
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARALLEL TRAINING IN SPIKING NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neurons mimic the spatiotemporal dynamics of biological neurons and
their spike-based communication, endowing Spiking Neural Networks (SNNs)
with biological plausibility and low-power operation. Yet these dynamics impose
strict temporal dependencies on neuronal states, preventing parallel training and
creating a fundamental bottleneck to efficient, scalable optimization. This work
introduces a novel functional perspective to address this challenge. Specifically,
we argue that the reset mechanism, which induces state dependencies, should be
removed. However, any modification must satisfy two principles: i) preserving
— and even enhancing — the functions of reset as a core biological mechanism;
and ii) enabling parallel training without sacrificing SNNs’ inherently serial infer-
ence, which underpins their energy efficiency. To this end, we identify functions
of the reset mechanism and analyze how to reconcile parallel training with serial
inference, upon which we propose a dynamic decay spiking neuron that combines
a causal convolution structure with an optimized spike firing pattern. We demon-
strate the efficiency and effectiveness of our approach across diverse network ar-
chitectures and task benchmarks, including image classification, neuromorphic
event processing, time-series forecasting, and language modeling.

1 INTRODUCTION

Spiking neurons incorporate information across spatial and temporal into a membrane potential, i.e.,
the neuronal state. If this potential surpasses a threshold, the neuron fires a spike and the potential is
reset; otherwise, it decays (Maass, 1997). Thus, SNNs exhibit spike-based event-driven dynamics:
sparse accumulations occur only upon spike transmissions between neurons, while the network stays
idle otherwise (Roy et al., 2019). Deploying SNNs on neuromorphic hardware (Merolla et al., 2014;
Davies et al., 2018; Pei et al., 2019) yields significant energy savings. For example, the asynchronous
sensing-computing neuromorphic chip Speck consumes merely 0.42 mW at idle, and its dynamic
power under typical vision scenarios can be kept within the mW range (Yao et al., 2024).

Directly training large-scale SNNs has long been a core challenge in the field. The progress can be
viewed in three stages. i) Trainability under spike communication constraints: surrogate-gradient
methods (Wu et al., 2018; Neftci et al., 2019) were proposed to handle the spike activation func-
tion, which is not differentiable, so that SNNs can be trained with backpropagation algorithm. ii)
Going deeper without performance degradation: to reduce accuracy degradation in deeper SNNs, re-
searchers introduced spiking residual connections (Fang et al., 2021a; Hu et al., 2025), new network
designs (Zhou et al., 2023; Yao et al., 2024), various normalization methods (Zheng et al., 2021),
and training optimization methods (Li et al., 2021; Guo et al., 2022). iii) Efficient training under
complex spatiotemporal dynamic constraints: the goal is to study how to efficiently train larger
SNNs under longer sequences, laying the foundation for directly training large spiking models.

Regarding the challenge mentioned in the third stage above, the reset mechanism prevents parallel
training, which makes SNN training very costly. One line of work keeps reset but speeds up training
by decoupling spatial and temporal dependencies, for example by dropping temporal dependence
during backpropagation (Xiao et al., 2022; Meng et al., 2023), by letting only a subset of neurons
carry temporal information (Hu et al., 2024; Xu et al., 2025), or by using single-step pretraining
followed by multi-step fine-tuning (Lin et al., 2024; Yao et al., 2023b). Another line of work removes
reset. PSN (Fang et al., 2023b) first took this direction and added a learnable parameter matrix along

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the time dimension to compensate for the role of reset. Some subsequent studies have improved
upon PSN, but the resulting models cannot support serial inference (Li et al., 2024; Su et al., 2024).
Another idea is to eliminate reset and approximate the membrane potential of some spiking neuron
via value approximation (Chen et al., 2025; Shen et al., 2025; Feng et al., 2025), but this path is
limited because the best possible performance cannot exceed that of the approximated neuron.

This work takes a novel functional perspective to analyze what constitutes a good design for parallel
training in SNNs. We begin by focusing on the reset mechanism of vanilla spiking neurons, identi-
fying its functions as introducing nonlinearity and controlling the membrane potential. Meanwhile,
we highlight the drawbacks of the reset mechanism, including its inability to adequately fulfill these
functions and its hindrance in parallel training. Finally, we provide a general design guideline for
parallel spiking neurons, which can be summarized as: i) aiming to preserve and even enhance the
functions of reset, rather than mimicking it directly; and ii) deriving the parallel formulation from
the serial one to ensure compatibility between parallel training and serial inference.

Based on these insights, we propose a dynamic decay spiking neuron with a causal convolution
structure and an optimized spike firing pattern. It can be shown that our approach can perform the
functions of the reset mechanism more flexibly and thoroughly, while also supporting both paral-
lel training and serial inference. We evaluate the advantages of our method in terms of training
efficiency, generality across multiple tasks and network architectures, and energy consumption. Its
general effectiveness spans from convolutional neural networks to Transformers, and across tasks in-
cluding image classification, neuromorphic event processing, time-series forecasting, and language
modeling. The key contributions of this work are as follows:

• A Novel Functional View. Parallel training in spiking neural networks is not merely about re-
placing the reset mechanism with a seemingly effective technique. Instead, it requires a systematic
analysis of how the functions of reset are preserved or enhanced by the modification, which helps
us understand the limitations of existing approaches.

• Design under an Insightful Guideline. From a functional perspective, we provide a design
strategy for parallel spiking neurons. Following this, we propose a dynamic decay spiking neuron,
which implements functions better than reset and remains compatible with serial inference.

• Generality. Our method demonstrates consistently competitive performance across various net-
work architectures and tasks, while also exhibiting training efficiency and energy benefits.

2 RELATED WORKS

Spiking Neuron. The transmission of electrical signals in biological neurons can be modeled using
a series of differential equations. Common spiking neuron models include Hodgkin-Huxley neurons
(Hodgkin & Huxley, 1952), Leaky Integrate-and-Fire (LIF) neurons (Abbott, 1999), Izhikevich neu-
rons (Izhikevich, 2003), etc. Among these, LIF neurons are the preferred choice for training deep
SNNs due to their simplicity (Fang et al., 2021a). Currently, the two main techniques for address-
ing the non-differentiability issue in deep SNNs are converting an artificial neural network (ANN)
into its SNN counterpart (Han et al., 2020; Bu et al., 2022), i.e. ANN-to-SNN, and direct training
methods (Wu et al., 2018; Neftci et al., 2019; Yao et al., 2023b) which use surrogate gradients to
implement backpropagation through time. In this paper, we focus on the latter approach.

Parallel Training in SNNs. Existing methods use parallelizable modules to directly replace the reset
mechanism or approximate the membrane potential of vanilla spiking neurons. For the former, PSN
(Fang et al., 2023b) introduces a learnable parameter matrix. In subsequent works, the alternatives
focus primarily on the update method of membrane potential (Yarga & Wood, 2023; Li et al., 2024;
Su et al., 2024; Xue et al., 2025) and the design of firing functions (Huang et al., 2024b; Chen
et al., 2024; Shen et al., 2025; Bal & Sengupta, 2025). However, these methods either abandon the
inherent serial inference characteristics of vanilla spiking neurons or fail to fully compensate for the
functions of the reset mechanism. For the latter, the approximation methods for membrane potential
range from a simple Bernoulli spike emission condition (Chen et al., 2025), a pre-trained surrogate
dynamic network (Shen et al., 2025), to fixed-point iteration (Feng et al., 2025), but they do not
offer superior performance beyond vanilla spiking neurons. There are also hybrid approaches such
as the refractory LIF model (Zhong et al., 2024), in which the membrane potential of the substitute
is progressively approximated during the iterative process.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Dynamic Decay. For SNNs, the decay factor, usually termed as the membrane time constant in LIF
neurons, implies a limitation on expressiveness due to its fixed nature. PLIF (Fang et al., 2021b)
improves neuronal dynamics by making the decay factor learnable. Subsequent methods param-
eterize the decay factor via adjusting the parameter expression (Fang et al., 2023b; Kosta & Roy,
2023; Shi et al., 2023; Dan et al., 2025; Zhang et al., 2025b), integrating bidirectional parameters
(Su et al., 2024), and introducing a complementary bypass (Huang et al., 2024a). In addition, some
studies apply decay to the firing threshold (Yin et al., 2021; Bittar & Garner, 2022). However, the
decay factor remains static after training. In recent works, gating mechanisms (Yao et al., 2022;
Wang et al., 2024), adaptive membrane time constant (Zhang et al., 2025a) or self-connection cir-
cuit (Wang & Yu, 2024) have been employed to capture various biological features and enhance
adaptiveness. What they have in common is that after training, the decay factor still changes with
variations in input, membrane potential, and output spikes. This data-dependent paradigm inspires
us to delve deeper into dynamic decay that is solely related to input.

3 A FUNCTIONAL VIEW OF PARALLELIZING SPIKING NEURONS

Removing the reset mechanism makes spiking neurons trainable in parallel. To understand what this
change truly does, we need to answer two basic questions: i) What is the function of reset; ii) How
can we compensate for that function, or even improve upon it. The first helps us make sense of prior
work, and the second is the key to design parallel spiking neurons.

3.1 RESET MECHANISM AND ITS FUNCTION

Membrane
potential Threshold

Time
0

Reset

Figure 1: Illustration of a biological neuron
(left) and the reset mechanism in neuronal
dynamics (right).

