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Abstract001

Mitigating large language models (LLMs) to-002
wards toxic inputs is a challenging task, partic-003
ularly in handling multiple languages. In this004
research, we focus on fine-tuning methods us-005
ing multilingual toxicity mitigation instruction006
dataset. For this purpose, we curate an instruc-007
tion dataset covering 9 languages. We collect008
open-source multilingual hate speech datasets009
and then generate non-toxic responses using an010
open-source LLM. To address the trade-off be-011
tween general performance and mitigating tox-012
icity, we propose a targeted-neuron fine-tuning013
method that focuses on identified multilingual014
toxic neurons. Our experiments compare mul-015
tilingual and English-centric LLMs, revealing016
that multilingual models benefit more from per-017
language neuron fine-tuning, achieving better018
toxicity mitigation results. In contrast, full019
fine-tuning (FFT) tends to have better toxic-020
ity mitigation result in English-centric mod-021
els. However, our further analysis shows that022
FFT can lead to issues such as empty responses023
or language-inconsistent replies. Compared024
to FFT, the multilingual targeted-neuron fine-025
tuning method has slightly lower performance026
in toxicity mitigation, but produces more lan-027
guage consistent responses. Additionally, we028
conclude that toxic-neuron fine-tuning achieves029
better general performance than FFT, showing030
its effectiveness in balancing trade-off between031
toxicity mitigation with general performance.032

Warning: This paper contains toxic and harmful033
contents.034

1 Introduction035

Large language models (LLMs) have demonstrated036

excellent ability to follow instructions in given037

prompts. Yet, LLMs still remain susceptible to gen-038

erating toxic and hateful content when prompted039

with toxic inputs (Deshpande et al., 2023). As040

LLMs are increasingly used in multilingual set-041

tings, the risk of toxicity across languages poses042

both ethical and practical challenges (de Wynter 043

et al., 2025). 044

To reduce the risk for generating toxicity outputs, 045

a variety of efforts have been conducted to mitigate 046

toxicity in LLMs. Some of these efforts have ex- 047

plored controlled or contrastive fine-tuning (Tang 048

et al., 2024; Meng et al., 2024). Toxicity mitigation 049

by inspecting neurons as to whether the neurons ac- 050

tivation are reduced or editing neurons (Suau et al., 051

2024; Wang et al., 2024). These techniques achieve 052

strong results in English. However, non-English 053

toxicity mitigation is under-explored. For mitigat- 054

ing multilingual toxicity, some research explored 055

retrieval augmented generation (RAG) and cross- 056

lingual capabilities to mitigate toxicity in multilin- 057

gual context (Ermis et al., 2024; Li et al., 2024). 058

Fine-tuning on English data often fails to cap- 059

ture the localized nuances of toxicity present in 060

other languages, even for models with strong cross- 061

lingual abilities. To address this gap, we use 062

multilingual toxicity mitigation instruction dataset 063

to fine-tune LLMs in 9 languages: Arabic, Chi- 064

nese, English, French, German, Hindi, Indonesian, 065

Portuguese, and Russian. The dataset is curated 066

from open-source hate-speech corpora, where an 067

open-source LLM to generate safe, non-toxic re- 068

sponses for each prompt. In fine-tuning research, 069

recent work has shown that fine-tuning specific 070

neuron can mitigate catastrophic forgetting by up- 071

dating only the subset of neurons most relevant to 072

a specific task (Zhu et al., 2024), which effectively 073

preserve the model’s overall performance. 074

Inspired by previous studies, we propose a tar- 075

geted neuron-level fine-tuning approach in which 076

only toxicity-related neurons are updated during 077

fine-tuning. This strategy is designed to strike a 078

balance between effective toxicity mitigation and 079

preservation of general language model perfor- 080

mance. 081

To identify toxic neurons, we use ml-aura (Suau 082

et al., 2024), an AUROC-based method that de- 083
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Figure 1: Diagram of targeted neuron-level fine-tuning for multilingual toxicity mitigation.

