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ABSTRACT

Spiking neurons mimic the spatiotemporal dynamics of biological neurons and
their spike-based communication, endowing Spiking Neural Networks (SNNs)
with biological plausibility and low-power operation. Yet these dynamics impose
strict temporal dependencies on neuronal states, preventing parallel training and
creating a fundamental bottleneck to efficient, scalable optimization. This work
introduces a novel functional perspective to address this challenge. Specifically,
we argue that the reset mechanism, which induces state dependencies, should be
removed. However, any modification must satisfy two principles: i) preserving
— and even enhancing — the functions of reset as a core biological mechanism;
and ii) enabling parallel training without sacrificing SNNs’ inherently serial infer-
ence, which underpins their energy efficiency. To this end, we identify functions
of the reset mechanism and analyze how to reconcile parallel training with serial
inference, upon which we propose a dynamic decay spiking neuron that combines
a causal convolution structure with an optimized spike firing pattern. We demon-
strate the efficiency and effectiveness of our approach across diverse network ar-
chitectures and task benchmarks, including image classification, neuromorphic
event processing, time-series forecasting, and language modeling.

1 INTRODUCTION

Spiking neurons incorporate information across spatial and temporal into a membrane potential, i.e.,
the neuronal state. If this potential surpasses a threshold, the neuron fires a spike and the potential is
reset; otherwise, it decays (Maass, 1997). Thus, SNNs exhibit spike-based event-driven dynamics:
sparse accumulations occur only upon spike transmissions between neurons, while the network stays
idle otherwise (Roy et al., 2019). Deploying SNNs on neuromorphic hardware (Merolla et al., 2014;
Davies et al., 2018; Pei et al., 2019) yields significant energy savings. For example, the asynchronous
sensing-computing neuromorphic chip Speck consumes merely 0.42 mW at idle, and its dynamic
power under typical vision scenarios can be kept within the mW range (Yao et al., 2024).

Directly training large-scale SNNs has long been a core challenge in the field. The progress can be
viewed in three stages. i) Trainability under spike communication constraints: surrogate-gradient
methods (Wu et al., 2018; Neftci et al., 2019) were proposed to handle the spike activation func-
tion, which is not differentiable, so that SNNs can be trained with backpropagation algorithm. ii)
Going deeper without performance degradation: to reduce accuracy degradation in deeper SNNs, re-
searchers introduced spiking residual connections (Fang et al., 2021a; Hu et al., 2025), new network
designs (Zhou et al., 2023; Yao et al., 2024), various normalization methods (Zheng et al., 2021),
and training optimization methods (Li et al., 2021; Guo et al., 2022). iii) Efficient training under
complex spatiotemporal dynamic constraints: the goal is to study how to efficiently train larger
SNNs under longer sequences, laying the foundation for directly training large spiking models.

Regarding the challenge mentioned in the third stage above, the reset mechanism prevents parallel
training, which makes SNN training very costly. One line of work keeps reset but speeds up training
by decoupling spatial and temporal dependencies, for example by dropping temporal dependence
during backpropagation (Xiao et al., 2022; Meng et al., 2023), by letting only a subset of neurons
carry temporal information (Hu et al., 2024; Xu et al., 2025), or by using single-step pretraining
followed by multi-step fine-tuning (Lin et al., 2024; Yao et al., 2023b). Another line of work removes
reset. PSN (Fang et al., 2023b) first took this direction and added a learnable parameter matrix along
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the time dimension to compensate for the role of reset. Some subsequent studies have improved
upon PSN, but the resulting models cannot support serial inference (Li et al., 2024; Su et al., 2024).
Another idea is to eliminate reset and approximate the membrane potential of some spiking neuron
via value approximation (Chen et al., 2025; Shen et al., 2025; Feng et al., 2025), but this path is
limited because the best possible performance cannot exceed that of the approximated neuron.

This work takes a novel functional perspective to analyze what constitutes a good design for parallel
training in SNNs. We begin by focusing on the reset mechanism of vanilla spiking neurons, identi-
fying its functions as introducing nonlinearity and controlling the membrane potential. Meanwhile,
we highlight the drawbacks of the reset mechanism, including its inability to adequately fulfill these
functions and its hindrance in parallel training. Finally, we provide a general design guideline for
parallel spiking neurons, which can be summarized as: i) aiming to preserve and even enhance the
functions of reset, rather than mimicking it directly; and ii) deriving the parallel formulation from
the serial one to ensure compatibility between parallel training and serial inference.

Based on these insights, we propose a dynamic decay spiking neuron with a causal convolution
structure and an optimized spike firing pattern. It can be shown that our approach can perform the
functions of the reset mechanism more flexibly and thoroughly, while also supporting both paral-
lel training and serial inference. We evaluate the advantages of our method in terms of training
efficiency, generality across multiple tasks and network architectures, and energy consumption. Its
general effectiveness spans from convolutional neural networks to Transformers, and across tasks in-
cluding image classification, neuromorphic event processing, time-series forecasting, and language
modeling. The key contributions of this work are as follows:

• A Novel Functional View. Parallel training in spiking neural networks is not merely about re-
placing the reset mechanism with a seemingly effective technique. Instead, it requires a systematic
analysis of how the functions of reset are preserved or enhanced by the modification, which helps
us understand the limitations of existing approaches.

• Design under an Insightful Guideline. From a functional perspective, we provide a design
strategy for parallel spiking neurons. Following this, we propose a dynamic decay spiking neuron,
which implements functions better than reset and remains compatible with serial inference.

• Generality. Our method demonstrates consistently competitive performance across various net-
work architectures and tasks, while also exhibiting training efficiency and energy benefits.

2 RELATED WORKS

Spiking Neuron. The transmission of electrical signals in biological neurons can be modeled using
a series of differential equations. Common spiking neuron models include Hodgkin-Huxley neurons
(Hodgkin & Huxley, 1952), Leaky Integrate-and-Fire (LIF) neurons (Abbott, 1999), Izhikevich neu-
rons (Izhikevich, 2003), etc. Among these, LIF neurons are the preferred choice for training deep
SNNs due to their simplicity (Fang et al., 2021a). Currently, the two main techniques for address-
ing the non-differentiability issue in deep SNNs are converting an artificial neural network (ANN)
into its SNN counterpart (Han et al., 2020; Bu et al., 2022), i.e. ANN-to-SNN, and direct training
methods (Wu et al., 2018; Neftci et al., 2019; Yao et al., 2023b) which use surrogate gradients to
implement backpropagation through time. In this paper, we focus on the latter approach.