Hard and Soft Reset. In biological neurons, the de-
polarized membrane potential is restored to the rest-
ing state after the soma fires a spike (Luo, 2020).
Spiking neurons abstract the neuronal dynamics de-
scribed above. Considering the trade-off between
bio-plausibility and computational efficiency, the
most widely used spiking neuron is the LIF, whose
discrete iterative form is as follows (Wu et al., 2018):

Ht = βVt−1 + (1− β)Xt, (1)
St = Θ(Ht − Vth), (2)

Vt =

{
Ht(1− St) + VresetSt, hard reset
Ht − VthSt, soft reset

. (3)

In Eq. 1, the current input Xt is integrated with the membrane potential Vt−1 from last timestep,
and the decay factor β = 1 − 1

τm
, where τm is membrane time constant. In Eq. 2, the Heaviside

step function Θ(x) = 1 when x ≥ 0, i.e. the membrane potential Ht exceeds the threshold Vth,
indicating that a spike is fired; otherwise, it is set to 0. According to how the membrane potential
is regulated based on output spikes, reset can be generally categorized into hard and soft reset as
depicted in Eq. 3. In hard reset, the charged membrane potential Ht will be set to a constant Vreset
if a spike is fired, otherwise it will remain unchanged. Vreset is commonly set to 0 for simplicity. In
contrast, soft reset subtracts Ht by Vth when a spike is fired.

Functions of Reset Mechanism. The first function is to introduce nonlinearity. Specifically, the
reset mechanism enriches the temporal dynamics of spiking neurons by establishing the following
nonlinear relationship between the membrane potential and the input:
Definition 3.1. If the expression Ht = g(X1, X2, ..., Xt) is not a linear equation, then the hidden
state with respect to the inputs is considered nonlinear.

Remark: Without reset, Eq. 1 can be expanded into a linear form with respect to input.

Ht =

t∑
i=1

βt−i(1− β)Xi. (4)

In contrast, both hard and soft reset insert the firing function f(.) into the iteration of membrane
potential at two adjacent timesteps. Taking hard reset as an example, if letting Vreset = 0 and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Membrane
potential

𝑉𝑉th = 1

Time0 1 2 3 4

4.0

1.5

Input

𝚫𝚫-Short Control Long Control(a)

5 6

1 2 3 4 5 6

1 0 0 0 1 0
Output

4.0 1.5

Membrane
potential

𝑉𝑉th = 1

Time0 1 2 3 4

4.0

1.5

Input

5 6

1 2 3 4 5 6

1 1 0 0 1 0
Output

4.0 1.5

IF with hard reset IF with a balanced mechanism

Membrane
potential

𝑉𝑉th = 1

Time0 1 2 3 4

4.0

1.5

Input

5 6

1 2 3 4 5 6

1 1 1 1 1 0
Output

4.0 1.5

3.0

2.0

IF with soft reset

(b)
Membrane
potential

𝑉𝑉th = 1

Time0 1 2 3 4

1.5

Input

5 6

1 2 3 4 5 6

0 1 1 1 1 0
Output

0.5 0.5

3.0

2.0

IF without reset

0.5

2.5

0.5 0.5 0.5 0.5

Figure 2: Target scenarios for ∆-short control and long control. (a) Hard reset provides short control
at ∆ = 1 level, but it does not allow differentiation between inputs of varying importance. In
contrast, soft reset extends the control duration as the input magnitude increases, which can lead to
continuous spike firing. We expect to find a balanced approach that flexibly determines the duration
of the membrane potential’s effect based on the input. (b) Without reset, IF neuron carries a risk of
membrane potential explosion even with a relatively small constant input sequence {0.5}.

combining Eq. 1 and Eq. 3, we will derive one-step iteration form of the membrane potential.

Ht = β(1− f(Ht−1))Ht−1 + (1− β)Xt. (5)

Obviously, it cannot be transformed into an input-dependent linear equation. This is similar for soft
reset as well. Therefore, we conclude that reset introduces nonlinearity, and several parallel spiking
neuron designs (Fang et al., 2023b; Yarga & Wood, 2023; Bal & Sengupta, 2025) ignore this role.

The second function is to control membrane potential. The reset mechanism constrains the mem-
brane potential within a suitable range and averts ceaseless spike firing. For clarity, we quantitatively
describe the control ability over the membrane potential as ∆-short control and long control:
Definition 3.2. There exists an ∆ ∈ N+ such that, for any t > ∆, if Ht−∆ ≥ Vth and Xt−∆+1, ...,
Xt < Vth/∆, it always holds that Ht < Vth. In this case, the spiking neuron is said to have ∆-short
control over the membrane potential.

Remark: The reset mechanism controls how long a large membrane potential affects the spiking
neuron. For example, consider an IF neuron without a decay factor, with Vth = 1 and H1 = X1 = 4.
In hard reset, the membrane potential is immediately set to 0 after a spike firing, so the effect of the
large input lasts for ∆ = 1 timestep. In contrast, with a soft reset, the spike persists for 4 timesteps.
∆-short control ensures that a very large input affects the spiking neuron only within a relatively
short time window ∆, thereby preventing prolonged spike firing (see Fig. 2).
Definition 3.3. If the input sequence {Xt} has an upper bound C, then the membrane potential
sequence {Ht} also has an upper bound CH . In this case, the spiking neuron is said to have long
control over the membrane potential.

Remark: Long control prevents sustained spike firing or even membrane potential explosion caused
by small inputs that accumulate without being reset (see Fig. 2). In other words, long control keeps
the membrane potential stable over an arbitrarily long period of time.

3.2 GUIDANCE FOR DESIGN BEYOND RESET

Towards Better Functional Realization. Although we have identified two functions of reset, the
reset mechanism itself is not the optimal realization of these functions. Specifically, the effect of
nonlinearity is binary—either 0 or 1—lacking diversity. The control of the membrane potential by
hard or soft reset is rather mechanical and lacks flexibility. In hard reset, no matter how large the
membrane potential is, its effect lasts only one timestep, which makes it difficult to distinguish the
importance of different inputs. Similarly, in soft reset, the amount subtracted from the membrane
potential is fixed. When facing a large input, many timesteps are required to cancel out its effect,
which can lead to continuous spike firing. Therefore, in many existing parallel spiking neuron
designs, structures that attempt to approximate either hard reset (Shen et al., 2025; Feng et al., 2025)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝐻𝐻𝑡𝑡−1 𝐻𝐻𝑡𝑡

𝑆𝑆𝑡𝑡−1 𝑆𝑆𝑡𝑡

𝑉𝑉𝑡𝑡−1 𝑉𝑉𝑡𝑡

𝑋𝑋𝑡𝑡−1 𝑋𝑋𝑡𝑡
𝐗𝐗

𝑋𝑋𝑡𝑡−1

𝐻𝐻𝑡𝑡−1 𝐻𝐻𝑡𝑡

𝑋𝑋𝑡𝑡

𝑆𝑆𝑡𝑡−1 𝑆𝑆𝑡𝑡

𝛼𝛼𝑡𝑡 𝛼𝛼𝑡𝑡+1

𝐗𝐗

𝛽𝛽

1 − 𝛽𝛽1 − 𝛽𝛽

𝛽𝛽

1 − 𝛼𝛼𝑡𝑡1 − 𝛼𝛼𝑡𝑡−1

(a) (b)

Integrate part of spiking neuron
Fire part of spiking neuron

Reset part of spiking neuron
Dynamic decay related to input

Figure 3: Illustration of the computational process of LIF spiking neuron and reset-free spiking
neuron with dynamic decay. (a). In LIF neuron, the current input and the membrane potential from
last timestep are integrated with a constant decay factor β. The integrated Ht determines the firing
of the spike St, which in turn decides whether Ht is reset. (b). After replacing the reset mechanism
with dynamic decay αt, the membrane potential can be computed both serially and in parallel.

or soft reset (Li et al., 2024; Huang et al., 2024b; Chen et al., 2024) can at best reproduce functions
similar to those of the reset mechanism, but cannot achieve functions beyond it. Recognizing the
inherent limitations of reset helps us focus on enhancing the two functions abstracted from it.

Parallel Training and Serial Inference. A natural idea to realize parallel training in SNNs is to re-
place the reset mechanism with other parallelizable technique. However, some previous works (Fang
et al., 2023b; Li et al., 2024; Su et al., 2024) abandon the inherent efficient serial inference ability
of vanilla spiking neurons, namely, the membrane potential at a given timestep can be computed
solely from preceding membrane potential (or a small fixed set of states) and the current input. As a
result, SNNs incur greater computational and memory overhead during inference, and even cannot
operate beyond the training length. Therefore, we argue that parallel training in SNNs should remain
compatible with serial inference, enabling appropriate computational modes at different stages.

Based on the above analysis, we suggest that a good design strategy for parallelizing spiking neurons
is: i) Remove the reset mechanism; ii) Focus on preserving or even enhancing its functions, rather
than approximating the reset mechanism itself; iii) Start by improving the serial formulation and
then derive its parallel counterpart, rather than assuming a parallel form without a serial basis.

4 METHODS: DYNAMIC DECAY SPIKING NEURON

The analysis in Sec. 3 provides general guidance for designing parallelizable spiking neurons.
Building on this, we propose a Dynamic Decay Spiking Neuron (DSN), which includes two modi-
fications to vanilla spiking neurons: i) the reset mechanism is removed and the constant decay β is
replaced with a dynamic decay αt. Here, αt is obtained via a causal convolution over the input. ii)
the spike firing pattern is optimized by incorporating emerging integer-valued training techniques
(Luo et al., 2025). DSN has the following vectorized serial form:

Ht = αt ⊙Ht−1 + (1−αt)⊙Xt. (6)
St = Clip[Round(Ht), 0, N]. (7)

Here, the input Xt ∈ RC×1 has C channels. ⊙ denotes element-wise product. Round(·) indicates
rounding to the nearest integer. Clip[x, 0, N] means clipping the input x to the range [0, N]. N is a
positive integer, representing the upper limit of the number of spikes to be emitted.

