

πp − πn

ℓp(X) + ℓp(X ′)
2 + πp − r(X, X ′)

πp − πn

ℓn(X) + ℓn(X ′)
2

]
. (19)

12
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Table 5: Risk rewrites for multiclass WSLs.

WSL Risk rewrite for R(g) = EY,X [ℓY (g(X))] (1) Equation

CL R(g) = ES̄,X

[
K∑

y=1
ℓy − (K − 1)ℓS̄

]
. (21)

MCL R(g) =
K−1∑
d=1

P|S̄|=d ES̄,X||S̄|=d

∑
y /∈S̄

ℓy − K − 1 − |S̄|
|S̄|

∑
s̄∈S̄

ℓs̄

 . (23)

PCPL R(g) = 1
2ES,X

[
K∑

y=1

PY =y|X∑
a∈S PY =a|X

ℓy

]
. (25)

PPL R(g) = ES,X

∑
y∈S

PY =y|X∑
a∈S PY =a|X

ℓy

 . (27)

SC-Conf R(g) = πysEX|Y =ys

[
K∑

y=1

ry(X)
rys(X)ℓy

]
. (29)

Sub-Conf R(g) = πYsEX|Y ∈Ys

[
K∑

y=1

ry(X)
rYs(X)ℓy

]
. (31)

Soft-label R(g) = EX

[
K∑

y=1
ry(X)ℓy

]
. (34)

From the above tables, finding a way to reexpress the classification risk R(g) (1) in terms of the data-
generating distributions becomes the crux when applying ERM for most WSL studies. The rewrites also
replace loss functions ℓY defining (1) with various modified losses (shown inside the expectations). These
modified loss functions are sometimes called corrected losses, which is why the approach is also called loss
correction. Proposing a generic methodology that finds properly corrected losses to achieve risk rewrite in
different scenarios is a main topic we would like to elaborate on in this paper.

2.2.17 Learning with Noisy Labels (LNL) Formulations

Next, we review two related formulations in LNL, the MCD and CCN settings, in Table 6. The observed
instances in MCD and CCN are still labeled by {p, n} but are polluted by certain noise models. We use
Ȳ to represent a polluted label, compared to an unpolluted Y . In MCD, a small portion of the negatively
labeled data γpPX|Y =n contaminates the positively labeled data PX|Y =p. Likewise, a small portion of the
positive data γnPX|Y =p contaminates the negatively labeled data PX|Y =n (Scott et al., 2013). In the CCN
setting, a label Y is flipped to become Ȳ with probability PȲ |Y,X (Natarajan et al., 2013). Although they
are formulated for the study of noisy labels, their formulations share similar structures with many WSLs
above. In Section 4, we will use the similarities to categorize WSLs and provide a bird’s eye view to reveal
connections among WSLs.

13
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Table 6: MCD and CCN formulations.

Scenario Formulation

MCD
{

xp̄
i

}np̄

i=1
i.i.d.∼ PX|Ȳ =p := (1 − γp) PX|Y =p + γp PX|Y =n.{

xn̄
j

}nn̄

j=1
i.i.d.∼ PX|Ȳ =n := γn PX|Y =p + (1 − γn) PX|Y =n.

CCN {(ȳi, xi)}n
i=1

i.i.d.∼ PȲ =ȳi,X :=
∑

k∈{p,n}

PȲ =ȳi|Y =k,XPY =k,X , ∀ȳi ∈ {p, n}.

3 A Framework for Risk Rewrite

We illustrate the proposed framework in this section. Its job is to provide a unified treatment and understand-
ing of WSL. It consists of a formulation component and an analysis component. The analysis component
suggests a generic methodology to solve the risk rewrite problem. Moreover, diving into the formulation
component’s logic, we can interpret multiple WSL formulations and the diverse risk rewrites from a single
perspective.

3.1 The Formulation Component of the Framework

The construction of the formulation component is to study the connections among WSLs and provide a
foundation for developing the generic methodology. We draw inspiration from Section 2.2. Each WSL
formulation represents a type of weaken information of the joint distribution PY,X in supervised learning.
For instance, unlabeled data discards the label information (Lu et al., 2020; 2021), the complementary-label
is a label that cannot be the ground truth (Ishida et al., 2017; Yu et al., 2018), and the similarity encodes
a comparative relationship of two ground truth labels (Bao et al., 2018; Shimada et al., 2021; Cao et al.,
2021b). Thus, we are motivated to search for a general way to link data-generating distributions with the
joint distribution.

Denote the data-generating distributions in a vector form P̄ . Suppose there are basic elements in defining
P̄ and relevant to the labeling distributions. We express them in a vector form B and call them the base
distributions2. To connect P̄ and B, we assume a matrix Mcorr formalizes the connection:

P̄ = McorrB. (35)

Taking PU learning (4) for example, Mcorr aims to connect P̄ =
( PP

PU

)
with B =

(
PX|Y =p
PX|Y =n

)
. To keep the

framework as abstract as possible, we would like to defer the definitions of all other P̄ and B until we realize
their corresponding Mcorr in Section 4.

The matrix formulation has two advantages. First, it provides a unified way to characterize a wide range of
WSL settings. By studying the entries of a matrix, we can easily link one WSL scenario to another to form
reduction graphs of WSLs. As the first main topic of this work, Section 4 shows, for a given WSL setting,
how to find the corresponding matrix Mcorr, and Tables 7 – 9 summarize fifteen WSL settings covered by
our matrix formulation and depict a reduction graph rooted from Mcorr. The following subsection illustrates
the second advantage of aiding the construction of a generic methodology for conducting risk rewrite.

3.2 The Analysis Component of the Framework

Formulation (35) serves as a stepping stone toward constructing the corrected losses needed for risk rewrite.
Denote P as the vector of risk-defining distributions whose k-th entry is PY =k,x and L as the loss vector
whose k-th entry is ℓY =k(g(x)). Then, the conventional expression of R(g) in (1) can be simplified, by the

2We reserve P , B, and P̄ for vectors of distributions and L and L̄ for vectors of loss functions. We address them as “the
distributions” and “the losses” to avoid the verbose “the vector of distributions/losses.”
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inner product, to be
∫

x∈X L⊤Pdx. It is immediate to rewrite the risk under data-generating distributions P̄

distinct from P if one shows L⊤P = L̄⊤P̄ , where L̄ is called the vector of corrected losses and its role will
be clarified later. Therefore, it is imperative to obtain the connection between P̄ and P .

The bridge of connection between P and P̄ are the base distributions B we assumed in the previous sub-
section. We have shown its connection to P̄ via P̄ = McorrB. Here, we connect B with P by assuming
a transform matrix Mtrsf satisfies B = MtrsfP , which embodies its labeling-relevant nature. Thus, (35)
becomes

P̄ = McorrMtrsfP. (36)

The reason for having Mtrsf is that people can choose different base distributions to formulate observed data
and define various performance measures, and Mtrsf provides flexibility to transform between them.

The reason why connecting P with P̄ (36) helps the construction of the corrected losses is that if we manage
to find a way to compensate for the combined effect of Mcorr and Mtrsf , we can implement the compensation
mechanism on the “corrected” losses L̄. Specifically, suppose there exists a matrix M†

corr satisfying

P = M†
corrP̄. (37)

Then, the corrected losses defined by

L̄⊤ := L⊤M†
corr (38)

allows us to rephrase the classification risk as∫
x∈X

L̄⊤P̄ dx =
∫

x∈X
L⊤M†

corrP̄ dx

=
∫

x∈X
L⊤P dx = R(g), (39)

providing a rewrite for R(g) with respect to P̄ .

The above procedure describes a generic methodology for the risk rewrite problem. As the second main topic,
we instantiate the framework by presenting the corresponding matrices M†

corr and Mtrsf for each learning
scenario in Section 5 to demonstrate its applicability.

3.3 Intuition of the Framework

The key equations discussed in Sections 3.1 and 3.2 are

P̄
(35)= McorrB

(36)= McorrMtrsfP,

L̄⊤P̄
(38)= L⊤M†

corrMcorrMtrsfP
(37)= L⊤P.

The logic behind them is succinct and interpretive. First, from a formulation perspective, viewing matrix
Mcorr as a contamination matrix that corrupts the base B to become the contaminated P̄ (35), we inter-
pret this contamination mechanism as sacrificing certain information in exchange for certain saved costs or
privacy, reflecting the essence underlying WSL formulations. In addition to formulating the data-generating
mechanism, the link between B and the risk-defining distributions P (36) connects P̄ and P to motivate the
methodology design. This novel viewpoint of connecting the data distributions via the explicit two-stage
formulation facilitates the unification work in this paper.

Second, regarding the methodological design, it becomes easier to devise a countermeasure when the con-
nection between P̄ and P is in good shape. The design of L̄⊤ = L⊤M†

corr involves M†
corr, which captures

a common idea behind risk rewrite: Restoration of the risk-defining distributions and the original loss
functions is accomplished by the decontamination (37) provided by L̄. Furthermore, the instantiations of
L̄⊤ = L⊤M†

corr (38) justify that the apparently different forms of corrected losses reported in the literature
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(i.e., referred papers that contribute to Tables 4 and 5, and those referred to as recoveries in Section 5)
essentially stem from M†

corr. In summary, the proposed framework is abstract and flexible enough that we
use it in the current paper to formulate the contamination mechanisms and provide a generic methodology
for a wide range of WSLs.

3.4 Building Blocks: The Inversion and the Marginal Chain Approaches

We describe two building blocks, the inversion method and the marginal chain method, that will be used to
devise M†

corr that satisfies (37) in each scenario we study later.
Proposition 1 (The inversion method). Let P and P̄ be vectors. Suppose P̄ = MP holds for an invertible
matrix M . Then, choosing M†

corr = M−1, we have P = M†
corrP̄ .

Proof. For any invertible M , it is easy to see that, by assigning M†
corr = M−1, one has

M†
corrP̄ = M−1P̄ = M−1MP = P.

We remark that this simple strategy was adopted in many LNL works. A handful of related papers are
Cid-Sueiro (2012), Blanchard & Scott (2014), Menon et al. (2015), van Rooyen & Williamson (2015), Patrini
et al. (2017), van Rooyen & Williamson (2017), and Katz-Samuels et al. (2019). Hence, it can be applied to
WSLs that are special cases of certain LNL scenarios.
Proposition 2 (The marginal chain method). Let Y = k ∈ [K] be a class label, where [K] is the set of
classes associated with the classification risk. Let S = {s1, s2, . . . , s|S|} ⊆ 2[K] be the set of class sets and S
be the random variable of the observational outcome. Denote

P =


PY =1,X

...
PY =K,X

 and P̄ =


PS=s1,X

...
PS=s|S|,X

 .

Then,

M =


PS=s1|Y =1,X PS=s1|Y =2,X · · · PS=s1|Y =K,X

PS=s2|Y =1,X PS=s2|Y =2,X · · · PS=s2|Y =K,X

...
...

. . .
...

PS=s|S||Y =1,X PS=s|S||Y =2,X · · · PS=s|S||Y =K,X

 (40)

satisfies P̄ = MP , and

M†
corr =


PY =1|S=s1,X PY =1|S=s2,X · · · PY =1|S=s|S|,X

PY =2|S=s1,X PY =2|S=s2,X · · · PY =2|S=s|S|,X

...
...

. . .
...

PY =K|S=s1,X PY =K|S=s2,X · · · PY =K|S=s|S|,X

 (41)

satisfies P = M†
corrP̄ .

The role of S is to represent a weak supervision that encodes some combinatorial information about the
unobservable true label Y . We will discuss this concept in detail in Sections 4.2 and 5.2.
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Proof. It suffices to show
(

MP
)

j
= P̄j for any j ∈ [|S|]. Taking the inner product of the j-th row of M and

P , we have

K∑
k=1

PS=sj |Y =k,XPY =k,X =
K∑

k=1
PS=sj ,Y =k,X = PS=sj ,X

that verifies (40).

Next, we prove P = M†
corrP̄ by showing

(
M†

corrP̄
)

i
= Pi. For each i ∈ [K],

(
M†

corrP̄
)

i
=
(

M†
corrMP

)
i

=
|S|∑
j=1

PY =i|S=sj ,X

K∑
k=1

PS=sj |Y =k,XPY =k,X

(a)=
|S|∑
j=1

PY =i|S=sj ,XPS=sj ,X

(b)= PY =i,X = Pi. (42)

Besides finding the inverse matrix, we propose a new approach called the marginal chain to achieve (37).
The development of this approach begins with the observation that PS=sj ,X in P̄ = MP is a distribution
where Y is marginalized out. It inspires an idea that one could perform another marginalization to restore
the original distribution PY,X ; specifically, by marginalizing out S. The design of M†

corr in (41) aims to carry
out the idea. As shown by (a) and (b) in the proof, two consecutive marginalization steps on Y and then S
give the name of the marginal chain.

Both the inversion and marginal chain methods have strengths and weaknesses. The inversion method
only requires P as a real vector but needs the invertible assumption on the contamination matrix M . In
contrast, the marginal chain method exploits that P , in fact, is a distributional vector, allowing it to find a
decontamination matrix M†

corr even for a non-invertible M . A restriction of the marginal chain method is
that the construction of M†

corr is regulated by probability equations.

We are ready to justify the proposed framework through the following two sections. Section 4 discusses
weakly supervised scenarios that can be subsumed by the formulation component (35). Section 5 verifies the
analysis component by instantiating (38) to conduct the risk rewrite for each scenario mentioned in Section 4.
In both sections, we divide the scenarios into three categories. The first two are WSLs that can be viewed
as special cases in either the prevalent MCD or CCN settings. The third category contains confidence-based
scenarios. The notations listed in Table 1 will still be functional. For all notations and their abbreviations
required in the coming sections, please refer to Appendix A.

4 Contamination as Weak Supervision

In this section, we instantiate the contamination matrix for each weakly supervised scenario listed in Table 2
and Table 3. Tables 7 – 9 summarize the contamination matrices developed in this section. Each table also
represents a reduction graph of WSL settings. These reduction graphs cluster WSL settings into three main
categories, providing a hierarchy of relationships. With this hierarchy, we can understand, compare with,
and relate to different settings or even grow the hierarchy by adding new branches. Next are the notations
for reading the graphs. For two contamination mechanisms, U and V, we use MU → MV to denote “MU is
reduced to MV” or “MU is realized as MV”, and MU ⇝MV means “MU is generalized to MV”.

The proposed framework provides a generic strategy for formulating multiple weakly supervised scenarios.
Thus, the proofs will have a certain degree of similarity. To avoid repeating similar proofs, we provide proofs
that appear for the first time. For auxiliary lemmas and results whose proofs are similar to the previous
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ones, we refer to the omitted proofs in Appendix B. In particular, the omitted proofs in Section 4.1 can be
found in Appendix B.1, and those in Section 4.2 can be found in Appendix B.2.

Table 7: Contamination matrices of MCD category in Section 4.1.

WSLs Entry Parameter Contamination Matrix Reduction path
MCD γp, γn MMCD (45) Mcorr → MMCD

UU γ1, γ2 MUU (49) Mcorr → MUU ≈ MMCD

PU γ1 = 0, γ2 = πp MPU (50) MUU → MPU

SU γ1 = π2
n

π2
p+π2

n
, γ2 = πp MSU (51) MUU → MSU

Pcomp γ1 = π2
n

πp+π2
n
, γ2 = π2

p
π2

p+πn
MPcomp (52) MUU → MPcomp

DU γ1 = 1/2, γ2 = πp MDU (53) MUU → MDU

SD γ1 = π2
n

π2
p+π2

n
, γ2 = 1/2 MSD (54) MUU → MSD

Sconf – MSconf (55) Mcorr → MSconf

Table 8: Contamination matrices of CCN category in Section 4.2.

WSLs Entry Parameter Contamination Matrix Reduction path
CCN PȲ |Y,X (59) MCCN (60) Mcorr → MCCN

Generalized CCN PS|Y,X (61) MgCCN (64) Mcorr → MCCN ⇝MgCCN

PPL C(S, X)I [Y ∈ S] (65) MPPL (66) MgCCN → MPPL

PCPL 1
2K−1−1 I [Y ∈ S] MPCPL (68) MgCCN → MPPL → MPCPL

MCL q|S̄|

(K−1
|S̄| ) I

[
Y /∈ S̄

]
(75) MMCL (71) MgCCN → MPPL → MMCL

CL |S| = 1, 1
K−1 I [Y ∈ S] MCL (76) MgCCN → MPPL → MMCL

→ MCL

Table 9: Contamination matrices of confidence-based category in Section 4.3.

WSLs Entry Parameter Contamination Matrix Reduction path

Sub-Conf PY ∈Ys|X

PY =k|X
MSub (80) Mcorr → MSub

SC Ys = {ys} in MSub MSC (81) MSub → MSC

Pconf K = 2, ys = p in MSC MPconf (82) MSub → MSC → MPconf

Soft 1
PY =k|X

MSoft (84) MSub → MSoft

18



Under review as submission to TMLR

4.1 MCD Scenarios

As listed in Table 6, in binary classification, the MCD model (Menon et al., 2015) corrupts the clean class-
conditionals PX|Y =p and PX|Y =n via parameters γp and γn as follows:

PX|Ȳ =p := (1 − γp) PX|Y =p + γp PX|Y =n,

PX|Ȳ =n := γn PX|Y =p + (1 − γn) PX|Y =n,
(43)

where γp, γn ∈ [0, 1] and γp + γn < 1. Viewing the contamination targets PX|Y =p and PX|Y =n as the base
distributions

B :=
(

PX|Y =p

PX|Y =n

)

and denoting the vector of data-generating distributions as

P̄ :=

PX|Ȳ =p

PX|Ȳ =n

 ,

we can express (43) in the following matrix formPX|Ȳ =p

PX|Ȳ =n

 =
(

1 − γp γp

γn 1 − γn

)(
PX|Y =p

PX|Y =n

)
. (44)

Comparing (44) with P̄ = McorrB (35), we find that the contamination matrix Mcorr is realized as

MMCD :=
(

1 − γp γp

γn 1 − γn

)
(45)

in the MCD setting.

4.1.1 Unlabeled-Unlabeled (UU) Learning (Lu et al., 2019)

Next, we show how to characterize UU learning by a contamination matrix. Naming

πp PX|Y =p + πn PX|Y =n

as PU is feasible since πp PX|Y =p +πn PX|Y =n = PX generates data that statistically equals to data sampled
from PY,X with labels removed. Viewing πp as the mixture rate of samples from PX|Y =p and PX|Y =n, PU
is parameterized by πp. Therefore, we can interpret (8), recalled as follows, as formulating two unlabeled
data distributions w.r.t. mixture rates (1 − γ1) and γ2, respectively:

PU1 = (1 − γ1) PX|Y =p + γ1 PX|Y =n,

PU2 = γ2 PX|Y =p + (1 − γ2) PX|Y =n.

Taking the class-conditionals as the base distributions

B :=
(

PX|Y =p

PX|Y =n

)
(46)

and converting (8) to the matrix form, we express the data-generating distributions of UU learning

P̄ :=
(

PU1

PU2

)
(47)
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as (
PU1

PU2

)
=
(

1 − γ1 γ1

γ2 1 − γ2

)(
PX|Y =p

PX|Y =n

)
, (48)

and we arrive at the following lemma.
Lemma 3. Let B (46) be the base distributions and P̄ (47) be the data-generating distributions. For
γ1, γ2 ∈ [0, 1] such that γ1 + γ2 ̸= 1, the contamination matrix

MUU :=
(

1 − γ1 γ1

γ2 1 − γ2

)
(49)

characterizes the data-generating process of UU learning (8) via (48).