Parallel Training in SNNs. Existing methods use parallelizable modules to directly replace the reset
mechanism or approximate the membrane potential of vanilla spiking neurons. For the former, PSN
(Fang et al., 2023b) introduces a learnable parameter matrix. In subsequent works, the alternatives
focus primarily on the update method of membrane potential (Yarga & Wood, 2023; Li et al., 2024;
Su et al., 2024; Xue et al., 2025) and the design of firing functions (Huang et al., 2024b; Chen
et al., 2024; Shen et al., 2025; Bal & Sengupta, 2025). However, these methods either abandon the
inherent serial inference characteristics of vanilla spiking neurons or fail to fully compensate for the
functions of the reset mechanism. For the latter, the approximation methods for membrane potential
range from a simple Bernoulli spike emission condition (Chen et al., 2025), a pre-trained surrogate
dynamic network (Shen et al., 2025), to fixed-point iteration (Feng et al., 2025), but they do not
offer superior performance beyond vanilla spiking neurons. There are also hybrid approaches such
as the refractory LIF model (Zhong et al., 2024), in which the membrane potential of the substitute
is progressively approximated during the iterative process.
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Dynamic Decay. For SNNs, the decay factor, usually termed as the membrane time constant in LIF
neurons, implies a limitation on expressiveness due to its fixed nature. PLIF (Fang et al., 2021b)
improves neuronal dynamics by making the decay factor learnable. Subsequent methods param-
eterize the decay factor via adjusting the parameter expression (Fang et al., 2023b; Kosta & Roy,
2023; Shi et al., 2023; Dan et al., 2025; Zhang et al., 2025b), integrating bidirectional parameters
(Su et al., 2024), and introducing a complementary bypass (Huang et al., 2024a). In addition, some
studies apply decay to the firing threshold (Yin et al., 2021; Bittar & Garner, 2022). However, the
decay factor remains static after training. In recent works, gating mechanisms (Yao et al., 2022;
Wang et al., 2024), adaptive membrane time constant (Zhang et al., 2025a) or self-connection cir-
cuit (Wang & Yu, 2024) have been employed to capture various biological features and enhance
adaptiveness. What they have in common is that after training, the decay factor still changes with
variations in input, membrane potential, and output spikes. This data-dependent paradigm inspires
us to delve deeper into dynamic decay that is solely related to input.

3 A FUNCTIONAL VIEW OF PARALLELIZING SPIKING NEURONS

Removing the reset mechanism makes spiking neurons trainable in parallel. To understand what this
change truly does, we need to answer two basic questions: i) What is the function of reset; ii) How
can we compensate for that function, or even improve upon it. The first helps us make sense of prior
work, and the second is the key to design parallel spiking neurons.

3.1 RESET MECHANISM AND ITS FUNCTION

Membrane 
potential Threshold

Time
0

Reset

Figure 1: Illustration of a biological neuron
(left) and the reset mechanism in neuronal
dynamics (right).

Hard and Soft Reset. In biological neurons, the de-
polarized membrane potential is restored to the rest-
ing state after the soma fires a spike (Luo, 2020).
Spiking neurons abstract the neuronal dynamics de-
scribed above. Considering the trade-off between
bio-plausibility and computational efficiency, the
most widely used spiking neuron is the LIF, whose
discrete iterative form is as follows (Wu et al., 2018):

Ht = βVt−1 + (1− β)Xt, (1)
St = Θ(Ht − Vth), (2)

Vt =

{
Ht(1− St) + VresetSt, hard reset
Ht − VthSt, soft reset

. (3)

In Eq. 1, the current input Xt is integrated with the membrane potential Vt−1 from last timestep,
and the decay factor β = 1 − 1

τm
, where τm is membrane time constant. In Eq. 2, the Heaviside

step function Θ(x) = 1 when x ≥ 0, i.e. the membrane potential Ht exceeds the threshold Vth,
indicating that a spike is fired; otherwise, it is set to 0. According to how the membrane potential
is regulated based on output spikes, reset can be generally categorized into hard and soft reset as
depicted in Eq. 3. In hard reset, the charged membrane potential Ht will be set to a constant Vreset
if a spike is fired, otherwise it will remain unchanged. Vreset is commonly set to 0 for simplicity. In
contrast, soft reset subtracts Ht by Vth when a spike is fired.

Functions of Reset Mechanism. The first function is to introduce nonlinearity. Specifically, the
reset mechanism enriches the temporal dynamics of spiking neurons by establishing the following
nonlinear relationship between the membrane potential and the input:
Definition 3.1. If the expression Ht = g(X1, X2, ..., Xt) is not a linear equation, then the hidden
state with respect to the inputs is considered nonlinear.

Remark: Without reset, Eq. 1 can be expanded into a linear form with respect to input.

Ht =

t∑
i=1

βt−i(1− β)Xi. (4)

In contrast, both hard and soft reset insert the firing function f(.) into the iteration of membrane
potential at two adjacent timesteps. Taking hard reset as an example, if letting Vreset = 0 and
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Figure 2: Target scenarios for ∆-short control and long control. (a) Hard reset provides short control
at ∆ = 1 level, but it does not allow differentiation between inputs of varying importance. In
contrast, soft reset extends the control duration as the input magnitude increases, which can lead to
continuous spike firing. We expect to find a balanced approach that flexibly determines the duration
of the membrane potential’s effect based on the input. (b) Without reset, IF neuron carries a risk of
membrane potential explosion even with a relatively small constant input sequence {0.5}.

combining Eq. 1 and Eq. 3, we will derive one-step iteration form of the membrane potential.

Ht = β(1− f(Ht−1))Ht−1 + (1− β)Xt. (5)

Obviously, it cannot be transformed into an input-dependent linear equation. This is similar for soft
reset as well. Therefore, we conclude that reset introduces nonlinearity, and several parallel spiking
neuron designs (Fang et al., 2023b; Yarga & Wood, 2023; Bal & Sengupta, 2025) ignore this role.

The second function is to control membrane potential. The reset mechanism constrains the mem-
brane potential within a suitable range and averts ceaseless spike firing. For clarity, we quantitatively
describe the control ability over the membrane potential as ∆-short control and long control:
Definition 3.2. There exists an ∆ ∈ N+ such that, for any t > ∆, if Ht−∆ ≥ Vth and Xt−∆+1, ...,
Xt < Vth/∆, it always holds that Ht < Vth. In this case, the spiking neuron is said to have ∆-short
control over the membrane potential.

Remark: The reset mechanism controls how long a large membrane potential affects the spiking
neuron. For example, consider an IF neuron without a decay factor, with Vth = 1 and H1 = X1 = 4.
In hard reset, the membrane potential is immediately set to 0 after a spike firing, so the effect of the
large input lasts for ∆ = 1 timestep. In contrast, with a soft reset, the spike persists for 4 timesteps.
∆-short control ensures that a very large input affects the spiking neuron only within a relatively
short time window ∆, thereby preventing prolonged spike firing (see Fig. 2).
Definition 3.3. If the input sequence {Xt} has an upper bound C, then the membrane potential
sequence {Ht} also has an upper bound CH . In this case, the spiking neuron is said to have long
control over the membrane potential.

Remark: Long control prevents sustained spike firing or even membrane potential explosion caused
by small inputs that accumulate without being reset (see Fig. 2). In other words, long control keeps
the membrane potential stable over an arbitrarily long period of time.

3.2 GUIDANCE FOR DESIGN BEYOND RESET

Towards Better Functional Realization. Although we have identified two functions of reset, the
reset mechanism itself is not the optimal realization of these functions. Specifically, the effect of
nonlinearity is binary—either 0 or 1—lacking diversity. The control of the membrane potential by
hard or soft reset is rather mechanical and lacks flexibility. In hard reset, no matter how large the
membrane potential is, its effect lasts only one timestep, which makes it difficult to distinguish the
importance of different inputs. Similarly, in soft reset, the amount subtracted from the membrane
potential is fixed. When facing a large input, many timesteps are required to cancel out its effect,
which can lead to continuous spike firing. Therefore, in many existing parallel spiking neuron
designs, structures that attempt to approximate either hard reset (Shen et al., 2025; Feng et al., 2025)
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(a) (b)

Integrate part of spiking neuron
Fire part of spiking neuron

Reset part of spiking neuron
Dynamic decay related to input

Figure 3: Illustration of the computational process of LIF spiking neuron and reset-free spiking
neuron with dynamic decay. (a). In LIF neuron, the current input and the membrane potential from
last timestep are integrated with a constant decay factor β. The integrated Ht determines the firing
of the spike St, which in turn decides whether Ht is reset. (b). After replacing the reset mechanism
with dynamic decay αt, the membrane potential can be computed both serially and in parallel.

or soft reset (Li et al., 2024; Huang et al., 2024b; Chen et al., 2024) can at best reproduce functions
similar to those of the reset mechanism, but cannot achieve functions beyond it. Recognizing the
inherent limitations of reset helps us focus on enhancing the two functions abstracted from it.