In Eq. 19, we derive the dynamic decay αt from Xt−k+1:t (k inputs from Xt−k+1 to Xt) as follows:

α′
t = CausalConv1D(Xt−k+1:t), (8)

αt = Sigmoid(α′
t)

1/τ (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Here, CausalConv1D(·) is a causal 1D convolution to mix the features from the past k inputs.
Sigmoid function is chosen to constrain αt between 0 and 1. τ is a hyperparameter to fine-tune αt.

Design Rationale. After removing the reset mechanism, we find that a varying decay factor can also
introduce nonlinearity and control membrane potential, thereby restoring the functions of reset. This
forms the basis of our initial design. The causal convolution is usually short but has been shown to
be effective in capturing short-term dependency (Gu & Dao, 2024; De et al., 2024). The optimized
spike firing pattern helps reduce training overhead and learn better representations (Yao et al., 2025).
Moreover, we can choose to introduce an extra learnable parameter W ∈ RC×C to mix the features
across different channels of α′

t before applying the Sigmoid function in Eq. 9, i.e. Wα′
t. This

enhanced DSN is suitable as a complete block to further improve the modeling ability of SNNs.

Functions Superior to Reset. DSN is a specific implementation of dynamic decay αt, which can be
related to input at preceding timesteps and is usually limited to between 0 and 1 using a non-linear
activation function with learnable parameters W :

αt = ϕ(Xt, Xt−1, ...|W) ∈ [0, 1] (10)

In fact, we can prove that dynamic decay in Eq. 10 can implement all the functions of reset.
Proposition 4.1. Dynamic decay can introduce nonlinearity and enabling more flexible ∆-short
and long control of the membrane potential than the reset mechanism.

Remark: We provide the detailed proof in Appendix A.1. An intuitive interpretation is that the
variability of αt broadens the expressive range of nonlinearity and allows adaptive control of the
membrane potential. Additionally, we note that the proposition holds for both binary and integer-
valued spike firing, showing that dynamic decay is a general and powerful alternative to reset.

From Serial Inference to Parallel Training. The iterative Eq. 19 can be rewritten into a general
form determined solely by X1,X2, ...,Xt:

Ht =

t∑
i=1

 t∏
j=i+1

αj

 (1−αi)⊙Xi. (11)

We stack H1,H2, ...,HT to obtain H ∈ RC×T , do the same for X ∈ RC×T , and can finally get
H = XW parallel form (See Appendix A.3 for the detailed derivation):

H = X

(((
1−A

P

)T

P

)
⊙M

)
.

Pt =

t∏
i=1

αi, At = αt, Mij =

{
1, j ≥ i

0, j < i
.

(12)

Here, P and A ∈ RC×T . M ∈ RT×T is a causal mask for the interaction of neuronal inputs. 1−A
P

and ⊙ denote element-wise division and product, respectively. During training, the dynamic decay
A, membrane potential H and their gradients can be computed rapidly in parallel1 with Triton-
based acceleration operators (Tillet et al., 2019; Yang & Zhang, 2024). During inference, we switch
to Eq. 19 for efficient serial inference, which requires to store only minimal states from the causal
convolution and recurrent structure, thereby reducing both computational and memory overhead.

5 EXPERIMENTS

In this section, we evaluate the proposed DSN in terms of training efficiency, generality, and energy
consumption. Specifically, the neuronal generality includes: i) The effectiveness of spiking neuron
design, including the causal convolution structure and integer-valued training technique; ii) Flexible
adaptation to various network architectures, such as convolutional neural networks and Transform-
ers; iii) Competitive performance across multiple tasks.

1In practice, we avoid computing H via matrix multiplication due to numerical instability of P as the
denominator (Yang et al., 2024). Instead, we use a two-stage parallel scan algorithm (Martin & Cundy, 2018)
for Eq. 19 to derive H.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of training time (ms) for different spiking neurons. The timestep 32∗ is for
Sequential CIFAR10; others are for CIFAR10. Param: parameters in C spiking neurons of a layer.

Methods Parallel Serial Param.
Forward Backward

32∗ 128 256 512 32∗ 128 256 512

LIF (Abbott, 1999) ✗ ✓ 0 4.90 19.53 41.31 77.42 5.84 25.34 52.77 101.88

PSN (Fang et al., 2023b) ✓ ✗ T 2 0.20 0.24 0.20 0.21 0.23 0.22 0.24 0.25

DSN (Ours) ✓ ✓ NC 0.68 0.75 0.68 0.69 0.71 0.64 0.69 0.64

5.1 TRAINING EFFICIENCY

In this section, we build a convolution-based SNN on CIFAR10 (Krizhevsky et al., 2009) and Se-
quential CIFAR10. For CIFAR10, we adjust the training timesteps by repeating the input images.
For Sequential CIFAR10 where the images from CIFAR10 are input into the model in sequential
pixel form, the timestep is equal to the width 32 of the images. We measure the average time for a
forward and backward pass through the first activation layer with 4096 neurons over 100 trials. The
results in Table 1 lead to the following conclusions:

• DSN benefits from the acceleration provided by parallel training. In contrast to LIF neuron, whose
wall-clock time grows linearly with the number of timesteps, DSN maintains nearly constant run-
time. On Sequential CIFAR10, DSN achieves 7.2× and 8.2× speedups in forward and backward
pass, respectively, compared to LIF neuron. This gap further widens with larger timesteps.

• Given comparable training time, DSN is more parameter-efficient than PSN for longer sequences.
For instance, in a layer with C = 1024 spiking neurons and T = 512 timesteps, DSN requires
only NC = 4 × 1024 parameters, whereas PSN requires T 2 = 5122, resulting in substantial
memory and computational overhead. Additionally, the acceleration operators of DSN have room
for further optimization, as discussed in Appendix B.1.

5.2 GENERALITY

5.2.1 EFFECTIVENESS OF SPIKING NEURON DESIGN

We evaluate the effectiveness of spiking neuron design on Sequential CIFAR10, including the causal
convolution structure and integer-valued training technique. Results in Table 2 show that:

Table 2: Ablation studies on Sequential
CIFAR10. ivt: integer-valued training.

Methods Accuracy (%)

DSN (Ours) 89.78
DSN w/o conv 84.53 (−5.25)
DSN w/o ivt 87.45 (−2.33)

LIF (Abbott, 1999) 81.50
LIF w/ ivt 82.16 (+0.66)

PLIF (Fang et al., 2021b) 83.49
PLIF w/ ivt 84.25 (+0.76)

PSN (Fang et al., 2023b) 88.45
PSN w/ ivt 86.84 (−1.61)

First, dynamic decay is the primary contributor to per-
formance. Removing the causal convolution eliminates
meaningful neuronal dynamics and leads to a significant
degradation. We also test alternative decay structures, in-
cluding fully connected layers for inter-channel interac-
tion (89.28%), low-rank mappings (86.72%), and inter-
channel convolution (86.76%). In comparison, causal
convolution remains a simple yet effective design.

Second, integer-valued training technique effectively
complements dynamic decay. However, not all spiking
neurons see similar improvements; for example, it even
causes a performance drop in PSN. In contrast, models
with decay structures such as LIF, PLIF, and DSN expe-
rience performance gains, with DSN benefiting the most.

Based on the above experiments, we design DSN by combining causal convolution with integer-
valued training technique, and validate its generality across different model architectures and tasks.

5.2.2 GENERALITY ACROSS MULTIPLE TASKS

We evaluate DSN on four types of tasks: image classification, neuromorphic event processing, time-
series forecasting, and language modeling. The first two tasks use convolutional neural network,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance on Sequential CIFAR10 and CIFAR100. The timestep is 32. † means en-
hanced DSN mentioned in Sec. 4. Param: parameters (M). Acc: accuracy (%).

Methods Parallel Serial
S-CIFAR10 S-CIFAR100

Param. Acc. Param. Acc.

LIF (Abbott, 1999) ✗ ✓ 0.513 81.50 0.537 55.45
PLIF (Fang et al., 2021b) ✗ ✓ 0.513 81.50 0.537 55.45
PSN (Fang et al., 2023b) ✓ ✗ 0.521 88.45 0.544 62.21

IPSU (Li et al., 2024) ✓ ✗ 0.517 87.28 0.540 59.76
PMSN (Chen et al., 2024) ✓ ✓ 0.540 90.97 0.560 66.08

DSN (Ours) ✓ ✓ 0.519 89.78 0.542 64.70

DSN† (Ours) ✓ ✓ 0.683 92.96 0.707 68.48

Table 4: Performance on ImageNet and CIFAR10-DVS. T: Timesteps.

Dataset Methods Architecture Parallel Serial T Accuracy (%)

ImageNet

MBPN (Guo et al., 2023) ResNet18 ✗ ✓ 4 63.14
SEW ResNet (Fang et al., 2021a) SEW ResNet18 ✗ ✓ 4 63.18

DeepTAGE (Liu et al., 2025) ResNet18 ✗ ✓ 4 68.52
PMSN (Chen et al., 2024) SEW ResNet18 ✓ ✓ 4 66.64
PSN (Fang et al., 2023b) SEW ResNet18 ✓ ✗ 4 67.63

DSN (Ours) SEW ResNet18 ✓ ✓ 4 68.21

CIFAR10-DVS

SEW ResNet (Fang et al., 2021a) Wide 7B Net ✗ ✓ 16 74.40
GLIF (Yao et al., 2022) Wide 7B Net ✗ ✓ 16 78.10

DeepTAGE (Liu et al., 2025) VGG-11 ✗ ✓ 10 81.23
RPSU (Li et al., 2024) VGGSNN ✓ ✗ 10 82.00
FPT (Feng et al., 2025) VGG-11 ✓ ✗ 10 85.50

sliding PSN (Fang et al., 2023b) VGGSNN ✓ ✓ 4, 8 82.30,85.30

DSN (Ours) VGGSNN ✓ ✓ 4, 8 83.90,85.30

while the latter two adopt Transformer or recurrent architectures. Competitive results across multiple
datasets and network architectures demonstrate the general effectiveness of DSN.