tects neurons highly correlated with toxic behav-084

ior and scales down their activation values accord-085

ingly. By applying ml-aura to a multilingual toxic-086

ity dataset, we identify language-specific and cross-087

lingual toxic neurons across 9 languages.088

For the fine-tuning strategies, we compared base-089

line full fine-tuning (FFT) method with the per-090

language fine-tuning (fine-tuning per-language neu-091

rons) and multilingual fine-tuning on the union of092

detected neurons. Our experiments are conducted093

on two models: Aya-23-8B and Llama-3.1-8B.094

Experiment results show that per-language neu-095

ron fine-tuning achieves the most effective toxic-096

ity mitigation in Aya-23-8B, while FFT performs097

better in Llama-3.1-8B. However, further analysis098

reveals that FFT often leads to empty responses or099

language inconsistency. In contrast, per-language100

fine-tuning produces more consistent in-language101

responses in Aya-23-8B, whereas multilingual neu-102

ron fine-tuning leads to more language-consistent103

outputs in Llama-3.1-8B. Finally, we support our104

hypothesis that by fine-tuning only toxic-related105

neurons can mitigate toxicity with minimal degra-106

dation of general performance by evaluating the107

fine-tuned models on a multilingual subset of108

MMLU.109

In summary, our contributions are:110

• We curate a multilingual toxicity mitigation111

instruction dataset in 9 languages.112

• We identify toxic neurons using multilingual 113

toxicity dataset. 114

• We fine-tune models with full fine-tuning 115

(FFT), per-language fine-tuning, and multilin- 116

gual fine-tuning. Our extensive experiments 117

and in-depth analyses reveal insights into tox- 118

icity mitigation for multiple languages. 119

2 Related Work 120

2.1 Toxicity Mitigation 121

Toxicity refers to harmful, offensive, or discrim- 122

inatory content. Several studies have shown that 123

LLMs may generate toxic outputs (Weidinger et al., 124

2021). Furthermore, assigning different personas to 125

LLMs has been shown to increase harmful outputs 126

(Deshpande et al., 2023). As LLMs are increas- 127

ingly deployed in domains such as education and 128

healthcare, mitigating toxicity is important to en- 129

sure that AI systems align with ethics and human 130

values. 131

Various efforts have been made to mitigate tox- 132

icity in LLMs, especially via fine-tuning. Meth- 133

ods such as contrastive training (Tang et al., 2024) 134

and controlled fine-tuning (Meng et al., 2024) have 135

been proposed. Other studies investigate the rela- 136

tion between direct preference optimization (DPO) 137

and toxicity (Lee et al., 2024). 138

To maintain general performance of LLMs, tox- 139

icity mitigation at the neuron level has been stud- 140
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ied. AUROC Adaptation (AURA) ranks neurons141