Parallel Training and Serial Inference. A natural idea to realize parallel training in SNNs is to re-
place the reset mechanism with other parallelizable technique. However, some previous works (Fang
et al., 2023b; Li et al., 2024; Su et al., 2024) abandon the inherent efficient serial inference ability
of vanilla spiking neurons, namely, the membrane potential at a given timestep can be computed
solely from preceding membrane potential (or a small fixed set of states) and the current input. As a
result, SNNs incur greater computational and memory overhead during inference, and even cannot
operate beyond the training length. Therefore, we argue that parallel training in SNNs should remain
compatible with serial inference, enabling appropriate computational modes at different stages.

Based on the above analysis, we suggest that a good design strategy for parallelizing spiking neurons
is: i) Remove the reset mechanism; ii) Focus on preserving or even enhancing its functions, rather
than approximating the reset mechanism itself; iii) Start by improving the serial formulation and
then derive its parallel counterpart, rather than assuming a parallel form without a serial basis.

4 METHODS: DYNAMIC DECAY SPIKING NEURON

The analysis in Sec. 3 provides general guidance for designing parallelizable spiking neurons.
Building on this, we propose a Dynamic Decay Spiking Neuron (DSN), which includes two modi-
fications to vanilla spiking neurons: i) the reset mechanism is removed and the constant decay β is
replaced with a dynamic decay αt. Here, αt is obtained via a causal convolution over the input. ii)
the spike firing pattern is optimized by incorporating emerging integer-valued training techniques
(Luo et al., 2025). DSN has the following vectorized serial form:

Ht = αt ⊙Ht−1 + (1−αt)⊙Xt. (6)
St = Clip[Round(Ht), 0, N ]. (7)

Here, the input Xt ∈ RC×1 has C channels. ⊙ denotes element-wise product. Round(·) indicates
rounding to the nearest integer. Clip[x, 0, N ] means clipping the input x to the range [0, N ]. N is a
positive integer, representing the upper limit of the number of spikes to be emitted.

In Eq. 19, we derive the dynamic decay αt from Xt−k+1:t (k inputs from Xt−k+1 to Xt) as follows:

α′
t = CausalConv1D(Xt−k+1:t), (8)

αt = Sigmoid(α′
t)

1/τ (9)
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Here, CausalConv1D(·) is a causal 1D convolution to mix the features from the past k inputs.
Sigmoid function is chosen to constrain αt between 0 and 1. τ is a hyperparameter to fine-tune αt.

Design Rationale. After removing the reset mechanism, we find that a varying decay factor can also
introduce nonlinearity and control membrane potential, thereby restoring the functions of reset. This
forms the basis of our initial design. The causal convolution is usually short but has been shown to
be effective in capturing short-term dependency (Gu & Dao, 2024; De et al., 2024). The optimized
spike firing pattern helps reduce training overhead and learn better representations (Yao et al., 2025).
Moreover, we can choose to introduce an extra learnable parameter W ∈ RC×C to mix the features
across different channels of α′

t before applying the Sigmoid function in Eq. 9, i.e. Wα′
t. This

enhanced DSN is suitable as a complete block to further improve the modeling ability of SNNs.

Functions Superior to Reset. DSN is a specific implementation of dynamic decay αt, which can be
related to input at preceding timesteps and is usually limited to between 0 and 1 using a non-linear
activation function with learnable parameters W :

αt = ϕ(Xt, Xt−1, ...|W ) ∈ [0, 1] (10)

In fact, we can prove that dynamic decay in Eq. 10 can implement all the functions of reset.
Proposition 4.1. Dynamic decay can introduce nonlinearity and enabling more flexible ∆-short
and long control of the membrane potential than the reset mechanism.

Remark: We provide the detailed proof in Appendix A.1. An intuitive interpretation is that the
variability of αt broadens the expressive range of nonlinearity and allows adaptive control of the
membrane potential. Additionally, we note that the proposition holds for both binary and integer-
valued spike firing, showing that dynamic decay is a general and powerful alternative to reset.

From Serial Inference to Parallel Training. The iterative Eq. 19 can be rewritten into a general
form determined solely by X1,X2, ...,Xt:

Ht =

t∑
i=1

 t∏
j=i+1

αj

 (1−αi)⊙Xi. (11)

We stack H1,H2, ...,HT to obtain H ∈ RC×T , do the same for X ∈ RC×T , and can finally get
H = XW parallel form (See Appendix A.3 for the detailed derivation):

H = X

(((
1−A

P

)T

P

)
⊙M

)
.

Pt =

t∏
i=1

αi, At = αt, Mij =

{
1, j ≥ i

0, j < i
.

(12)

Here, P and A ∈ RC×T . M ∈ RT×T is a causal mask for the interaction of neuronal inputs. 1−A
P

and ⊙ denote element-wise division and product, respectively. During training, the dynamic decay
A, membrane potential H and their gradients can be computed rapidly in parallel1 with Triton-
based acceleration operators (Tillet et al., 2019; Yang & Zhang, 2024). During inference, we switch
to Eq. 19 for efficient serial inference, which requires to store only minimal states from the causal
convolution and recurrent structure, thereby reducing both computational and memory overhead.

5 EXPERIMENTS

In this section, we evaluate the proposed DSN in terms of training efficiency, generality, and energy
consumption. Specifically, the neuronal generality includes: i) The effectiveness of spiking neuron
design, including the causal convolution structure and integer-valued training technique; ii) Flexible
adaptation to various network architectures, such as convolutional neural networks and Transform-
ers; iii) Competitive performance across multiple tasks.

1In practice, we avoid computing H via matrix multiplication due to numerical instability of P as the
denominator (Yang et al., 2024). Instead, we use a two-stage parallel scan algorithm (Martin & Cundy, 2018)
for Eq. 19 to derive H.
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Table 1: Comparison of training time (ms) for different spiking neurons. The timestep 32∗ is for
Sequential CIFAR10; others are for CIFAR10. Param: parameters in C spiking neurons of a layer.

Methods Parallel Serial Param.
Forward Backward

32∗ 128 256 512 32∗ 128 256 512

LIF (Abbott, 1999) ✗ ✓ 0 4.90 19.53 41.31 77.42 5.84 25.34 52.77 101.88

PSN (Fang et al., 2023b) ✓ ✗ T 2 0.20 0.24 0.20 0.21 0.23 0.22 0.24 0.25

DSN (Ours) ✓ ✓ NC 0.68 0.75 0.68 0.69 0.71 0.64 0.69 0.64

5.1 TRAINING EFFICIENCY

In this section, we build a convolution-based SNN on CIFAR10 (Krizhevsky et al., 2009) and Se-
quential CIFAR10. For CIFAR10, we adjust the training timesteps by repeating the input images.
For Sequential CIFAR10 where the images from CIFAR10 are input into the model in sequential
pixel form, the timestep is equal to the width 32 of the images. We measure the average time for a
forward and backward pass through the first activation layer with 4096 neurons over 100 trials. The
results in Table 1 lead to the following conclusions:

• DSN benefits from the acceleration provided by parallel training. In contrast to LIF neuron, whose
wall-clock time grows linearly with the number of timesteps, DSN maintains nearly constant run-
time. On Sequential CIFAR10, DSN achieves 7.2× and 8.2× speedups in forward and backward
pass, respectively, compared to LIF neuron. This gap further widens with larger timesteps.