Comparing (48) with the formulation framework P̄ = McorrB (35), we see that in UU learning, Mcorr is
realized as MUU:

Mcorr → MUU.

Like MCD, we assume γ1 + γ2 ̸= 1. Our assumption is equivalent to that of MCD since the case of swapping
Pcorr and Qcorr in Menon et al. (2015) corresponds to γ1 + γ2 > 1 in our case. For details, refer to the
discussion in Section 2.2 of Menon et al. (2015). The need for γ1 +γ2 ̸= 1 can be explained by examining the
entries in MUU. The constraint γ1 + γ2 ̸= 1 guarantees distinct rows in MUU, implying the observed data
sets are sampled from two distinct distributions. On the contrary, allowing γ1 + γ2 = 1 ends up observing
one unlabeled data set (i.e., PU1 = PU2) since 1 − γ1 = γ2. Lu et al. (2019) proved in Section 3 that it is
impossible to conduct a risk rewrite if one only observes one unlabeled data set.

Assigning γ1 = γp and γ2 = γn implies that MCD and UU have essentially the same data-generating
process from the contamination perspective, as (44) and (48) have the identical right-hand sides (i.e., the
same contamination targets and the same contamination matrix). However, they bear different meanings in
respective research topics (i.e., distinct notions on the left-hand sides of the equations): In MCD, one still
observes data with labels, nonetheless noisy, while in the UU setting, one observes two distinct unlabeled
data sets. We use “≈” to denote their relation in the UU row of Table 7.

Connecting UU learning with MCD, and later the generalized CCN with CCN in Section 4.2.1, allows us
to categorize WSLs from the LNL perspective into Sections 4.1 and 4.2. In the rest of this subsection, we
collect WSLs whose base distributions are class-conditionals and show MUU instantiates their formulations
via respective assignments of γ1 and γ2.

4.1.2 Positive-Unlabeled (PU) Learning (Kiryo et al., 2017)

Recall from (4) that PP = PX|Y =p and PU = PX . The following lemma describes the contamination matrix
of PU learning.
Lemma 4. Let B (46) be the base distributions and

P̄ :=
(

PP

PU

)

be the data-generating distributions. Define the contamination matrix

MPU :=
(

1 0
πp πn

)
. (50)

Then, P̄ = MPUB, and MPU characterizes the data-generating process of PU learning (4).
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Proof. We apply the same proof strategy as in Lemma 3. By definitions,

MPUB =
(

1 0
πp πn

)(
PX|Y =p

PX|Y =n

)
=
(

1 · PX|Y =p + 0 · PX|Y =n

πp · PX|Y =p + πn · PX|Y =n

)
.

Since 1 · PX|Y =p + 0 · PX|Y =n = PX|Y =p and πp · PX|Y =p + πn · PX|Y =n = PX , we obtain MPUB = P̄ .

Comparing with (35), we see that the contamination matrix Mcorr is instantiated as MPU (50) in PU learning.
Further, MPU can be obtained by assigning γ1 = 0 and γ2 = πp in MUU (49), and hence, we obtain the
reduction path

Mcorr → MUU → MPU.

4.1.3 Similar-Unlabeled (SU) Learning (Bao et al., 2018)

Recall PS (10) generates the pair of data points (x, x′) who share the same label. In addition to the pairwise
distribution PS, a pointwise distribution

PS̃ =
π2

pPX|Y =p + π2
nPX|Y =p

π2
p + π2

n

is also defined for single data point x (Bao et al., 2018, Lemma 1). Therefore, we choose PS̃ as the data-
generating distribution when constructing the contamination matrix in the following lemma.
Lemma 5. Let B (46) be the base distributions and

P̄ :=
(

PS̃

PU

)
.

Then, the contamination matrix

MSU :=

 π2
p

π2
p+π2

n

π2
n

π2
p+π2

n

πp πn

 , (51)

which satisfies P̄ = MSUB, characterizes the data-generating distributions P̄ .

Further, MSU can be obtained by assigning γ1 = π2
n

π2
p+π2

n
and γ2 = πp in MUU (49), and hence, we obtain the

reduction path

Mcorr → MUU → MSU.

4.1.4 Pairwise Comparison (Pcomp) Learning (Feng et al., 2021)

In SU learning, we formulate the pointwise data-generating distributions PS̃ and PU; likewise, we use the
following pointwise distributions of PPC (16) to formulate Pcomp learning:

PSup :=
∫

x′∈X
PPC dx′ =

πpPX|Y =p + π2
nPX|Y =n

πp + π2
n

,

PInf :=
∫

x∈X
PPC dx =

π2
pPX′|Y =p + πnPX′|Y =n

π2
p + πn

.
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Lemma 6. Let B (46) be the base distributions and

P̄ :=
(

PSup

PInf

)
.

Then, the contamination matrix

MPcomp :=


πp

πp+π2
n

π2
n

πp+π2
n

π2
p

π2
p+πn

πn
π2

p+πn

 , (52)

which satisfies P̄ = MPcompB, characterizes the data-generating distributions P̄ .

Further, MPcomp can be obtained by assigning γ1 = π2
n

πp+π2
n

and γ2 = π2
p

π2
p+πn

in MUU (49), and hence, we
obtain the reduction path

Mcorr → MUU → MPcomp.

4.1.5 Similar-dissimilar-unlabeled (SDU) Learning (Shimada et al., 2021)

Dissimilar-unlabeled (DU) learning and similar-dissimilar (SD) learning are two critical components of SDU
learning. Hence, we present the matrix formulations of MDU and MSD. Similar to the strategy taken in
Sections 4.1.3 and 4.1.4, we use the following pointwise distribution

PD̃ =
∫

x′
PD dx′ =

Px|Y =p + Px|Y =n

2

(Shimada et al., 2021, (36) in Appendix A.1) in the following formulations.

We formulate the contamination matrix of DU learning via the following lemma.
Lemma 7. Let B (46) be the base distributions and

P̄ =
(

PD̃

PU

)
.

Then, the contamination matrix

MDU =
(

1/2 1/2
πp πn

)
, (53)

which satisfies P̄ = MDUB, characterizes the data-generating distributions P̄ .

Furthermore, since MUU (49) reduces to MDU by assigning γ1 = 1/2 and γ2 = πp, we have the reduction
path

Mcorr → MUU → MDU.

The next lemma formulates the contamination matrix of SD learning.
Lemma 8. Let B (46) be the base distributions and

P̄ =
(

PS̃

PD̃

)
.
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Then, the contamination matrix

MSD =

 π2
p

π2
p+π2

n

π2
n

π2
p+π2

n

1/2 1/2

 (54)

which satisfies P̄ = MSDB, characterizes the data-generating distributions P̄ .

Moreover, because MUU (49) reduces to MSD via γ1 = π2
n

π2
p+π2

n
and γ2 = 1/2, we obtain the reduction path

Mcorr → MUU → MSD.

4.1.6 Similarity-Confidence (Sconf) Learning (Cao et al., 2021b)

Recall from the Sconf setting (18) that (x, x′) is a pair of data sampled i.i.d. from PX,X′ := PXPX′ .
On seeing PX , one might wonder if it is sufficient to express the data-generating distribution simply as
PX = PY =p,X + PY =n,X . This approach, however correct, does not consider all available information in the
Sconf setting. Similar to MUU that uses parameters γ1 and γ2 to characterize the data-generating process in
UU learning, we use the following lemma that includes the confidence r(x, x′) := Py=y′|x,x′ to characterize
Sconf learning. Let us abbreviate r(X, X ′) as r, PX|Y =p as PX|p, and PX′|Y =n as PX′|n.
Lemma 9. Assume πp ̸= 1/2. Let B (46) be the base distributions and

P̄ :=
(

PXPX′

PXPX′

)
.

Then, the contamination matrix

MSconf :=


πp(π2

pPX′|p−π2
nPX′|n)

r−πn

πp(π2
nPX′|n−π2

nPX′|p)
r−πn

πn(π2
pPX′|n−π2

pPX′|p)
πp−r

πn(π2
pPX′|p−π2

nPX′|n)
πp−r

 (55)

which satisfies P̄ = MSconfB, characterizes the data-generating distributions P̄ .

Proof. Note that once(
r − πn

πp

)
PXPX′ =

(
π2

pPX′|p − π2
nPX′|n

)
PX|p +

(
π2

nPX′|n − π2
nPX′|p

)
PX|n (56)

and (
πp − r

πn

)
PXPX′ =

(
π2

pPX′|n − π2
pPX′|p

)
PX|p +

(
π2

pPX′|p − π2
nPX′|n

)
PX|n, (57)

is obtained, reorganizing the terms gives

(
PXPX′

PXPX′

)
=


πp(π2

pPX′|p−π2
nPX′|n)

r−πn

πp(π2
nPX′|n−π2

nPX′|p)
r−πn

πn(π2
pPX′|n−π2

pPX′|p)
πp−r

πn(π2
pPX′|p−π2

nPX′|n)
πp−r


(

PX|p

PX|n

)
(58)

and finishes the proof.

Therefore, we will focus on proving (56) and (57). According to (2) of Cao et al. (2021b), the confidence
r(X, X ′), measuring how likely X and X ′ share the same label, is shown to be

r = r(X, X ′) =
π2

pPX|pPX′|p + π2
nPX|nPX′|n

PXPX′
.
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It implies

rPXPX′ = π2
pPX|pPX′|p + π2

nPX|nPX′|n

and

(1 − r)PXPX′ = πpπn
(
PX|pPX′|n + PX|nPX′|p

)
.

If πp ̸= 1/2, πp − r ̸= 0 and r − πn ̸= 0. As a result, (56) is achieved as follows(
r − πn

πp

)
PXPX′ =

(
r − πn

πp
(1 − r)

)
PXPX′

= π2
pPX|pPX′|p + π2

nPX|nPX′|n − πn

πp
πpπn

(
PX|pPX′|n + PX|nPX′|p

)
= π2

pPX|pPX′|p − π2
nPX|pPX′|n + π2

nPX|nPX′|n − π2
nPX|nPX′|p.

Also, (57) is achieved by having(
πp − r

πn

)
PXPX′ =

(
πp

πn
(1 − r) − r

)
PXPX′

= πp

πn
πpπn

(
PX|pPX′|n + PX|nPX′|p

)
− π2

pPX|pPX′|p − π2
nPX|nPX′|n

= π2
pPX|pPX′|n − π2

pPX|pPX′|p + π2
pPX|nPX′|p − π2

nPX|nPX′|n.

The equality (58) implies that the inner product of the first row (resp. the second row) of MSconf and B
represents a way (resp. another way) of obtaining PXPX′ . Although one might suspect that it is redundant
to formulate PXPX′ twice, we show in Section 5.1.6 this expression is crucial to rewrite the classification
risk via the proposed framework. Furthermore, comparing P̄ = MSconfB (58) with P̄ = McorrB (35), we
have the reduction path

Mcorr → MSconf .

Note that MSconf does not fit the intuition of mutual contamination perfectly; we list Sconf learning in this
subsection as all settings share the same base distributions B (46).

4.2 CCN Scenarios

The formulation component (35) also applies to the CCN model. Unlike MCD contaminating class-
conditionals (distributions of X), CCN corrupts class probability functions (labeling distributions). Next, we
show how to formulate CCN via (35) and extend the formulation to characterize diverse weakly supervised
settings.

In binary classification, CCN (Natarajan et al., 2013; 2017) corrupts the labels by flipping the positive (resp.
negative) labels with probability PȲ =n|Y =p,X (resp. PȲ =p|Y =n,X). Specifically,

PȲ =p|X := PȲ =p|Y =p,X PY =p|X + PȲ =p|Y =n,X PY =n|X ,

PȲ =n|X := PȲ =n|Y =p,X PY =p|X + PȲ =n|Y =n,X PY =n|X
(59)

define the contaminated class probability functions. Taking the contamination targets PY =p|X and PY =n|X
as the base distributions

B :=
(

PY =p|X

PY =n|X

)
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and denoting the label-generating distributions PȲ =p|X and PȲ =n|X as

P̄ :=

PȲ =p|X

PȲ =n|X

 ,

we express (59) in the matrix form as followsPȲ =p|X

PȲ =n|X

 =

PȲ =p|Y =p,X PȲ =p|Y =n,X

PȲ =n|Y =p,X PȲ =n|Y =n,X

(PY =p|X

PY =n|X

)
.

Comparing with the abstract form P̄ = McorrB (35), we see that

MCCN :=

PȲ =p|Y =p,X PȲ =p|Y =n,X

PȲ =n|Y =p,X PȲ =n|Y =n,X

 (60)

instantiates the contamination matrix Mcorr in the CCN setting.

4.2.1 Generalized CCN

The concept of contaminating a single label can be extended to generating a compound label in the multiclass
classification setting. Let 2Y be the power set of the label space Y = [K]. Define S := 2Y\ {∅, Y} as the
observable space of compound labels 3. Since a compound label S ∈ S consists of an arbitrary number
of class indices, one can view the probability of observing S for a given X is governed by several class
probabilities PY =k|X . Therefore, generalizing the CCN formulation (59), we define the label-generating
process of a compound label S as

PS|X =
K∑

k=1
PS|Y =k,XPY =k|X ,

where the role of PS|Y,X is the probability of converting a single label Y to a compound label S ∈ S.
Moreover, in CCN, the distribution PX is not contaminated. Thus, by multiplying PX on both sides, we
obtain the data-generating distribution

PS,X =
K∑

k=1
PS|Y =k,XPY =k,X , (61)

Viewing PS|Y,X as a contamination probability, we arrange PS=s|Y =k,X into a matrix in the following lemma
to formulate the contamination matrix for our generalized CCN (gCCN) setting.
Lemma 10. Let the elements in S be

{
s1, s2, . . . s|S|

}
. For the gCCN setting, denote the data-generating

distributions as

P̄ :=


PS=s1,X

...
PS=s|S|,X

 (62)

and the base distributions as

B :=


PY =1,X

...
PY =K,X

 = P. (63)

3Removing ∅ and Y is that the empty set does not contain any label information and Y is a trivial case.
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Define

MgCCN :=


PS=s1|Y =1,X PS=s1|Y =2,X · · · PS=s1|Y =K,X

PS=s2|Y =1,X PS=s2|Y =2,X · · · PS=s2|Y =K,X

...
...

. . .
...

PS=s|S||Y =1,X PS=s|S||Y =2,X · · · PS=s|S||Y =K,X

 . (64)

Then, P̄ = MgCCNB.

The lemma implies that MgCCN is the contamination matrix characterizing P̄ of the gCCN setting. Also,
note that P̄ = MgCCNB is essentially the matrix form of (61). Moreover, MgCCN generalizes MCCN (60) by
extending the label spaces: Both the clean label Y and the contaminated label Ȳ belong to {p, n} in CCN,
while in the gCCN setting, the clean label Y ∈ {1, · · · , K} and the compound label S ∈ {s1, · · · , s|S|}.

Proof. For each j ∈ [|S|], we have

(
MgCCNB

)
j

=
K∑

k=1
PS=sj |Y =k,XPY =k,X =

K∑
k=1

PS=sj ,Y =k,X = PS=sj ,X = P̄j .

Comparing P̄ = MgCCNB with the formulation framework P̄ = McorrB (35), we have the reduction path

Mcorr → MCCN ⇝MgCCN.

Similar to MUU (49), which induces multiple contamination matrices as special cases of the MCD model,
MgCCN also derives several contamination matrices formulating partial- or complementary-label settings, as
we will show in the rest of this subsection.

4.2.2 Proper Partial-Label (PPL) Learning (Wu et al., 2023)

For a given example (y, x) and a compound label s ∈ S, we call s a partial-label of x if y ∈ s. Statisti-
cally speaking, we assume PY ∈S|S,X = 1. Formally, according to Definition 1 of Wu et al. (2023), if the
contamination probability can be defined as

PS|Y,X := C(S, X)I [Y ∈ S] , (65)

via a function C : S × X → R, we call such a partial-label scenario proper.

Since the discussion above only involves specifying PS|Y,X , we replace the entries of MgCCN (64) according
to (65) to construct MPPL:

C(s1, X)I [Y = 1 ∈ s1] C(s1, X)I [Y = 2 ∈ s1] · · · C(s1, X)I [Y = K ∈ s1]
C(s2, X)I [Y = 1 ∈ s2] C(s2, X)I [Y = 2 ∈ s2] · · · C(s2, X)I [Y = K ∈ s2]

...
...

. . .
...

C(s|S|, X)I
[
Y = 1 ∈ s|S|

]
C(s|S|, X)I

[
Y = 2 ∈ s|S|

]
· · · C(s|S|, X)I

[
Y = K ∈ s|S|

]

 . (66)

The following lemma justifies MPPL as the contamination matrix for PPL learning.
Lemma 11. Let the elements in S be

{
s1, s2, . . . s|S|

}
. For each j ∈ [|S|], let the j-th entry of P̄ be

P̄j = PS=sj ,X := C(S = sj , X)
∑
k∈sj

PY =k,X ,
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which denotes the data-generating distribution of (sj , X). Assume the base distribution B and the contam-
ination matrix MPPL are given by (63) and (66), respectively. Then, MPPL satisfies P̄ = MPPLB and
characterizes PPL learning (26).

The entry replacement that converts (64) to (66) through (65) gives the reduction path

Mcorr → MgCCN → MPPL.

4.2.3 Provably Consistent Partial-Label (PCPL) Learning (Feng et al., 2020b)

In PCPL, the probability of each partial-label is assumed to be sampled uniformly from all feasible partial-
labels. Since there are 2K−1−1 feasible partial-labels for every y, the label-converting probability PS=s|Y =y,X

is 1
2K−1−1 if y ∈ s4. It corresponds to assign C(S, X) = 1

2K−1−1 in (65). Hence, we obtain

C(S, X)I [Y ∈ S] := 1
2K−1 − 1 I [Y ∈ S] , (67)

which reduces the label-converting process of PPL to that of PCPL and recovers (5) of Feng et al. (2020b).

Then, replacing entries in (66) via (67), we obtain the contamination matrix of PCPL learning

MPCPL := 1
2K−1 − 1


I [Y = 1 ∈ s1] I [Y = 2 ∈ s1] · · · I [Y = K ∈ s1]
I [Y = 1 ∈ s2] I [Y = 2 ∈ s2] · · · I [Y = K ∈ s2]

...
...

. . .
...

I
[
Y = 1 ∈ s|S|

]
I
[
Y = 2 ∈ s|S|

]
· · · I

[
Y = K ∈ s|S|

]

 (68)

and the reduction path
Mcorr → MgCCN → MPPL → MPCPL.

MPCPL characterizing the data-generating process of PCPL is justified by the following lemma, whose proof
follows the same steps as that for Lemma 11.
Lemma 12. Let the elements in S be

{
s1, s2, . . . s|S|

}
. For each j ∈ [|S|], let the j-th entry of P̄ be

P̄j = PS=sj ,X := 1
2K−1 − 1

∑
k∈sj

PY =k,X ,

which denotes the data-generating distribution of (sj , X). Assume the base distribution B and the contam-
ination matrix MPCPL are given by (63) and (68), respectively. Then, MPCPL satisfies P̄ = MPCPLB and
characterizes PCPL learning (24).

