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ABSTRACT
Multimodal recommender systems utilize various types of infor-

mation to model user preferences and item features, helping users

discover items aligned with their interests. The integration of mul-

timodal information mitigates the inherent challenges in recom-

mender systems, e.g., the data sparsity problem and cold-start issues.

However, it simultaneouslymagnifies certain risks frommultimodal

information inputs, such as information adjustment risk and inher-

ent noise risk. These risks pose crucial challenges to the robustness

of recommendation models. In this paper, we analyze multimodal

recommender systems from the novel perspective of flat local min-
ima and propose a concise yet effective gradient strategy called

Mirror Gradient (MG). This strategy can implicitly enhance the

model’s robustness during the optimization process, mitigating in-

stability risks arising from multimodal information inputs. We also

provide strong theoretical evidence and conduct extensive empirical

experiments to show the superiority of MG across various multi-

modal recommendation models and benchmarks. Furthermore, we

find that the proposed MG can complement existing robust training

methods and be easily extended to diverse advanced recommenda-

tion models, making it a promising new and fundamental paradigm

for training multimodal recommender systems.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Knowledge representation and reason-
ing; Artificial intelligence.

KEYWORDS
Recommender systems, Multimodal, Flat local minima, Robust

1 INTRODUCTION
Relevance to the Web and to the track. Recommender systems

play a crucial role in helping users navigate the wealth of choices on

the web and discover suitable items or online services. In fact, the

integration of deep learning techniques into recommender systems

has become widespread [4, 11, 41, 47]. These techniques leverage

historical user-item interactions to model user preferences, thereby

facilitating the personalized recommendation of items. In recent

years, with the emergence of rich multimodal content information

encompassing texts, images, and videos, multimodal recommender

systems [33, 51] alleviate challenges [53] such as data sparsity and

cold start. However, incorporating multimodal information into

recommender systems also increases some inevitable risks about

the input distribution shift.

The first risk is inherent noise riskwhich always appears in the

training phase. Some previous works [38, 45] show that the perfor-

mance of recommender systems encounters substantial challenges

when confronted with input containing some noise in multimodal

Information Adjustment Risk
#Ins Style, Bodysuit, Suit, #GirlsWhoRock, #Trendsetters, Infant

Inherent Noise Risk

AfterBefore

SOFT VELVET SURFACE

Recommender
System

Before

After

Recommendation

Confused

Suitable for
children

Women's Day 


Special Discount
＄19

Figure 1: An illustrative example of multimodal risks. Mer-
chants add popular tags (e.g., "ins style") and broad keywords
(e.g., "suit") to the text of the bodysuit to increase the like-
lihood of the item being recommended. At the same time,
merchants dynamically change the item’s visual features in
real-time due to Women’s Day marketing campaigns and the
emphasis on the superiority of the item’s material. These
actions make it difficult for the recommender system to accu-
rately determine the target user for the current item, leading
to incorrect recommendations for young girls.

information. These noises are intrinsic, such as subpar image qual-

ity of items or the presence of a significant number of irrelevant or

error information in items’ features. These factors contribute to in-

herent noise introduced to the model’s input, and the introduction

of multimodal data in multimodal recommender systems makes

mitigating inherent noise risk more challenging. Another risk is

information adjustment risk. After the recommender system

has been trained based on multimodal data, it is well-known that

multimodal data is prone to frequent adjustments. For example, mer-

chants need to keep pace with trends or promotional activities to

tailor keywords for items, and the descriptive images of items must

be adjusted in line with iterative updates. This implies that in prac-

tical scenarios, the multimodal information within recommender

systems often undergoes frequent modifications. A straightforward

solution to address this risk is to update the model with the latest

dataset, but as the volume of data increases, the cost of iterating

the model significantly escalates, especially in multimodal recom-

mender systems. In summary, these two risks pose a significant

challenge [8, 27, 38, 45] to multimodal recommender systems. Fig. 1

is an e-commerce case to illustrate the effect of the risks. On one

hand, during the training phase of recommender systems, inherent

noise exists in multimodal features such as the text, which is in-

trinsic and has a potentially negative effect in the inference phase.

On the other hand, during the inference phase of recommender

systems, the multimodal feature as shown in Fig. 1 of the bodysuit

is edited due to promotional activities and the emphasis on the

1
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item’s material. These two risks confuse the recommender system

resulting in incorrect recommendations, which will be explicitly

and quantitatively assessed in Section 6.

To mitigate the aforementioned risks of information adjustment

and inherent noise, the necessity for building a more robust mul-

timodal recommender system becomes apparent. For enhancing

the robustness, prior efforts [8, 27] have chiefly employed adversar-

ial training techniques. These methods improve the robustness of

multimodal recommender systems by explicitly countering noise

at input during the training phase. Different from them, in this

paper, we first rethink the robustness of multimodal recommender

systems from the loss landscape perspective by considering the

flat local minima of multimodal recommendation models. Then,

we propose a concise yet effective training strategy named Mirror

Gradient (MG) for implicitly improving system robustness.

Specifically, we can first present an intuitive insight into why a

recommender system should consider the flat local minima, which

are located in large weight space regions with very similar low

loss values [21]. In Fig. 2, ℓ𝑜 represents the original loss landscape,

which is associated with the model’s parameters, architecture, data

distribution, etc. When the system’s inputs face shifts in data distri-

bution due to risks like information adjustment or inherent noise,

ℓ𝑜 (transparent surface) also shifts to ℓ𝑠 (opaque surface). If the

model’s parameters are optimized to a sharp local minimum 𝜃𝑏 ,

the error caused by this shift |ℓ𝑠 (𝜃𝑏 ) − ℓ𝑜 (𝜃𝑏 ) | may be significantly

larger than |ℓ𝑠 (𝜃𝑎) − ℓ𝑜 (𝜃𝑎) | of flat local minima 𝜃𝑎 . This indicates

that the system is not robust while the parameters are in sharp

local minima. Therefore, we should strive to guide the learnable

parameters of a multimodal recommender system towards flat local

minima during training to enhance the model’s robustness against

potential risks of input distribution shifts.