• Given comparable training time, DSN is more parameter-efficient than PSN for longer sequences.
For instance, in a layer with C = 1024 spiking neurons and T = 512 timesteps, DSN requires
only NC = 4 × 1024 parameters, whereas PSN requires T 2 = 5122, resulting in substantial
memory and computational overhead. Additionally, the acceleration operators of DSN have room
for further optimization, as discussed in Appendix B.1.

5.2 GENERALITY

5.2.1 EFFECTIVENESS OF SPIKING NEURON DESIGN

We evaluate the effectiveness of spiking neuron design on Sequential CIFAR10, including the causal
convolution structure and integer-valued training technique. Results in Table 2 show that:

Table 2: Ablation studies on Sequential
CIFAR10. ivt: integer-valued training.

Methods Accuracy (%)

DSN (Ours) 89.78
DSN w/o conv 84.53 (−5.25)
DSN w/o ivt 87.45 (−2.33)

LIF (Abbott, 1999) 81.50
LIF w/ ivt 82.16 (+0.66)

PLIF (Fang et al., 2021b) 83.49
PLIF w/ ivt 84.25 (+0.76)

PSN (Fang et al., 2023b) 88.45
PSN w/ ivt 86.84 (−1.61)

First, dynamic decay is the primary contributor to per-
formance. Removing the causal convolution eliminates
meaningful neuronal dynamics and leads to a significant
degradation. We also test alternative decay structures, in-
cluding fully connected layers for inter-channel interac-
tion (89.28%), low-rank mappings (86.72%), and inter-
channel convolution (86.76%). In comparison, causal
convolution remains a simple yet effective design.

Second, integer-valued training technique effectively
complements dynamic decay. However, not all spiking
neurons see similar improvements; for example, it even
causes a performance drop in PSN. In contrast, models
with decay structures such as LIF, PLIF, and DSN expe-
rience performance gains, with DSN benefiting the most.

Based on the above experiments, we design DSN by combining causal convolution with integer-
valued training technique, and validate its generality across different model architectures and tasks.

5.2.2 GENERALITY ACROSS MULTIPLE TASKS

We evaluate DSN on four types of tasks: image classification, neuromorphic event processing, time-
series forecasting, and language modeling. The first two tasks use convolutional neural network,
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Table 3: Performance on Sequential CIFAR10 and CIFAR100. The timestep is 32. † means en-
hanced DSN mentioned in Sec. 4. Param: parameters (M). Acc: accuracy (%).

Methods Parallel Serial
S-CIFAR10 S-CIFAR100

Param. Acc. Param. Acc.

LIF (Abbott, 1999) ✗ ✓ 0.513 81.50 0.537 55.45
PLIF (Fang et al., 2021b) ✗ ✓ 0.513 81.50 0.537 55.45
PSN (Fang et al., 2023b) ✓ ✗ 0.521 88.45 0.544 62.21

IPSU (Li et al., 2024) ✓ ✗ 0.517 87.28 0.540 59.76
PMSN (Chen et al., 2024) ✓ ✓ 0.540 90.97 0.560 66.08

DSN (Ours) ✓ ✓ 0.519 89.78 0.542 64.70

DSN† (Ours) ✓ ✓ 0.683 92.96 0.707 68.48

Table 4: Performance on ImageNet and CIFAR10-DVS. T: Timesteps.

Dataset Methods Architecture Parallel Serial T Accuracy (%)

ImageNet

MBPN (Guo et al., 2023) ResNet18 ✗ ✓ 4 63.14
SEW ResNet (Fang et al., 2021a) SEW ResNet18 ✗ ✓ 4 63.18

DeepTAGE (Liu et al., 2025) ResNet18 ✗ ✓ 4 68.52
PMSN (Chen et al., 2024) SEW ResNet18 ✓ ✓ 4 66.64
PSN (Fang et al., 2023b) SEW ResNet18 ✓ ✗ 4 67.63

DSN (Ours) SEW ResNet18 ✓ ✓ 4 68.21

CIFAR10-DVS

SEW ResNet (Fang et al., 2021a) Wide 7B Net ✗ ✓ 16 74.40
GLIF (Yao et al., 2022) Wide 7B Net ✗ ✓ 16 78.10

DeepTAGE (Liu et al., 2025) VGG-11 ✗ ✓ 10 81.23
RPSU (Li et al., 2024) VGGSNN ✓ ✗ 10 82.00
FPT (Feng et al., 2025) VGG-11 ✓ ✗ 10 85.50

sliding PSN (Fang et al., 2023b) VGGSNN ✓ ✓ 4, 8 82.30,85.30

DSN (Ours) VGGSNN ✓ ✓ 4, 8 83.90,85.30

while the latter two adopt Transformer or recurrent architectures. Competitive results across multiple
datasets and network architectures demonstrate the general effectiveness of DSN.

Sequential CIFAR. The experimental setup and other hyperparameters are kept consistent with
those of PSN (Fang et al., 2023b). Results in Table 3 show that our DSN exceeds PSN and is com-
parable to other baselines such as IPSU (Li et al., 2024). Furthermore, our enhanced DSN achieves
state-of-the-art performance. Despite more parameters, it incorporates more intricate neuron inter-
actions, which is essential for further improving model performance.

ImageNet. We further evaluate the performance of DSN on this larger-scale image classification
task (Deng et al., 2009). The experimental settings are identical to Fang et al. (2023b). As illustrated
in Table 4, our method still achieves relatively higher accuracy among parallel spiking neurons.

CIFAR10-DVS. To validate the effectiveness of our method in processing neuromorphic event, we
select CIFAR10-DVS (Li et al., 2017) as the evaluation benchmark. We adopt the VGG architecture
in Deng et al. (2022). As shown in Table 4, DSN shows performance comparable to sliding PSN.

Time-series Forecasting Tasks. On more realistic time-series forecasting tasks, we adapt DSN to
the following datasets: Metr-la (Li et al., 2018): traffic flow records from Los Angeles; Pems-bay
(Li et al., 2018): traffic flow records from the San Francisco Bay Area; Solar (Lai et al., 2018):
solar power generation data. Baseline architectures include Transformer (Vaswani et al., 2017),
iTransformer (Liu et al., 2024), and their respective SNN counterparts (Zhou et al., 2023; Lv et al.,
2024). For all SNN-based time-series forecasting models, we replace the original LIF neurons with
DSN and make architectural modifications (see Appendix B.3). The Root Relative Squared Error
(RSE) and the coefficient of determination (R2) is used as metrics. It can be seen from Table 5 that
DSN-based architectures exhibit competitive performance on various tasks and prediction lengths.
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Table 5: Experimental results of 3 time-series forecasting tasks with prediction lengths L =
6, 24, 48, 96. ↑ (↓) indicates the higher (lower) the better. All results are averaged across 3 ran-
dom seeds. The leading zero before the decimal point is omitted. Param: parameters (M).