4.2.4 Multi-Complementary-Label (MCL) Learning (Feng et al., 2020a)

Recall the discussions in Sections 2.2.9 and 2.2.10 that a complementary-label contains the exclusion infor-
mation of a true label. That is, for a data example (y, x), we call a set of class indices s̄ ∈ S = 2Y\ {∅, Y}
an MCL of x if s̄ does not contain y.

Denote S := {s̄1, s̄2, . . . s̄N }. The equivalence

K−1∑
d=1

P|S̄|=d · 1(
K−1
|S̄|
) ∑

Y /∈S̄

PY,XI
[
|S̄| = d

]
=


∑K−1

d=1 P|S̄|=d · 1
(K−1

|S̄| )
∑

Y /∈S̄ PY,X , if |S̄| = d,

0, otherwise

4There are 2Y\{y}\{Y\{y}} = 2K−1 − 1 combinations whose union with {y} are partial-labels of y.
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allows us to define the data-generating distribution of MCL (22) as

P̄ :=


PS̄=s̄1,X

...
PS̄=s̄N ,X

 , (69)

where for each j ∈ [N ],

PS̄=s̄j ,X :=
K−1∑
d=1

P|s̄j |=d(
K−1
|s̄j |
) ∑

Y /∈s̄j

PY,XI [|s̄j | = d] . (70)

Let (y, x) be fixed. The data-generating process of MCL proposed by Feng et al. (2020a) is that one first sam-
ples a size d with probability P|S̄|=d, and then samples a s̄ uniformly at random from {s̄d,1, s̄d,2, . . . , s̄d,Nd

} ⊂
S, where s̄d,· means a set of size d excluding y and Nd is the total number of those sets. Note that Nd =

(
K−1

d

)
since we remove y from Y and then choose a set of size d to form a s̄d,·. Furthermore, we need a more compli-
cated lower index system to distinguish {s̄d,1, s̄d,2, . . . , s̄d,Nd

} from S = {s̄1, s̄2, . . . s̄N } since d ranges from 1
to K − 1 and

∑K−1
d=1 Nd =

∑K−1
d=1

(
K−1

d

)
= 2K − 2 = |S|. According to this mechanism, we construct MMCL:

P|S̄|=|s̄1|

(K−1
|s̄1| )

I [Y = 1 /∈ s̄1] P|S̄|=|s̄1|

(K−1
|s̄1| )

I [Y = 2 /∈ s̄1] · · · P|S̄|=|s̄1|

(K−1
|s̄1| )

I [Y = K /∈ s̄1]

P|S̄|=|s̄2|

(K−1
|s̄2| )

I [Y = 1 /∈ s̄2] P|S̄|=|s̄2|

(K−1
|s̄2| )

I [Y = 2 /∈ s̄2] · · · P|S̄|=|s̄2|

(K−1
|s̄2| )

I [Y = K /∈ s̄2]

...
...

. . .
...

P|S̄|=|s̄N |
(K−1

|s̄N |)
I [Y = 1 /∈ s̄N ]

P|S̄|=|s̄N |
(K−1

|s̄N |)
I [Y = 2 /∈ s̄N ] · · ·

P|S̄|=|s̄N |
(K−1

|s̄N |)
I [Y = K /∈ s̄N ]


. (71)

The following lemma justifies MMCL as the contamination matrix for MCL learning.

Lemma 13. Suppose the base distributions B, the contamination matrix MMCL, and the data-generating
distributions P̄ are given by (63), (71), and (70), respectively. Then, MMCL satisfies P̄ = MMCLB and
characterizes MCL (22).

At the first sight, MMCL (71) does not resemble MPCPL (68) or MPPL (66). The subtle connection can be
established via a relation between partial-label and complementary-label. Recall

2Y\ {∅, Y} = S = {s̄1, s̄2, . . . s̄N } ,

where s̄j is a MCL. From the partial-label perspective, we can establish the following set equality relationship:

2Y\ {∅, Y} = S = {s̄1, s̄2, . . . s̄N } = {s1 := Y\s̄1, s2 := Y\s̄2, . . . , sN := Y\s̄N } . (72)

This is because for every s̄ ∈ S, there is a s ∈ S such that s := Y\s̄. The intuition behind (72) is that if s̄ is
an MCL of x, then s := Y\s̄ must be a partial-label of x. Therefore, we can also use the set of partial-labels
{s1, s2, . . . , sN } to denote S. The following lemma exploits this relation to show that MMCL is indeed a
special case of MPPL.

Lemma 14. Assign each (s, k) entry of MPPL (66) with

C(s, X)I [Y = k ∈ s] :=
P|S|=|s|(

K−1
|s|−1

) I [Y = k ∈ s] . (73)
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Then, the resulting matrix

M ′
MCL =



P|S|=|s1|

( K−1
|s1|−1)

I [Y = 1 ∈ s1] P|S|=|s1|

( K−1
|s1|−1)

I [Y = 2 ∈ s1] · · · P|S|=|s1|

( K−1
|s1|−1)

I [Y = K ∈ s1]

P|S|=|s2|

( K−1
|s2|−1)

I [Y = 1 ∈ s2] P|S|=|s2|

( K−1
|s2|−1)

I [Y = 2 ∈ s2] · · · P|S|=|s2|

( K−1
|s2|−1)

I [Y = K ∈ s2]

...
...

. . .
...

P|S|=|sN |
( K−1
|sN |−1)

I [Y = 1 ∈ sN ]
P|S|=|sN |
( K−1
|sN |−1)

I [Y = 2 ∈ sN ] · · ·
P|S|=|sN |
( K−1
|sN |−1)

I [Y = K ∈ sN ]


(74)

is equivalent to MMCL (71) under the relationship (72).

Proof. Note that for every j ∈ [N ], sj = Y\s̄j . This implies P|S̄|=|s̄j | = P|S|=|sj |,
(

K−1
|sj |−1

)
=
(

K−1
|s̄j |
)
, and

I [Y ∈ sj ] = I [Y /∈ s̄j ] hold for every j ∈ [N ]. Therefore, for each (j, k) entry in M ′
MCL and MMCL (71), we

have
P|S|=|sj |(

K−1
|sj |−1

) I [Y = k ∈ sj ] =
P|S̄|=|s̄j |(

K−1
|s̄j |
) I [Y = k /∈ s̄j ] . (75)

The assignment rule (73) implies the reduction path

Mcorr → MgCCN → MPPL → MMCL.

Comparing (73) with (67) of PCPL, we see that MCL and PCPL can be viewed as different ways of composing
PY,X to generate a partial-label, with weights P|S|=|s|

(K−1
|s|−1)

and 1
2K−1−1 , respectively.

4.2.5 Complementary-Label (CL) Learning (Ishida et al., 2019)

As a special case of MCL (Section 2.2.10), we can construct the contamination matrix MCL from MMCL.
The set of all CLs is composed of MCL with size 1: {1}, . . . , {K}. Therefore, we assign values in MMCL (71)
as follows. For each s̄ ∈ S, P|S̄|=|s̄| = 1 if |s̄| = 1 and P|S̄|=|s̄| = 0 if |s̄| > 1. Dropping all-zero rows, we
obtain from (71) the contamination matrix of CL learning

MCL :=



1
K−1 I [Y = 1 /∈ {1}] 1

K−1 I [Y = 2 /∈ {1}] · · · 1
K−1 I [Y = K /∈ {1}]

1
K−1 I [Y = 1 /∈ {2}] 1

K−1 I [Y = 2 /∈ {2}] · · · 1
K−1 I [Y = K /∈ {2}]

...
...

. . .
...

1
K−1 I [Y = 1 /∈ {K}] 1

K−1 I [Y = 2 /∈ {K}] · · · 1
K−1 I [Y = K /∈ {K}]



= 1
K − 1


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

 (76)

and the reduction path
Mcorr → MgCCN → MPPL → MMCL → MCL.

Furthermore, it is easy to verify that given B (63), for any j ∈ [K],(
MCLB

)
j

=
∑
Y ̸=j

1
K − 1PY,X = PS̄=j,X ,

which corresponds to formulation (20). Hence, we have the following.
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Lemma 15. MCL (76) is the contamination matrix characterizing the data-generating distribution PS̄,X

(20) of CL learning.

4.3 Confidence-based Scenarios

At first sight, there seems to be no connection between “contamination” and single-class classification (Cao
et al., 2021a). However, the following derivation

PY =ys|X

PY =j|X
· PY =j,X =

PY =ys|X

PY =j|X
· PY =j|X PX = PY =ys,X (77)

reveals a way to contaminate a clean joint probability PY =j,X to the joint probability PY =ys,X of a designated
class ys via confidence weighting PY =ys|X

PY =j|X
. As we will see in the rest of this subsection, the confidence weights

are the key elements in formulating the contamination matrices for the confidence-based WSL settings.

4.3.1 Subset Confidence (Sub-Conf) Learning (Cao et al., 2021a)

Let Ys ⊂ [K] be a subset of classes. Viewing Ys as a “superclass”, such that every instance x of (y, x) will
be labeled Ys if y ∈ Ys, we can define its class prior as PY ∈Ys = πYs :=

∑
y∈Ys

πy and its class probability
function as PY ∈Ys|X :=

∑
y∈Ys

PY =y|X . Substituting the designated class ys in (77) with the superclass Ys,

PY ∈Ys|X

PY =j|X
· PY =j,X =

PY ∈Ys|X

PY =j|X
· PY =j|X PX = PY ∈Ys,X (78)

shows that no matter what joint distribution PY =j,X to begin with, the confidence weight PY ∈Ys|X

PY =j|X
twists

that joint distribution so that every observed data appears to be sampled from the same superclass distri-
bution PYs,X . The following lemma leverages the observation to specify the contamination matrix MSub
characterizing Sub-Conf learning.
Lemma 16. Denote the base distributions as

B :=


PY =1,X

...
PY =K,X

 = P (79)

and the data-generating distributions as

P̄ :=


PY ∈Ys,X

...
PY ∈Ys,X

 .

Inserting the confidence weights into the identity matrix, we define the contamination matrix

MSub :=


PY ∈Ys|X

PY =1|X
· · · 0

...
. . .

...
0 · · · PY ∈Ys|X

PY =K|X

 . (80)

Then, P̄ = MSubB, and MSub characterizes the data-generating process of Sub-Conf learning (30).

Proof. For each j ∈ [K],
(

MBubB
)

j
= PY ∈Ys,X follows from (78). Thus, P̄ = MSubB. It further implies all

observed instances are labeled with the same superclass Ys, meaning we can drop the observed labels, and
the observed examples {xi}n

i=1 is equivalent to a set of i.i.d. samples from PX|Y ∈Ys (30).
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Comparing P̄ = MSubB with the formulation framework P̄ = McorrB (35), we observe that in Sub-Conf
learning, Mcorr is realized as MSub:

Mcorr → MSub.

4.3.2 Single-Class Confidence (SC-Conf) Learning (Cao et al., 2021a)

We compare the formulation of SC-Conf (28) with Sub-Conf (30) and observe that SC-Conf is a special case
of Sub-Conf when Ys = {ys} being a singleton. Thus, we straightforwardly obtain the matrix formulation of
SC-Conf from Lemma 16 be replacing Ys in (80) with ys:

Lemma 17. Let the base distributions B be defined by (79) and the data-generating distributions be defined
by

P̄ :=


PY =ys,X

...
PY =ys,X

 .

Define the contamination matrix

MSC :=


PY =ys|X

PY =1|X
· · · 0

...
. . .

...
0 · · · PY =ys|X

PY =K|X

 (81)

by substituting Ys in (80) with ys. Then, P̄ = MSCB and MSC characterizes the data-generating process of
SC-Conf learning (28).

Since SC-Conf is a special case of Sub-Conf, we have the reduction path

Mcorr → MSub → MSC.

4.3.3 Positive-confidence (Pconf) Learning (Ishida et al., 2018)

Comparing (6) with (28), we see that Pconf is a special case of SC-Conf when K = 2 and ys = p since
rn(X) = 1−rp(X). A further modification to (81) we obtain the contamination matrix MPconf characterizing
Pconf learning.

Lemma 18. Let B :=
(

PY =p,X

PY =n,X

)
= P and P̄ :=

(
PY =p,X

PY =p,X

)
. Define

MPconf :=

PY =p|X

PY =p|X
0

0 PY =p|X

PY =n|X

 . (82)

Then, P̄ = MPconfB, and MPconf characterizes the data-generating process of Pconf learning (6).

The entry replacement that converts (81) to (82) implies the reduction path

Mcorr → MSub → MSC → MPconf .
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4.3.4 Soft-Label Learning (Ishida et al., 2023)

The difference between the soft-label and the previous confidence-based settings (Sub-Conf, SC-Conf, and
Pconf) is how x is sampled. The sample distributions condition on the label information in the previous
settings, while that in soft-label is PX . Replacing the confidence weight PY =ys|X

PY =j|X
in (77) with 1

PY =j|X
,

1
PY =j|X

· PY =j,X = PX

explains how to convert PY =j,X to PX . Therefore, filling the j-th diagonal entry of the identity matrix with
1

PY =j|X
, we obtain the contamination matrix MSoft for soft-label learning:

Lemma 19. Let the base distributions B be defined by (79). Denote the data-generating distribution as

P̄ :=


PX

...
PX

 . (83)

Define the contamination matrix

MSoft :=


1

PY =1|X
· · · 0

...
. . .

...
0 · · · 1

PY =K|X

 . (84)

Then, P̄ = MSoftB, and MSoft characterizes the data-generating process in (33).

Unlike SC-Conf and Pconf, which are special cases of Sub-Conf with Ys taking only one label, the generation
process of a soft-label can be viewed as assigning Ys := [K]. Considering the entire label space results
in PY ∈[K]|X = 1; it coincides with the meaning of PX that samples x regardless of the labels. Although
technically the soft-label setting is not a special case of Sub-Conf (recalling the Ys ⊂ [K] assumption from
Section 4.3.1), MSoft (84) is reduced from MSub (80) by realizing PY ∈Ys|X as PY ∈[K]|X = 1. Therefore, we
obtain the following reduction path

Mcorr → MSub → MSoft.

5 Risk Rewrite via Decontamination

We have demonstrated the capability of the proposed formulation component (35) in the last section. This
section shows how the proposed framework provides a unified methodology for solving the risk rewrite
problem. Specifically, given each contamination matrix described in Section 4, we show how to construct the
corrected losses (38) to perform the risk rewrite via (39). We then recover each rewrite to the corresponding
form reported in the literature to justify its feasibility. Because this paper focuses on a unified methodology
for rewriting the classification risk instead of the designs of practical training objectives, we assume the
required parameters are given or can be estimated accurately from the observed data.

Similar to the previous section, we only provide proofs that appear for the first time to avoid repeating
similar proofs. For auxiliary lemmas and results whose proofs are similar to the previous ones, we refer
to the omitted proofs in Appendix C. In particular, the omitted proofs in Section 5.1 can be found in
Appendix C.1, those in Section 5.2 can be found in Appendix C.2, and those in Section 5.3 can be found in
Appendix C.3.

5.1 MCD Scenarios

We apply the framework to conduct the risk rewrites for WSLs formulated in Section 4.1 and summarized
in Table 7. A general approach is to show that the inversion method discussed in Proposition 1 provides the
decontamination matrix M†

corr required in (38).
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5.1.1 Unlabeled-Unlabeled (UU) Learning

We justify the proposed framework for UU learning via the following steps.

Step 1: Corrected Loss Design and Risk Rewrite.
The three milestones in the proposed framework are (1) finding the contamination matrix Mcorr that char-
acterizes the data-generating process (35) of a weakly supervised scenario, (2) finding the decontamination
matrix M†

corr that compensates for the contamination effect (37), which is then used in (3) the construction
of corrected losses (38) for the risk rewrite (39).

Section 4.1.1 has reached the first milestone (35) as (48) of the form P̄ = MUUB finds

MUU =
(

1 − γ1 γ1

γ2 1 − γ2

)

that connects the data-generating distributions P̄ =
(

PU1

PU2

)
and the base distributions B =

(
PX|Y =p

PX|Y =n

)
.

Note that B is not the risk-defining distribution P =
(

PY =p,X

PY =n,X

)
, we need an additional step before reaching

the second milestone. To further link P̄ with P , we still need a Mtrsf that satisfies B = MtrsfP . Introducing

the prior matrix Π =
(

πp 0
0 πn

)
, we see that choosing Mtrsf := Π−1 fulfills the need:

MtrsfP =

π−1
p 0

0 π−1
n

(PY =p,X

PY =n,X

)
=

PY =p,X

PY =p

PY =n,X

PY =n

 =
(

PX|Y =p

PX|Y =n

)
= B.

Hence, we can instantiate P̄ = McorrMtrsfP (36) as(
PU1

PU2

)
= MUUΠ−1

(
PY =p,X

PY =n,X

)
(85)

in UU learning.

Next, we use Proposition 1 to derive the decontamination matrix M†
corr to reach the second milestone (37).

Corollary 20. Assume MUU in (85) is invertible. Then, defining the decontamination matrix for UU
learning as

M†
UU := ΠM−1

UU

gives rise to M†
UUP̄ = P.

Proof. Suggested by Proposition 1, the inverse matrix ΠM−1
UU cancels out the contamination brought by

MUUΠ−1 in (85). Assigning M†
UU = ΠM−1

UU and repeating the proof of Proposition 1, we have

M†
UUP̄ = ΠM−1

UUP̄ = ΠM−1
UUMUUΠ−1P = P

that completes the proof.

Now we will move on to the third milestone. With M†
UU in hand, we devise the corrected losses L̄ to achieve

the risk rewrite for UU learning. We denote the corrected loss at the k̄-th entry of L̄ as ℓ̄k̄ := ℓȲ =k̄(g(X)),
where k̄ ∈ Ȳ is a class of the observed data5. In UU learning, Ȳ = {U1, U2}. The following theorem proves
rewrite (9) in Section 2.2.3.

5The definition of the corrected loss ℓ̄k̄ is in contrast to the original loss ℓk := ℓY =k(g(X)).
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Theorem 21. Let γ1, γ2 > 0 and γ1 + γ2 ̸= 1. Then, M†
UU defined in Corollary 20 is feasible. Moreover,

the vector of corrected losses suggested by (38)(
ℓ̄U1 ℓ̄U2

)
= L̄⊤ := L⊤M†

UU

with

ℓ̄U1 = (1 − γ2)πp

1 − γ1 − γ2
ℓp + −γ2πn

1 − γ1 − γ2
ℓn,

ℓ̄U2 = −γ1πp

1 − γ1 − γ2
ℓp + (1 − γ1)πn

1 − γ1 − γ2
ℓn (86)

achieves the following risk rewrite:

R(g) = EU1

[
ℓ̄U1

]
+ EU2

[
ℓ̄U2

]
. (87)

Proof. Since γ1 + γ2 ̸= 1,

M−1
UU =

(
1 − γ1 γ1

γ2 1 − γ2

)−1

=

 1−γ2
1−γ1−γ2

−γ1
1−γ1−γ2

−γ2
1−γ1−γ2

1−γ1
1−γ1−γ2


exists. Thus, it is feasible for us to define M†

UU := ΠM−1
UU according to Corollary 20. Following (38), we

construct

L̄⊤ := L⊤M†
UU

and obtain (
ℓ̄U1 ℓ̄U2

)
= L⊤ΠM−1

UU (88)

=
(

ℓp ℓn

)(πp 0
0 πn

) 1−γ2
1−γ1−γ2

−γ1
1−γ1−γ2

−γ2
1−γ1−γ2

1−γ1
1−γ1−γ2



=
(

ℓp ℓn

) (1−γ2)πp
1−γ1−γ2

−γ1πp
1−γ1−γ2

−γ2πn
1−γ1−γ2

(1−γ1)πn
1−γ1−γ2


that gives (86).