by their AUROC in discriminating toxic sentences,142

then scales down activations proportionally to re-143

duce toxicity with minimal perplexity increase144

(Suau et al., 2024). Detoxifying with Intraoperative145

Neural Monitoring (DINM) frames detoxification146

as knowledge editing, identifying and directly mod-147

ifying toxic parameter regions to minimize harm-148

ful outputs while maintaining general performance149

(Wang et al., 2024). These approaches directly edit-150

ing or scaling down neuron activations. In contrast,151

our approach first identifies the relevant neurons152

and then fine-tune them using multilingual toxicity153

mitigation instruction dataset.154

2.2 Multilingual Toxicity Mitigation155

In multilingual toxicity mitigation, the effec-156

tiveness of the RAG approach with decoding-157

controlled fine-tuning (Ermis et al., 2024). Experi-158

ment results show that RAG achieves better toxicity159

mitigation performance, while decoding-controlled160

fine-tuning demonstrates some degree of transfer-161

ability in mitigating toxicity across languages. An-162

other study found that Direct Preference Optimiza-163

tion (DPO), when trained exclusively on English164

toxicity preferences, also demonstrates evidence of165

cross-lingual transfer. However, the degree of trans-166

ferability varies across languages (Li et al., 2024).167

Since these previous approaches still rely heavily168

on English data, our work focuses on leveraging169

multilingual instruction datasets to fine-tune LLMs,170

aiming for more inclusive toxicity mitigation.171

2.3 Neuron-Specific Fine-tuning172

Fine-tuning specific neurons has shown remarkable173

results by targeting particular neurons. A previous174

study proposed a fine-tuning method for transla-175

tion tasks, which identifies language-general ver-176

sus language-specific neurons through activation177

awareness using taylor expansion (Zhu et al., 2024).178

This method dynamically allocates capacity during179

fine-tuning to avoid interference and catastrophic180

forgetting.181

In our research, we adopt a different approach182

to detect toxic neurons. We identify neurons that183

can handle toxicity by analyzing both toxic and184

non-toxic sentences. Our focus extends beyond185

language neurons to include toxic neurons for each186

language. During the fine-tuning process, we com-187

pare the performance of per-language neuron fine-188

tuning with multilingual neuron fine-tuning (which189

involves the union of neurons from all languages)190

to mitigate toxicity in multilingual context. 191

3 Methodology 192

In this research, we proposed a targeted-neuron 193

fine-tuning method to mitigate multilingual toxicity. 194

Our framework starts from toxic neuron detection, 195

the construction of multilingual instruction dataset 196

for toxicity mitigation, and strategies for targerted- 197

neuron fine-tuning. For multilingual studies, we 198

focus on 9 languages for fine-tuning: Arabic (AR), 199

Chinese (ZH), English (EN), French (FR), German 200

(DE), Hindi (HI), Indonesian (ID), Portuguese (PT), 201

and Russian (RU). Our framework is illustrated in 202

Figure 1. 203

3.1 Toxic Neuron Detection 204

To identify multilingual toxic neurons, we use ml- 205

aura, an AUROC-based neuron ranking method 206

(Suau et al., 2024). Toxic neurons are neurons 207

that show consistent and strong reactions to toxic 208

content when given with both toxic and non-toxic 209

prompts. For this multilingual study, we utilize the 210

PolygloToxicityPrompts (PTP) dataset (Jain et al., 211

2024), which covers 9 languages. The dataset in- 212

cludes 5,000 sentences labeled as toxic (with toxic- 213

ity scores above 0.5) and 5,000 labeled as non-toxic 214

(with scores below 0.2). 215

From this dataset, we calculate the AUROC for 216

each neuron to evaluate its ability to distinguish 217

between toxic and non-toxic content. Neurons with 218

an AUROC greater than 0.5 are considered to be ca- 219

pable of handling toxicity, and ml-aura scales down 220

their activation values. In this study, we consider 221

the scaled-down activations as indicative of “toxic 222

neurons”. We then map the IDs of these neurons 223

and use them for targeted-neuron fine-tuning. 224

3.2 Multilingual Instruction Dataset for 225

Toxicity Mitigation 226

To fine-tune the LLMs to generate non-toxic re- 227

sponses across languages, we construct a multilin- 228

gual toxicity mitigation instruction dataset. First, 229

we collect multilingual hate speech prompts from 230

publicly available hate speech corpora (Moosa and 231

Najiba, 2022; Jha, 2024; Ibrohim and Budi, 2019; 232

Davidson et al., 2017; Tonneau et al., 2024; Saitov 233

and Derczynski, 2021). We select these datasets 234

labeled as “hate” since they are considered as sen- 235

tences with high levels of toxicity. The size of the 236

collected dataset per language ranges from 5,000 237

to 29,000 examples. For each toxic prompt, we 238
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Languages Sentences
EN Prompt May Allah bless him with 72 virgin pigs

Response It’s important to use respectful language when communicating with others. Let’s aim to uplift
and support one another instead. How about we discuss something positive?

ZH Prompt 女人打男人，肯定是逼急了。男人打女人，哪怕是女人先动手，也是男的渣"
Response 暴力在任何情况下都是不可接受的。无论是男性还是女性，在遇到冲突时都应该寻求

和平、理性的解决方式。如果遇到任何暴力行为，请及时向家人、朋友或相关机构求
助。构建和谐健康的关系需要双方的理解和尊重。

ID Prompt USER Biar cepat mati cucumu sontoloyo’
Response Maaf, permintaan atau pesan seperti itu tidak pantas dan bisa menyakiti perasaan orang lain.

Mari kita berbicara dengan lebih hormat dan positif. Apakah ada hal lain yang ingin Anda
diskusikan?