To this end, we propose a concise gradient strategy MG that

inverses the gradient signs appropriately during training to make

the multimodal recommendation models approach flat local minima

easier compared to models with normal training. Additionally, we

conduct extensive experiments and analysis to validate the effec-

tiveness of MG across various datasets and systems empirically.

To elaborate our MG strategy, we first model it formally and then

analyze how it improves the model’s robustness by driving the

parameters towards flat local minima implicitly from a theoretical

perspective. The visualization method from Li et al. [25] supports

our theoretical analysis and shows that MG indeed can help the

model achieve flatter minima. Besides, we also empirically verify

that MG is versatile, as it is compatible with most optimizers and

other adversarial training-based robust recommendation methods.

In summary, our contributions are threefold:

• We analyze the robustness of multimodal recommender

systems from the perspective of flat local minima.

• From the perspective of flat local minima, we propose Mir-

ror Gradient (MG), a concise yet effective gradient strategy

that guides recommender system models toward flat lo-

cal minima, enhancing model robustness. We also provide

theoretical evidence for its effectiveness.

• Extensive experiments demonstrate the efficacy and versa-

tility of MG. We also discuss the limitations of MG.

loss

dim1
dim2

Small error: - Large error: -

Flat 

Sharp 

shift

Figure 2: Illustration of flat local minima. When the distribu-
tion of the inputs shifts, for example, facing the risks of in-
herent noise and information adjustment, the loss landscape
ℓ𝑜 of the recommender system also shifts (to ℓ𝑠 ) accordingly.
The parameters 𝜃𝑎 located in flat local minima are more ro-
bust compared to 𝜃𝑏 in sharp local minima.

2 RELATEDWORKS
Multimodal Recommender Systems. Traditional recommender

systems [16, 48, 54] model the interaction between users and items,

relying on extensive user-item interaction data to ensure accu-

rate recommendations. In the presence of diverse multimodal in-

formation, multimodal recommender systems [1, 28, 31] leverage

supplementary multimodal information to complement historical

user-item interactions, mitigating challenges like data sparsity [53]

and cold start [24, 34] in the recommendation. Early researchers

often employed collaborative filter [41, 47] or matrix factorization

[15] for multimodal recommendation modeling. Recently, many

works [42, 52] employ graph neural networks formultimodal recom-

mender systems, with self-supervised learning [40, 56] also gaining

traction in this domain.

Robust Recommender Systems. Recent studies [5, 45] have shed
light on the vulnerability of recommender systems, highlighting

how disturbances introduced by noise can significantly under-

mine the accuracy of recommendations. In pursuit of bolstering

the robustness of recommender systems, a multitude of efforts

[3, 8, 27, 38] have focused on adversarial training. This approach,

which operates under the premise that each instance may serve as a

potential target for attacks [5], introduces controlled perturbations

to either the input data or model parameters to enhance robustness.

However, most existing studies have overlooked the potential risks

arising from information adjustment in multimodal recommender

systems.

Flat Local Minima. Flat local minima have been consistently

linked to the favorable generalization capabilities of deep neu-

ral networks [14, 17–19, 35]. In the wake of this insight, numer-

ous researchers have surfaced, exemplified by works such as Du

2
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et al. [7], Zhao et al. [49], Zhuang et al. [57], which strive to en-

hance model performance through exploring flat local minima.

Specifically, Foret et al. [10] introduces a novel approach named

Sharpness-Aware Optimization (SAM), wherein the optimization

process hinges on addressing a mini-max problem to achieve an op-

timal sharpness value. Kwon et al. [23], on the other hand, proposes

a scale-invariant variant of SAM, named ASAM, bolstered by an

adaptive radius mechanism aimed at augmenting training stability.

Moreover, Mi et al. [30] innovatively delve into the realm of sparse

perturbation with their SSAM (Sparse Sharpness-Aware Minima)

approach, strategically focusing on perturbations that encapsulate

the most critical yet sparse dimensions of the problem space.

3 PRELIMINARY
Multimodal Recommender Systems. Considering a set of users
U = {𝑢1, 𝑢2, ..., 𝑢 |U | }, and a set of items I = {𝑖1, 𝑖2, ..., 𝑖 | I | }, each
user 𝑢 ∈ U is associated with an item set I𝑢 ⊆ I about which 𝑢

has expressed explicit positive feedback. Besides, each item 𝑖 ∈ I
has multimodal information denoted by visual features 𝑣𝑖 ∈ V
and textual features 𝑡𝑖 ∈ T in this paper. Then given a multimodal

recommendation model denoted as R(·),
𝑦𝑢,𝑖 = R(𝑢, 𝑖, 𝑣𝑖 , 𝑡𝑖 ,I𝑢 | Θ), (1)

where Θ represents the model parameters of R(·), and score 𝑦𝑢,𝑖
signifies the preference of user 𝑢 towards item 𝑖 . A higher score

suggests that item 𝑖 is more suitable to be recommended to user 𝑢.

Loss Function of Recommender Systems. Most works [15, 50]

optimize the model parameters Θ of multimodal recommender

systems using Bayesian personalized ranking loss [32]. This opti-

mization seeks to ensure that𝑦𝑢,𝑖 , where 𝑖 ∈ I𝑢 , is greater than𝑦𝑢,𝑖′
when 𝑖

′
∉ I𝑢 , thus promoting positive interactions while discour-

aging negatives ones. Additionally, some recommender systems

introduce supplementary losses [40, 56] to enhance their perfor-

mance. We adopt the unified notation 𝐿R (·) to represent those

losses.

4 METHODOLOGY
In this section, we first elaborate on the algorithm of the proposed

MG. Then, we introduce the theoretical insight of MG.

4.1 Mirror Gradient
MG is a concise and easily implementable approach that enhances

the gradient of the model during the optimization process of rec-

ommender systems. This enhancement is equivalent to adding a

regularization term to improve the system’s robustness on input.