Next, with the critical component L̄⊤ in hand, applying (39), we obtain

R(g) =
∫

X
L̄⊤P̄ dx (89)

=
∫

X

(
PU1 ℓ̄U1 + PU2 ℓ̄U2

)
dx

= EU1

[
ℓ̄U1

]
+ EU2

[
ℓ̄U2

]
,

where the first equality holds since according to Corollary 20,

L̄⊤P̄ = L⊤M†
UUP̄ = L⊤P.
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In (88), we do not need to specify the instance in ℓp and ℓn to be xu1 or xu2 since the equality holds for
any instance x. We only need to distinguish xu1 from xu2 when the corrected losses multiply the data
distributions. In particular, the detailed form of rewrite (89) using (8) is

R(g) = EU1

[
ℓ̄U1

]
+ EU2

[
ℓ̄U2

]
= Exu1 ∼PU1

[
(1 − γ2)πp

1 − γ1 − γ2
ℓp(Xu1) + −γ2πn

1 − γ1 − γ2
ℓn(Xu1)

]
+ Exu2 ∼PU2

[
−γ1πp

1 − γ1 − γ2
ℓp(Xu2) + (1 − γ1)πn

1 − γ1 − γ2
ℓn(Xu2)

]
.

The freedom from specifying x in (88) eliminates the notational burden of distinguishing ℓY (Xu1) from
ℓY (Xu2), allowing us to exploit the advantage of matrix multiplication while constructing the corrected losses.
The freedom also enables separated treatments for the data distributions (e.g., formulating P̄ = MUUΠ−1P )
and the corrected losses (e.g., devising L̄⊤ = L⊤M†

UU).

Step 2: Recovering the previous result(s).
Lastly, we verify the feasibility of our rewrite by showing that our rewrite corresponds to an existing result.
By parameter substitution, we replace γ1 with 1 − θ, γ2 with θ′, πn with 1 − πp, ℓp with ℓ(g(X)), and ℓn
with ℓ(−g(X)). Then, (86) becomes

(1 − θ′)πp

θ − θ′ ℓ(g(X)) + −θ′(1 − πp)
θ − θ′ ℓ(−g(X)) = ℓ̄+(g(X)),

θ(1 − πp)
θ − θ′ ℓ(−g(X)) + −(1 − θ)πp

θ − θ′ ℓ(g(X)) = ℓ̄−(−g(X)),

recovering the corrected loss functions (8) and the constants reported in Theorem 4 of Lu et al. (2019).

5.1.2 Positive-Unlabeled (PU) Learning

Recall that all WSLs discussed in Section 4.1 share the same base distributions B (46). Further, as shown
in Table 7, the contamination matrix of every WSL scenario beneath UU learning except MSconf is a child
of MUU on the reduction graph. It means P̄ = MUUΠ−1P (85) is a general form for every child scenario
in Table 7 (with different realizations of γ1 and γ2). Hence, we can reuse Theorem 21 to conduct the risk
rewrite for every child scenario on the reduction graph. PU learning is the first of such examples.

Step 1: Corrected Loss Design and Risk Rewrite.
By the following corollary, we prove the rewrite (5) in Section 2.2.1.
Corollary 22. For PU learning, the classification risk can be rewritten as

R(g) = EP
[
ℓ̄P
]

+ EU
[
ℓ̄U
]

, (90)

where

ℓ̄P = πpℓp − πpℓn,

ℓ̄U = ℓn.
(91)

Step 2: Recovering the previous result(s).
Since PP is PX|Y =p and PU is PX , we swap the notations to obtain

R(g) = EP
[
ℓ̄P
]

+ EU
[
ℓ̄U
]

= EP [πpℓp − πpℓn] + EU [ℓn]
= πpEX|Y =p [ℓp] − πpEX|Y =p [ℓn] + EX [ℓn]

from (90), which corresponds to the risk estimators (2) in Kiryo et al. (2017) and (3) in du Plessis et al.
(2015).
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Moreover, with an additional symmetric assumption of ℓp + ℓn = 1, one further obtains

R(g) = πpEX|Y =p [ℓp] − πpEX|Y =p [ℓn] + EX [ℓn]
= πpEX|Y =p [ℓp] − πpEX|Y =p [1 − ℓp] + EX [ℓn]
= πpEX|Y =p [ℓp] − πpEX|Y =p [1] + πpEX|Y =p [ℓp] + EX [ℓn]
= 2πpEX|Y =p [ℓp] − πp + EX [ℓn] .

This expression recovers several risk rewrites such as (4) of Kiryo et al. (2017), (3) of Niu et al. (2016), (2)
of du Plessis et al. (2015)6, and (3) of du Plessis et al. (2014).

5.1.3 Similar-Unlabeled (SU) Learning

According to Table 7, MSU is a child of MUU on the reduction graph. Thus, we can follow the same steps
illustrated in Section 5.1.2 to justify the proposed framework.

Step 1: Corrected Loss Design and Risk Rewrite.
The following corollary combines (86) and (87) to conduct the risk rewrite.

Corollary 23. Assume πp ̸= 1/2. For SU learning, the classification risk can be rewritten as

R(g) = ES̃
[
ℓ̄S̃
]

+ EU
[
ℓ̄U
]

,

where

ℓ̄S̃ =
π2

p + π2
n

2πp − 1 ℓp −
π2

p + π2
n

2πp − 1 ℓn,

ℓ̄U = − πn

2πp − 1ℓp + πp

2πp − 1ℓn.

(92)

Step 2: Recovering the previous result(s).
To recover Theorem 1 of Bao et al. (2018), we first need to restore ES [·] from ES̃ [·] in Corollary 23. The
following lemma provides a means for us to do so.

Lemma 24. Given B (46) and following the SU learning notations, we have

M ′
SUB =

(
PS̃

PU

)
= P̄,

where

M ′
SU :=

π2
p

∫
x′∈X

Px′|Y =pdx′

π2
p+π2

n

π2
n

∫
x′∈X

Px′|Y =ndx′

π2
p+π2

n

πp πn

 .

Proof. Since
∫

x′∈X Px′|Y =pdx′ = 1 and
∫

x′∈X Px′|Y =ndx′ = 1, we have M ′
SU = MSU, and hence M ′

SUB =

MSUB =
(

PS̃

PU

)
. The last equality follows from Lemma 5.

6As the 0-1 loss is symmetric.
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Lemma 24 allows us to slightly revise the derivation (89) as follows:

R(g) =
∫

x∈X
L̄⊤P̄ dx =

∫
x∈X

L̄⊤M ′
SUB dx

=
∫

x∈X

(
ℓ̄S̃ ℓ̄U

)π2
p

∫
x′∈X

Px′|Y =pdx′

π2
p+π2

n

π2
n

∫
x′∈X

Px′|Y =ndx′

π2
p+π2

n

πp πn

(Px|Y =p

Px|Y =n

)
dx

(a)=
∫

x∈X

∫
x′∈X

PSℓ̄S̃ dx′dx +
∫

x∈X
PU ℓ̄U dx

= ES
[
ℓ̄S̃
]

+ EU
[
ℓ̄U
]

,

where equality (a) follows from the SU formulation (10).

Then, denoting

L(X) := 1
πp − πn

ℓp(X) − 1
πp − πn

ℓn(X), (93)

L−(X) := − πn

πp − πn
ℓp(X) + πp

πp − πn
ℓn(X) (94)

and continuing with (92), we obtain

ES
[
ℓ̄S̃
]

=
(
π2

p + π2
n
)
ES

[
1

2πp − 1 (ℓp − ℓn)
]

=
(
π2

p + π2
n
)
ES [L(X)]

(b)=
(
π2

p + π2
n
)
ES

[
L(X) + L(X ′)

2

]
and

EU
[
ℓ̄U
]

= EU

[
− πn

2πp − 1ℓp + πp

2πp − 1ℓn

]
= EU [L−(f(X))] (95)

that prove rewrite (11) in Section 2.2.4 and recover Theorem 1 of Bao et al. (2018) by matching notations7.
The following lemma justifies equality (b).

Lemma 25. Let (x, x′) ∼ PS defined by (10). Then, ES

[
L(X)

2

]
= ES

[
L(X′)

2

]
.

The derivation demonstrates the flexibility of the proposed framework in which a slight modification of MSU
recovers the pairwise distribution PS required for ES [·]. Moreover, the technique developed here significantly
reduces the proof length in Appendix B of Bao et al. (2018). Later in Section 5.1.5, we apply the same trick
to recover Theorem 1 of Shimada et al. (2021) for SDU learning.

We remark that the result recovered in this paper is merely Theorem 1 of Bao et al. (2018) but not the last
expression in (5) of Bao et al. (2018), which later was implemented as the objective (10) for optimization. It
is because, pointed out by Negishi (2023), the additional assumption PS(x, x′) = PS̃(x)PS̃(x′) required for
achieving (5) of Bao et al. (2018) is impractical. We note that the remedy proposed by Negishi (2023) can
be analyzed by the proposed framework, but we omit it due to the amount of overlap with the analyses in
Sections 5.1.1 and 5.1.3.

7The matching to the notations of Bao et al. (2018) is as follows: πp is π+, πn is π−, π2
p + π2

n is πS, PS is pS, PU is p,
ℓp is ℓ(f(X), +1), ℓn is ℓ(f(X), −1), L(X) by definition is 1

2π+−1 (ℓ(f(X), +1) − ℓ(f(X), −1)), and L−(f(X)) by definition is
− π−

2π+−1 ℓ(f(X), +1) + π+
2π+−1 ℓ(f(X), −1).
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5.1.4 Pairwise Comparison (Pcomp) Learning

We follow the steps illustrated in Section 5.1.2 to justify the proposed framework since, by Table 7, MPcomp
is reduced from MUU.

Step 1: Corrected Loss Design and Risk Rewrite.
The following corollary combines (86) and (87) to achieve rewrite (17) in Section 2.2.7.
Corollary 26. For Pcomp learning, the classification risk can be rewritten as

R(g) = ESup
[
ℓ̄Sup

]
+ EInf

[
ℓ̄Inf
]

,

where

ℓ̄Sup = ℓp − πpℓn,

ℓ̄Inf = −πnℓp + ℓn. (96)

Step 2: Recovering the previous result(s).
It is straightforward to recover Theorem 3 of Feng et al. (2021) by matching notations8. Since x is a variable
and can be substituted by x′, we express Corollary 26 as

R(g) = Ex∼PSup [ℓp(x) − πpℓn(x)] + Ex′∼PInf [ℓn(x′) − πnℓp(x′)] , (97)

recovering (5) of Feng et al. (2021).

5.1.5 Similar-dissimilar-unlabeled (SDU) Learning

We justify the applicability of the proposed framework for DU and SD separately. Firstly, we start with
DU learning, which is similar to SU learning in the sense that pairwise information is provided. From
Lemmas 5 and 7, we see that the pairwise distributions are treated similarly. Thus, following the same steps
in Section 5.1.3, we conduct the risk rewrite for DU learning.

Step 1: Corrected Loss Design and Risk Rewrite for DU Learning.
The following corollary is a variant of Corollary 23.
Corollary 27. Assume πp ̸= 1/2. For DU learning, the classification risk can be rewritten as

R(g) = ED̃
[
ℓ̄D̃
]

+ EU
[
ℓ̄U
]

,

where

ℓ̄D̃ = 2πpπn

(
1

πn − πp
ℓp − 1

πn − πp
ℓn

)
,

ℓ̄U = − πp

πn − πp
ℓp + πn

πn − πp
ℓn. (98)

Step 2: Recovering the previous result(s) for DU Learning.
We reuse the trick in Lemma 24 for restoring the pairwise distribution PS to restore PD needed here, allowing
us to recover the rewrite (15) in Theorem 1 of Shimada et al. (2021) and the first result in Theorem 7.3
of Sugiyama et al. (2022). The derivation resembles that of SU learning. We start with the next lemma,
adapted from Lemma 24.
Lemma 28. Given B (46) and following the DU learning notations, we have

M ′
DUB =

(
PD̃

PU

)
= P̄,

8The matching is as follows: PSup is p̃+(x), PInf is p̃−(x), ℓp is ℓ(f(x), +1), and ℓn is ℓ(f(x), −1).
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where

M ′
DU :=

∫x′∈X
Px′|Y =ndx′

2

∫
x′∈X

Px′|Y =pdx′

2
πp πn

 .

We apply Lemma 28 to slightly revise the derivation of (89) as follows:

R(g) =
∫

x∈X
L̄⊤P̄ dx =

∫
x∈X

L̄⊤M ′
DUB dx

=
∫

x∈X

(
ℓ̄D̃ ℓ̄U

)∫x′∈X
Px′|Y =ndx′

2

∫
x′∈X

Px′|Y =pdx′

2
πp πn

(Px|Y =p

Px|Y =n

)
dx

=
∫

x∈X

∫
x′∈X

PD ℓ̄D̃ dx′dx +
∫

x∈X
PU ℓ̄U dx

= ED
[
ℓ̄D̃
]

+ EU
[
ℓ̄U
]

,

where the second to last equality follows from the DU formulation (12). Denoting

L+(X) := πp

πp − πn
ℓp(X) − πn

πp − πn
ℓn(X), (99)

recalling L(X) from (93), and continuing with (98), we have

ED
[
ℓ̄D̃
]

= 2πpπnED

[
1

πn − πp
ℓp − 1

πn − πp
ℓn

]
= 2πpπnED [−L(X)]
(a)= 2πpπnED

[
−L(X) + L(X ′)

2

]
and

EU
[
ℓ̄U
]

= EU

[
− πp

πn − πp
ℓp + πn

πn − πp
ℓn

]
= EU [L+(X)] (100)

that prove rewrite (13) in Section 2.2.5. By matching notations, we recover (15) in Theorem 1 of Shimada
et al. (2021) 9 . Equality (a) follows from the next lemma.

Lemma 29. Let (x, x′) ∼ PD defined in (12). Then, ED

[
L(X)

2

]
= ED

[
L(X′)

2

]
.

Secondly, we consider the rewrite of SD learning. To do so, we apply the knowledge acquired from SU and
DU learning (Corollaries 23 and 27).

Step 1: Corrected Loss Design and Risk Rewrite for SD Learning.
We provide another variant of Corollary 23 to conduct the risk rewrite.
Corollary 30. Assume πp ̸= 1/2. For SD learning, the classification risk can be rewritten as

R(g) = ES̃
[
ℓ̄S̃
]

+ ED̃
[
ℓ̄D̃
]

,

where

ℓ̄S̃ =
(
π2

p + π2
n
)( πp

πp − πn
ℓp − πn

πp − πn
ℓn

)
,

ℓ̄D̃ = 2πpπn

(
− πn

πp − πn
ℓp + πp

πp − πn
ℓn

)
. (101)

9The matching to the notations of Shimada et al. (2021) is as follows: πp is π+, πn is π−, π2
p + π2

n is πS, 2πpπn is πD, PS
is pS(x, x′), PD is pD(x, x′), PU is pU(x), ℓp is ℓ(f(X), +1), ℓn is ℓ(f(X), −1), L(X) is L̃(f(X)), L+(X) is L(f(X), +1), and
L−(X) is L(f(X), −1).
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Step 2: Recovering the previous result(s) for SD Learning.
We apply the same strategy as in Lemma 28 to obtain the needed PS and PD. We begin with the next
lemma, adapted from Lemma 24, to recover (16) in Theorem 1 of Shimada et al. (2021) and the second
result in Theorem 7.3 of Sugiyama et al. (2022).
Lemma 31. Given B (46) and following the SD learning notations, we have

M ′
SDB =

(
PS̃

PD̃

)
= P̄,

where

M ′
SD :=


π2

p

∫
x′∈X

Px′|Y =pdx′

π2
p+π2

n

π2
n

∫
x′∈X

Px′|Y =ndx′

π2
p+π2

n∫
x′∈X

Px′|Y =ndx′

2

∫
x′∈X

Px′|Y =pdx′

2

 .

We apply Lemma 31 to slightly revise the derivation of (89) as follows:

R(g) =
∫

x∈X
L̄⊤P̄ dx =

∫
x∈X

L̄⊤M ′
SDB dx

=
∫

x∈X

(
ℓ̄S̃ ℓ̄D̃

)
π2

p

∫
x′∈X

Px′|Y =pdx′

π2
p+π2

n

π2
n

∫
x′∈X

Px′|Y =ndx′

π2
p+π2

n∫
x′∈X

Px′|Y =ndx′

2

∫
x′∈X

Px′|Y =pdx′

2


(

Px|Y =p

Px|Y =n

)
dx

=
∫

x∈X

∫
x′∈X

PS ℓ̄S̃ dx′dx +
∫

x∈X

∫
x′∈X ′

PD ℓ̄D̃ dx′dx

= ES
[
ℓ̄S̃
]

+ ED
[
ℓ̄D̃
]

,

where the second to last equality follows from the SD formulation (14). Recalling L+(X) (99) and L−(X)
(94) and continuing with (101),

ES
[
ℓ̄S̃
]

=
(
π2

p + π2
n
)
ES

[
πp

πp − πn
ℓp − πn

πp − πn
ℓn

]
=

(
π2

p + π2
n
)
ES [L+(X)]

(b)=
(
π2

p + π2
n
)
ES

[
L+(X) + L+(X ′)

2

]
and

ED
[
ℓ̄D̃
]

= 2πpπnED

[
− πn

πp − πn
ℓp + πp

πp − πn
ℓn

]
= 2πpπnED [L−(X)]
(c)= 2πpπnED

[
L−(X) + L−(X ′)

2

]
prove rewrite (15) in Section 2.2.6. We also recover (16) in Theorem 1 of Shimada et al. (2021) via matching
notations. The required matches can be found in the paragraph before Lemma 29. The equality (b) holds
by applying Lemma 25 with L(X) replaced by L+(X), and (c) follows from Lemma 29 with L(X) replaced
by L−(X).

An intriguing observation worth mentioning is that the losses L+(X) and L−(X) applied to decontaminate
the unlabeled data in SU and DU learning ((95) and (100)) are now used to decontaminate the similar
and the dissimilar data in SD learning, respectively. One can also quickly draw the same conclusion from
Table 4. Knowing the reason behind this observation would help to transfer one corrected loss developed in
one scenario to another weakly supervised scenario.
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5.1.6 Similarity-Confidence (Sconf) Learning

Since MSconf (55) is not a child of MUU (49) on the reduction graph, a direct application of Theorem 21 is
infeasible. Nevertheless, we demonstrate how our framework is applied to rewrite the classification risk for
Sconf learning. We make a small adjustment to the framework that instead of showing L̄⊤P̄ = L⊤M†P̄ =
L⊤P , we show that for loss vector L̄ with a certain property,∫

x′∈X
L̄⊤P̄ dx′ = L̄⊤M̃SconfP. (102)

The idea behind this approach is to accommodate x′ sampled from PX′ (18). Suppose, informally, we have the
equation above. Then, the right-hand side of (102) will produce L⊤P if we can compute a decontamination
matrix M̃†

Sconf satisfying M̃†
SconfM̃Sconf = I and assign L̄⊤ := L⊤M̃†

Sconf . Lastly, integrating over x on both
sides, we obtain the key equation∫

x∈X

∫
x′∈X

L̄⊤P̄ dx′dx =
∫

x∈X
L⊤P dx

for risk rewrite.