Sequential CIFAR. The experimental setup and other hyperparameters are kept consistent with
those of PSN (Fang et al., 2023b). Results in Table 3 show that our DSN exceeds PSN and is com-
parable to other baselines such as IPSU (Li et al., 2024). Furthermore, our enhanced DSN achieves
state-of-the-art performance. Despite more parameters, it incorporates more intricate neuron inter-
actions, which is essential for further improving model performance.

ImageNet. We further evaluate the performance of DSN on this larger-scale image classification
task (Deng et al., 2009). The experimental settings are identical to Fang et al. (2023b). As illustrated
in Table 4, our method still achieves relatively higher accuracy among parallel spiking neurons.

CIFAR10-DVS. To validate the effectiveness of our method in processing neuromorphic event, we
select CIFAR10-DVS (Li et al., 2017) as the evaluation benchmark. We adopt the VGG architecture
in Deng et al. (2022). As shown in Table 4, DSN shows performance comparable to sliding PSN.

Time-series Forecasting Tasks. On more realistic time-series forecasting tasks, we adapt DSN to
the following datasets: Metr-la (Li et al., 2018): traffic flow records from Los Angeles; Pems-bay
(Li et al., 2018): traffic flow records from the San Francisco Bay Area; Solar (Lai et al., 2018):
solar power generation data. Baseline architectures include Transformer (Vaswani et al., 2017),
iTransformer (Liu et al., 2024), and their respective SNN counterparts (Zhou et al., 2023; Lv et al.,
2024). For all SNN-based time-series forecasting models, we replace the original LIF neurons with
DSN and make architectural modifications (see Appendix B.3). The Root Relative Squared Error
(RSE) and the coefficient of determination (R2) is used as metrics. It can be seen from Table 5 that
DSN-based architectures exhibit competitive performance on various tasks and prediction lengths.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Experimental results of 3 time-series forecasting tasks with prediction lengths L =
6, 24, 48, 96. ↑ (↓) indicates the higher (lower) the better. All results are averaged across 3 ran-
dom seeds. The leading zero before the decimal point is omitted. Param: parameters (M).

Methods Spike Param. Metric
Metr-la Pems-bay Solar

Avg.
6 24 48 96 6 24 48 96 6 24 48 96

Transformer ✗ 2.53
R2↑ .727 .554 .413 .284 .785 .734 .688 .673 .953 .858 .759 .718 .679

RSE↓ .551 .704 .808 .895 .502 .558 .610 .618 .223 .377 .504 .545 .575

Spikformer ✓ 2.52
R2↑ .713 .527 .399 .267 .773 .697 .686 .667 .929 .828 .744 .674 .659

RSE↓ .565 .725 .818 .903 .514 .594 .606 .621 .272 .426 .519 .586 .596

Spikformer
w/ PSN ✓ 2.68

R2↑ .716 .518 .401 .268 .738 .671 .666 .639 .861 .759 .554 .439 .603
RSE↓ .562 .731 .815 .901 .553 .620 .624 .649 .383 .504 .685 .749 .648

R2↑ .734 .549 .422 .283 .807 .745 .696 .683 .956 .860 .765 .736 .686Spikformer
w/ DSN ✓ 2.68

RSE↓ .539 .720 .804 .896 .475 .538 .581 .594 .219 .373 .481 .572 .566

iTransformer ✗ 1.63
R2↑ .829 .623 .439 .285 .887 .719 .685 .668 .964 .879 .799 .738 .710

RSE↓ .436 .648 .780 .878 .362 .547 .561 .584 .191 .348 .448 .563 .529

iSpikformer ✓ 1.63
R2↑ .817 .618 .440 .279 .879 .744 .687 .674 .961 .876 .795 .738 .709

RSE↓ .475 .668 .752 .905 .376 .536 .569 .580 .204 .333 .465 .521 .532

R2↑ .823 .624 .440 .283 .883 .740 .689 .672 .964 .879 .798 .736 .711iSpikformer
w/ DSN ✓ 1.79

RSE↓ .450 .646 .755 .881 .368 .541 .564 .583 .199 .350 .450 .526 .526

Table 6: Experimental results on WikiText-103
dataset. ↓ indicates the lower the better. Param:
parameters (M). Ppl: perplexity.

Methods Param. Ppl. ↓

SpikeGPT (Zhu et al., 2024b) 213 39.75

SPikE-SSM (Zhong et al., 2024) 75 33.18

SpikingSSM (Shen et al., 2025) 75 33.94

DSN (Ours) 137 29.60

WikiText-103. To demonstrate that DSN can
model more complex sequences such as lan-
guage, we evaluate its perplexity on WikiText-
103 (Merity et al., 2017), a large-scale word-level
dataset constructed from the English Wikipedia.
Results in Table 6 show that DSN performs the
best among spiking language models with a mod-
erate number of parameters. Since our explo-
ration of the model architecture is preliminary,
further improvements of DSN-based language
models can be expected in the future.

5.3 ENERGY CONSUMPTION

Table 7: Energy cost (mJ) of different methods.

Methods S-CIFAR10 S-CIFAR100

LIF (Abbott, 1999) 107.80 121.36
PSN (Fang et al., 2023b) 235.87 241.64

DSN (Ours) 104.24 110.29

We follow the method in Yao et al. (2023a) to
evaluate the energy consumption of the Sequen-
tial CIFAR network with different spiking neu-
rons. Results in Table 7 show that although
additional modules such as convolution oper-
ations were introduced, the total energy con-
sumption of DSN is slightly lower than that of
LIF due to its reduced spike firing rate. Additionally, PSN has the highest energy cost due to matrix
multiplication and high spike firing rate. See Appendix B.5 for more details.

6 CONCLUSION

In this paper, we identify a critical limitation in existing efforts toward parallel training in SNNs:
the neglect of preserving essential characteristics of vanilla spiking neurons, including the functions
of the reset mechanism and the capability for serial inference. Under a new functional viewpoint,
we summarize the functions of the reset mechanism in vanilla spiking neurons as introducing non-
linearity and controlling membrane potential. Based on this, we propose a guideline for designing
parallel spiking neurons and introduce a dynamic decay spiking neuron that offers improved func-
tions compared to reset while remaining compatible with serial inference. We verify the competitive
training efficiency, generality across multiple tasks, and energy consumption of our method. Our
work offers new insights into the exploration of high-performance spiking neurons with efficient
training and inference abilities in the era of foundation models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Larry F Abbott. Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain
research bulletin, 50(5-6):303–304, 1999.

Malyaban Bal and Abhronil Sengupta. P-spikessm: Harnessing probabilistic spiking state space
models for long-range dependency tasks. In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=Sf4ep9Udjf.

Alexandre Bittar and Philip N Garner. A surrogate gradient spiking baseline for speech command
recognition. Frontiers in Neuroscience, 16:865897, 2022.

Tong Bu, Wei Fang, Jianhao Ding, Penglin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ANN-
SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

Hanqi Chen, Lixing Yu, Shaojie Zhan, Penghui Yao, and Jiankun Shao. Time-independent spiking
neuron via membrane potential estimation for efficient spiking neural networks. In ICASSP 2025
- 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1–5, 2025. doi: 10.1109/ICASSP49660.2025.10890472.

Xinyi Chen, Jibin Wu, Chenxiang Ma, Yinsong Yan, Yujie Wu, and Kay Chen Tan. Pmsn: A
parallel multi-compartment spiking neuron for multi-scale temporal processing. arXiv preprint
arXiv:2408.14917, 2024.

Yongping Dan, Changhao Sun, Hengyi Li, and Lin Meng. Adaptive spiking neuron with population
coding for a residual spiking neural network. Applied Intelligence, 55(4):288, 2025.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pp. 248–255. IEEE
Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848. URL https://doi.org/10.
1109/CVPR.2009.5206848.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=_XNtisL32jv.

Jason K. Eshraghian, Max Ward, Emre O. Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu. Training spiking neural networks
using lessons from deep learning. Proc. IEEE, 111(9):1016–1054, 2023.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian.
Deep residual learning in spiking neural networks. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 21056–21069, 2021a.

10

https://openreview.net/forum?id=Sf4ep9Udjf
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://openreview.net/forum?id=_XNtisL32jv

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021b.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023a.

Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term
dependencies. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023b.

Wanjin Feng, Xingyu Gao, Wenqian Du, Hailong Shi, Peilin Zhao, Pengcheng Wu, and Chunyan
Miao. Efficient parallel training methods for spiking neural networks with constant time com-
plexity. In Forty-second International Conference on Machine Learning, ICML 2025, Vancouver,
Canada, July 13-19, 2025, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang,
and Zhe Ma. Im-loss: Information maximization loss for spiking neural networks.
In Advances in Neural Information Processing Systems, volume 35, pp. 156–166,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/010c5ba0cafc743fece8be02e7adb8dd-Paper-Conference.pdf.