The proposed MG consists of two phases in each training epoch:

Normal Training and Mirror Training.

During Normal Training, the conventional gradient descent is

applied to the loss function 𝐿R (·) with the current learnable param-

eters Θ𝑡−1, as follows:

Θ𝑡 = Θ𝑡−1 − 𝜂∇Θ𝐿R (Θ𝑡−1), (2)

where 𝜂 represents the learning rate. As shown in the Algorithm 1,

we use an interval 𝛽 to control the effect of MG on each training

epoch. After updating per 𝛽 − 1 iterations using Eq. (2), we em-

ploy the Mirror Training strategy to update the parameter Θ𝑡−1 as

Algorithm 1 The training algorithm of Mirror Gradient

Input: The recommendation model R(·); learning rate 𝜂; the
number of iteration 𝑇 ; The scaling coefficients 𝛼1, 𝛼2 ∈ R+ and

𝛼1 > 𝛼2. The interval 𝛽 ∈ N+ of mirror training.

Output: Model parameters Θ.

1: for 𝑡 from 1 to 𝑇 do
2: if 𝑡 mod 𝛽 == 0 do ⊲ Mirror Training

3: Θ
′
𝑡 = Θ𝑡−1 − 𝛼1𝜂∇Θ𝐿R (Θ𝑡−1);

4: Θ𝑡 = Θ
′
𝑡 + 𝛼2𝜂∇Θ𝐿R (Θ

′
𝑡 );

5: else do ⊲ Normal Training

6: Θ𝑡 = Θ𝑡−1 − 𝜂∇Θ𝐿R (Θ𝑡−1);
7: end if
8: end for
9: return Θ

follows: {
Θ

′
𝑡 = Θ𝑡−1 − 𝛼1𝜂∇Θ𝐿R (Θ𝑡−1),

Θ𝑡 = Θ
′
𝑡 + 𝛼2𝜂∇Θ𝐿R (Θ

′
𝑡 ) .

(3)

Here, in order to control the relative size of updates introduced

by mirror training, we introduce two positive scaling coefficients,

𝛼1 and 𝛼2, with 𝛼1 > 𝛼2.

Although the MG we proposed is highly simple, it possesses

a strong theoretical insight and remarkable versatility. This en-

ables consistent performance improvements across a wide array

of experimental scenarios. Furthermore, in Section 6, we demon-

strate the compatibility of MG with various optimizers and existing

robust recommender system techniques. Moreover, it can achieve

superior performance compared to some conventional optimization

strategies about flat local minima.

4.2 Theoretical Insight of MG
In this part, we introduce Lemma 4.1 and Theorem 4.2 which can

help us analyze howMG helps the model’s parameters tend towards

flat local minima from a theoretical perspective, thereby enhancing

the input robustness of the recommender system.

Lemma 4.1. [6, 20] Consider a neural network 𝑓 (𝑥) with 𝐿 layers
and learnable parameters 𝜃 . ℎ𝑖 , 1 ≤ 𝑖 ≤ 𝐿, denotes the feature map
from 𝑖 th layer. For any scalar function 𝑔 of ℎ𝐿 , we have

∥∇𝑥𝑔𝜃 (𝑥)∥22 ·
∑︁𝐿

𝑗=1
O
( 1 + ∥ℎ𝑖 ∥2

2

∥∇𝑥ℎ𝑖 ∥2
2

)
≤ ∥∇𝜃𝑔𝜃 (𝑥)∥22 . (4)

Theorem 4.2. Mirror Training in Eq. (3) is equal to introducing an
implicit regularization term ∥∇Θ𝐿R (Θ)∥22 to the original optimization
objective 𝐿R (Θ).

Proof. In Mirror Training, we have

Θ𝑡 = Θ
′
𝑡 + 𝛼2𝜂∇Θ𝐿R (Θ

′
𝑡 )

= Θ𝑡−1 − 𝛼1𝜂∇Θ𝐿R (Θ𝑡−1)
+ 𝛼2𝜂∇Θ𝐿R (Θ𝑡−1 − 𝛼1𝜂∇Θ𝐿R (Θ𝑡−1)).

(5)

3
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Next, since 𝜂 is small, we can use Taylor expansion for estimating

∇Θ𝐿R (Θ𝑡−1 − 𝛼1𝜂∇Θ𝐿R (Θ𝑡−1)), and we have

Θ𝑡 ≈ Θ𝑡−1 − 𝛼1𝜂∇Θ𝐿R (Θ𝑡−1) + 𝛼2𝜂∇Θ𝐿R (Θ𝑡−1)
− 𝛼1𝛼2𝜂

2∇2

Θ𝐿R (Θ𝑡−1)⊤∇Θ𝐿R (Θ𝑡−1)
= Θ𝑡−1 − (𝛼1 − 𝛼2)𝜂∇Θ𝐿R (Θ𝑡−1)

− 1

2

· 𝛼1𝛼2𝜂2∇Θ∥∇Θ𝐿R (Θ𝑡−1)∥22 .