Methods Spike Param. Metric
Metr-la Pems-bay Solar

Avg.
6 24 48 96 6 24 48 96 6 24 48 96

Transformer ✗ 2.53
R2↑ .727 .554 .413 .284 .785 .734 .688 .673 .953 .858 .759 .718 .679

RSE↓ .551 .704 .808 .895 .502 .558 .610 .618 .223 .377 .504 .545 .575

Spikformer ✓ 2.52
R2↑ .713 .527 .399 .267 .773 .697 .686 .667 .929 .828 .744 .674 .659

RSE↓ .565 .725 .818 .903 .514 .594 .606 .621 .272 .426 .519 .586 .596

Spikformer
w/ PSN ✓ 2.68

R2↑ .716 .518 .401 .268 .738 .671 .666 .639 .861 .759 .554 .439 .603
RSE↓ .562 .731 .815 .901 .553 .620 .624 .649 .383 .504 .685 .749 .648

R2↑ .734 .549 .422 .283 .807 .745 .696 .683 .956 .860 .765 .736 .686Spikformer
w/ DSN ✓ 2.68

RSE↓ .539 .720 .804 .896 .475 .538 .581 .594 .219 .373 .481 .572 .566

iTransformer ✗ 1.63
R2↑ .829 .623 .439 .285 .887 .719 .685 .668 .964 .879 .799 .738 .710

RSE↓ .436 .648 .780 .878 .362 .547 .561 .584 .191 .348 .448 .563 .529

iSpikformer ✓ 1.63
R2↑ .817 .618 .440 .279 .879 .744 .687 .674 .961 .876 .795 .738 .709

RSE↓ .475 .668 .752 .905 .376 .536 .569 .580 .204 .333 .465 .521 .532

R2↑ .823 .624 .440 .283 .883 .740 .689 .672 .964 .879 .798 .736 .711iSpikformer
w/ DSN ✓ 1.79

RSE↓ .450 .646 .755 .881 .368 .541 .564 .583 .199 .350 .450 .526 .526

Table 6: Experimental results on WikiText-103
dataset. ↓ indicates the lower the better. Param:
parameters (M). Ppl: perplexity.

Methods Param. Ppl. ↓

SpikeGPT (Zhu et al., 2024b) 213 39.75

SPikE-SSM (Zhong et al., 2024) 75 33.18

SpikingSSM (Shen et al., 2025) 75 33.94

DSN (Ours) 137 29.60

WikiText-103. To demonstrate that DSN can
model more complex sequences such as lan-
guage, we evaluate its perplexity on WikiText-
103 (Merity et al., 2017), a large-scale word-level
dataset constructed from the English Wikipedia.
Results in Table 6 show that DSN performs the
best among spiking language models with a mod-
erate number of parameters. Since our explo-
ration of the model architecture is preliminary,
further improvements of DSN-based language
models can be expected in the future.

5.3 ENERGY CONSUMPTION

Table 7: Energy cost (mJ) of different methods.

Methods S-CIFAR10 S-CIFAR100

LIF (Abbott, 1999) 107.80 121.36
PSN (Fang et al., 2023b) 235.87 241.64

DSN (Ours) 104.24 110.29

We follow the method in Yao et al. (2023a) to
evaluate the energy consumption of the Sequen-
tial CIFAR network with different spiking neu-
rons. Results in Table 7 show that although
additional modules such as convolution oper-
ations were introduced, the total energy con-
sumption of DSN is slightly lower than that of
LIF due to its reduced spike firing rate. Additionally, PSN has the highest energy cost due to matrix
multiplication and high spike firing rate. See Appendix B.5 for more details.

6 CONCLUSION

In this paper, we identify a critical limitation in existing efforts toward parallel training in SNNs:
the neglect of preserving essential characteristics of vanilla spiking neurons, including the functions
of the reset mechanism and the capability for serial inference. Under a new functional viewpoint,
we summarize the functions of the reset mechanism in vanilla spiking neurons as introducing non-
linearity and controlling membrane potential. Based on this, we propose a guideline for designing
parallel spiking neurons and introduce a dynamic decay spiking neuron that offers improved func-
tions compared to reset while remaining compatible with serial inference. We verify the competitive
training efficiency, generality across multiple tasks, and energy consumption of our method. Our
work offers new insights into the exploration of high-performance spiking neurons with efficient
training and inference abilities in the era of foundation models.
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A DETAILS OF THEORETICAL ANALYSIS

A.1 PROOF OF FUNCTIONS OF DYNAMIC DECAY

Proposition A.1. Dynamic decay can introduce nonlinearity and enabling more flexible ∆-short
and long control of the membrane potential than the reset mechanism.

Proof. Firstly, with dynamic decay, the iteration form of the membrane potential is:

Ht = αtHt−1 + (1− αt)Xt. (13)

which can be rewritten as

Ht =

t∑
i=1

 t∏
j=i+1

αj

 (1− αi)Xi. (14)

Note that the coefficient of Xi is input-dependent, which implies that the combination of Xi is not
actually a linear term. From Definition 3.1, we conclude that dynamic decay introduces nonlinearity.

Next, we show how αt controls the membrane potential Ht. Given ∆ ∈ N+, suppose Ht−∆ ≥ Vth
and Xt−∆+1, ..., Xt < Vth/∆. Note that when

αt−∆+1 <
Vth −Xt−∆+1

Ht−∆ −Xt−∆+1
∈ (0, 1] (15)

We have
Ht−∆+1 = αt−∆+1Ht−∆ + (1− αt−∆+1)Xt−∆+1

= αt−∆+1(Ht−∆ −Xt−∆+1) +Xt−∆+1

< Vth −Xt−∆+1 +Xt−∆+1 = Vth.

(16)

For m = 2, 3, ...,∆, we sequentially derive

Ht−∆+m = αt−∆+mHt−∆+m−1 + (1− αt−∆+m)Xt−∆+m

< αt−∆+mVth + (1− αt−∆+m)Vth = Vth
(17)

When m = ∆, Ht < Vth. From Definition 3.2, every αt satisfying Eq. 15 can guarantee ∆-short
control ability and avert continuous firing when inputs are smaller than threshold.

For long control ability, suppose that {Xt} has an upper bound C, i.e., Xi ≤ C, i = 1, 2, ..., t. It is
easy to get that H1 = (1− α1)X1 ≤ C. Besides, if Ht−1 ≤ C, then

Ht = αtHt−1 + (1− αt)Xt ≤ αtC + (1− αt)C = C (18)

By mathematical induction, we know that {Ht} has an upper bound C. From Definition 3.3, αt has
long control ability.

A.2 DYNAMIC DECAY IN INTEGER-VALUED TRAINING CASE

When the integer-valued training technique is introduced, dynamic decay is still able to retain the
two functions of the reset mechanism. According to Proposition 1 of Yao et al. (2025), integer-value
output (with upper bound N ) is equal to the sum of spikes generated by IF-SR (IF with Soft Reset)
spiking neuron with N timesteps. Therefore, functions of the reset mechanism are still preserved at
the single-neuron level. Consequently, Proposition 4.1 should still hold in the integer spike scenario.

In fact, assuming the integer spiking function f(Ht) = ⌊Clip(Ht, 0, N)⌋ and Vth = 1, where
Clip(x, 0, N) means clipping the input x to the range [0, N ], and ⌊.⌋ is the floor function. Since
the functions of non-linearity and membrane potential control in dynamic decay are independent of
the choice of the spike firing function, this concludes our functional analysis in Proposition 4.1 in
integer-valued training case.
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A.3 DETAILED DERIVATION OF DYNAMIC DECAY FROM SERIAL TO PARALLEL FORM

After removing the reset mechanism, the membrane potential iteration is no longer influenced by
spike firing, allowing us to focus solely on the following serial formulation:

Ht = αt ⊙Ht−1 + (1−αt)⊙Xt. (19)

Here, Ht,αt,Xt ∈ RC×1 has C channels. ⊙ denotes element-wise product. The above equation
can be rewritten into a general form determined solely by X1,X2, ...,Xt:

Ht =

t∑
i=1

 t∏
j=i+1

αj

 (1−αi)⊙Xi. (20)

We stack H1,H2, ...,HT to obtain H ∈ RC×T , do the same for X ∈ RC×T , and can finally get
H = XW parallel form, where Wij = (

∏j
k=i+1 αk)(1−αi) for j ≥ i, otherwise Wij = 0.