Step 1: Corrected Loss Design and Risk Rewrite.
Let us follow the notations in Section 4.1.6. We begin with two technical lemmas and leave their proofs to
Appendix C.1. The first technical lemma shows how to achieve (102).
Lemma 32. Assume the formulation P̄ = MSconfB (58) is given. Suppose a vector of corrected losses L̄⊤

of the form
(

ℓ̃1(x) ℓ̃2(x)
)

is independent of x′. Then, we have∫
x′∈X

L̄⊤P̄ dx′ = L̄⊤M̃SconfP, (103)

where

M̃Sconf =


∫

x′
π2

pPx′|p−π2
nPx′|n

r−πn
dx′ ∫

x′
π2

nPx′|n−π2
nPx′|p

r−πn
dx′∫

x′
π2

pPx′|n−π2
pPx′|p

πp−r dx′ ∫
x′

π2
pPx′|p−π2

nPx′|n
πp−r dx′

 .

The second technical lemma computes the decontamination matrix.
Lemma 33. Let

M̃†
Sconf :=

 r−πn
πp−πn

0

0 πp−r
πp−πn

 .

Then,

M̃†
SconfM̃Sconf = I.

Next, we follow the sketch above to instantiate the corrected losses as

L̄⊤ := L⊤M̃†
Sconf =

(
r−πn

πp−πn
ℓp(X) πp−r

πp−πn
ℓn(X)

)
.

Putting M̃†
Sconf , L̄, and (103) together, we have the following rewrite.

Theorem 34. Assume πp ̸= 1/2. The classification risk of Sconf learning can be expressed by

R(g) = EX,X′

[
r − πn

πp − πn
ℓp(X) + πp − r

πp − πn
ℓn(X)

]
. (104)
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Proof. Integrating both sides of (103) over x and applying Lemma 33, we obtain∫
x∈X

∫
x′∈X

L̄⊤P̄ dx′dx =
∫

x∈X
L̄⊤M̃SconfP dx

=
∫

x∈X
L⊤M̃−1

SconfM̃SconfP dx = R(g).

On the other hand, substituting L̄ with
(

r−πn
πp−πn

ℓp(X) πp−r
πp−πn

ℓn(X)
)

and P̄ with
(

PXPX′

PXPX′

)
,

∫
x∈X

∫
x′∈X

L̄⊤P̄ dx′dx =
∫

x∈X

∫
x′∈X

PxPx′

(
r − πn

πp − πn
ℓp(x) + πp − r

πp − πn
ℓn(x)

)
dx′dx

= EX,X′

[
r − πn

πp − πn
ℓp(X) + πp − r

πp − πn
ℓn(X)

]
completes the proof of the theorem.

Step 2: Recovering the previous result(s).
From the above derivation, we have achieved the first half of the rewrite in (19). Notice that (56) can be
rephrased as (

r − πn

πp

)
PXPX′ =

(
π2

pPX|p − π2
nPX|n

)
PX′|p +

(
π2

nPX|n − π2
nPX|p

)
PX′|n

and that (57) can be rephrased as(
πp − r

πn

)
PXPX′ =

(
π2

pPX|n − π2
pPX|p

)
PX′|p +

(
π2

pPX|p − π2
nPX|n

)
PX′|n.

Thus, when πp ̸= 1/2, we can repeat the proof steps in Lemma 9 to rephrase (58) as

(
PXPX′

PXPX′

)
=


πp(π2

pPX|p−π2
nPX|n)

r−πn

πp(π2
nPX|n−π2

nPX|p)
r−πn

πn(π2
pPX|n−π2

pPX|p)
πp−r

πn(π2
pPX|p−π2

nPX|n)
πp−r


(

PX′|p

PX′|n

)
.

Comparing the equation above with P̄ = MSconfB, we see that it is still feasible to formulate P̄ with X and
X ′ in MSconf and B of (58) swapped. Then, repeating the same argument in Step 1 with x and x′ swapped,
we obtain

R(g) = EX′,X

[
r − πn

πp − πn
ℓp(X ′) + πp − r

πp − πn
ℓn(X ′)

]
. (105)

Therefore, the following combines (104) and (105) to obtain

R(g) = 1
2(R(g) + R(g))

= 1
2EX,X′

[
r − πn

πp − πn
ℓp(X) + πp − r

πp − πn
ℓn(X)

]
+ 1

2EX,X′

[
r − πn

πp − πn
ℓp(X ′) + πp − r

πp − πn
ℓn(X ′)

]
= EX,X′

[
r − πn

πp − πn

ℓp(X) + ℓp(X ′)
2 + πp − r

πp − πn

ℓn(X) + ℓn(X ′)
2

]
that recovers rewrite (19) in Section 2.2.8. By matching notations, we recover Theorem 3 of Cao et al.
(2021b) 10.

10The matching to the notations of Cao et al. (2021b) is as follows: πp is π+, πn is π−, r is s, ℓp(X) is ℓ(g(X), +1), and
ℓn(X) is ℓ(g(X), −1).
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5.2 CCN Scenarios

The proposed framework is now applied to conduct the risk rewrites for WSLs discussed in Section 4.2 and
summarized in Table 8. Counterintuitively, we demonstrate that finding an inverse matrix (e.g., Proposi-
tion 1) is not the only way to solve the risk rewrite problem. Introduced in Proposition 2, the new technique
exploited in this subsection, marginal chain, calculates the decontamination matrix for (37) via applying the
conditional probability formula twice during a chain of matrix multiplications.

5.2.1 Generalized CCN

We justify the proposed framework for generalized CCN learning via the following steps. Derived equations
will be applied to solve the risk rewrite problem for WSLs discussed in Section 4.2.

Step 1: Corrected Loss Design.
Let us follow the notations in Section 4.2.1. Same as what we have illustrated in the beginning of Section 5.1.1,
the proposed framework achieves three milestones to rewrite the risk. We apply Lemma 10 to achieve the
first milestone, P̄ = MgCCNP . This is done by noting that for generalized CCN, P̄ = MgCCNB and B = P
are given by Lemma 10.

The second milestone is to find M†
gCCN to achieve M†

gCCNP̄ = P . Since MgCCN (64) is identical to M (40),
a direct application of Proposition 2 gives the decontamination matrix

M†
gCCN :=


PY =1|S=s1,X PY =1|S=s2,X · · · PY =1|S=s|S|,X

PY =2|S=s1,X PY =2|S=s2,X · · · PY =2|S=s|S|,X

...
...

. . .
...

PY =K|S=s1,X PY =K|S=s2,X · · · PY =K|S=s|S|,X

 (106)

that satisfies the M†
gCCNP̄ = P requirement.

The final milestone is achieved by instantiating the corrected loss (38) as L̄⊤ := L⊤M†
gCCN. We denote the

k-th entry of L is ℓY =k with k ∈ [K] and the j-th entry of L̄ is ℓ̄S=sj with j ∈ [|S|].

Despite Proposition 2’s simplicity, the construction of M†
gCCN is somewhat surprising. M†

gCCN, to our best
knowledge, contributes to a first loss correction result relaxing the invertibility constraint. Unlike M†

UU
(Corollary 20), which needs to compute an inverse matrix, one can construct M†

gCCN by calculating each
entry PY |S,X in (106), to which, we point out a systematic way in Section 5.2.2.

Step 2: Classification Risk Rewrite.
With L̄ in hand, the following theorem provides an intermediate form of risk rewrite.
Theorem 35. Let P̄ and P are given by (62) and (63), respectively. Denote L̄⊤ := LM†

gCCN. Then,
L̄⊤P̄ = L⊤P and

R(g) =
∫

X
L⊤Pdx =

∫
X

L̄⊤P̄dx. (107)

Proof. Since M†
gCCN is given by Proposition 2, M†

gCCNP̄ = P . Thus, following the framework (39), we have
L̄⊤P̄ = L⊤M†

gCCNP̄ = L⊤P implying (107).

Theorem 35 will be applied to derive the respective rewrites for WSLs discussed in Section 4.2 in the rest of
this subsection. In particular, we explain how to realize M†

gCCN (106) for a given CCN scenario. Then, the
risk rewrite (107) automatically carries over for the scenario considered, and the respective L̄ specifies the
corrected losses in the rewrite.
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5.2.2 Proper Partial-Label (PPL) Learning

M†
gCCN provides an abstraction for us to construct the corrected losses L̄. Next, we focus on deriving the

actual form of PY |S,X in M†
gCCN (106) to explicitly express ℓ̄S for PPL.

Step 1: Corrected Loss Design and Risk Rewrite.
Let us follow the notations in Section 4.2.2. The following lemma specifies the form of PY |S,X to instantiate
M†

gCCN.

Lemma 36. M†
PPL corresponds to realizing M†

gCCN (106) with

PY =i|S=sj ,X :=
PY =i|XI [Y = i ∈ sj ]∑

a∈sj
PY =a|X

. (108)

Proof. Recall that the decontamination matrix of MgCCN (64) is M†
gCCN (106) and MPPL is a reduction of

MgCCN via PS|Y,X = C(S, X)I [Y ∈ S] (65). Thus, to find out the (i, j) entry of M†
PPL, we need to find out

the form of PY =i|S=sj ,X subject to (65).

Applying Theorem 1 of Wu et al. (2023) directly gives

PY =i|S=sj ,X =
PY =i|XI [Y = i ∈ sj ]∑

a∈sj
PY =a|X

,

which completes the proof. For completeness, we provide a derivation as follows.

Note that PS|Y,X = C(S, X)I [Y ∈ S] (65) implies∑
b∈Y\S

PS,Y =b|X =
∑

b∈Y\S

PS|Y =b,XPY =b|X

=
∑

b∈Y\S

C(S, X)I [b ∈ S] PY =b|X

= 0.

Therefore, PS|X =
∑

a∈S PS,Y =a|X +
∑

b∈Y\S PS,Y =b|X =
∑

a∈S PS,Y =a|X . Utilizing this fact, we obtain

PY |S,X =
PS,Y |X

PS|X
=

PS|Y,XPY |X∑
a∈S PS|Y =a,XPY =a|X

=
C(S, X)I [Y ∈ S] PY |X∑

a∈S C(S, X)I [Y = a ∈ S] PY =a|X

=
PY |XI [Y ∈ S]∑

a∈S PY =a|X

that finishes the proof for Theorem 1 of Wu et al. (2023).

We have shown that M†
PPL is derived from M†

gCCN. Thus, we can follow Theorem 35 to construct the
corrected losses using (108) and obtain the risk rewrite (27) for PPL in Section 2.2.12.
Corollary 37. Given M†

PPL defined by (108), we denote the corrected losses L̄⊤ := L⊤M†
PPL. Then, for

PPL learning, the classification risk can be rewritten as

R(g) = ES,X

[
ℓ̄S

]
,

where

ℓ̄S =
∑
i∈S

PY =i|X∑
a∈S PY =a|X

ℓY =i. (109)
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Proof. Given (108), the j-th entry of L̄⊤ is of the form

ℓ̄S=sj
=
(

L⊤M†
PPL

)
j

=
K∑

i=1

PY =i|XI [Y = i ∈ sj ]∑
a∈sj

PY =a|X
ℓY =i

=
∑
i∈sj

PY =i|X∑
a∈sj

PY =a|X
ℓY =i.

Then, since M†
PPL is a realization of M†

gCCN according to Lemma 36, we continue (107) to express the risk
as

R(g) =
∫

x∈X
L̄⊤P̄dx =

∫
x∈X

|S|∑
j=1

PS=sj ,xℓ̄S=sj
dx = ES,X

[
ℓ̄S

]
.

Step 2: Recovering the previous result(s).
We finish this part by pointing out Corollary 37 recovers Theorem 3 of Wu et al. (2023).

5.2.3 Provably Consistent Partial-Label (PCPL) Learning

It is fairly straightforward to apply the proposed framework to rewrite the classification risk. However, it is
more involved in recovering the existing result.

Step 1: Corrected Loss Design and Risk Rewrite.
The argument for obtaining the risk rewrite for PCPL is similar to that of PPL. From Section 4.2.3 we know
that PCPL is a special case of PPL that only differs in the choice of C(S, X). Since C(S, X) is independent
of (108), M†

PCPL and M†
PPL are identical. Hence, following the notations in Section 4.2.3 and repeating the

proof of Corollary 37, we obtain the risk rewrite for PCPL:
Corollary 38. The decontamination matrix M†

PCPL for PCPL equals M†
PPL. If we define the corrected

losses as L̄⊤ := L⊤M†
PCPL, the classification risk for PCPL learning can be rewritten as

R(g) = ES,X

[
ℓ̄S

]
,

where

ℓ̄S =
∑
i∈S

PY =i|X∑
a∈S PY =a|X

ℓY =i. (110)

Step 2: Recovering the previous result(s).
In order to recover (8) of Feng et al. (2020b), we need to reorganize the sum in (110) by leveraging a unique
property of a pair of partial-labels (s, s′) that complement each other. The following technical lemma states
the required property, with proof deferred to Appendix C.2.
Lemma 39. Let (s, s′) be a pair of partial-labels satisfying s = Y\s′. Then,

PS=s,X ℓ̄S=s + PS=s′,X ℓ̄S=s′ = PS=s,X

K∑
i=1

PY =i|XℓY =i∑
a∈s PY =a|X

.

Denote s′
j := Y\sj for every sj ∈ S. Then, Lemma 39 implies

|S|∑
j=1

2PS=sj ,X ℓ̄S=sj
=

|S|∑
j=1

(
PS=sj ,X ℓ̄S=sj

+ PS=s′
j
,X ℓ̄S=s′

j

)

=
|S|∑
j=1

PS=sj ,X

K∑
i=1

PY =i|XℓY =i∑
a∈sj

PY =a|X
.
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Hence, continuing from Corollary 38,

ES,X

[
ℓ̄S

]
=

∫
x∈X

|S|∑
j=1

PS=sj ,xℓ̄S=sj
dx

= 1
2

∫
x∈X

|S|∑
j=1

PS=sj ,x

K∑
i=1

PY =i|xℓY =i∑
a∈sj

PY =a|x
dx

= 1
2ES,X

[
K∑

i=1

PY =i|X∑
a∈S PY =a|X

ℓY =i

]

shows that the rewrite from the framework recovers (25) in Section 2.2.11. By matching notations, we also
recover (8) of Feng et al. (2020b)11.

5.2.4 Multi-Complementary-Label (MCL) Learning

Step 1: Corrected Loss Design and Risk Rewrite.
Let us follow the notations in Section 4.2.4. As discussed in Section 4.2.4, MCL is a special case of PPL.
Thus, we can modify Lemma 36 based on the notations in Section 4.2.4 to construct the decontamination
matrix M†

MCL for MCL. Then, following the same steps for proving Corollary 37, we instantiate L̄ to conduct
the risk rewrite for MCL:

Corollary 40. The (i, j) entry of the decontamination matrix M†
MCL is of the form

PY =i|S̄=s̄j ,X =
PY =i|XI [Y = i /∈ s̄j ]∑

a/∈s̄j
PY =a|X

. (111)

Define the corrected losses L̄⊤ := L⊤M†
MCL. Then, for MCL learning, the classification risk can be rewritten

as
R(g) = ES̄,X

[
ℓ̄S̄

]
,

where

ℓ̄S̄ =
∑
i/∈S̄

PY =i|X∑
a/∈S̄ PY =a|X

ℓY =i. (112)

Step 2: Recovering the previous result(s).
Although legitimate, the risk rewrite (112) following the marginal chain approach appears different from
Theorem 3 of Feng et al. (2020a), to which we resort to the inversion approach (Proposition 1) that finds
another decontamination matrix, termed M−1

MCL, to recover. As a preparation step, we denote Nd as the
number of multi-complementary-labels with size d and group rows of MMCL (71) by the size of labels as
follows.

MMCL =


P|S̄|=1M1

P|S̄|=2M2

...
P|S̄|=K−1MK−1

 , (113)

11The matching to the notations of Feng et al. (2020b) is as follows: PS,X is p̃(x, Y ), PY =i|X is p(y = i|x), and ℓY =i is
L(f(x), i).
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where for d ∈ [K − 1], each block is of the form12

Md = 1(
K−1

d

)


I [Y = 1 /∈ s̄d,1] I [Y = 2 /∈ s̄d,1] · · · I [Y = K /∈ s̄d,1]
I [Y = 1 /∈ s̄d,2] I [Y = 2 /∈ s̄d,2] · · · I [Y = K /∈ s̄d,2]

...
...

. . .
...

I [Y = 1 /∈ s̄d,Nd
] I [Y = 2 /∈ s̄d,Nd

] · · · I [Y = K /∈ s̄d,Nd
]

 . (114)

To maintain the equality P̄ = MMCLP established in Lemma 13, we also rearrange P̄ (69) as(
PS̄=s̄1,1,X · · · PS̄=s̄1,N1 ,X · · · PS̄=s̄K−1,1,X · · · PS̄=s̄K−1,NK−1 ,X

)⊤
. (115)

As a sanity check, we see that for any d′ ∈ [K − 1] and j′ ∈ [Nd],(
P|S̄|=d′Md′P

)
j′

= P|S̄|=d′ · 1(
K−1

d′

) ∑
Y

I [Y /∈ s̄d′,j′ ] PY,X

=
K−1∑
d=1

P|s̄d′,j′ |=d · 1(
K−1

d′

) ∑
Y /∈s̄d′,j′

PY,XI [|s̄d′,j′ | = d]

= PS̄=s̄d′,j′ ,X . (116)

The next lemma is crucial for us to devise the decontamination matrix M−1
MCL via the inversion approach.

We defer its proof to the later part of this sub-subsection.
Lemma 41. Let i⋆ ∈ Y be fixed. Then, for every d ∈ [K − 1],

PY =i⋆,X =
Nd∑
j=1

(
1 − K − 1

d
I
[
Y = i⋆ ∈ S̄ = s̄d,j

])
PS̄=s̄d,j ,X||S̄|=d.

Moreover, the inverse matrix M−1
d of Md (114) is of the form

1 − K−1
d I [Y = 1 ∈ s̄d,1] 1 − K−1

d I [Y = 1 ∈ s̄d,2] · · · 1 − K−1
d I [Y = 1 ∈ s̄d,Nd

]

1 − K−1
d I [Y = 2 ∈ s̄d,1] 1 − K−1

d I [Y = 2 ∈ s̄d,2] · · · 1 − K−1
d I [Y = 2 ∈ s̄d,Nd

]
...

...
. . .

...
1 − K−1

d I [Y = K ∈ s̄d,1] 1 − K−1
d I [Y = K ∈ s̄d,2] · · · 1 − K−1

d I [Y = K ∈ s̄d,Nd
]

 . (117)

Applying the lemma, we construct

M−1
MCL :=

(
M−1

1 M−1
2 · · · M−1

K−1

)
(118)

and obtain M−1
MCLP̄ = P since P̄ = MMCLP (116) and

M−1
MCLMMCL =

K−1∑
d=1

M−1
d P|S̄|=dMd =

K−1∑
d=1

P|S̄|=dM−1
d Md =

K−1∑
d=1

P|S̄|=dI = I.