Yufei Guo, Yuhan Zhang, Yuanpei Chen, Weihang Peng, Xiaode Liu, Liwen Zhang, Xuhui Huang,
and Zhe Ma. Membrane potential batch normalization for spiking neural networks. In IEEE/CVF
International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pp.
19363–19373. IEEE, 2023. doi: 10.1109/ICCV51070.2023.01779. URL https://doi.org/
10.1109/ICCV51070.2023.01779.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. RMP-SNN: residual membrane poten-
tial neuron for enabling deeper high-accuracy and low-latency spiking neural network. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pp. 13555–13564. Computer Vision Foundation / IEEE, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision
- ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part IV, volume 9908 of Lecture Notes in Computer Science, pp. 630–645. Springer,
2016.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.

Jiakui Hu, Man Yao, Xuerui Qiu, Yuhong Chou, Yuxuan Cai, Ning Qiao, Yonghong Tian, Bo Xu,
and Guoqi Li. High-performance temporal reversible spiking neural networks with O(L) training
memory and O(1) inference cost. In Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=s4h6nyjM9H.

Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural networks toward
deep residual learning. IEEE Transactions on Neural Networks and Learning Systems, 36(2):
2353–2367, 2025. doi: 10.1109/TNNLS.2024.3355393.

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/010c5ba0cafc743fece8be02e7adb8dd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/010c5ba0cafc743fece8be02e7adb8dd-Paper-Conference.pdf
https://doi.org/10.1109/ICCV51070.2023.01779
https://doi.org/10.1109/ICCV51070.2023.01779
https://openreview.net/forum?id=s4h6nyjM9H
https://openreview.net/forum?id=s4h6nyjM9H

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yulong Huang, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Zunchang Liu, Biao Pan, and
Bojun Cheng. CLIF: Complementary leaky integrate-and-fire neuron for spiking neural networks.
In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan
Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 19949–19972.
PMLR, 21–27 Jul 2024a.

Yulong Huang, Zunchang Liu, Changchun Feng, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue
Zhou, Hong Xing, and Bojun Cheng. Prf: Parallel resonate and fire neuron for long sequence
learning in spiking neural networks. arXiv preprint arXiv:2410.03530, 2024b.

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks,
14(6):1569–1572, 2003.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Adarsh Kumar Kosta and Kaushik Roy. Adaptive-spikenet: event-based optical flow estimation
using spiking neural networks with learnable neuronal dynamics. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6021–6027. IEEE, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95–104, 2018.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: An event-stream
dataset for object classification. Frontiers in Neuroscience, Volume 11 - 2017, 2017. ISSN
1662-453X. doi: 10.3389/fnins.2017.00309. URL https://www.frontiersin.org/
journals/neuroscience/articles/10.3389/fnins.2017.00309.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net, 2018.

Yang Li, Yinqian Sun, Xiang He, Yiting Dong, Dongcheng Zhao, and Yi Zeng. Parallel spiking
unit for efficient training of spiking neural networks. In 2024 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8. IEEE, 2024.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu.
Differentiable spike: Rethinking gradient-descent for training spiking neural networks.
In Advances in Neural Information Processing Systems, volume 34, pp. 23426–23439,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/c4ca4238a0b923820dcc509a6f75849b-Paper.pdf.

Yihan Lin, Yifan Hu, Shijie Ma, Dongjie Yu, and Guoqi Li. Rethinking pretraining as a bridge from
anns to snns. IEEE Trans. Neural Networks Learn. Syst., 35(7):9054–9067, 2024. doi: 10.1109/
TNNLS.2022.3217796. URL https://doi.org/10.1109/TNNLS.2022.3217796.

Wei Liu, Li Yang, Mingxuan Zhao, Shuxun Wang, Jin Gao, Wenjuan Li, Bing Li, and Weiming Hu.
Deeptage: Deep temporal-aligned gradient enhancement for optimizing spiking neural networks.
In The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=
drPDukdY3t.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth Inter-
national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024.

12

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00309
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00309
https://proceedings.neurips.cc/paper_files/paper/2021/file/c4ca4238a0b923820dcc509a6f75849b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c4ca4238a0b923820dcc509a6f75849b-Paper.pdf
https://doi.org/10.1109/TNNLS.2022.3217796
https://openreview.net/forum?id=drPDukdY3t
https://openreview.net/forum?id=drPDukdY3t

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Liqun Luo. Principles of neurobiology. Garland Science, 2020.

Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
inference spiking neural network for high-performance and energy-efficient object detection. In
European Conference on Computer Vision, pp. 253–272. Springer, 2025.

Changze Lv, Yansen Wang, Dongqi Han, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li.
Efficient and effective time-series forecasting with spiking neural networks. In Forty-first In-
ternational Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory- and time-efficient backpropagation for training spiking neural networks. In IEEE/CVF
International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pp.
6143–6153. IEEE, 2023. doi: 10.1109/ICCV51070.2023.00567. URL https://doi.org/
10.1109/ICCV51070.2023.00567.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

ROYUD Nishino and Shohei Hido Crissman Loomis. Cupy: A numpy-compatible library for nvidia
gpu calculations. 31st confernce on neural information processing systems, 151(7), 2017.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Guobin Shen, Jindong Li, Tenglong Li, Dongcheng Zhao, and Yi Zeng. SpikePack: Enhanced
Information Flow in Spiking Neural Networks with High Hardware Compatibility. arXiv e-prints,
art. arXiv:2501.14484, January 2025. doi: 10.48550/arXiv.2501.14484.

Shuaijie Shen, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo Zhang,
and Luziwei Leng. Spikingssms: Learning long sequences with sparse and parallel spiking state
space models. In Toby Walsh, Julie Shah, and Zico Kolter (eds.), AAAI-25, Sponsored by the As-
sociation for the Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadel-
phia, PA, USA, pp. 20380–20388. AAAI Press, 2025. doi: 10.1609/AAAI.V39I19.34245. URL
https://doi.org/10.1609/aaai.v39i19.34245.

13

https://doi.org/10.1109/ICCV51070.2023.00567
https://doi.org/10.1109/ICCV51070.2023.00567
https://doi.org/10.1609/aaai.v39i19.34245

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Cong Shi, Li Wang, Haoran Gao, and Min Tian. Learnable leakage and onset-spiking self-attention
in snns with local error signals. Sensors, 23(24):9781, 2023.

Qiaoyi Su, Shijie Mei, Xingrun Xing, Man Yao, Jiajun Zhang, Bo Xu, and Guoqi Li. Snn-
bert: Training-efficient spiking neural networks for energy-efficient bert. Neural Networks, 180:
106630, 2024.

Kaiwen Tang, Zhanglu Yan, and Weng-Fai Wong. Sorbet: A neuromorphic hardware-compatible
transformer-based spiking language model. In Forty-second International Conference on Machine
Learning, ICML 2025, Vancouver, Canada, July 13-19, 2025, 2025.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017.

Haoran Wang, Herui Zhang, Siyang Li, and Dongrui Wu. Gated parametric neuron for spike-based
audio recognition. Neurocomputing, 609:128477, 2024.

Lei Wang, Yu Cheng, Yining Shi, Zhengju Tang, Zhiwen Mo, Wenhao Xie, Lingxiao Ma, Yuqing
Xia, Jilong Xue, Fan Yang, and Zhi Yang. TileLang: A Composable Tiled Programming Model
for AI Systems. arXiv e-prints, art. arXiv:2504.17577, April 2025. doi: 10.48550/arXiv.2504.
17577.

Lihao Wang and Zhaofei Yu. Autaptic synaptic circuit enhances spatio-temporal predictive learning
of spiking neural networks. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online
training through time for spiking neural networks. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
82846e19e6d42ebfd4ace4361def29ae-Abstract-Conference.html.

Changqing Xu, Guoqing Sun, Yi Liu, Xinfang Liao, and Yintang Yang. Pararevsnn: A parallel
reversible spiking neural network for efficient training and inference. CoRR, abs/2508.01223,
2025. doi: 10.48550/ARXIV.2508.01223. URL https://doi.org/10.48550/arXiv.
2508.01223.

Peng Xue, Wei Fang, Zhengyu Ma, Zihan Huang, Zhaokun Zhou, Yonghong Tian, Timothée
Masquelier, and Huihui Zhou. Channel-wise Parallelizable Spiking Neuron with Multiplication-
free Dynamics and Large Temporal Receptive Fields. arXiv e-prints, art. arXiv:2501.14490, Jan-
uary 2025. doi: 10.48550/arXiv.2501.14490.

Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations
of linear attention mechanism, January 2024. URL https://github.com/fla-org/
flash-linear-attention.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

14

http://papers.nips.cc/paper_files/paper/2022/hash/82846e19e6d42ebfd4ace4361def29ae-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/82846e19e6d42ebfd4ace4361def29ae-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2508.01223
https://doi.org/10.48550/arXiv.2508.01223
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi
Li. Spike-driven transformer. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ca0f5358dbadda74b3049711887e9ead-Abstract-Conference.html.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE transactions on pattern analysis and machine intel-
ligence, 45(8):9393–9410, 2023b.

Man Yao, Ole Richter, Guangshe Zhao, Ning Qiao, Yannan Xing, Dingheng Wang, Tianxiang Hu,
Wei Fang, Tugba Demirci, Michele De Marchi, et al. Spike-based dynamic computing with asyn-
chronous sensing-computing neuromorphic chip. Nature Communications, 15(1):4464, 2024.

Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luziwei
Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing approx-
imation training. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–18,
2025.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. GLIF: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Bel-
grave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, 2022.

Sidi Yaya Arnaud Yarga and Sean UN Wood. Accelerating snn training with stochastic parallelizable
spiking neurons. In 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–8.
IEEE, 2023.

Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classi-
fication with adaptive spiking recurrent neural networks. Nature Machine Intelligence, 3(10):
905–913, 2021.

Jiqing Zhang, Malu Zhang, Yuanchen Wang, Qianhui Liu, Baocai Yin, Haizhou Li, and Xin Yang.
Spiking neural networks with adaptive membrane time constant for event-based tracking. IEEE
Transactions on Image Processing, 34:1009–1021, 2025a. doi: 10.1109/TIP.2025.3533213.

Tianqing Zhang, Kairong Yu, Jian Zhang, and Hongwei Wang. Da-lif: Dual adaptive leaky integrate-
and-fire model for deep spiking neural networks. In ICASSP 2025 - 2025 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2025b. doi: 10.1109/
ICASSP49660.2025.10888909.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11062–11070, 2021.

Yan Zhong, Ruoyu Zhao, Chao Wang, Qinghai Guo, Jianguo Zhang, Zhichao Lu, and Luziwei Leng.
Spike-ssm: A sparse, precise, and efficient spiking state space model for long sequences learning.
arXiv preprint arXiv:2410.17268, 2024.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. In The Eleventh Inter-
national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023.

Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng
Zhou, and Jason K Eshraghian. Scalable matmul-free language modeling. arXiv preprint
arXiv:2406.02528, 2024a.

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. Trans. Mach. Learn. Res., 2024, 2024b.

15

http://papers.nips.cc/paper_files/paper/2023/hash/ca0f5358dbadda74b3049711887e9ead-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ca0f5358dbadda74b3049711887e9ead-Abstract-Conference.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DETAILS OF THEORETICAL ANALYSIS

A.1 PROOF OF FUNCTIONS OF DYNAMIC DECAY

Proposition A.1. Dynamic decay can introduce nonlinearity and enabling more flexible ∆-short
and long control of the membrane potential than the reset mechanism.

Proof. Firstly, with dynamic decay, the iteration form of the membrane potential is:

Ht = αtHt−1 + (1− αt)Xt. (13)

which can be rewritten as

Ht =

t∑
i=1

 t∏
j=i+1

αj

 (1− αi)Xi. (14)

Note that the coefficient of Xi is input-dependent, which implies that the combination of Xi is not
actually a linear term. From Definition 3.1, we conclude that dynamic decay introduces nonlinearity.

Next, we show how αt controls the membrane potential Ht. Given ∆ ∈ N+, suppose Ht−∆ ≥ Vth
and Xt−∆+1, ..., Xt < Vth/∆. Note that when

αt−∆+1 <
Vth −Xt−∆+1

Ht−∆ −Xt−∆+1
∈ (0, 1] (15)

We have
Ht−∆+1 = αt−∆+1Ht−∆ + (1− αt−∆+1)Xt−∆+1

= αt−∆+1(Ht−∆ −Xt−∆+1) +Xt−∆+1

< Vth −Xt−∆+1 +Xt−∆+1 = Vth.

(16)

For m = 2, 3, ...,∆, we sequentially derive

Ht−∆+m = αt−∆+mHt−∆+m−1 + (1− αt−∆+m)Xt−∆+m

< αt−∆+mVth + (1− αt−∆+m)Vth = Vth
(17)

When m = ∆, Ht < Vth. From Definition 3.2, every αt satisfying Eq. 15 can guarantee ∆-short
control ability and avert continuous firing when inputs are smaller than threshold.

For long control ability, suppose that {Xt} has an upper bound C, i.e., Xi ≤ C, i = 1, 2, ..., t. It is
easy to get that H1 = (1− α1)X1 ≤ C. Besides, if Ht−1 ≤ C, then

Ht = αtHt−1 + (1− αt)Xt ≤ αtC + (1− αt)C = C (18)

By mathematical induction, we know that {Ht} has an upper bound C. From Definition 3.3, αt has
long control ability.

A.2 DYNAMIC DECAY IN INTEGER-VALUED TRAINING CASE

When the integer-valued training technique is introduced, dynamic decay is still able to retain the
two functions of the reset mechanism. According to Proposition 1 of Yao et al. (2025), integer-value
output (with upper bound N) is equal to the sum of spikes generated by IF-SR (IF with Soft Reset)
spiking neuron with N timesteps. Therefore, functions of the reset mechanism are still preserved at
the single-neuron level. Consequently, Proposition 4.1 should still hold in the integer spike scenario.

In fact, assuming the integer spiking function f(Ht) = ⌊Clip(Ht, 0, N)⌋ and Vth = 1, where
Clip(x, 0, N) means clipping the input x to the range [0, N], and ⌊.⌋ is the floor function. Since
the functions of non-linearity and membrane potential control in dynamic decay are independent of
the choice of the spike firing function, this concludes our functional analysis in Proposition 4.1 in
integer-valued training case.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 DETAILED DERIVATION OF DYNAMIC DECAY FROM SERIAL TO PARALLEL FORM

After removing the reset mechanism, the membrane potential iteration is no longer influenced by
spike firing, allowing us to focus solely on the following serial formulation:

Ht = αt ⊙Ht−1 + (1−αt)⊙Xt. (19)

Here, Ht,αt,Xt ∈ RC×1 has C channels. ⊙ denotes element-wise product. The above equation
can be rewritten into a general form determined solely by X1,X2, ...,Xt:

Ht =

t∑
i=1

 t∏
j=i+1

αj

 (1−αi)⊙Xi. (20)

We stack H1,H2, ...,HT to obtain H ∈ RC×T , do the same for X ∈ RC×T , and can finally get
H = XW parallel form, where Wij = (

∏j
k=i+1 αk)(1−αi) for j ≥ i, otherwise Wij = 0.

We first temporarily ignore the term (1 − αi). Then, an all-ones upper triangular matrix M can
capture the distinction between cases for i and j. We observe that

∏j
k=i+1 αk can be rewritten into

a form with indices starting from 1 by matrix multiplication and reciprocals:

W =

((
1

P

)T

P

)
⊙M,where P ∈ RC×T ,Pj =

j∏
k=1

αk (21)

Finally, by taking (1−αi) into account, we obtain the parallel form

H = X

(((
1−A

P

)T

P

)
⊙M

)
,where A ∈ RC×T ,Ai = αi (22)

B EXPERIMENTAL DETAILS

B.1 ACCELERATION

Measurement of GPU Resource Utilization. GPU computational cores have theoretical limits on
memory throughput (bytes/s) and compute throughput (FLOPs/s). An algorithm’s GPU resource
utilization is determined by how closely its achieved throughput approaches these theoretical peaks.
For example, FlashAttention-2 (Dao, 2024) increases the proportion of matrix multiplication, paral-
lelizes attention operations, and achieves over 50% of the theoretical peak throughput, significantly
accelerating model training. The process of updating the membrane potential in a spiking neuron
module involves sequential execution across multiple compute kernels. We employ NVIDIA Nsight
Compute tool to analyze the kernel execution of spiking neurons. Denoting the execution time of
the i-th compute core as ti and its ratio of throughput to the theoretical peak as Throughputi, the
GPU resource utilization rate of the module is defined as the weighted average throughput of total
N compute cores:

Throughputavg =

∑N
i=1 ti ∗ Throughputi∑N

i=1 ti
(23)

We evaluate this metric on the spiking neurons in the first activation layer of the neural network used
for Sequential CIFAR10, and the experimental setup can be found in B.2. All the experiments are
carried out on an NVIDIA A100 GPU.

Discussion about the Optimization Level. Traditional PyTorch-based training approaches for
SNNs often suffer from substantial redundant computation and memory access due to serial pro-
cessing, leading to a sharp increase in training time as the number of timestep grows. To improve
training speed, certain critical operators can be implemented using CUDA. By modifying the orig-
inal computation and memory access patterns, finely controlling GPU threads and memory utiliza-
tion, and developing specialized computational instructions in hardware, the algorithm’s runtime
can be significantly reduced. For example, Spikingjelly (Fang et al., 2023a) employs CuPy (Nishino
& Loomis, 2017) to implement operators of spiking neurons such as LIF model, combining multi-
ple operations into a single CUDA kernel. This reduces kernel invocation overhead and improves

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

computational efficiency, achieving CUDA-level acceleration, and markedly reducing the difficulty
of training SNNs. However, crafting customized CUDA operators for specific algorithms requires
significant development effort and specialized expertise. Therefore, researchers are exploring inter-
mediate optimization frameworks for kernel programming, such as Triton (Tillet et al., 2019) and
TileLang (Wang et al., 2025), which aim to offer high optimization performance while being more
accessible for researchers to develop. In short, the optimization levels of an algorithm are as follows:

Torch < Triton < CUDA (24)

Generally speaking, the higher the optimization level of an algorithm, the faster its execution speed.

To provide a fairer evaluation of the acceleration gains brought by DSN parallelization, we expand
the acceleration experiment in Table 8. Our discussion of the results is as follows:

Table 8: A comparison of the training time (in ms) and the ratio of memory (Mem.) and compute
(Comp.) throughput to the theoretical peak (%) of different spiking neurons and implementation.
For training time, the timestep 32∗ is for Sequential CIFAR10 and 128 ∼ 512 are for CIFAR10.

Methods Parallel Level
Forward Backward Throughput rate

32∗ 128 256 512 32∗ 128 256 512 Mem. Comp.