We first temporarily ignore the term (1 − αi). Then, an all-ones upper triangular matrix M can
capture the distinction between cases for i and j. We observe that

∏j
k=i+1 αk can be rewritten into

a form with indices starting from 1 by matrix multiplication and reciprocals:

W =

((
1

P

)T

P

)
⊙M,where P ∈ RC×T ,Pj =

j∏
k=1

αk (21)

Finally, by taking (1−αi) into account, we obtain the parallel form

H = X

(((
1−A

P

)T

P

)
⊙M

)
,where A ∈ RC×T ,Ai = αi (22)

B EXPERIMENTAL DETAILS

B.1 ACCELERATION

Measurement of GPU Resource Utilization. GPU computational cores have theoretical limits on
memory throughput (bytes/s) and compute throughput (FLOPs/s). An algorithm’s GPU resource
utilization is determined by how closely its achieved throughput approaches these theoretical peaks.
For example, FlashAttention-2 (Dao, 2024) increases the proportion of matrix multiplication, paral-
lelizes attention operations, and achieves over 50% of the theoretical peak throughput, significantly
accelerating model training. The process of updating the membrane potential in a spiking neuron
module involves sequential execution across multiple compute kernels. We employ NVIDIA Nsight
Compute tool to analyze the kernel execution of spiking neurons. Denoting the execution time of
the i-th compute core as ti and its ratio of throughput to the theoretical peak as Throughputi, the
GPU resource utilization rate of the module is defined as the weighted average throughput of total
N compute cores:

Throughputavg =

∑N
i=1 ti ∗ Throughputi∑N

i=1 ti
(23)

We evaluate this metric on the spiking neurons in the first activation layer of the neural network used
for Sequential CIFAR10, and the experimental setup can be found in B.2. All the experiments are
carried out on an NVIDIA A100 GPU.

Discussion about the Optimization Level. Traditional PyTorch-based training approaches for
SNNs often suffer from substantial redundant computation and memory access due to serial pro-
cessing, leading to a sharp increase in training time as the number of timestep grows. To improve
training speed, certain critical operators can be implemented using CUDA. By modifying the orig-
inal computation and memory access patterns, finely controlling GPU threads and memory utiliza-
tion, and developing specialized computational instructions in hardware, the algorithm’s runtime
can be significantly reduced. For example, Spikingjelly (Fang et al., 2023a) employs CuPy (Nishino
& Loomis, 2017) to implement operators of spiking neurons such as LIF model, combining multi-
ple operations into a single CUDA kernel. This reduces kernel invocation overhead and improves

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

computational efficiency, achieving CUDA-level acceleration, and markedly reducing the difficulty
of training SNNs. However, crafting customized CUDA operators for specific algorithms requires
significant development effort and specialized expertise. Therefore, researchers are exploring inter-
mediate optimization frameworks for kernel programming, such as Triton (Tillet et al., 2019) and
TileLang (Wang et al., 2025), which aim to offer high optimization performance while being more
accessible for researchers to develop. In short, the optimization levels of an algorithm are as follows:

Torch < Triton < CUDA (24)

Generally speaking, the higher the optimization level of an algorithm, the faster its execution speed.

To provide a fairer evaluation of the acceleration gains brought by DSN parallelization, we expand
the acceleration experiment in Table 8. Our discussion of the results is as follows:

Table 8: A comparison of the training time (in ms) and the ratio of memory (Mem.) and compute
(Comp.) throughput to the theoretical peak (%) of different spiking neurons and implementation.
For training time, the timestep 32∗ is for Sequential CIFAR10 and 128 ∼ 512 are for CIFAR10.

Methods Parallel Level
Forward Backward Throughput rate

32∗ 128 256 512 32∗ 128 256 512 Mem. Comp.

LIF (Abbott, 1999) ✗ Torch 4.90 19.53 41.31 77.42 5.84 25.34 52.77 101.88 31.02 15.93

LIF (Fang et al., 2023a) ✗ CUDA 0.59 0.56 0.60 0.58 0.27 0.25 0.25 0.25 47.13 18.40

PSN (Fang et al., 2023b) ✓ CUDA1 0.20 0.24 0.20 0.21 0.23 0.22 0.24 0.25 39.56 43.33

DSN (Ours) ✗ Triton 7.00 26.74 52.92 106.39 20.62 68.42 136.74 267.13 18.96 18.12

DSN (Ours) ✓ Triton 0.68 0.75 0.68 0.69 0.71 0.64 0.69 0.64 58.58 44.10

• The parallel training speed of DSN is higher than that of serial training. Notably, under serial
training, the Triton implementation of DSN performs similarly to the Torch implementation of
LIF. This is because the Triton kernel in the experiment is invoked step by step over time, rather
than processing all timesteps in a single pass. As a result, the memory access and computation
patterns across timesteps are essentially the same as those in the Torch implementation of LIF.

• The parallel training speed of DSN at Triton level is only slightly lower than the serial training
speed of LIF at CUDA level. This is understandable because the optimization level of Triton is
lower than that of CUDA. Although LIF can achieve acceleration by increasing the optimization
level, the algorithm itself cannot be parallelized. As a result, its utilization of GPU resource
is limited. A clear indication is that the memory throughput and compute throughput of LIF
at CUDA level (47.13% / 18.40%) are even lower than those of DSN at Triton level (58.58% /
44.10%). Hence, since DSN is parallelized, if we also accelerate it at the CUDA level, the training
speed is expected to surpass that of LIF at CUDA level.

Triton-based Operator. We found that the dynamic decay form of DSN matches the HGRN op-
erator in flash-linear-attention library2. Therefore, in this paper, we leverage this Triton operator to
enable parallel training of DSN.

B.2 SEQUENTIAL CIFAR, IMAGENET AND CIFAR10-DVS

In this work, we set DSN hyperparameters N = 4, k = 4, and τ = 0.5.

Sequential CIFAR. We use the width of the image as the sequence length (L = 32) to obtain a
serialized version of CIFAR dataset. The model architecture is consistent with that of PSN (Fang
et al., 2023b) as detailed in Table 9. For hyperparameter settings, the training is conducted over 256
epochs with a cosine decay learning rate schedule, starting at a maximum of 0.001. We set the batch
size to 128 and select AdamW optimizer (Loshchilov & Hutter, 2019) with zero weight decay.

1The membrane potential in PSN can be expressed as a matrix multiplication, which enables efficient exe-
cution on GPUs using FP16 GEMM kernels and specialized Tensor Core hardware. Therefore, this constitutes
acceleration at the CUDA level.

2https://github.com/fla-org/flash-linear-attention
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Table 9: Configurations of Conv-based SNNs for Sequential CIFAR dataset. BN: BatchNorm, FC:
Fully Connected.

Stage Layer Specification Configuration

1
Conv1D-BN-DSN Block × 3 Conv: (3, stride=1, padding=1), Dim: 128

Average Pooling Feature size: 32 → 16

2
Conv1D-BN-DSN Block × 3 Conv: (3, stride=1, padding=1), Dim: 128

Average Pooling Feature size: 16 → 8

3 Flatten-FC1-DSN-FC2 FC1: 1024 → 256, FC2: 256 → class num

ImageNet and CIFAR10-DVS. For ImageNet, our experimental setup is identical to that of PSN
(Fang et al., 2023b). For CIFAR10-DVS, we use AdamW (Loshchilov & Hutter, 2019) as the
optimizer with a learning rate of 0.001, while keeping all other settings consistent with PSN.