We remark that M−1
MCL plays the same role as M†

MCL realized by (111), as they both are decontamination
matrices (designed to convert P̄ back to P and used to construct the corrected losses L̄). Distinct symbols

12Comparing to (71) where we use one index to denote a total of |S| partial-labels, Md uses a pair of indices d and j to denote
the j-th partial-label with size d. It is easy to verify that

∑K−1
d=1 Nd =

∑K−1
d=1

(
K−1

d

)
= 2K − 2 = |S|.
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are merely used to reflect the difference that M†
MCL results from the marginal chain method while M−1

MCL
comes from the inversion approach. Then, applying the framework (38), L̄⊤ := L⊤M−1

MCL leads to

L̄⊤P̄ = L⊤M−1
MCLP̄ = L⊤P.

With the corrected losses L̄ in hand, the following theorem provides the risk rewrite (23) for MCL via the
inversion approach and recovers Theorem 3 of Feng et al. (2020a)13.
Theorem 42. For MCL learning, the classification risk can be expressed as follows.

R(g) = ES̄,X

[
ℓ̄S̄

]
=

K−1∑
d=1

P|S̄|=dES̄,X||S̄|=d

[
ℓ̄S̄

]
,

where

ℓ̄S̄ =
∑
i/∈S̄

ℓY =i − K − 1 − |S̄|
|S̄|

∑
s̄∈S̄

ℓY =s̄.

Proof. We first establish

R(g) =
∫

X
L̄⊤P̄dx = ES̄,X

[
ℓ̄S̄

]
since L̄⊤P̄ = L⊤P , where P̄ is specified in (115) and L̄⊤ = L⊤M−1

MCL with the S̄-th entry being ℓ̄S̄ . Also,
recall that PS̄,X =

∑K−1
d=1 P|S̄|=dPS̄,X||S̄|=d in Section 4.2.4. Thus, decomposing the probability by the size

of S̄, we have

ES̄,X

[
ℓ̄S̄

]
=

K−1∑
d=1

P|S̄|=dES̄,X||S̄|=d

[
ℓ̄S̄

]
.

Lastly, M−1
MCL (118) and M−1

d (117) imply, when S̄ = s̄d,j ,

ℓ̄S̄=s̄d,j
=
(

L⊤M−1
d

)
j

=
K∑

i=1
ℓY =i

(
1 − K − 1

d
I [Y = i ∈ s̄d,j ]

)
=

K∑
i=1

ℓY =i − K − 1
d

∑
i∈s̄d,j

ℓY =i.

A simple reorganization and substituting d with |S̄| shows

ℓ̄S̄ =
∑
i/∈S̄

ℓY =i +
∑
i∈S̄

ℓY =i − K − 1
|S̄|

∑
i∈S̄

ℓY =i =
∑
i/∈S̄

ℓY =i − K − 1 − |S̄|
|S̄|

∑
i∈S̄

ℓY =i.

Now we return to the postponed proof.

Proof. of Lemma 41. We start with identifying M−1
d . Denote {s̄d,1, . . . , s̄d,Nd

}, the set of multi-
complementary-labels of size d, as S̄d. Let us focus on the sized-d data-generating distribution

P̄d =


PS̄=s̄d,1,X||S̄|=d

...
PS̄=s̄d,Nd

,X||S̄|=d

 .

13The matching to the notations of Feng et al. (2020a) is as follows: PS̄,X||S̄|=d is p̄(x, Ȳ |s = d), P|S̄|=d is p(s = d), and ℓ̄S̄

is L̄d(f(x), Ȳ ).
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Note that P̄d corresponds to extracting the entries from (115) that generate sized-d data and then dividing
them by P|S̄|=d. Thus, P̄ = MMCLP in Lemma 13 implies P̄d = MdP and its j-th entry is expressed as

PS̄=s̄d,j ,X||S̄|=d = 1(
K−1

d

) K∑
i=1

I [Y = i /∈ s̄d,j ] PY =i,X . (119)

The equality hints to us that if one manages to collect certain multi-complementary-labels s̄′ to form an
equation resembling

∑
s̄′ Ps̄′,X||s̄′|=d = c3 · PY =i,X for some constant c3, then a reciprocal operation 1

c3

recovers PY =i,X we need (recall we want to find M−1
d achieving M−1

d P̄d = P ). To achieve such a goal, we
fix on class i⋆ and collect elements in S̄d that do not contain i⋆ to form E i⋆

d :=
{

s̄d,j |s̄d,j ∈ S̄d, i⋆ /∈ s̄d,j

}
to

connect PS̄,X||S̄|=d with PY =i⋆,X as follows. Summing (119) over all elements in E i⋆

d , we obtain

∑
s̄∈Ei⋆

d

PS̄=s̄,X||S̄|=d =
∑

s̄∈Ei⋆

d

1(
K−1

d

) K∑
i=1

I [Y = i /∈ s̄] PY =i,X

= 1(
K−1

d

)
(K − 2

d

) K∑
i=1
i ̸=i⋆

PY =i,X +
(

K − 1
d

)
PY =i⋆,X

 .

The last equality holds since there are
(

K−2
d

)
multi-complementary-labels s̄ ∈ S̄d such that i ̸= i⋆ and neither

of them is in s̄ (i.e., i /∈ s̄ and i⋆ /∈ s̄), and there are
(

K−1
d

)
multi-complementary-labels s̄ ∈ S̄d such that

i = i⋆ and i is not in s̄. Then, we regroup the sums by pulling
(

K−2
d

)
PY =i⋆,X out of

(
K−1

d

)
PY =i⋆,X to

combine with
(

K−2
d

)∑K
i=1
i ̸=i⋆

PY =i,X . It leads to

∑
s̄∈Ei⋆

d

PS̄=s̄,X||S̄|=d = 1(
K−1

d

) [(K − 2
d

) K∑
i=1

PY =i,X +
(

K − 2
d − 1

)
PY =i⋆,X

]

= K − 1 − d

K − 1 PX + d

K − 1PY =i⋆,X . (120)

Denoting S̄d\E i⋆

d = {s̄d,j |s̄d,j ∈ S̄d, i⋆ ∈ s̄d,j} as Ii⋆

d and rearranging terms in the above equation according
to the reciprocal idea illustrated above, we have

PY =i⋆,X = K − 1
d

 ∑
s̄∈Ei⋆

d

PS̄=s̄,X||S̄|=d − K − 1 − d

K − 1 PX

 (121)

(a)= K − 1
d

PX −
∑

s̄∈Ii⋆

d

PS̄=s̄,X||S̄|=d − K − 1 − d

K − 1 PX


= PX − K − 1

d

∑
s̄∈Ii⋆

d

PS̄=s̄,X||S̄|=d.

Equality (a) holds since |S̄| and X are independent (Feng et al., 2020a), which implies

PX = PX||S̄|=d =
∑
s̄∈S̄d

PS̄=s̄,X||S̄|=d =
∑

s̄∈Ei⋆

d

PS̄=s̄,X||S̄|=d +
∑

s̄∈Ii⋆

d

PS̄=s̄,X||S̄|=d.

Continuing the derivation, we have

PY =i⋆,X =
Nd∑
j=1

PS̄=s̄d,j ,X||S̄|=d −
Nd∑
j=1

K − 1
d

I [Y = i⋆ ∈ s̄d,j ] PS̄=s̄d,j ,X||S̄|=d

=
Nd∑
j=1

(
1 − K − 1

d
I [Y = i⋆ ∈ s̄d,j ]

)
PS̄=s̄d,j ,X||S̄|=d, (122)
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proving the first part of the lemma.

The derivation of turning (120) to (121) is a reciprocal action. Thus, if we view 1 − K−1
d I [Y = i⋆ ∈ s̄d,j ]

as the (i⋆, j) entry of some matrix M ′, (122) can be interpreted as Pi⋆ =
(

M ′P̄d

)
i⋆

, suggesting M ′Md = I

since P̄d = MdP . We formalize this intuition in the next lemma.

Lemma 43. Let M ′ be of the form (117), and recall Md is defined by (114). Then, M ′Md = I, meaning
M ′ = M−1

d .

The above lemma finishes the proof of Lemma 41.

Proof. of Lemma 43. Let d be fixed. Denoted by Ai,k, the (i, k) entry of M ′Md, is the inner product of
i-th row of M ′ (117) and the k-th column of Md (114)

Ai,k =
Nd∑
j=1

(
1 − K − 1

d
I [Y = i ∈ s̄d,j ]

)(
1(

K−1
d

) I [Y = k /∈ s̄d,j ]
)

=
Nd∑
j=1

ci,k.

In the following, we will show that the calculation results in the identity matrix

Ai,k =
{

1, if i = k,

0, if i ̸= k,

to complete the proof.

When i ̸= k, we have 4 possible cases: (i) Both i and k are in s̄d,j , (ii) Both of them are not in s̄d,j , (iii)
i ∈ s̄d,j and k /∈ s̄d,j , and (iv) i /∈ s̄d,j and k ∈ s̄d,j . For cases (i) and (iv), the coefficients ci,k are 0 since
I [k /∈ s̄d,j ] = 0 if k ∈ s̄d,j . For case (ii), the coefficient ci,k is 1

(K−1
d ) . The number of such s̄d,j is

(
K−2

d

)
since

we are counting the ways of forming a set of size d from K − 2 elements. For case (iii), the coefficient ci,k is(
1 − K−1

d

) 1
(K−1

d ) . The number of such s̄d,j is
(

K−2
d−1

)
since we are counting the ways of forming a set of size

d − 1 from k − 2 elements. Thus, if i ̸= k,

Ai,k = 1(
K−1

d

)(K − 2
d

)
+
(

1 − K − 1
d

)
1(

K−1
d

)(K − 2
d − 1

)

=
(

K−2
d

)(
K−1

d

) +
(

K−2
d−1

)(
K−1

d

) −
K−1

d

(
K−2
d−1

)(
K−1

d

) = 0

since (
K − 2

d

)
+
(

K − 2
d − 1

)
=
(

K − 1
d

)
= K − 1

d

(
K − 2
d − 1

)
.

When i = k, we have 2 possible cases: (i) Both i and k are in s̄d,j , (ii) Both are not in s̄d,j . For case (i), the
coefficient ci,k is 0. For case (ii), the coefficient ci,k is 1

(K−1
d ) , and the number of such s̄d,j is

(
K−1

d

)
, as we

want to form a set of size d from K − 1 candidates. Therefore, if i = k,

Ai,k = 1(
K−1

d

)(K − 1
d

)
= 1.

We want to elaborate more on the role of Theorem 1 of Wu et al. (2023) in the analyses discussed in
Section 5.2. Firstly, as shown in the proof of Lemma 41, it aids the execution of the inversion approach
(Proposition 1). The properness C(S, X)I [Y ∈ S] (65) can be instantiated to define the entries of Md (114),
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which in turn establishes the key equation (120) enabling us to identify the entries of M−1
d (122). Composing

M−1
d , we obtain M−1

MCL, a crucial element for applying our framework (38).

Secondly, Theorem 1 of Wu et al. (2023) contributes to the marginal chain approach (Proposition 2) as
well. The key equations (108) and (111) realised from Theorem 1 of Wu et al. (2023) provide the entries
of M†

PPL (Lemma 36, Section 5.2.2), M†
PCPL (Section 5.2.3), and M†

MCL (Section 5.2.4) when applying (38).
Therefore, the combined advantage of our framework and Theorem 1 of Wu et al. (2023) provides CCN
scenarios unified analyses whose key steps can also be rationally interpreted. Moreover, as will be shown
later, we compare the marginal chain and the inversion approaches via a CL example in Section 5.2.5. A CL
example is the simplest way to convey the differences between the two methods without burying the essence
in complicated derivations.

5.2.5 Complementary-Label (CL) Learning

Step 1: Corrected Loss Design and Risk Rewrite.
Note that the parameters chosen for the construction of MCL (76) in Section 4.2.5 reduces MMCL (113) to
be M1 of (114). That is, assigning P|S̄|=d = 1 for d = 1, P|S̄|=d = 0 for d > 1, and s̄1,j = {j} for all j ∈ [K]
in (113), we have

MMCL → M1 = 1
K − 1


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

 = MCL.

Hence, the proof steps of Theorem 42 carry over to CL learning. With a simple rearranging on

ℓ̄S̄ =
∑
i/∈S̄

ℓY =i − K − 1 − |S̄|
|S̄|

∑
s̄∈S̄

ℓY =s̄

=
K∑

i=1
ℓY =i − K − 1

|S̄|

∑
s̄∈S̄

ℓY =s̄

and assigning ¯|S| = 1, we arrive at (21):
Corollary 44. For CL learning, the classification risk can be expressed as

R(g) = ES̄,X

[
ℓ̄S̄

]
= ES̄,X

[
K∑

i=1
ℓY =i − (K − 1)ℓS̄

]
.

Step 2: Recovering the previous result(s).
The rewrite above recovers Theorem 1 of Ishida et al. (2019) if we substitute S̄ with Ȳ and ℓS̄ with ℓ(Ȳ, g(X)).
Moreover, if we choose d = 1 and s̄1,j = {j} for all j ∈ [K], the decontamination matrix provided by (117)
becomes

M−1
1 =


−(K − 2) 1 · · · 1

1 −(K − 2) · · · 1
...

...
. . .

...
1 1 · · · −(K − 2)

 , (123)

which translates the corrected losses L̄⊤ = L⊤M−1
1 as

L⊤ (−(K − 2)IK + 11⊤) ,

recovering (9) of Ishida et al. (2019).
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Comparing inversion with marginal chain via an example.
We use a simple CL example to demonstrate the differences between the inversion (Proposition 1) and the
marginal chain (Proposition 2) approaches and explain how the intuition of decontamination is implemented.
Here, we focus on comparing how a decontamination matrix M†

corr achieves M†
corrP̄ = P (37) since when

the equality is established, the downstream construction of the corrected losses and the risk rewrite follow
the framework. For this example, let us choose K = 4 and simplify PY =k,X as pk. Applying (76), the
contamination process defining the data-generating distributions is expressed as

P̄ = MCLP = 1
3


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




p1
p2
p3
p4

 =



p2+p3+p4
3

p1+p3+p4
3

p1+p2+p4
3

p1+p2+p3
3

 .

Equation (123), simplified from (117), provides the decontamination matrix from the inversion approach:

M−1
CL =


−2 1 1 1
1 −2 1 1
1 1 −2 1
1 1 1 −2

 .

Then, the inversion approach (Proposition 1) achieves the decontamination (37) by showing

M−1
CL P̄ = 1

3


−2 1 1 1
1 −2 1 1
1 1 −2 1
1 1 1 −2




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




p1
p2
p3
p4

 (124)

= 1
3


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3




p1
p2
p3
p4

 =


p1
p2
p3
p4

 = P.

On the other hand, equation (111) produces the decontamination matrix from the marginal chain approach:

M†
CL =



0·p1
p2+p3+p4

p1
p1+p3+p4

p1
p1+p2+p4

p1
p1+p2+p3

p2
p2+p3+p4

0·p2
p1+p3+p4

p2
p1+p2+p4

p2
p1+p2+p3

p3
p2+p3+p4

p3
p1+p3+p4

0·p3
p1+p2+p4

p3
p1+p2+p3

p4
p2+p3+p4

p4
p1+p3+p4

p4
p1+p2+p4

0·p4
p1+p2+p3


.
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Then, the marginal chain approach (Proposition 2) achieves the decontamination (37) by showing

M†
CLP̄ =



0·p1
p2+p3+p4

p1
p1+p3+p4

p1
p1+p2+p4

p1
p1+p2+p3

p2
p2+p3+p4

0·p2
p1+p3+p4

p2
p1+p2+p4

p2
p1+p2+p3

p3
p2+p3+p4

p3
p1+p3+p4

0·p3
p1+p2+p4

p3
p1+p2+p3

p4
p2+p3+p4

p4
p1+p3+p4

p4
p1+p2+p4

0·p4
p1+p2+p3





p2+p3+p4
3

p1+p3+p4
3

p1+p2+p4
3

p1+p2+p3
3

 (125)

=



p1+p1+p1
3

p2+p2+p2
3

p3+p3+p3
3

p4+p4+p4
3

 =


p1
p2
p3
p4

 = P.

Comparing (124) and (125), we see that the intuition of decontamination is realized differently. The inversion
approach (124) directly cancels out the effect of Mcorr without relying on any property of P . In contrast, the
marginal chain method (125) leverages the fact that P is a probability vector and carries out a procedure
similar to importance reweighting to resolve the contamination. Both methods have respective merits, and
we hope the comparison will inspire new thoughts leveraging certain properties of P for the corrected loss
design and the study of decontamination.

5.3 Confidence-based Scenarios

The proposed framework is now applied to conduct the risk rewrites for WSLs discussed in Section 4.3 and
summarized in Table 9.

5.3.1 Subset Confidence (Sub-Conf) Learning

Step 1: Corrected Loss Design and Risk Rewrite.
Let us follow the notations in Section 4.3.1. Recall that Lemma 16 has reached the first milestone (36)
by showing P̄ = MSubP . To reach the second milestone (37), we apply Proposition 1 to construct the
decontamination matrix M†

Sub to cancel out the contamination caused by MSub (80) as follows.
Lemma 45. Assume PY ∈Ys|X > 0 for all possible outcomes of X. Choosing

M†
Sub := M−1

Sub =


PY =1|X

PY ∈Ys|X
· · · 0

...
. . .

...
0 · · · PY =K|X

PY ∈Ys|X

 , (126)

we have M†
SubP̄ = P , where P̄ and MSubP are given by Lemma 16.

Proof. The assumption PY ∈Ys|X > 0 implies MSub is invertible. As suggested by Proposition 1, we define
M†

Sub := M−1
Sub. Then,

M†
SubMSub =


PY =1|X

PY ∈Ys|X
· · · 0

...
. . .

...
0 · · · PY =K|X

PY ∈Ys|X




PY ∈Ys|X

PY =1|X
· · · 0

...
. . .

...
0 · · · PY ∈Ys|X

PY =K|X

 = I

implies M†
SubP̄ = M−1

SubMSubP = P that proves the lemma.
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With M†
Sub in hand, the next theorem defines the corrected losses L̄ and achieves the risk rewrite (31).

Theorem 46. For Sub-Conf learning, the classification risk can be written as

R(g) = πYsEX|Y ∈Ys

[
K∑

i=1

ri(X)
rYs(X)ℓi

]
.

Proof. Given Lemma 45, we can define L̄⊤ := L⊤M†
Sub so that

L̄⊤
i =

(
L⊤M†

Sub

)
i

=
PY =i|X

PY ∈Ys|X
ℓi

for each i ∈ [K] and

L̄⊤P̄ = L⊤M†
SubP̄ = L⊤P.

Therefore, we can apply (39) to obtain (31) as follows.

R(g) =
∫

x∈X
L⊤Pdx =

∫
x∈X

L̄⊤P̄dx =
∫

x∈X

K∑
i=1

PY =i|X

PY ∈Ys|X
ℓi · PY ∈YsPX|Y ∈Ysdx

= PY ∈YsEX|Y ∈Ys

[
K∑

i=1

PY =i|X

PY ∈Ys|X
ℓi

]

= πYsEX|Y ∈Ys

[
K∑

i=1

ri(X)
rYs(X)ℓi

]
.

The last equality follows the notations in Section 2.2.14.

Step 2: Recovering the previous result(s).
Notation matching gives

R(g) = πYsEp(x|y∈Ys)

[
K∑

y=1

ry(x)
rYs(x)ℓ(g(x), y)

]
,

recovering Theorem 6 of Cao et al. (2021a)14.