LIF (Abbott, 1999) ✗ Torch 4.90 19.53 41.31 77.42 5.84 25.34 52.77 101.88 31.02 15.93

LIF (Fang et al., 2023a) ✗ CUDA 0.59 0.56 0.60 0.58 0.27 0.25 0.25 0.25 47.13 18.40

PSN (Fang et al., 2023b) ✓ CUDA1 0.20 0.24 0.20 0.21 0.23 0.22 0.24 0.25 39.56 43.33

DSN (Ours) ✗ Triton 7.00 26.74 52.92 106.39 20.62 68.42 136.74 267.13 18.96 18.12

DSN (Ours) ✓ Triton 0.68 0.75 0.68 0.69 0.71 0.64 0.69 0.64 58.58 44.10

• The parallel training speed of DSN is higher than that of serial training. Notably, under serial
training, the Triton implementation of DSN performs similarly to the Torch implementation of
LIF. This is because the Triton kernel in the experiment is invoked step by step over time, rather
than processing all timesteps in a single pass. As a result, the memory access and computation
patterns across timesteps are essentially the same as those in the Torch implementation of LIF.

• The parallel training speed of DSN at Triton level is only slightly lower than the serial training
speed of LIF at CUDA level. This is understandable because the optimization level of Triton is
lower than that of CUDA. Although LIF can achieve acceleration by increasing the optimization
level, the algorithm itself cannot be parallelized. As a result, its utilization of GPU resource
is limited. A clear indication is that the memory throughput and compute throughput of LIF
at CUDA level (47.13% / 18.40%) are even lower than those of DSN at Triton level (58.58% /
44.10%). Hence, since DSN is parallelized, if we also accelerate it at the CUDA level, the training
speed is expected to surpass that of LIF at CUDA level.

Triton-based Operator. We found that the dynamic decay form of DSN matches the HGRN op-
erator in flash-linear-attention library2. Therefore, in this paper, we leverage this Triton operator to
enable parallel training of DSN.

B.2 SEQUENTIAL CIFAR, IMAGENET AND CIFAR10-DVS

In this work, we set DSN hyperparameters N = 4, k = 4, and τ = 0.5.

Sequential CIFAR. We use the width of the image as the sequence length (L = 32) to obtain a
serialized version of CIFAR dataset. The model architecture is consistent with that of PSN (Fang
et al., 2023b) as detailed in Table 9. For hyperparameter settings, the training is conducted over 256
epochs with a cosine decay learning rate schedule, starting at a maximum of 0.001. We set the batch
size to 128 and select AdamW optimizer (Loshchilov & Hutter, 2019) with zero weight decay.

1The membrane potential in PSN can be expressed as a matrix multiplication, which enables efficient exe-
cution on GPUs using FP16 GEMM kernels and specialized Tensor Core hardware. Therefore, this constitutes
acceleration at the CUDA level.

2https://github.com/fla-org/flash-linear-attention

18

https://github.com/fla-org/flash-linear-attention

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Configurations of Conv-based SNNs for Sequential CIFAR dataset. BN: BatchNorm, FC:
Fully Connected.

Stage Layer Specification Configuration

1
Conv1D-BN-DSN Block × 3 Conv: (3, stride=1, padding=1), Dim: 128

Average Pooling Feature size: 32 → 16

2
Conv1D-BN-DSN Block × 3 Conv: (3, stride=1, padding=1), Dim: 128

Average Pooling Feature size: 16 → 8

3 Flatten-FC1-DSN-FC2 FC1: 1024 → 256, FC2: 256 → class num

ImageNet and CIFAR10-DVS. For ImageNet, our experimental setup is identical to that of PSN
(Fang et al., 2023b). For CIFAR10-DVS, we use AdamW (Loshchilov & Hutter, 2019) as the
optimizer with a learning rate of 0.001, while keeping all other settings consistent with PSN.

B.3 TIME-SERIES FORCASTING TASKS

We rely on two Pytorch-based frameworks to build the baseline networks: SnnTorch (Eshraghian
et al., 2023) and SpikingJelly (Fang et al., 2023a). For SNNs with LIF neurons, we set the training
timestep T = 4, the threshold Vth = 1.0, and the decay rate β = 0.99. For SNNs with DSN neurons,
thanks to integer-valued training techniques, we do not directly expand timesteps to perform 0-1 en-
coding for temporal tasks. Instead, N = 4 is regarded as the expanded 4 timesteps. The architecture
and size of DSN-based model are aligned with Lv et al. (2024). For training hyperparameters, we
use a batch size of 128 and employ Adam optimizer (Kingma & Ba, 2015) with a learning rate of
1×10−4. An early stopping strategy is implemented with a tolerance of 30 epochs. The experiments
are conducted using 4 NVIDIA RTX A6000 GPUs.

To assess the performance of our model, we use the Root Relative Squared Error (RSE) and the
coefficient of determination (R2), defined as follows:

RSE =

√√√√∑M
m=1 ||Ym − Ŷm||2∑M
m=1 ||Ym − Ȳ||2

, (25)

R2 =
1

MCL

M∑
m=1

C∑
c=1

L∑
l=1

[
1−

(Y m
c,l − Ŷ m

c,l)
2

(Y m
c,l − Ȳc,l)2

]
. (26)

In these formulas, M is the size of the test set, C is the number of channels, and L is the prediction
length. Ȳ represents the average of Ym. Y m

c,l denotes the l-th future value of the c-th variable in
the m-th sample, while Ȳc,l is its average across all samples. Ŷm and Ŷ m

c,l denote the ground truth
values. Unlike Mean Squared Error (MSE) or Mean Absolute Error (MAE), these metrics are less
sensitive to the absolute scale of the dataset, making them particularly well suited for time-series
forecasting tasks.

Regarding the improvements in Spikformer (Zhou et al., 2023), in addition to replacing the spiking
neurons, we also make architectural modifications to achieve better performance. Specifically, we
expand the first DSN in the Feed-Forward Network (FFN) block to an enhanced DSN to improve
the interaction between different neuron channels. However, this increases the total number of
parameters in the FFN block by 16C2, where C is the number of channels. To maintain the same
total parameter count 8C2 of the FFN block, we reduce the expansion ratio of the linear mapping
from the usual 4 to 2. The architecture of the FFN block before and after modification is shown in
Fig. 4.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Linear

BN

Linear

BN

Linear

BN

Linear

BN

DSN

Enhanced DSN

Figure 4: The FFN block in Spikformer with DSN before (left) and after (right) modification. BN:
BatchNorm.

B.4 WIKITEXT-103

Considering the complexity of modeling language models, we use enhanced DSN in this experiment.
Our language model is built by stacking DSN-based blocks:

X ′ = X +DSN(LayerNorm(X))W (27)

In Eq. 27, before entering DSN neurons, the input X first passes through a LayerNorm layer to
maintain training stability for deep networks. The spike-driven output signal undergoes sparse com-
putation in a linear mapping layer with learnable parameters W . Additionally, we use a membrane
shortcut (Hu et al., 2025) to achieve identity mapping (He et al., 2016) with spike-driven character-
istics.

Our experiment is implemented on 8 NVIDIA A800 GPUs. The hyperparameters are largely based
on S4 (Gu et al., 2022) and SpikingSSM (Shen et al., 2025), as shown in Table 10. The key difference
is that we shorten the length of the training text to 1024. To maintain the number of tokens per
training step, we increase the batch size per GPU to 8. Notably, we do not further explore the
architecture design and hyperparameters of this experiment, which could be an avenue for future
research.

Table 10: Configurations of DSN-based language model on WikiText-103.

Configurations WikiText-103
Layer Depth 16

Model Dimension 1024
Learning Rate 5e-4

Learning Rate Schedule Cosine Decay, with 500 warmup steps
Optimizer AdamW (Loshchilov & Hutter, 2019)

Weight Decay 0.01
Batch Size per GPU 8

Epochs 100

B.5 ANALYSIS OF ENERGY CONSUMPTION

We follow the method in (Yao et al., 2023a) to evaluate the energy consumption of the Sequential
CIFAR network using different spiking neurons. Specifically, the energy consumption for floating-
point operations (FLOPs) is calculated by EMAC ·FLOPs, while the energy consumption for spike-
based operations is calculated by EAC · T ·R · FLOPs. Here, EMAC = 4.6pJ and EAC = 0.9pJ
in 45nm technology. T denotes timestep and R denotes the spike firing rate. The FLOPs of the n-th
Conv1D layer are kn ·dn · cn−1 · cn, where kn is the kernel size, dn is the sequence channel number,
cn−1 and cn are the input and output convolution channel numbers, respectively. The FLOPs of the
m-th fully connected layer are im · om, where im and om are the input and output channels of the
layers.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The energy consumption from LIF neurons itself is usually considered negligible compared to that
of the network architecture, including convolution and fully connected layers. In contrast, PSN and
DSN have more complex internal structures, leading to non-negligible energy consumption. We
present a statistical method for FLOPs within spiking neurons and summarize it in Table 11.

Table 11: Statistical methods of FLOPs within spiking neurons. c: number of spiking neuron. T :
Timestep. k: kernel size of causal convolution.

Spiking Neuron Internal Structure FLOPs
LIF (Abbott, 1999) Update of Membrane Potential c · T

PSN (Fang et al., 2023b) Update of Membrane Potential c · T 2

DSN (Ours)
Causal Conv1D k · c · T

Sigmoid Function c · T
Update of Membrane Potential c · T

The spike firing rates of different layers3 in Conv-based SNN for Sequential CIFAR using different
spiking neurons are presented in Table 12. Our DSN exhibits a lower spike firing rate than that of
LIF, which helps offset the additional energy cost introduced by the dynamic decay module.

Table 12: Spike firing rates of Conv-based SNN for Sequential CIFAR10 and CIFAR100. Convx:
Conv1D of the x-th layer. FC: Fully Connected.