B.3 TIME-SERIES FORCASTING TASKS

We rely on two Pytorch-based frameworks to build the baseline networks: SnnTorch (Eshraghian
et al., 2023) and SpikingJelly (Fang et al., 2023a). For SNNs with LIF neurons, we set the training
timestep T = 4, the threshold Vth = 1.0, and the decay rate β = 0.99. For SNNs with DSN neurons,
thanks to integer-valued training techniques, we do not directly expand timesteps to perform 0-1 en-
coding for temporal tasks. Instead, N = 4 is regarded as the expanded 4 timesteps. The architecture
and size of DSN-based model are aligned with Lv et al. (2024). For training hyperparameters, we
use a batch size of 128 and employ Adam optimizer (Kingma & Ba, 2015) with a learning rate of
1×10−4. An early stopping strategy is implemented with a tolerance of 30 epochs. The experiments
are conducted using 4 NVIDIA RTX A6000 GPUs.

To assess the performance of our model, we use the Root Relative Squared Error (RSE) and the
coefficient of determination (R2), defined as follows:

RSE =

√√√√∑M
m=1 ||Ym − Ŷm||2∑M
m=1 ||Ym − Ȳ||2

, (25)

R2 =
1

MCL

M∑
m=1

C∑
c=1

L∑
l=1

[
1−

(Y m
c,l − Ŷ m

c,l )
2

(Y m
c,l − Ȳc,l)2

]
. (26)

In these formulas, M is the size of the test set, C is the number of channels, and L is the prediction
length. Ȳ represents the average of Ym. Y m

c,l denotes the l-th future value of the c-th variable in
the m-th sample, while Ȳc,l is its average across all samples. Ŷm and Ŷ m

c,l denote the ground truth
values. Unlike Mean Squared Error (MSE) or Mean Absolute Error (MAE), these metrics are less
sensitive to the absolute scale of the dataset, making them particularly well suited for time-series
forecasting tasks.

Regarding the improvements in Spikformer (Zhou et al., 2023), in addition to replacing the spiking
neurons, we also make architectural modifications to achieve better performance. Specifically, we
expand the first DSN in the Feed-Forward Network (FFN) block to an enhanced DSN to improve
the interaction between different neuron channels. However, this increases the total number of
parameters in the FFN block by 16C2, where C is the number of channels. To maintain the same
total parameter count 8C2 of the FFN block, we reduce the expansion ratio of the linear mapping
from the usual 4 to 2. The architecture of the FFN block before and after modification is shown in
Fig. 4.
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Figure 4: The FFN block in Spikformer with DSN before (left) and after (right) modification. BN:
BatchNorm.

B.4 WIKITEXT-103

Considering the complexity of modeling language models, we use enhanced DSN in this experiment.
Our language model is built by stacking DSN-based blocks:

X ′ = X +DSN(LayerNorm(X))W (27)

In Eq. 27, before entering DSN neurons, the input X first passes through a LayerNorm layer to
maintain training stability for deep networks. The spike-driven output signal undergoes sparse com-
putation in a linear mapping layer with learnable parameters W . Additionally, we use a membrane
shortcut (Hu et al., 2025) to achieve identity mapping (He et al., 2016) with spike-driven character-
istics.

Our experiment is implemented on 8 NVIDIA A800 GPUs. The hyperparameters are largely based
on S4 (Gu et al., 2022) and SpikingSSM (Shen et al., 2025), as shown in Table 10. The key difference
is that we shorten the length of the training text to 1024. To maintain the number of tokens per
training step, we increase the batch size per GPU to 8. Notably, we do not further explore the
architecture design and hyperparameters of this experiment, which could be an avenue for future
research.

Table 10: Configurations of DSN-based language model on WikiText-103.

Configurations WikiText-103
Layer Depth 16

Model Dimension 1024
Learning Rate 5e-4

Learning Rate Schedule Cosine Decay, with 500 warmup steps
Optimizer AdamW (Loshchilov & Hutter, 2019)

Weight Decay 0.01
Batch Size per GPU 8

Epochs 100

B.5 ANALYSIS OF ENERGY CONSUMPTION

We follow the method in (Yao et al., 2023a) to evaluate the energy consumption of the Sequential
CIFAR network using different spiking neurons. Specifically, the energy consumption for floating-
point operations (FLOPs) is calculated by EMAC ·FLOPs, while the energy consumption for spike-
based operations is calculated by EAC · T ·R · FLOPs. Here, EMAC = 4.6pJ and EAC = 0.9pJ
in 45nm technology. T denotes timestep and R denotes the spike firing rate. The FLOPs of the n-th
Conv1D layer are kn ·dn · cn−1 · cn, where kn is the kernel size, dn is the sequence channel number,
cn−1 and cn are the input and output convolution channel numbers, respectively. The FLOPs of the
m-th fully connected layer are im · om, where im and om are the input and output channels of the
layers.
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The energy consumption from LIF neurons itself is usually considered negligible compared to that
of the network architecture, including convolution and fully connected layers. In contrast, PSN and
DSN have more complex internal structures, leading to non-negligible energy consumption. We
present a statistical method for FLOPs within spiking neurons and summarize it in Table 11.

Table 11: Statistical methods of FLOPs within spiking neurons. c: number of spiking neuron. T :
Timestep. k: kernel size of causal convolution.

Spiking Neuron Internal Structure FLOPs
LIF (Abbott, 1999) Update of Membrane Potential c · T

PSN (Fang et al., 2023b) Update of Membrane Potential c · T 2

DSN (Ours)
Causal Conv1D k · c · T

Sigmoid Function c · T
Update of Membrane Potential c · T

The spike firing rates of different layers3 in Conv-based SNN for Sequential CIFAR using different
spiking neurons are presented in Table 12. Our DSN exhibits a lower spike firing rate than that of
LIF, which helps offset the additional energy cost introduced by the dynamic decay module.

Table 12: Spike firing rates of Conv-based SNN for Sequential CIFAR10 and CIFAR100. Convx:
Conv1D of the x-th layer. FC: Fully Connected.

Dataset Methods Conv2 Conv3 Conv4 Conv5 Conv6 FC1 FC2 Average

Sequential
CIFAR10

LIF (Abbott, 1999) 0.1511 0.1422 0.1811 0.1553 0.1457 0.0926 0.0647 0.1499
PSN (Fang et al., 2023b) 0.2200 0.3101 0.1575 0.1542 0.1516 0.1439 0.1239 0.2143

DSN (Ours) 0.1349 0.1337 0.1301 0.1301 0.0982 0.0380 0.0484 0.1238

Sequential
CIFAR100

LIF (Abbott, 1999) 0.2264 0.1281 0.1881 0.1581 0.1561 0.1018 0.1584 0.1698
PSN (Fang et al., 2023b) 0.3221 0.2127 0.1887 0.1682 0.1509 0.1735 0.1458 0.2229

DSN (Ours) 0.1384 0.1420 0.1404 0.1349 0.1240 0.0362 0.0973 0.1324

B.6 APPROXIMATION EXPERIMENT

Dynamic decay adaptively retains part of historical information stored in the membrane potential
based on changing input. From the perspective of approximation, dynamic decay is powerful to
simulate the behaviors of spiking neurons with various internal structures. During training, the
spiking neuron learns to construct different reset mechanisms to model different input by regulating
decay. For example, if the information is better suited to be encoded in the form of hard reset,
the spiking neuron only needs to approximate a binary classifier to decide whether to set αt to be
constant β or 0. This plasticity of dynamics potentially breeds rich memory abilities. To verify the
expressiveness of spiking neurons with dynamic decay, we design an experiment of using dynamic
decay to approximate the behaviors of multiple LIF neurons with hard or soft reset.