(6)

Therefore, from Eq. (6), we can find that the equivalent objective

function for Mirror Training 𝐿𝑀 is

𝐿𝑀 = (𝛼1 − 𝛼2) 𝐿R (Θ)︸︷︷︸
main term

+𝛼1𝛼2𝜂 · ∥∇Θ𝐿R (Θ𝑡−1)∥22︸               ︷︷               ︸
regularization term

, (7)

where 𝛼1𝛼2𝜂 > 0 and 𝛼1 − 𝛼2 > 0. □

The essence of MG, as revealed in Theorem 4.2, lies in the ad-

dition of a regularization term concerning gradient magnitude to

the original objective function 𝐿R (Θ) implicitly. It’s worth noting

that the magnitude of gradients near flat local minima is quite

small. And since 𝛼1𝛼2𝜂 > 0, Eq. (6) requires that the norm of gra-

dient ∥∇Θ𝐿R (Θ)∥22 should be sufficiently small, i.e., MG will lead

the model’s parameters towards flatter minima. Furthermore, from

Lemma 4.1 and Eq.(7), let the scalar function is 𝐿R in recommender

system, we have

𝐿𝑀 ≥ 𝛼1𝛼2𝜂 · ∥∇Θ𝐿R (Θ𝑡−1)∥22

≥ 𝛼1𝛼2𝜂 ·
∑︁𝐿

𝑗=1
O
( 1 + ∥ℎ𝑖 ∥2

2

∥∇𝑥ℎ𝑖 ∥2
2

)
· ∥∇𝑥𝐿R∥22︸    ︷︷    ︸
robustness term

. (8)

In general, (1 + ∥ℎ𝑖 ∥2
2
)/(∥∇𝑥ℎ𝑖 ∥2

2
) is bounded and positive. Tak-

ing BM3 on the Baby as an example, its value is around 96.16 with

the well-trained system. Therefore, from Eq. (8) and Eq. (7), we

can infer that MG also aims to minimize the impact of inputs on

the loss, ∥∇𝑥𝐿R∥22, while enhancing the model’s robustness against

input perturbations.

Furthermore, although Eq. (7) reveals that our proposed MG is

equivalent to adding a regularization term ∥∇Θ𝐿R (Θ𝑡−1)∥2
2
during

the optimization process of recommender systems, we do not recom-

mend directly including this term in the loss function. On one hand,

computing this term requires the prior calculation of the gradient

∇Θ𝐿R (Θ𝑡−1), implying additional computational overhead during

inference and not easy to implement. On the other hand, this kind

of explicit loss term is not conducive to optimization and generally

results in relatively poor performance [10]. In fact, our proposed

MG is an implicit optimization of the additional regularization term

shown in Eq. (7). It is also straightforward to implement. Hence,

MG possesses greater practical applicability and potential.

5 EXPERIMENTS
In this section, we present our experimental setup and empirical

results.

5.1 Experimental Settings
Datasets. The dataset statistics have been summarized in Table 1.

We primarily employ four multimodal datasets from Amazon [29],

Dataset # Users # Items # Interactions Sparsity

Pinterest 3,226 4,998 9,844 99.94%

Baby 19,445 7,050 160,792 99.88%

Sports 35,598 18,357 296,337 99.95%

Clothing 39,387 23,033 237,488 99.97%

Electronics 192,403 63,001 1,689,188 99.99%

Table 1: Statistics of datasets. These datasets comprise textual
and visual features in the form of item descriptions and
images.

Model REC PREC MAP NDCG

VBPR 0.0182 0.0042 0.0098 0.0122

VBPR + MG 0.0203 0.0046 0.0110 0.0136

Improv. 11.54% 9.52% 12.24% 11.48%

MMGCN 0.0140 0.0033 0.0075 0.0094

MMGCN + MG 0.0157 0.0036 0.0084 0.0106

Improv. 12.14% 9.09% 12.00% 12.77%

GRCN 0.0226 0.0051 0.0126 0.0155

GRCN + MG 0.0250 0.0057 0.0139 0.0171

Improv. 10.62% 11.76% 10.32% 10.32%

DualGNN 0.0238 0.0054 0.0132 0.0162

DualGNN + MG 0.0249 0.0056 0.0139 0.0170

Improv. 4.62% 3.70% 5.30% 4.94%

BM3 0.0280 0.0062 0.0157 0.0192

BM3 + MG 0.0285 0.0063 0.0159 0.0195

Improv. 1.79% 1.61% 1.27% 1.56%

FREEDOM 0.0252 0.0056 0.0139 0.0171

FREEDOM + MG 0.0260 0.0058 0.0144 0.0176

Improv. 3.17% 3.57% 3.60% 2.92%

Avg. Improv. 7.31% 6.54% 7.46% 7.33%

Table 2: Top-5 recommendation performance of baselines
with or without MG on Electronics. "Improv." indicates the
relative enhancement of MG compared to the baseline. "Avg.
Improv." represents the average improvement.

including Baby, Sports, Clothing, and Electronics. These datasets

comprise textual and visual features in the form of item descrip-

tions and images. Our data preprocessing methodology follows

the approach outlined in Zhou et al. [51]. Furthermore, we utilize

the dataset Pinterest to assess the compatibility of Mirror Gradient

with adversarial training methods in alignment with the official

implementation of the adversarial training baseline AMR [38].

Metrics. For the evaluation of recommendation performance, we

pay attention to top-5 accuracy as recommendations in the top

positions of rank lists are more important [39], and adopt four

widely used metrics [13, 36, 46, 51] including recall (REC), precision

(PREC), mean average precision (MAP), and normalized discounted

cumulative gain (NDCG). These four evaluation metrics are chosen

because they each focus on different crucial aspects. REC measures

whether the system captures a user’s potential areas of interest,

PREC gauges the accuracy of recommendations, MAP focuses on

the average accuracy of rankings, andNDCG emphasizes the quality
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Model

Baby Sports Clothing

REC PREC MAP NDCG REC PREC MAP NDCG REC PREC MAP NDCG

VBPR 0.0265 0.0059 0.0134 0.0170 0.0353 0.0079 0.0189 0.0235 0.0186 0.0039 0.0103 0.0124

VBPR + MG 0.0273 0.0061 0.0149 0.0184 0.0375 0.0084 0.0203 0.0251 0.0230 0.0048 0.0129 0.0155

Improv. 3.02% 3.39% 11.19% 8.24% 6.23% 6.33% 7.41% 6.81% 23.66% 23.08% 25.24% 25.00%

MMGCN 0.0240 0.0053 0.0130 0.0160 0.0216 0.0049 0.0114 0.0143 0.0130 0.0028 0.0073 0.0088

MMGCN + MG 0.0269 0.0060 0.0139 0.0175 0.0241 0.0054 0.0126 0.0158 0.0153 0.0032 0.0081 0.0100

Improv. 12.08% 13.21% 6.92% 9.38% 11.57% 10.20% 10.53% 10.49% 17.69% 14.29% 10.96% 13.64%