Dataset Methods Conv2 Conv3 Conv4 Conv5 Conv6 FC1 FC2 Average

Sequential
CIFAR10

LIF (Abbott, 1999) 0.1511 0.1422 0.1811 0.1553 0.1457 0.0926 0.0647 0.1499
PSN (Fang et al., 2023b) 0.2200 0.3101 0.1575 0.1542 0.1516 0.1439 0.1239 0.2143

DSN (Ours) 0.1349 0.1337 0.1301 0.1301 0.0982 0.0380 0.0484 0.1238

Sequential
CIFAR100

LIF (Abbott, 1999) 0.2264 0.1281 0.1881 0.1581 0.1561 0.1018 0.1584 0.1698
PSN (Fang et al., 2023b) 0.3221 0.2127 0.1887 0.1682 0.1509 0.1735 0.1458 0.2229

DSN (Ours) 0.1384 0.1420 0.1404 0.1349 0.1240 0.0362 0.0973 0.1324

B.6 APPROXIMATION EXPERIMENT

Dynamic decay adaptively retains part of historical information stored in the membrane potential
based on changing input. From the perspective of approximation, dynamic decay is powerful to
simulate the behaviors of spiking neurons with various internal structures. During training, the
spiking neuron learns to construct different reset mechanisms to model different input by regulating
decay. For example, if the information is better suited to be encoded in the form of hard reset,
the spiking neuron only needs to approximate a binary classifier to decide whether to set αt to be
constant β or 0. This plasticity of dynamics potentially breeds rich memory abilities. To verify the
expressiveness of spiking neurons with dynamic decay, we design an experiment of using dynamic
decay to approximate the behaviors of multiple LIF neurons with hard or soft reset.

Overview. To begin with, we manually construct two distinct datasets with a timestep of T = 128
named A and B, and split them into training and test set. Dataset A has input signals following a
normal distribution with parameters (µ, σ2), while dataset B is a collection of more regular signals
including sine functions, sigmoid functions, step functions and Poisson encoding with different
parameters. Afterwards, these signals are input into 6 LIF neurons with different reset mechanisms
and membrane time constants. Then, we apply dynamic decay across C = 6 channels with the same
input signals to approximate the membrane potential with that of the LIF neurons described above,
using the Mean Squared Error (MSE) loss function. Lastly, we calculate the spike firing accuracy of
the test set as evaluation metric.

Datasets. The normal distribution parameters of Dataset A are µ = 1, σ = 2. A total of 11,000
samples are collected, with a training-to-test ratio of 10 : 1. The signal generation methods of

3Notably, the input to the first convolutional layer are floating-point numbers of the original sequence, rather
than processed spikes. Therefore, this layer is not involved in the calculation of the spike firing rate.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Dataset B is shown in Table 13. Each type of signal generates 200 samples (totally 800 samples),
with 10% randomly selected as test set and the remaining samples used for training.

Table 13: The signal generation methods of Dataset B. x = 0, 1, ..., T − 1. The notation [a :
b : c] means selecting c evenly spaced values from a to b. For example, [5 : 15 : 5] is equal to
5, 7.5, 10, 12.5, 15. Different parameters can be combined with each other to obtain samples with
different characteristics, with the corresponding c multiplied. For Poisson Encoding, Random(·)
denotes the random sampling of a floating-point number from the interval [0, 1], and each set of
parameters is repeated 8 times to generate 8 samples.

Signal Type Formulation Specification

Sine Function input = A sin(ωx) +B ω = 2πC−1
T−1 , A = [−2 : 3 : 5], B = [−2 : 3 : 8], C = [5 : 15 : 5]

Sigmoid Function input = A · Sigmoid(x′) x′ = 20
T−1x− 10 +B,A = [−2 : 5 : 10], B = [10 : 10 : 20]

Step Function input = A ·Heaviside(x′) x′ = x−B,A = [−2 : 5 : 10], B = [0 : T : 20]

Poisson Encoding input = A ·Heaviside(p) p = Random(x)− p0, A = [−1 : 5 : 5], p0 = [0.3 : 1 : 5]

Spiking Neurons. We set the threshold of LIF neurons to be 1, and the structure of dynamic decay
is as follows:

X′
t = CausalConv1Dup(Xt−k+1:t) (28)

X′′
t = ReLU(X′) (29)

X′′′
t = CausalConv1Ddown(X

′′
t−k+1:t) (30)

αt = Sigmoid(X′′′
t)1/τ (31)

Here, Xt ∈ RC×1, and Xt−k+1:t denotes k inputs from Xt−k+1 to Xt. CausalConv1D(·) is causal
1D convolution and the indices up and down represent the expansion of the input channels from C
to eC, and the reduction from eC to C, respectively. τ is a hyperparameter to fine-tune αt. In this
experiment, we set k = e = 8, and τ = 0.5.

Training. We set a batch size of 128 and employ Adam optimizer (Kingma & Ba, 2015) with a
cosine decay schedule whose peak learning rate is 1× 10−2. The training epochs are 100. To align
with the techniques used in the main text, we also conducted experiments using dynamic decay to
approximate integer-valued spikes (we set N = 4). Since integer-valued spikes are only meaningful
in the case of soft reset (Yao et al., 2025), we fit only LIF neurons with soft reset in this case.

Results and Discussions. Results in Table 14 and Fig. 5 show that dynamic decay generally fits
well to LIF neurons with different reset structures under various types of input signals, indicating its
potential for expressiveness. When the spikes become integers, the fitting accuracy of dynamic de-
cay further improves on both datasets, supporting our view that the integer-valued training technique
and dynamic decay have a complementary effect in terms of expressiveness. Specifically, there are
two details that merit our attention:

• As the membrane time constant increases, the fitting accuracy declines. This could be due to the
growing influence of historical information on the integration mechanism of the spiking neuron,
and modeling such information has always been a challenging task. However, in the current
modeling of the LIF model, the value of τm typically does not exceed the range specified in Table
14 (usually τm = 2 in (Yao et al., 2023a; 2025)), and our focus is on more general fitting scenarios.
Additionally, the introduction of integer-valued spikes can significantly suppress this fitting error.

• When the membrane potential approaches the threshold, the error between the membrane potential
predicted by dynamic decay and the true value generated by the LIF neuron is small for noise that
follows a normal distribution. However, for a sine wave signal, the error between the two is larger
(see Fig. 5). We speculate that the cause of this difference lies in the fact that the proportion of
data near the threshold is smaller for the sine signal compared to the noise signal with a mean
µ equal to the threshold. This makes it more difficult for dynamic decay to learn how to handle
membrane potential fluctuations near the threshold.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 14: Experimental results of applying dynamic decay to approximate various LIF neurons
with reset mechanisms on manually constructed datasets with different signals. Each channel of the
parallel spiking neuron with dynamic decay is fitted with a LIF neuron. We report the spike firing
accuracy (%) across 6 different channels and average them. *: results with integer-valued spike.

Channel LIF neurons to fit Dataset A Dataset B Dataset A* Dataset B*

1 hard reset, τm = 4/3 99.49 98.36 — —
2 hard reset, τm = 2 95.10 95.50 — —
3 hard reset, τm = 4 85.87 90.18 — —
4 soft reset, τm = 4/3 99.03 98.20 99.30 99.01
5 soft reset, τm = 2 93.87 96.40 98.50 98.14
6 soft reset, τm = 4 84.83 91.65 97.59 97.82

Average — 92.97 95.05 98.46 98.32

Figure 5: Signal responses including membrane potential and spike for LIF neuron and its dynamic
decay prediction on channel 2. Subplots from top to bottom depict the responses to a noise following
normal distribution, sine function, and Poisson encoding.

C LIMITATIONS

Design of Dynamic Decay. In this paper, we propose using causal convolution to model the rela-
tionship between decay factors and inputs. In fact, dynamic decay is a design paradigm that allows
for various concrete implementations. Developing more effective dynamic decay mechanisms to
improve the internal dynamics of spiking neurons is a promising direction for future research.

Operator Optimization. DSN employs Triton-based operators to strike a balance between training
efficiency and ease of development. With more effort invested in developing CUDA-level operators,
the training speed and GPU resource utilization could be further improved.

Neuromorphic Chip Deployment. There are still some gaps before DSN can be deployed on
neuromorphic chips. On the one hand, according to existing research (Yao et al., 2025), the integer
output can be converted to asynchronously emitted spikes with five key advantages when deployed
on neuromorphic chips. On the other hand, further algorithmic optimizations might help avoid
complex computations within DSN. For example, instead of multiplying between floating point
weights and activations, the weights could be quantized to ternary values (-1, 0, 1) (Ma et al., 2024;

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Zhu et al., 2024a), or a spiking function could be inserted to convert floating point inputs into spikes
in advance. For the sigmoid function, the base could be replaced with 2 to enable lightweight
computations using shift operations (Tang et al., 2025).

24

	Introduction
	Related Works
	A Functional View of Parallelizing Spiking Neurons
	Reset Mechanism and Its Function
	Guidance for Design Beyond Reset

	Methods: Dynamic Decay Spiking Neuron
	Experiments
	Training Efficiency
	Generality
	Effectiveness of Spiking Neuron Design
	Generality Across Multiple Tasks

	Energy Consumption

	Conclusion
	Details of Theoretical Analysis
	Proof of Functions of Dynamic Decay
	Dynamic Decay in Integer-valued Training Case
	Detailed derivation of Dynamic Decay from serial to parallel Form

	Experimental Details
	Acceleration
	Sequential CIFAR, ImageNet and CIFAR10-DVS
	Time-series Forcasting Tasks
	WikiText-103
	Analysis of Energy Consumption
	Approximation Experiment

	Limitations