Overview. To begin with, we manually construct two distinct datasets with a timestep of T = 128
named A and B, and split them into training and test set. Dataset A has input signals following a
normal distribution with parameters (µ, σ2), while dataset B is a collection of more regular signals
including sine functions, sigmoid functions, step functions and Poisson encoding with different
parameters. Afterwards, these signals are input into 6 LIF neurons with different reset mechanisms
and membrane time constants. Then, we apply dynamic decay across C = 6 channels with the same
input signals to approximate the membrane potential with that of the LIF neurons described above,
using the Mean Squared Error (MSE) loss function. Lastly, we calculate the spike firing accuracy of
the test set as evaluation metric.

Datasets. The normal distribution parameters of Dataset A are µ = 1, σ = 2. A total of 11,000
samples are collected, with a training-to-test ratio of 10 : 1. The signal generation methods of

3Notably, the input to the first convolutional layer are floating-point numbers of the original sequence, rather
than processed spikes. Therefore, this layer is not involved in the calculation of the spike firing rate.
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Dataset B is shown in Table 13. Each type of signal generates 200 samples (totally 800 samples),
with 10% randomly selected as test set and the remaining samples used for training.

Table 13: The signal generation methods of Dataset B. x = 0, 1, ..., T − 1. The notation [a :
b : c] means selecting c evenly spaced values from a to b. For example, [5 : 15 : 5] is equal to
5, 7.5, 10, 12.5, 15. Different parameters can be combined with each other to obtain samples with
different characteristics, with the corresponding c multiplied. For Poisson Encoding, Random(·)
denotes the random sampling of a floating-point number from the interval [0, 1], and each set of
parameters is repeated 8 times to generate 8 samples.

Signal Type Formulation Specification

Sine Function input = A sin(ωx) +B ω = 2πC−1
T−1 , A = [−2 : 3 : 5], B = [−2 : 3 : 8], C = [5 : 15 : 5]

Sigmoid Function input = A · Sigmoid(x′) x′ = 20
T−1x− 10 +B,A = [−2 : 5 : 10], B = [10 : 10 : 20]

Step Function input = A ·Heaviside(x′) x′ = x−B,A = [−2 : 5 : 10], B = [0 : T : 20]

Poisson Encoding input = A ·Heaviside(p) p = Random(x)− p0, A = [−1 : 5 : 5], p0 = [0.3 : 1 : 5]

Spiking Neurons. We set the threshold of LIF neurons to be 1, and the structure of dynamic decay
is as follows:

X′
t = CausalConv1Dup(Xt−k+1:t) (28)

X′′
t = ReLU(X′) (29)

X′′′
t = CausalConv1Ddown(X

′′
t−k+1:t) (30)

αt = Sigmoid(X′′′
t )1/τ (31)

Here, Xt ∈ RC×1, and Xt−k+1:t denotes k inputs from Xt−k+1 to Xt. CausalConv1D(·) is causal
1D convolution and the indices up and down represent the expansion of the input channels from C
to eC, and the reduction from eC to C, respectively. τ is a hyperparameter to fine-tune αt. In this
experiment, we set k = e = 8, and τ = 0.5.

Training. We set a batch size of 128 and employ Adam optimizer (Kingma & Ba, 2015) with a
cosine decay schedule whose peak learning rate is 1× 10−2. The training epochs are 100. To align
with the techniques used in the main text, we also conducted experiments using dynamic decay to
approximate integer-valued spikes (we set N = 4). Since integer-valued spikes are only meaningful
in the case of soft reset (Yao et al., 2025), we fit only LIF neurons with soft reset in this case.

Results and Discussions. Results in Table 14 and Fig. 5 show that dynamic decay generally fits
well to LIF neurons with different reset structures under various types of input signals, indicating its
potential for expressiveness. When the spikes become integers, the fitting accuracy of dynamic de-
cay further improves on both datasets, supporting our view that the integer-valued training technique
and dynamic decay have a complementary effect in terms of expressiveness. Specifically, there are
two details that merit our attention:

• As the membrane time constant increases, the fitting accuracy declines. This could be due to the
growing influence of historical information on the integration mechanism of the spiking neuron,
and modeling such information has always been a challenging task. However, in the current
modeling of the LIF model, the value of τm typically does not exceed the range specified in Table
14 (usually τm = 2 in (Yao et al., 2023a; 2025)), and our focus is on more general fitting scenarios.
Additionally, the introduction of integer-valued spikes can significantly suppress this fitting error.

• When the membrane potential approaches the threshold, the error between the membrane potential
predicted by dynamic decay and the true value generated by the LIF neuron is small for noise that
follows a normal distribution. However, for a sine wave signal, the error between the two is larger
(see Fig. 5). We speculate that the cause of this difference lies in the fact that the proportion of
data near the threshold is smaller for the sine signal compared to the noise signal with a mean
µ equal to the threshold. This makes it more difficult for dynamic decay to learn how to handle
membrane potential fluctuations near the threshold.
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Table 14: Experimental results of applying dynamic decay to approximate various LIF neurons
with reset mechanisms on manually constructed datasets with different signals. Each channel of the
parallel spiking neuron with dynamic decay is fitted with a LIF neuron. We report the spike firing
accuracy (%) across 6 different channels and average them. *: results with integer-valued spike.

Channel LIF neurons to fit Dataset A Dataset B Dataset A* Dataset B*

1 hard reset, τm = 4/3 99.49 98.36 — —
2 hard reset, τm = 2 95.10 95.50 — —
3 hard reset, τm = 4 85.87 90.18 — —
4 soft reset, τm = 4/3 99.03 98.20 99.30 99.01
5 soft reset, τm = 2 93.87 96.40 98.50 98.14
6 soft reset, τm = 4 84.83 91.65 97.59 97.82

Average — 92.97 95.05 98.46 98.32

Figure 5: Signal responses including membrane potential and spike for LIF neuron and its dynamic
decay prediction on channel 2. Subplots from top to bottom depict the responses to a noise following
normal distribution, sine function, and Poisson encoding.

C LIMITATIONS

Design of Dynamic Decay. In this paper, we propose using causal convolution to model the rela-
tionship between decay factors and inputs. In fact, dynamic decay is a design paradigm that allows
for various concrete implementations. Developing more effective dynamic decay mechanisms to
improve the internal dynamics of spiking neurons is a promising direction for future research.

Operator Optimization. DSN employs Triton-based operators to strike a balance between training
efficiency and ease of development. With more effort invested in developing CUDA-level operators,
the training speed and GPU resource utilization could be further improved.

Neuromorphic Chip Deployment. There are still some gaps before DSN can be deployed on
neuromorphic chips. On the one hand, according to existing research (Yao et al., 2025), the integer
output can be converted to asynchronously emitted spikes with five key advantages when deployed
on neuromorphic chips. On the other hand, further algorithmic optimizations might help avoid
complex computations within DSN. For example, instead of multiplying between floating point
weights and activations, the weights could be quantized to ternary values (-1, 0, 1) (Ma et al., 2024;
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Zhu et al., 2024a), or a spiking function could be inserted to convert floating point inputs into spikes
in advance. For the sigmoid function, the base could be replaced with 2 to enable lightweight
computations using shift operations (Tang et al., 2025).
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