GRCN 0.0336 0.0074 0.0182 0.0225 0.0360 0.0080 0.0196 0.0241 0.0269 0.0056 0.0140 0.0173

GRCN + MG 0.0354 0.0078 0.0186 0.0232 0.0383 0.0086 0.0207 0.0256 0.0276 0.0058 0.0146 0.0179

Improv. 5.36% 5.41% 2.20% 3.11% 6.39% 7.50% 5.61% 6.22% 2.60% 3.57% 4.29% 3.47%

DualGNN 0.0322 0.0071 0.0175 0.0216 0.0374 0.0084 0.0206 0.0253 0.0277 0.0058 0.0153 0.0185

DualGNN + MG 0.0329 0.0073 0.0176 0.0219 0.0387 0.0086 0.0212 0.0261 0.0305 0.0063 0.0165 0.0201

Improv. 2.17% 2.82% 0.57% 1.39% 3.48% 2.38% 2.91% 3.16% 10.11% 8.62% 7.84% 8.65%

SLMRec 0.0343 0.0075 0.0182 0.0226 0.0429 0.0095 0.0233 0.0288 0.0292 0.0061 0.0163 0.0196

SLMRec + MG 0.0381 0.0085 0.0204 0.0253 0.0449 0.0099 0.0242 0.0299 0.0323 0.0067 0.0175 0.0213

Improv. 11.08% 13.33% 12.09% 11.95% 4.66% 4.21% 3.86% 3.82% 10.62% 9.84% 7.36% 8.67%

BM3 0.0327 0.0072 0.0174 0.0216 0.0353 0.0078 0.0194 0.0238 0.0246 0.0051 0.0135 0.0164

BM3 + MG 0.0345 0.0077 0.0183 0.0228 0.0386 0.0086 0.0210 0.0259 0.0259 0.0054 0.0145 0.0174

Improv. 5.50% 6.94% 5.17% 5.56% 9.35% 10.26% 8.25% 8.82% 5.28% 5.88% 7.41% 6.10%

FREEDOM 0.0374 0.0083 0.0194 0.0243 0.0446 0.0098 0.0232 0.0291 0.0388 0.0080 0.0211 0.0257

FREEDOM + MG 0.0397 0.0088 0.0209 0.0261 0.0466 0.0102 0.0242 0.0303 0.0405 0.0084 0.0223 0.0270

Improv. 6.15% 6.02% 7.73% 7.41% 4.48% 4.08% 4.31% 4.12% 4.38% 5.00% 5.69% 5.06%

DRAGON 0.0374 0.0082 0.0202 0.0249 0.0449 0.0098 0.0239 0.0296 0.0401 0.0083 0.0225 0.0270

DRAGON + MG 0.0419 0.0092 0.0219 0.0273 0.0465 0.0102 0.0248 0.0307 0.0437 0.0091 0.0239 0.0290

Improv. 12.03% 12.20% 8.42% 9.64% 3.56% 4.08% 3.77% 3.72% 8.98% 9.64% 6.22% 7.41%

Avg. Improv. † 7.17% 7.91% 6.79% 7.08% 6.22% 6.13% 5.83% 5.90% 10.41% 9.99% 9.38% 9.75%
Table 3: Top-5 recommendation performance of baselines with or without MG on Baby, Sport, and Clothing. "Improv." indicates
the relative enhancement of MG compared to the baseline. "Avg. Improv." represents the average improvement across each
dataset. † The Top-5 performance improvement achieved by MG is substantial and significant. See the appendix for further
discussion.

of rankings. These metrics complement each other and collectively

provide a comprehensive evaluation, aiding in a holistic under-

standing of the recommender system’s performance. Additionally,

when comparing against the adversarial training method AMR [38],

we apply the hits ratio (HR) in alignment with the evaluation ap-

proach used in the original AMR paper. The choice of HR serves

the purpose of maintaining consistency and comparability with

established benchmarks, allowing for a direct comparison of our

results with those reported in the paper. All the above-cited metrics

range from 0 to 1, the closer to 1 the better.

Baselines. We extensively examine MG’s performance across a

variety of multimodal recommendation models, encompassing ma-

trix factorization (VBPR [15]), graph neural networks (MMGCN

[44], GRCN [43], DualGNN [42], FREEDOM [52], DRAGON [50]),

self-supervised learning (SLMRec [40], BM3 [56]), as well as non-

multimodal models(LayerGCN [54], SelfCF [55]). We utilize AMR

[38] as our foundational adversarial training method, given its

widespread popularity in the field. Additionally, we compare our

MG with flat local minima approach SSAM [30], as it represents a

leading-edge, versatile solution for addressing flat local minima.

Implementation Details.We retain the standard settings for all

baselines. Following the settings of some current works in multi-

modal recommender systems [50, 52, 56], we perform a grid search

on hyperparameters 𝛼1 and 𝛼2, and set 𝛽 to 3. Unless otherwise

specified, Adam [22] serves as the chosen optimizer. The training

and evaluation of all models is conducted using the RTX3090 GPU.

5.2 Overall Performance
Observation #1: MG can enhance the performance of diverse
multimodal recommender systems consistently. As shown

in Table 3, we conduct an extensive evaluation of MG across eight

baseline models using three distinct datasets. Our experimental

findings unequivocally illustrate that it is difficult to overlook the

enhancements in the performance of multimodal recommender sys-

tems with MG across all evaluation metrics. Remarkably, the most

substantial improvement is observed in the case of VBPR training

on the dataset Clothing, resulting in an impressive performance

enhancement of over 20%. To summarize, MG we propose excels at
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Figure 3: Visualization of local minima. Training loss landscapes of FREEDOM and BM3 on Baby trained with or without MG.

mitigating inherent noise risks, enabling multimodal recommender

systems to capture user preferences within more favorable flat local

minima. This capability contributes to the success of our method.