5.3.2 Single-Class Confidence (SC-Conf) Learning

Step 1: Corrected Loss Design and Risk Rewrite.
The SC-Conf derivation resembles that in Section 5.3.1 since MSC is a child of MSub on the reduction graph.
Thus, following the notations in Section 4.3.2, assuming PY =ys|X > 0 for all possible outcomes of X, and
replacing the set Ys in M†

Sub (126) with a singleton ys, we have

M†
SC :=


PY =1|X

PY =ys|X
· · · 0

...
. . .

...
0 · · · PY =K|X

PY =ys|X


satisfying M†

SCP̄ = P . We also obtain L̄⊤ = L⊤M†
SC and L̄⊤P̄ = L⊤P by inheriting the proof of Lemma 45.

Then, a modification to Theorem 46 by replacing L̄⊤
i = PY =i|X

PY ∈Ys|X
ℓi with

L̄⊤
i =

(
L⊤M†

SC

)
i

=
PY =i|X

PY =ys|X
ℓi = ri(X)

rys(X)ℓi

proves the risk rewrite (29) for SC-Conf learning:
14The matching is as follows: PX|Y ∈Ys is p(x|y ∈ Ys), ri(X) is ri(X), rYs (X) is rYs (X), and ℓi is ℓ(g(X), i).
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Corollary 47. For SC-Conf learning, the classification risk can be written as

R(g) = πysEX|Y =ys

[
K∑

i=1

ri(X)
rys(X)ℓi

]
.

Step 2: Recovering the previous result(s).
By matching notations, we obtain

R(g) = πysEp(x|ys)

[
K∑

y=1

ry(x)
rys(x)ℓ(g(x), y)

]
,

recovering Theorem 1 of Cao et al. (2021a)15.

5.3.3 Positive-confidence (Pconf) Learning

Step 1: Corrected Loss Design and Risk Rewrite.
Let us follow the notations in Section 4.3.3. Recall that MPconf is a child of MSC on the reduction graph
with K = 2 and yS = p. Thus, assuming PY =p|X > 0 for all possible outcomes of X and replacing K and ys
in Section 5.3.2 accordingly, we obtain the decontamination matrix

M†
Pconf :=

PY =p|X

PY =p|X
0

0 PY =n|X

PY =p|X

 =

1 0
0 1−r(X)

r(X)


and the rewrite (7) reviewed in Section 2.2.2.
Corollary 48. For Pconf learning, the classification risk can be written as

R(g) = πpEP

[
ℓp + 1 − r(X)

r(X) ℓn

]
.

Step 2: Recovering the previous result(s).
By matching notations, we obtain

R(g) = π+E+

[
ℓ(g(x)) + 1 − r(x)

r(x) ℓ(−g(x))
]

,

recovering Theorem 1 of Ishida et al. (2018)16.

5.3.4 Soft-Label Learning

Step 1: Corrected Loss Design and Risk Rewrite.
We follow the notations in Section 4.3.4. As discussed in Section 4.3.4, MSoft is a special case of MSub
when Ys := [K]. Thus, reducing M†

Sub (126) by assigning PY ∈Ys|X = PY ∈[K]|X = 1, we obtain the the
decontamination matrix

M†
Soft :=


PY =1|X · · · 0

...
. . .

...
0 · · · PY =K|X

 .

Then, we follow the same argument in Theorem 46 to achieve the rewrite (34) by the next corollary.
Corollary 49. For soft-label learning, the classification risk can be written as

R(g) = EX

[
K∑

i=1
PY =i|Xℓi

]
= EX

[
K∑

i=1
ri(X)ℓi

]
.

15The matching is as follows: PX|Y =ys is p(x|ys), ri(X) is ri(X), rys (X) is rys (X), and ℓi is ℓ(g(X), i).
16The matching is as follows: πp is π+, PX|Y =p is p(x|y = +1), PY =p|X is r(x), PY =n|X is 1 − r(x), ℓp is ℓ(g(x)), and ℓn is

ℓ(−g(x)).
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Step 2: Recovering the previous result(s).
Ishida et al. (2023) did not focus on the classification risk rewrite problem. We can modify Corollary 49 to
provide a risk rewrite for binary soft-label learning mentioned by Ishida et al. (2023). Taking K = 2, we
have

R(g) = EX

[
PY =p|Xℓp + PY =n|Xℓn

]
= EX [r(X)ℓp + (1 − r(X))ℓn] .

6 Conclusion and Outlook

We set out with the questions wishing to determine if there is a common way to interpret the formation of
weak supervision and search for a generic treatment to solve WSL, to understand the essence of WSL. In
response, we proposed a framework that unifies the formulations and analyses of a set of WSL scenarios to
provide a common ground to connect, compare, and understand various weakly-supervised signals. The for-
mulation component of the proposed framework, viewing WSL from a contamination perspective, associates
a WSL data-generating process with a base distribution vector multiplied by a contamination matrix. By
instantiating the contamination matrices of WSLs, we revealed a comprehensive reduction graph, Figure 1,
connecting existing WSLs. Each vertex contains a contamination matrix and the section index of the WSL
scenario which the matrix characterizes. Each edge represents the reduction relation of two WSLs. We
can see three major branches from the abstract Mcorr, corresponding to Tables 7, 8, and 9 we discussed in
Section 4. The analysis component of the proposed framework, tackling the problem from a decontamina-
tion viewpoint, working with the technical building blocks Theorems 1 and 2 constitute a generic treatment
to solve the risk rewrite problem. Section 5 discussed in depth how the analysis component conducts risk
rewrite and recovers existing results for WSLs.

Figure 1: Depicting the reduction map from Tables 7, 8, and 9.

The application of the proposed framework results in a set of theorems. We summarize them in Table 10.
The Formulation column consists of the results of the formulation component (35). The Decontamination
and the Corrected losses columns correspond to the results of the analysis component ((37), (38), and (39)).
The Recovery column justifies the framework by recovering results from the literature. Crucial results are
marked red.
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Table 10: Theorem Structure.

Model Formulation Decontamination Corrected losses Recovery
(Find M s.t. (Find M† s.t. (Rewrite via
P̄ = MB.) P = M†P̄ .) L̄⊤ = L⊤M† and P̄ .)

Abstract (35) (37) (38) and (39)
model Proposition 1 and Proposition 2
MCD
UU Lemma 3 Corollary 20 Theorem 21 (Notation swap.)
PU Lemma 4 (Immediate reduction.) Corollary 22 (Notation swap.)
SU Lemma 5 (Immediate reduction.) Corollary 23 Lemmas 24 and 25

Pcomp Lemma 6 (Immediate reduction.) Corollary 26 (Notation swap.)
DU Lemma 7 (Immediate reduction.) Corollary 27 Lemmas 28 and 29
SD Lemma 8 (Immediate reduction.) Corollary 30 Lemma 31

Sconf Lemma 9 Lemmas 32 and 33 Theorem 34 (Notation swap.)
CCN
gCCN Lemma 10 (106) and Proposition 2 Theorem 35 (Notation swap.)
PPL Lemma 11 Lemma 36 Corollary 37 (Notation swap.)

PCPL Lemma 12 Corollary 38 Corollary 38 Lemma 39
MCL Lemma 13 Corollary 40 Corollary 40 Theorem 42,

Lemmas 41 and 43
CL Lemma 15 (Immediate reduction.) Corollary 44 (Notation swap.)

Sub-Conf Lemma 16 Lemma 45 Theorem 46 (Notation swap.)
SC-Conf Lemma 17 (Immediate reduction.) Corollary 47 (Notation swap.)

Pconf Lemma 18 (Immediate reduction.) Corollary 48 (Notation swap.)
Soft Lemma 19 (Immediate reduction.) Corollary 49 (N/A.)

The proposed framework is abstract and flexible; hence, we would like to discuss its potential from the
following aspects. Firstly, the performance measure focused on in this paper is the classification risk. With
proper choices of P and L, our framework can be extended to other performance metrics, such as the
balanced error rate and cost-sensitive measures (Brodersen et al., 2010; du Plessis et al., 2014; Menon et al.,
2015; Blanchard et al., 2016; Natarajan et al., 2017; Scott & Zhang, 2020). Secondly, we can explore the
formulation capability by exploiting the power of matrix operations. Cascading matrices allow us to formulate
complex scenarios, such as data containing preference relations collected in a noisy environment. Matrix
addition allows us to categorize different contamination mechanisms into cases to capture the structural
properties of a problem. A complicated scenario could undergo a sophisticated formulation procedure, but
once we have the resulting contamination matrix, the problem boils down to calculating the corresponding
decontamination matrix. Thirdly, the MCD scenarios discussed in this paper (Sections 4.1 and 5.1) belong
to binary classification. A way of extending an MCD formulation to multiclass classification is to extend
MMCD (45) from a 2 × 2 matrix to a K × K one, in which K2 − K mixture rates are used to characterize
the extended MgMCD: the (i, j) entry is γi,j if i ̸= j and is 1 −

∑
j ̸=i γi,j for the i-th entry on the diagonal.

Fourthly, the label-flipping probabilities PȲ |Y in Natarajan et al. (2017) and Feng et al. (2020b) assume
that the contaminated label Ȳ is independent of X condition on the ture label Y . The formulation matrices,
MCCN (60) and MgCCN (64), in contrast, take X into consideration. This formulation enables us to tackle the
instance-dependent problem (Berthon et al., 2021) in the future. Fifthly, we hope the marginal chain method
can bring up new thoughts for WSL investigations, as it avoids the invertible assumption by exploiting the
fact that distributions define the performance measures. We also project its potential in research regarding
the broader sense of contamination and decontamination. Sixthly, the properness of Wu et al. (2023) provides
an efficient technique to compute PY |S,X needed in MgCCN (106). It would be intriguing to know if there are
any other alternatives. Finally but not least, the proposed framework operating under matrix multiplication
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belongs to a broader question of under what circumstances does a function f† exist with P = f†(P̄ ) if
P̄ = f(P ).
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A Notations

Table 11: Notations and Aliases.

Name of the notation Expression Aliases Convention
Example (y, x) (x, y)
Binary classes {p, n} {+1, −1}
Multiple classes {1, · · · , K} [K]
Compound classes of [K] 2[K]\ {∅, [K]} S
A subset of classes Ys ⊂ [K]
Joint distribution Pr(Y = y, X = x) PY =y,x, PY =y,X , or PY,X Pr(x, y)
Class prior Pr(Y = y) πy

Marginal Pr(X) PX

Class-conditional Pr(X = x | Y = y) Px|y, PX|y, Px|Y =y, or PX|Y =y

Class probability Pr(Y = y | X = x) PY =y|x, PY =y|X , or PY |X η(x)
Confidence Pr(Y = y | X = x) ry(X), ry(x), or r(X) if y = p ry(x) or r(x)
Sample size probability Pr(|S| = d) P|S|=d or q|S|

Hypothesis and its space g ∈ G
Loss of g ℓY =y(g(x)) ℓy, ℓy(X), or ℓY (g(X)) ℓ(g(X), Y )
Classification risk EY,X [ℓY (g(X))] R(g) EX,Y [ℓ(g(X), Y )]
The j-th entry of vector V (V )j Vj

Indicator function of E I [E]
Complement of set s Y\s s̄

Identity matrix I

MCD parameters γp and γn

UU parameters γ1 and γ2 1 − θ and θ′

CCN parameters PȲ |Y,X PS|Y,X or PS̄|Y,X ρ+ and ρ−

B Omitted Proofs in Section 4

Omitted proofs in Section 4 are provided in this appendix. We first restate a claim in the main body of the
paper, and then provide the corresponding proof.

B.1 Omitted Proofs in Section 4.1

Proof of Lemma 5

Lemma 5. Let B (46) be the base distributions and

P̄ :=
(

PS̃

PU

)
.

Then, the contamination matrix

MSU :=

 π2
p

π2
p+π2

n

π2
n

π2
p+π2

n

πp πn

 , (51)

which satisfies P̄ = MSUB, characterizes the data-generating distributions P̄ .
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Proof. The proof steps follow that of Lemma 4. By definitions,

MSUB =

 π2
p

π2
p+π2

n

π2
n

π2
p+π2

n

πp πn

(PX|Y =p

PX|Y =n

)

Since

π2
p

π2
p + π2

n
PX|Y =p + π2

n
π2

p + π2
n

PX|Y =n =
π2

pPX|Y =p + π2
nPX|Y =p

π2
p + π2

n
= PS̃

and

πpPX|Y =p + πnPX|Y =n = PX = PU,

the first entry of the resulting vector equals PS̃ and the second entry equals PU, we achieve P̄ = MSUB.

Proof of Lemma 6

Lemma 6. Let B (46) be the base distributions and

P̄ :=
(

PSup

PInf

)
.

Then, the contamination matrix

MPcomp :=


πp

πp+π2
n

π2
n

πp+π2
n

π2
p

π2
p+πn

πn
π2

p+πn

 , (52)

which satisfies P̄ = MPcompB, characterizes the data-generating distributions P̄ .

Proof. By definitions,

MPcompB =


πp

πp+π2
n

π2
n

πp+π2
n

π2
p

π2
p+πn

πn
π2

p+πn


(

PX|Y =p

PX|Y =n

)

Since
πp

πp + π2
n

PX|Y =p + π2
n

πp + π2
n

PX|Y =n =
πpPX|Y =p + π2

nPX|Y =n

πp + π2
n

= PSup

and
π2

p

π2
p + πn

PX|Y =p + πn

π2
p + πn

PX|Y =n =
π2

pPX|Y =p + πnPX|Y =n

π2
p + πn

= PInf ,

the first entry of the resulting vector equals PSup and the second entry of the resulting vector equals PInf ,
which establishes MPcompB = P̄ .

Proof of Lemma 7

Lemma 7. Let B (46) be the base distributions and

P̄ =
(

PD̃

PU

)
.
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Then, the contamination matrix

MDU =
(

1/2 1/2
πp πn

)
, (53)

which satisfies P̄ = MDUB, characterizes the data-generating distributions P̄ .

Proof. Similar to the proofs of Lemmas 5 and 6, we begin with

MDUB =
(

1/2 1/2
πp πn

)(
PX|Y =p

PX|Y =n

)
.

Since
(
PX|Y =p + PX|Y =n

)
/2 = PD̃ and πpPX|Y =p + πnPX|Y =n = PX = PU, we have MDUB = P̄ .

Proof of Lemma 8

Lemma 8. Let B (46) be the base distributions and

P̄ =
(

PS̃

PD̃

)
.

Then, the contamination matrix

MSD =

 π2
p

π2
p+π2

n

π2
n

π2
p+π2

n

1/2 1/2

 (54)

which satisfies P̄ = MSDB, characterizes the data-generating distributions P̄ .

Proof. First, we begin with

MSDB =

 π2
p

π2
p+π2

n

π2
n

π2
p+π2

n

1/2 1/2

(PX|Y =p

PX|Y =n

)
.

Then, we have the lemma by reusing the calculations in the proofs of Lemmas 5 and 7.

B.2 Omitted Proofs in Section 4.2

Proof of Lemma 11

Lemma 11. Let the elements in S be
{

s1, s2, . . . s|S|
}

. For each j ∈ [|S|], let the j-th entry of P̄ be

P̄j = PS=sj ,X := C(S = sj , X)
∑
k∈sj

PY =k,X ,

which denotes the data-generating distribution of (sj , X). Assume the base distribution B and the contam-
ination matrix MPPL are given by (63) and (66), respectively. Then, MPPL satisfies P̄ = MPPLB and
characterizes PPL learning (26).

Proof. For each j ∈ [|S|],(
MPPLB

)
j

=
K∑

k=1
C(sj , X)I [Y = k ∈ sj ] PY =k,X = C(sj , X)

∑
k∈sj

PY =k,X = P̄j .

Note that C(sj , X)
∑

k∈sj
PY =k,X corresponds to (26) when the observed partial-label is sj .
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Proof of Lemma 12

Lemma 12. Let the elements in S be
{

s1, s2, . . . s|S|
}

. For each j ∈ [|S|], let the j-th entry of P̄ be

P̄j = PS=sj ,X := 1
2K−1 − 1

∑
k∈sj

PY =k,X ,

which denotes the data-generating distribution of (sj , X). Assume the base distribution B and the contam-
ination matrix MPCPL are given by (63) and (68), respectively. Then, MPCPL satisfies P̄ = MPCPLB and
characterizes PCPL learning (24).

Proof. For each j ∈ [|S|],

(
MPCPLB

)
j

=
K∑

k=1

1
2K−1 − 1 I [Y = k ∈ sj ] PY =k,X = 1

2K−1 − 1
∑
k∈sj

PY =k,X = P̄j .

Note that 1
2K−1−1

∑
k∈sj

PY =k,X corresponds to (24) when the observed partial-label is sj .

Proof of lemma 13

Lemma 13. Suppose the base distributions B, the contamination matrix MMCL, and the data-generating
distributions P̄ are given by (63), (71), and (70), respectively. Then, MMCL satisfies P̄ = MMCLB and
characterizes MCL (22).

Proof. For each j ∈ [N ], we have(
MMCLB

)
j

=
∑

Y

P|S̄|=|s̄j |(
K−1
|s̄j |
) I [Y /∈ s̄j ] PY,X

=
∑

Y

∑K−1
d=1 I [|s̄j | = d] P|s̄j |=d(

K−1
|s̄j |
) I [Y /∈ s̄j ] PY,X

=
K−1∑
d=1

P|s̄j |=d(
K−1
|s̄j |
) ∑

Y

I [Y /∈ s̄j ] PY,XI [|s̄j | = d]

=
K−1∑
d=1

P|s̄j |=d(
K−1
|s̄j |
) ∑

Y /∈s̄j

PY,XI [|s̄j | = d]

= PS̄=s̄j ,X .

C Omitted Proofs in Section 5

Omitted proofs in Section 5 are provided in this appendix. We first restate a claim in the main body of the
paper, and then provide the corresponding proof.

C.1 Omitted Proofs in Section 5.1

Proof of Corollary 22

Corollary 22. For PU learning, the classification risk can be rewritten as

R(g) = EP
[
ℓ̄P
]

+ EU
[
ℓ̄U
]

, (90)
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where

ℓ̄P = πpℓp − πpℓn,

ℓ̄U = ℓn.
(91)

Proof. According to Table 7, MPU is a child of MUU on the reduction graph. Thus, replacing the subscripts
{U1, U2} of P̄ and L̄ with {P, U} and assigning γ1 = 0 and γ2 = πp as what we choose in Section 4.1.2,
we follow the proof of Theorem 21 to conduct the risk rewrite: We first obtain the corrected losses (91) by
plugging the assigned values into (86). Then, repeating the steps in (89), we achieve (90).

Proof of Corollary 23

Corollary 23. Assume πp ̸= 1/2. For SU learning, the classification risk can be rewritten as

R(g) = ES̃
[
ℓ̄S̃
]

+ EU
[
ℓ̄U
]

,

where

ℓ̄S̃ =
π2

p + π2
n

2πp − 1 ℓp −
π2

p + π2
n

2πp − 1 ℓn,

ℓ̄U = − πn

2πp − 1ℓp + πp

2πp − 1ℓn.