Table 1: Examples of instruction pairs after filtering.

use Qwen-2.5-4B-Instruct (Yang et al., 2024) to239

generate a non-toxic response. We choose this240

model since it supports multiple languages and is241

open-sourced. The hate-speech prompts and the242

LLM’s responses will be the instruction pairs used243

for fine-tuning. Next, we sample 2,000 instructions244

for each language and manually filter them by re-245

moving responses that remain toxic, are off-topic,246

or are not fluent, as well as those that do not match247

the correct language. After filtering, we retain ap-248

proximately 1,000+ high-quality instruction pairs249

per language.250

Examples of instruction pairs are shown in Table251

1, where we provide examples in English, Chinese,252

and Indonesian. Our instruction dataset includes253

prompts and responses for 9 languages. Next, to en-254

sure a balanced fine-tuning training data, we select255

1,000 instruction pairs per language.256

3.3 Neuron-Based Fine-Tuning Strategies257

Since we have identified toxic neurons in different258

languages, we are interested in exploring various259

fine-tuning strategies using both per-language neu-260

rons and multilingual neurons. In our experiment,261

we compare three fine-tuning strategies using the262

curated multilingual instruction dataset:263

• Full Fine-Tuning (FFT): Models are fine-264

tuned on the full multilingual instruction265

dataset with all model parameters.266

• Per-Language Neuron Fine-Tuning: Itera-267

tively for each language instruction dataset,268

we fine-tune only the neurons identified as269

toxic for that language. Other parameters re-270

main frozen.271

• Multilingual Neuron Fine-Tuning: We fine-272

tune only the union of identified toxic neurons273

across all nine languages using multilingual274

instruction dataset. Non-toxic neurons remain 275

frozen. 276

4 Experiments 277

4.1 Model Configurations 278

For the fine-tuning process, we focus our experi- 279

ments on two LLMs: Aya-23 8B (Aryabumi et al., 280

2024) and Llama-3.1 8B (Dubey et al., 2024). We 281

select these models to compare the performance 282

between multilingual LLMs and English-centric 283

LLMs. Through this setup, we aim to explore 284

whether targeted-neuron fine-tuning can be effec- 285

tively applied across different models, or if each 286

model may exhibit distinct performance character- 287

istics. 288

4.2 Evaluation 289

For the evaluation dataset, we use RTP-LX 290

(de Wynter et al., 2025), a multilingual bench- 291

mark with human-annotated toxic prompts. We 292

select 16 languages for evaluation to explore both 293

in-language evaluation (languages used during fine- 294

tuning) and out-of-scope-language evaluation (lan- 295

guages not used during fine-tuning). The 9 lan- 296

guages used for fine-tuning were Arabic (AR), Ger- 297

man (DE), English (EN), French (FR), Hindi (HI), 298

Indonesian (ID), Portuguese (PT), Russian (RU), 299

and Chinese (ZH). The out-of-scope languages for 300

evaluation are Czech (CS), Spanish (ES), Italian 301

(IT), Japanese (JA), Korean (KO), Dutch (NL), and 302

Polish (PL). Each prompt was input to the LLMs 303

under three configurations: standard fine-tuning 304

(SFT), per-language neuron fine-tuning, and multi- 305

lingual neuron fine-tuning. 306

To measure the toxicity of the generated re- 307

sponses, we use the Perspective API.1 This tool 308

1https://perspectiveapi.com
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Models AR DE EN FR HI ID PT RU ZH
Aya-23-8B 281991 505382 344148 293273 436552 323727 488311 489685 164748

Llama-3.1-8B 281344 484976 289615 273283 413922 349934 489228 487908 181989

Table 2: Number of toxic neurons per language for each model.
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Figure 2: Toxic neuron distribution in Aya-23-8B by
language: language-specific neurons, neurons shared
with several languages, and neurons shared across all
languages.