Observation #2: MG exhibits remarkable efficacy on more
challenging datasets. Furthermore, as indicated in Table 2, we

extend the evaluation of our proposedMG to the dataset Electronics,

which presents a more demanding scenario with a cumulative user

and item count surpassing the sum of other datasets presented in

Table 3. Remarkably, the increased challenge posed by this dataset

does not diminish MG’s performance. On Electronics, the average

improvement achieved by MG remains consistent with the figures

presented in Table 3.

6 ANALYSIS
Our analysis is designed to answer the following research questions

(RQs), where RQ1-5 focus on the performance of MG, while RQ6-8

examine its versatility:

• RQ1: How does MG perform in mitigating inherent noise risk?

• RQ2: How does MG perform in mitigating information adjust-

ment risk?

• RQ3: Does MG enable multimodal recommender systems to ap-

proach flatter local minima?

• RQ4: Does MG increase model training costs?

• RQ5: Is MG superior to sharpness-aware minimization methods?

• RQ6: Can MG be compatible with various optimizers?

• RQ7: Can MG be compatible with robust recommender systems?

• RQ8: Can MG enhance the performance of non-multimodal rec-

ommender systems?

Further Evaluation for MG’s Robustness (RQ1 & RQ2). In this

part, we directly validate the robustness of the proposed MG by

explicitly simulating the two risks mentioned in Section 1 in the

inference phase.

(1) Information noise. For models with learnable item embedding

layers, e.g., BM3 and FREEDOM, we inject Gaussian noise 𝜖 ∼
N(0, 10−6) into their embedding layers. This step aims to simulate

the presence of information noise in multimodal recommender

systems. The results are presented in Table 4.

(2) Information adjustment. To simulate the adjustment in multi-

modal information within a recommender system, we insert image

captions generated using BLIP-2 [26] into the text of the dataset

with a one percent chance. As models with learnable item embed-

ding layers do not rely on the original multimodal information

Model Org Noise Decr. ↓
BM3 0.0327 0.0272 16.92%

BM3 + MG 0.0345 0.0314 8.99%

FREEDOM 0.0374 0.0357 4.60%

FREEDOM + MG 0.0397 0.0390 1.76%
Table 4: REC ofmodels under information noise on Baby. The
term "Noise" refers to the injection with noise 𝜖 ∼ N(0, 10−6)
into the embedding layers of the model. The experimental
results of the noise are calculated as the mean value obtained
from conducting the noise experiment 10 times repetitively.
"Decr." denotes the relative decrease compared to the origin
result (Org) after injecting noise.

Model Org Adjustment Decr. ↓
MMGCN 0.0240 0.0223 7.08%

MMGCN + MG 0.0269 0.0260 3.35%

GRCN 0.0336 0.0321 4.46%

GRCN + MG 0.0354 0.0346 2.26%

Table 5: REC of models under information adjustment on
Baby. The term "Adjustment" refers to the action of inserting
image captions generated using BLIP-2 [26] into the text of
items with a 1% chance. This insertion process simulates
changes in multimodal information within recommender
systems. "Decr." denotes the relative decrease compared to
the origin result (Org) after information adjustment.

during the inference phase, we select MMGCN and GRCN, which

use deep neural networks to extract multimodal information, as

the baselines. The results are outlined in Table 5.

The results of experiments indicate that multimodal recommen-

dation models trained with MG exhibit greater robustness in han-

dling multimodal noise and adjustment.

Visualization of Local Minima (RQ3). In order to affirm that

MG can help the model approach flat local minima, we visualize

the training loss landscapes with and without MG of latest mod-

els BM3 and FREEDOM which is more challenge to improve than

previous models. Following the methodology outlined by Li et al.

[25], we record the trained model parameters as 𝑝 . Subsequently,

we sample 20 values each for𝑚 and 𝑛 at equal intervals from the
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Optimizer Model REC PREC MAP NDCG Model REC PREC MAP NDCG

Adam

GRCN 0.0336 0.0074 0.0182 0.0225 DRAGON 0.0374 0.0082 0.0202 0.0249

GRCN + MG 0.0354 0.0078 0.0186 0.0232 DRAGON + MG 0.0419 0.0092 0.0219 0.0273

Improv. 5.36% 5.41% 2.20% 3.11% Improv. 12.03% 12.20% 8.42% 9.64%

SGD

GRCN 0.0013 0.0003 0.0005 0.0007 DRAGON 0.0182 0.0040 0.0093 0.0118

GRCN + MG 0.0014 0.0003 0.0006 0.0008 DRAGON + MG 0.0188 0.0041 0.0097 0.0122

Improv. 7.69% 0.00% 20.00% 14.29% Improv. 3.30% 2.50% 4.30% 3.39%

RMSprop

GRCN 0.0338 0.0074 0.0184 0.0227 DRAGON 0.0367 0.0081 0.0198 0.0245

GRCN + MG 0.0345 0.0076 0.0187 0.0231 DRAGON + MG 0.0391 0.0087 0.0201 0.0253

Improv. 2.03% 2.63% 1.60% 1.73% Improv. 6.54% 7.41% 1.52% 3.27%

Adagrad

GRCN 0.0283 0.0063 0.0152 0.0189 DRAGON 0.0393 0.0086 0.0215 0.0264

GRCN + MG 0.0286 0.0064 0.0154 0.0191 DRAGON + MG 0.0408 0.0090 0.0216 0.0269

Improv. 1.06% 1.59% 1.32% 1.06% Improv. 3.82% 4.65% 0.47% 1.89%

Table 6: Top-5 recommendation performance of GRCN and DRAGON with or without MG on Baby. "Improv." indicates the
relative enhancement of MG compared to the baselines.
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Figure 4: Convergence of MG on the dataset Baby.

range [−100, 100], and init noise 𝑛1, 𝑛2 from the standard normal

distribution. 𝑛1, 𝑛2 have the same shape as 𝑝 . We then update the

model’s parameters to (𝑝 +𝑚𝑛1+𝑛𝑛2) and calculate the correspond-
ing loss values, simulating the shift of the loss landscape as depicted

in Fig. 2. By employing this methodology, we can generate training

loss landscapes as illustrated in Fig. 3. The flatter the training loss

landscape, the flatter the local minima to which the current model

converges. Notably, the landscapes associated with MG demon-

strate a flatter topography when compared to those of the baseline

approaches and prominently encompass an area characterized by

low loss (depicted in blue). These visualization results show that

MG can make multimodal recommender system approach flatter

minima. Moreover, from the visualization results, the loss landscape

associated with FREEDOM appears flatter compared to that of BM3.