(92)

Proof. By Table 7, MSU is a child of MUU. Substituting the subscripts {U1, U2} with subscripts {S̃, U} and
choosing γ1 = π2

n
π2

p+π2
n

and γ2 = πp as we did in Section 4.1.3, we obtain the corrected losses (92) by plugging
the assigned values into (86). We note that πp ̸= 1/2 ensures the choices of γ1 and γ2 above satisfy the
γ1 + γ2 ̸= 1 assumption discussed in Section 4.1.1. Then, we achieve the rewrite R(g) = ES̃

[
ℓ̄S̃
]

+ EU
[
ℓ̄U
]

by repeating the derivation for (89).

Proof of Lemma 25

Lemma 25. Let (x, x′) ∼ PS defined by (10). Then, ES

[
L(X)

2

]
= ES

[
L(X′)

2

]
.

Proof. For clarity, we simplify PS as c1PX|Y =pPX′|Y =p+c2PX|Y =nPX′|Y =n, with c1 = π2
p

π2
p+π2

n
and c2 = π2

n
π2

p+π2
n
.

The lemma follows from

ES [L(X)]

=
∫

x∈X

∫
x′∈X

PSL(x) dx′ dx

=
∫

x∈X

∫
x′∈X

(
c1Px|Y =pPx′|Y =p + c2Px|Y =nPx′|Y =n

)
L(x) dx′ dx

= c1

∫
x∈X

Px|Y =pL(x) dx

∫
x′∈X

Px′|Y =p dx′ + c2

∫
x∈X

Px|Y =nL(x) dx

∫
x′∈X

Px′|Y =n dx′

= c1

∫
x∈X

Px|Y =pL(x) dx + c2

∫
x∈X

Px|Y =nL(x) dx,

and similarly,

ES [L(X ′)] = c1

∫
x′∈X

Px′|Y =pL(x′) dx′ + c2

∫
x′∈X

Px′|Y =nL(x′) dx′.
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Proof of Corollary 26

Corollary 26. For Pcomp learning, the classification risk can be rewritten as

R(g) = ESup
[
ℓ̄Sup

]
+ EInf

[
ℓ̄Inf
]

,

where

ℓ̄Sup = ℓp − πpℓn,

ℓ̄Inf = −πnℓp + ℓn. (96)

Proof. Since MUU reduces to MPcomp with γ1 = π2
n

πp+π2
n

and γ2 = π2
p

π2
p+πn

according to Table 7, we replace
the subscripts {U1, U2} with {Sup, Inf} and instantiate (86) with the assigned values to obtain the corrected
losses ℓ̄Sup and ℓ̄Inf (96). Then, repeating the same steps in (89), we have the corollary.

Proof of Corollary 27

Corollary 27. Assume πp ̸= 1/2. For DU learning, the classification risk can be rewritten as

R(g) = ED̃
[
ℓ̄D̃
]

+ EU
[
ℓ̄U
]

,

where

ℓ̄D̃ = 2πpπn

(
1

πn − πp
ℓp − 1

πn − πp
ℓn

)
,

ℓ̄U = − πp

πn − πp
ℓp + πn

πn − πp
ℓn. (98)

Proof. By Table 7, MDU is reduced from MUU. Thus, replacing {U1, U2} with {D̃, U}, and assigning γ1 = 1/2
and γ2 = πp, we obtain the corrected losses (98) by plugging the assigned values into (86). Note that
πp ̸= 1/2 implies that the γ1 and γ2 assignments are feasible. Then, repeating the steps in (89), we have the
corollary.

Proof of Lemma 28

Lemma 28. Given B (46) and following the DU learning notations, we have

M ′
DUB =

(
PD̃

PU

)
= P̄,

where

M ′
DU :=

∫x′∈X
Px′|Y =ndx′

2

∫
x′∈X

Px′|Y =pdx′

2
πp πn

 .

Proof. Since
∫

x′∈X Px′|Y =ndx′ = 1 and
∫

x′∈X Px′|Y =pdx′ = 1, we have M ′
DU = MDU and hence M ′

DUB =

MDUB =
(

PD̃

PU

)
. The last equality follows from Lemma 7.
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Proof of Lemma 29

Lemma 29. Let (x, x′) ∼ PD defined in (12). Then, ED

[
L(X)

2

]
= ED

[
L(X′)

2

]
.

Proof. Recall PD = 1
2 (Px|Y =pPx′|Y =n + Px|Y =nPx′|Y =p). Following the similar argument in Lemma 25,

ED

[
L(X)

2

]
=

∫
x∈X

∫
x′∈X

(
Px|Y =pPx′|Y =n + Px|Y =nPx′|Y =p

) L(x)
4 dx′dx

=
∫

x∈X

(
Px|Y =p + Px|Y =n

) L(x)
4 dx

and

ED

[
L(X ′)

2

]
=

∫
x′∈X

(
Px′|Y =n + Px′|Y =p

) L(x′)
4 dx′

prove the lemma.

Proof of Lemma 30

Corollary 30. Assume πp ̸= 1/2. For SD learning, the classification risk can be rewritten as

R(g) = ES̃
[
ℓ̄S̃
]

+ ED̃
[
ℓ̄D̃
]

,

where

ℓ̄S̃ =
(
π2

p + π2
n
)( πp

πp − πn
ℓp − πn

πp − πn
ℓn

)
,

ℓ̄D̃ = 2πpπn

(
− πn

πp − πn
ℓp + πp

πp − πn
ℓn

)
. (101)

Proof. By Table 7, MSD is reduced from MUU. Thus, replacing {U1, U2} with {S̃, D̃}, and assigning γ1 =
π2

n
π2

p+π2
n

and γ2 = 1/2, we obtain the corrected losses (101) by plugging the assigned values into (86). Note
that πp ̸= 1/2 implies that the γ1 and γ2 assignments are feasible. Then, repeating the steps in (89), we
have the corollary.

Proof of Lemma 31

Lemma 31. Given B (46) and following the SD learning notations, we have

M ′
SDB =

(
PS̃

PD̃

)
= P̄,

where

M ′
SD :=


π2

p

∫
x′∈X

Px′|Y =pdx′

π2
p+π2

n

π2
n

∫
x′∈X

Px′|Y =ndx′

π2
p+π2

n∫
x′∈X

Px′|Y =ndx′

2

∫
x′∈X

Px′|Y =pdx′

2

 .

Proof. Since
∫

x′∈X Px′|Y =pdx′ = 1 and
∫

x′∈X Px′|Y =ndx′ = 1, we have M ′
SD = MSD and hence M ′

SDB =

MSDB =
(

PS̃

PD̃

)
. The last equality follows from Lemma 8.
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Proof of Lemma 32

Lemma 32. Assume the formulation P̄ = MSconfB (58) is given. Suppose a vector of corrected losses L̄⊤

of the form
(

ℓ̃1(x) ℓ̃2(x)
)

is independent of x′. Then, we have∫
x′∈X

L̄⊤P̄ dx′ = L̄⊤M̃SconfP, (103)

where

M̃Sconf =


∫

x′
π2

pPx′|p−π2
nPx′|n

r−πn
dx′ ∫

x′
π2

nPx′|n−π2
nPx′|p

r−πn
dx′∫

x′
π2

pPx′|n−π2
pPx′|p

πp−r dx′ ∫
x′

π2
pPx′|p−π2

nPx′|n
πp−r dx′

 .

Proof. of Lemma 32. We replace P̄ using P̄ = MSconfB (58). Since L̄ is independent of x′, we can move
the integral over x′ into MSconf to obtain

∫
x′∈X

L̄⊤P̄ dx′ =
∫

x′
L̄⊤


πp(π2

pPx′|p−π2
nPx′|n)

r−πn

πp(π2
nPx′|n−π2

nPx′|p)
r−πn

πn(π2
pPx′|n−π2

pPx′|p)
πp−r

πn(π2
pPx′|p−π2

nPx′|n)
πp−r


(

PX|p

PX|n

)
dx′

= L̄⊤


∫

x′
π2

pPx′|p−π2
nPx′|n

r−πn
dx′ ∫

x′
π2

nPx′|n−π2
nPx′|p

r−πn
dx′∫

x′
π2

pPx′|n−π2
pPx′|p

πp−r dx′ ∫
x′

π2
pPx′|p−π2

nPx′|n
πp−r dx′

(πpPX|p

πnPX|n

)
.

Since πpPX|p = PX,Y =p and πnPX|n = PX,Y =n,
(

πpPX|p

πnPX|n

)
= P . Furthermore, comparing the equality in

the above derivation with (103), we have

M̃Sconf =


∫

x′
π2

pPx′|p−π2
nPx′|n

r−πn
dx′ ∫

x′
π2

nPx′|n−π2
nPx′|p

r−πn
dx′∫

x′
π2

pPx′|n−π2
pPx′|p

πp−r dx′ ∫
x′

π2
pPx′|p−π2

nPx′|n
πp−r dx′


that completes the proof.

Proof of Lemma 33

Lemma 33. Let

M̃†
Sconf :=

 r−πn
πp−πn

0

0 πp−r
πp−πn

 .

Then,

M̃†
SconfM̃Sconf = I.

Proof. We prove the lemma by examining each entry of M̃†
SconfM̃Sconf . The value of (1, 1) entry is

r − πn

πp − πn

∫
x′

π2
pPx′|p − π2

nPx′|n

r − πn
dx′ = 1

πp − πn

(
π2

p

∫
x′

Px′|pdx′ − π2
n

∫
x′

Px′|ndx′
)

=
π2

p − π2
n

πp − πn
= 1.
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The (2, 2) entry has value

πp − r

πp − πn

∫
x′

π2
pPx′|p − π2

nPx′|n

πp − r
dx′ = 1

πp − πn

(
π2

p

∫
x′

Px′|pdx′ − π2
n

∫
x′

Px′|ndx′
)

=
π2

p − π2
n

πp − πn
= 1.

The (1, 2) entry is zero since
∫

x′

(
π2

nPx′|n − π2
nPx′|p

)
dx′ = 0. Similarly, since

∫
x′

(
π2

pPx′|n − π2
pPx′|p

)
dx′ = 0,

the (2, 1) entry is also zero.

C.2 Omitted Proofs in Section 5.2

Proof of Corollary 38

Corollary 38. The decontamination matrix M†
PCPL for PCPL equals M†

PPL. If we define the corrected
losses as L̄⊤ := L⊤M†

PCPL, the classification risk for PCPL learning can be rewritten as

R(g) = ES,X

[
ℓ̄S

]
,

where

ℓ̄S =
∑
i∈S

PY =i|X∑
a∈S PY =a|X

ℓY =i. (110)

Proof. The proof follows the standard argument: First, find out M†
PCPL, then construct the corrected losses

to rewrite the risk.

Since MPCPL is reduced from MPPL, we can exploit Lemma 36. Note that the only difference C(S, X)
between the formulations of PCPL and PPL cancels itself out in the derivation of PY =i|S=sj ,X (please refer
to the proof of Lemma 36 for a detailed derivation), the (i, j) entry of M†

PCPL coincides with that of M†
PPL

for all i and j, proving the first assertion.

Since M†
PPL and M†

PCPL are identical, L⊤M†
PPL = L⊤M†

PCPL gives (110):

ℓ̄S=sj
=
(

L⊤M†
PCPL

)
j

=
K∑

i=1

PY =i|XI [Y = i ∈ sj ]∑
a∈sj

PY =a|X
ℓY =i

=
∑
i∈sj

PY =i|X∑
a∈sj

PY =a|X
ℓY =i.

Being identical to M†
PPL also means that M†

PCPL is derived from M†
gCCN. Thus, we can continue (107) to

rewrite the risk by repeating the proof of Corollary 37:

R(g) =
∫

x∈X
L̄⊤P̄dx =

∫
x∈X

|S|∑
j=1

PS=sj ,xℓ̄S=sj dx = ES,X

[
ℓ̄S

]
.

Proof of Lemma 39

Lemma 39. Let (s, s′) be a pair of partial-labels satisfying s = Y\s′. Then,

PS=s,X ℓ̄S=s + PS=s′,X ℓ̄S=s′ = PS=s,X

K∑
i=1

PY =i|XℓY =i∑
a∈s PY =a|X

.
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Proof. Given MPCPL (68), we apply P̄ = MPCPLB to obtain

PS=s′,X =
∑K

k=1 I [Y = k ∈ s′] PY =k,X

2K−1 − 1 .

We also have

ℓ̄S=s′ =
∑

i∈s′ PY =i|XℓY =i∑
a∈s′ PY =a|X

according to (110). Since∑K
k=1 I [Y = k ∈ s′] PY =k,X∑

a∈s′ PY =a|X
= PX =

∑K
k=1 I [Y = k ∈ s] PY =k,X∑

a∈s PY =a|X
,

PS=s′,X ℓ̄S=s′ =
∑K

k=1 I [Y = k ∈ s′] PY =k,X

2K−1 − 1

∑
i∈s′ PY =i|XℓY =i∑

a∈s′ PY =a|X

=
∑K

k=1 I [Y = k ∈ s] PY =k,X

2K−1 − 1

∑
i∈s′ PY =i|XℓY =i∑

a∈s PY =a|X
.

Thus,

PS=s,X ℓ̄S=s + PS=s′,X ℓ̄S=s′ =
∑K

k=1 I [Y = k ∈ s] PY =k,X

2K−1 − 1

∑
i∈s PY =i|XℓY =i∑

a∈s PY =a|X

+
∑K

k=1 I [Y = k ∈ s] PY =k,X

2K−1 − 1

∑
i∈s′ PY =i|XℓY =i∑

a∈s PY =a|X

= PS=s,X

∑
i∈s PY =i|XℓY =i +

∑
i∈s′ PY =i|XℓY =i∑

a∈s PY =a|X

= PS=s,X

K∑
i=1

PY =i|XℓY =i∑
a∈s PY =a|X

proves the lemma.

Proof of Corollary 40

Corollary 40. The (i, j) entry of the decontamination matrix M†
MCL is of the form

PY =i|S̄=s̄j ,X =
PY =i|XI [Y = i /∈ s̄j ]∑

a/∈s̄j
PY =a|X

. (111)

Define the corrected losses L̄⊤ := L⊤M†
MCL. Then, for MCL learning, the classification risk can be rewritten

as
R(g) = ES̄,X

[
ℓ̄S̄

]
,

where

ℓ̄S̄ =
∑
i/∈S̄

PY =i|X∑
a/∈S̄ PY =a|X

ℓY =i. (112)

Proof. The proof follows the standard strategy in Section 5.2: We will first find out M†
MCL, and then construct

the corrected losses L̄ to rewrite the risk.
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Based on the notion in (71), we denote the (j, i) entry of MMCL as
P|S̄|=|s̄j |(

K−1
|s̄j |
) I [Y = i /∈ s̄j ] = C(s̄j , X)I [Y = i /∈ s̄j ] = PS̄=s̄j |Y =i,X . (127)

Expressing MMCL via (127) allows us to apply the argument for (106) to show that the (i, j) entry of M†
MCL

is of the form PY =i|S̄=s̄j ,X . Specifically, assigning (M)j,i in (40) as PS̄=s̄j |Y =i,X and applying marginal chain
(i.e., Proposition 2), we obtain(

M†
MCLMMCLP

)
i

=
|S|∑
j=1

(
M†

MCL

)
i,j

K∑
k=1

(MMCL)j,k Pk

=
|S|∑
j=1

PY =i|S̄=s̄j ,X

K∑
k=1

PS̄=s̄j |Y =k,XPY =k,X

= PY =i,X = Pi.

Then, we follow the same argument in Lemma 36 to calculate PY =i|S̄=s̄j ,X subject to (127). Note that
PS̄|Y,X = C(S̄, X)I

[
Y /∈ S̄

]
in (127) implies∑
b∈S̄

PS̄,Y =b|X =
∑
b∈S̄

PS̄|Y =b,XPY =b|X

=
∑
b∈S̄

C(S̄, X)I
[
Y = b /∈ S̄

]
PY =b|X

= 0.

Thus, PS̄|X =
∑

b∈S̄ PS̄,Y =b|X +
∑

a/∈S̄ PS̄,Y =a|X =
∑

a/∈S̄ PS̄,Y =a|X . The fact further implies

PY |S̄,X =
PS̄,Y |X

PS̄|X
=

PS̄|Y,XPY |X∑
a/∈S̄ PS̄|Y =a,XPY =a|X

=
C(S̄, X)I

[
Y /∈ S̄

]
PY |X∑

a/∈S̄ C(S̄, X)I
[
Y = a /∈ S̄

]
PY =a|X

=
PY |XI

[
Y /∈ S̄

]∑
a/∈S̄ PY =a|X

.

Therefore, for Y = i and S̄ = s̄j , we achieve

PY =i|S̄=s̄j ,X =
PY =i|XI [Y = i /∈ s̄j ]∑

a/∈s̄j
PY =a|X

that proves (111).

With M†
MCL in hand, we repeat the same argument in Corollary 37 to obtain

ℓ̄S̄=s̄j
=
(

L⊤M†
MCL

)
j

=
K∑

i=1

PY =i|XI [Y = i /∈ s̄j ]∑
a/∈s̄j

PY =a|X
ℓY =i

=
∑
i/∈s̄j

PY =i|X∑
a/∈s̄j

PY =a|X
ℓY =i

and

R(g) =
∫

x∈X
L⊤P dx =

∫
x∈X

L⊤M†
MCLMMCLP dx

=
∫

x∈X
L̄⊤P̄ dx =

∫
x∈X

|S|∑
j=1

PS̄=s̄j ,xℓ̄S̄=s̄j
dx = ES̄,X

[
ℓ̄S̄

]
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to complete the risk rewrite of MCL.

C.3 Omitted Proofs in Section 5.3

Proof of Corollary 47

Corollary 47. For SC-Conf learning, the classification risk can be written as

R(g) = πysEX|Y =ys

[
K∑

i=1

ri(X)
rys(X)ℓi

]
.

Proof. The corollary follows from notation substitution and the same argument for Theorem 46. Specifically,
we replace MSub with MSC, Ys with ys, and PY =i|X

PY ∈Ys|X
ℓi with PY =i|X

PY =ys|X
ℓi.

Proof of Corollary 48

Corollary 48. For Pconf learning, the classification risk can be written as

R(g) = πpEP

[
ℓp + 1 − r(X)

r(X) ℓn

]
.

Proof. Since

M†
PconfMPconf =

PY =p|X

PY =p|X
0

0 PY =p|X

PY =n|X


PY =p|X

PY =p|X
0

0 PY =n|X

PY =p|X

 = I,

we define L̄⊤ := L⊤M†
Pconf and apply (39) to rewrite the risk as follows.

R(g) =
∫

x∈X
L⊤Pdx =

∫
x∈X

L̄⊤P̄dx =
∫

x∈X

(
ℓp

1−r(X)
r(X) ℓn

)(PY =p,X

PY =p,X

)
dx

= PY =pEX|Y =p

[
ℓp + 1 − r(X)

r(X) ℓn

]
= πpEP

[
ℓp + 1 − r(X)

r(X) ℓn

]
.

Proof of Corollary 49

Corollary 49. For soft-label learning, the classification risk can be written as

R(g) = EX

[
K∑

i=1
PY =i|Xℓi

]
= EX

[
K∑

i=1
ri(X)ℓi

]
.

Proof. Defining L̄⊤ := L⊤M†
Soft and recalling P̄ in (83), we apply (39) to obtain

R(g) =
∫

x∈X
L⊤Pdx =

∫
x∈X

L̄⊤P̄dx =
∫

x∈X

K∑
i=1

PY =i|Xℓi · PXdx

= EX

[
K∑

i=1
PY =i|Xℓi

]
.
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