This indicates that FREEDOMmay be more robust to noise, aligning

with the observations in Table 4.

Convergence Speed of MG (RQ4). In this part, we visualize

the training loss of both widely used and leading-stage models to

confirm MG’s superior convergence. Following the training config-

uration outlined by Zhou et al. [51], we set the maximum number

of epochs to 1000 while implementing an early stopping strategy.

Subsequently, we visualize the progression of the loss value for

multiple multimodal recommendation models before and after the

application of MG, as shown in Fig. 4. Noticeably, MG often leads

the models to meet the termination criteria with fewer training

iterations and achieve a smaller final training loss value.

Method REC PREC MAP NDCG

- 0.0374 0.0082 0.0202 0.0249

SSAM-F 0.0397 0.0088 0.0217 0.0267

SSAM-D 0.0382 0.0084 0.0197 0.0248

MG 0.0419 0.0092 0.0219 0.0273

Table 7: Top-5 recommendation performance of DRAGON
with flat local minimamethod SSAM andMG on Baby. SSAM-
F draws upon fisher information and SSAM-D capitalizes on
the principles of dynamic sparse training mask.

Comparing with Sharpness-aware Minimization (RQ5). Re-
cently, several general smoothing methods [7, 14, 35, 49, 57] about

flat local minima have been proposed. In this section, we com-

pare these methods with MG in multimodal recommender systems.

Specifically, we apply the recent method SSAM [30] to the mul-

timodal recommendation model DRAGON on the dataset Baby,

and the results are laid out in Table 7. The experimental results

show that MG outperforms both SSAM-F, which draws upon fisher

information, and SSAM-D, which capitalizes on the principles of

dynamic sparse training mask [30]. These experiments suggest the

MG’s inherent advantage of identifying flat local minima compared

with other minimization methods in the scenario of multimodal

recommender systems.

Compatibility with Various Optimizers (RQ6). As a gradient
method, it is necessary forMG to adapt to various optimizers. There-

fore, in this part, we evaluate the performance of MG on the dataset

Baby under various optimizers and baselines as illustrated in Table

6. The optimizers include Adam [22], SGD [2, 37], RMSprop [12],

and Adagrad [9]. Here, we choose the classic multimodal recom-

mender system GRCN and the latest state-of-the-art multimodal

recommender system DRAGON as baselines. Despite the consid-

erable performance fluctuations observed among baselines under

different optimizers, MG consistently delivers a noticeable enhance-

ment in recommendation accuracy. This consistency highlights the

stable performance of MG across a range of optimizers.
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Model HR NDCG

VBPR 0.1352 0.1005

VBPR + AMR 0.1395 0.1027

VBPR + AMR + MG 0.1457 0.1047

Table 8: Top-5 recommendation performance of VBPR with
adversarial training method AMR and MG on Pinterest.

Dataset Metric LayerGCN LayerGCN

+ MG

SelfCF SelfCF

+ MG

Baby

REC 0.0314 0.0337 0.0329 0.0348

PREC 0.0070 0.0075 0.0073 0.0078

MAP 0.0168 0.0179 0.0175 0.0182

NDCG 0.0209 0.0223 0.0217 0.0228

Clothing

REC 0.0242 0.0258 0.0246 0.0284

PREC 0.0051 0.0054 0.0052 0.0059

MAP 0.0136 0.0141 0.0136 0.0155

NDCG 0.0163 0.0171 0.0164 0.0188

Table 9: Top-5 recommendation performance of general mod-
els with or without MG.

Compatibility with Other Robust Recommenderation Meth-
ods (RQ7). Researchers always enhance the robustness of mul-

timodal recommender systems in the way of adversarial train-

ing [3, 8, 27, 38]. Therefore, in this part, we perform experiments

using the official code of adversarial training method AMR [38]

to explore the performance of multimodal recommender systems

training with both MG and the robust recommendation method. As

presented in Table 8, the experimental results show that the perfor-

mance of VBPR with AMR can be improved by MG, indicating that

MG is compatible with adversarial training aiming at enhancing

the robustness of multimodal recommender systems.

MG for Non-multimodal Systems (RQ8). The non-multimodal

system is a special case of multimodal settings. In this part, we vali-

date the effectiveness ofMG across various classical non-multimodal

recommender systems, like LightGCN [54] and SelfCF [55]. Al-

though they are subjected to a relatively lower risk of input distri-

bution shift, as indicated in Table 9, our proposed MG also brings

a noticeable improvement in the performance of these general

models, showing that even in a single-modal context, MG remains

effective in identifying superior flat local minima and promoting

model robustness.

7 ABLATION STUDY
The Interval 𝛽 in Algorithm 1. 𝛽 denotes the interval of mirror

training, where MG affects the training of multimodal recommen-

dation models every 𝛽 iterations. As depicted in Table 10, we set 𝛽

to 1, 3, 5, and 7, and observe the performance of various multimodal

recommendation models. Interestingly, we notice that changes in

𝛽 do not lead to a significant impact on model performance, with 3

being a suitable choice for the value of 𝛽 .

The (𝛼1, 𝛼2) in Algorithm 1. 𝛼1 and 𝛼2 are the scaling coefficients

while using Mirror Training. As shown in Fig. 5, when 𝛼1 > 𝛼2, MG

can achieve significant performance improvement by setting appro-

priate (𝛼1, 𝛼2). From our theoretical results in Eq. (7), when 𝛼1 = 𝛼2
(red dashed line in Fig. 5), the objective function degenerates to

Model Metric 𝛽 = 1 𝛽 = 3 𝛽 = 5 𝛽 = 7

DualGNN

REC 0.0327 0.0329 0.0331 0.0327

NDCG 0.0218 0.0219 0.0217 0.0216

BM3

REC 0.0339 0.0345 0.0337 0.0342

NDCG 0.0223 0.0228 0.0223 0.0225

DRAGON

REC 0.0418 0.0419 0.0410 0.0416

NDCG 0.0274 0.0273 0.0273 0.0274

Table 10: Top-5 recommendation performance of models
with different MG interval (𝛽) on Baby.
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Figure 5: Recall for different (𝛼1, 𝛼2) on Baby.

only the regularization term, leading to optimization difficulties.

On the other hand, when 𝛼1 < 𝛼2 (below the red dashed line), the

main term becomes a pure gradient ascent term, which might not

necessarily be advantageous for optimization and potentially im-

pact the model’s performance. These observations align well with

our theoretical results.

8 LIMITATIONS
The selection of (𝛼1, 𝛼2) lacks a direct and efficient method, often

requiring grid search, similar to other advanced recommender sys-

tem approaches [50, 52, 56]. Moreover, as per Algorithm 1, MG

theoretically requires more time for iterations. Fortunately, as indi-

cated by the results in Fig. 4, MG exhibits rapid convergence speed,

making the additional computational cost acceptable. In the future,

further development of MG is needed to address these limitations.

9 CONCLUSION
In this paper, we rethink the robustness challenges in multimodal

recommender systems through the perspective of flat local minima.

We propose a novel gradient strategy calledMirror Gradient (MG) to

address the prevalent risk of input distribution shift in the systems.

Extensive experiments across diverse multimodal recommendation

models and benchmark datasets and strong theoretical evidence

demonstrate the effectiveness, compatibility, and versatility of MG.
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A SUPPLEMENTARY EXPERIMENTS
Throughout all the experiments in this paper, we adopted the Top-5 recommendation performance as the metric due to its capacity to reflect

user preferences better, given the heightened significance of recommendations in top positions of rank lists [39]. However, enhancing Top-5

performance is a challenging job on Amazon datasets. The current advanced multimodal recommender system methods, including matrix

factorization (VBPR [15]), self-supervised learning (SLMRec [40], BM3 [56]), graph neural networks (MMGCN [44], GRCN [43], DualGNN

[42], FREEDOM [52], DRAGON [50]), still achieve relatively low value on Top-5 recommendation performance.

In fact, despite the challenge in enhancing this metric, we believe that the improvement brought about by the proposed MG in this paper

is substantial and significant. Specifically, in Table 11 and Table 12, we present the performance evaluation of the BM3 and FREEDOM

methods on the dataset Baby under various random seeds. Compared to the performance of the original method under different random

seeds, the improvement achieved by MG is notable. This implies that the enhancements from MG are substantial and not obtained through

random perturbations or simple parameter-tuning.

BM3 REC Improv. PREC Improv. MAP Improv. NDCG Improv.

Origin 0.0327 0.00% 0.0072 0.00% 0.0174 0.00% 0.0216 0.00%

Random seed

0.0329 0.61% 0.0073 1.39% 0.0176 1.15% 0.0218 0.93%

0.0329 0.61% 0.0073 1.39% 0.0176 1.15% 0.0218 0.93%

0.0329 0.61% 0.0073 1.39% 0.0173 -0.57% 0.0216 0.00%

0.0323 -1.22% 0.0072 0.00% 0.0175 0.57% 0.0216 0.00%

0.0323 -1.22% 0.0072 0.00% 0.0174 0.00% 0.0216 0.00%

0.0322 -1.53% 0.0072 0.00% 0.0174 0.00% 0.0215 -0.46%

0.0322 -1.53% 0.0072 0.00% 0.0174 0.00% 0.0215 -0.46%

0.0321 -1.83% 0.0072 0.00% 0.0174 0.00% 0.0215 -0.46%

0.0321 -1.83% 0.0072 0.00% 0.0174 0.00% 0.0215 -0.46%

MG 0.0345 5.50% 0.0077 6.94% 0.0183 5.17% 0.0228 5.56%

Table 11: Top-5 recommendation performance of BM3 on the dataset Baby. "Random seed" denotes that the model is trained
with a random seed.

FREEDOM REC Improv. PREC Improv. MAP Improv. NDCG Improv.

Origin 0.0374 0.00% 0.0083 0.00% 0.0194 0.00% 0.0243 0.00%

Random seed

0.0376 0.53% 0.0083 0.00% 0.0193 -0.52% 0.0243 0.00%

0.0376 0.53% 0.0082 -1.20% 0.0195 0.52% 0.0246 1.23%

0.0374 0.00% 0.0082 -1.20% 0.0194 0.00% 0.0245 0.82%

0.0374 0.00% 0.0083 0.00% 0.0195 0.52% 0.0246 1.23%

0.0373 -0.27% 0.0082 -1.20% 0.0196 1.03% 0.0244 0.41%

0.0373 -0.27% 0.0082 -1.20% 0.0196 1.03% 0.0245 0.82%

0.0373 -0.27% 0.0082 -1.20% 0.0196 1.03% 0.0245 0.82%

0.0373 -0.27% 0.0082 -1.20% 0.0196 1.03% 0.0245 0.82%

0.0372 -0.53% 0.0082 -1.20% 0.0196 1.03% 0.0245 0.82%

MG 0.0397 6.15% 0.0088 6.02% 0.0209 7.73% 0.0261 7.41%

Table 12: Top-5 recommendation performance of FREEDOM on the dataset Baby. "Random seed" denotes that the model is
trained with a random seed.
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