measures perceived toxicity scores on a scale from309

0 (non-toxic) to 1 (highly toxic). We chose this310

tool because it supports all 16 evaluation languages311

used in our experiment.312

4.3 Multilingual Toxic Neurons313

In this section, we analyze the number and dis-314

tribution of toxic neurons identified for each lan-315

guage across two models: Aya-23-8B and Llama-316

3.1-8B. Table 2 presents the total count of toxic317

neurons per language, as identified using the ml-318

aura method. The number of toxic neurons varies319

significantly by language. Chinese (ZH) consis-320

tently has the fewest toxic neurons in both models,321

whereas German (DE) and Portuguese (PT) have322

the most toxic neurons in Aya-23-8B and Llama-323

3.1-8B respectively. We hypothesize that these dif-324

ferences may reflect biases inherent in the Polyglo-325

ToxicityPrompts dataset, inconsistency of toxicity326

distributions across languages327

Next, we analyze the occurrences of overlapping328

neurons for each model, as neurons may overlap329

across different languages. The bar plot represent-330

ing the number of shared and specific neurons is331

shown in Figure 2. It indicates that, for all lan-332

guages, the majority of neurons are shared across333

languages. Additionally, there are some neurons334

that are shared among all languages. Since the re-335

sults for Llama-3.1-8B exhibit similar distribution336

patterns, we only report the findings for Aya-23-8B.337
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Figure 3: Overlap of toxic neurons between language
pairs in Aya-23-8B.

In Figure 3, we analyze the occurrences of over- 338

lapping neurons between languages in the Aya-23- 339

8B model using a heatmap. The heatmap reveals 340

that the number of overlapping neurons varies be- 341

tween different language pairs. For instance, Ger- 342

man has a higher number of overlapping neurons 343

with Russian and Portuguese. Meanwhile, Chinese, 344

which has the smallest number of toxic neurons, 345

shares the most neurons with German and Hindi. 346

4.4 Main Results 347

After fine-tuning, we evaluated the models using 348

the RTP-LX datasets in different languages. We 349

report our evaluation results in Table 3 for in- 350

language evaluation and Table 4 for out-of-scope 351

language evaluation. First, we analyzed the re- 352

sults for Aya-23-8B. The results indicate that us- 353

ing per-language neurons to fine-tune the models 354

effectively mitigates toxicity, showing low toxic- 355

ity levels across all languages. Additionally, this 356

approach demonstrates better toxicity mitigation 357

results in out-of-scope languages. 358

For the results of Llama-3.1-8B, we find that, on 359

average, FFT achieves the best toxicity mitigation 360

compared to per-language neuron and multilingual 361

neuron fine-tuning. However, in several languages 362

such as Arabic and Russian, multilingual neuron 363

fine-tuning yields the best results. Multilingual 364

neuron fine-tuning also yields the best results in out- 365
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Aya-23-8B Llama-3.1-8B
Languages Base Model FFT Per-Language Multilingual Base Model FFT Per-Language Multilingual

AR 0.298 0.107 0.088 0.091 0.259 0.057 0.060 0.054
DE 0.343 0.146 0.108 0.133 0.304 0.065 0.102 0.073
EN 0.412 0.195 0.154 0.178 0.379 0.072 0.172 0.102
FR 0.249 0.087 0.058 0.068 0.237 0.048 0.072 0.053
HI 0.344 0.186 0.095 0.104 0.373 0.059 0.078 0.063
ID 0.290 0.098 0.071 0.076 0.223 0.046 0.073 0.047
PT 0.316 0.090 0.065 0.086 0.309 0.042 0.085 0.048
RU 0.247 0.088 0.048 0.064 0.226 0.034 0.039 0.027
ZH 0.324 0.12 0.080 0.083 0.329 0.038 0.081 0.042

Average 0.3137 0.1241 0.0852 0.0981 0.2932 0.0512 0.0847 0.0566

Table 3: The toxicity score of in-language evaluation using RTP-LX dataset (The lower score indicates less toxicity).

Aya-23-8B Llama-3.1-8B
Languages Base Model FFT Per-Language Multilingual Base Model FFT Per-Language Multilingual

CS 0.317 0.146 0.092 0.104 0.246 0.051 0.129 0.090
NL 0.227 0.103 0.057 0.068 0.185 0.060 0.074 0.061
IT 0.326 0.138 0.074 0.086 0.266 0.065 0.081 0.063
JA 0.177 0.146 0.069 0.072 0.182 0.032 0.054 0.023
KO 0.266 0.199 0.105 0.109 0.282 0.071 0.091 0.065
PL 0.289 0.167 0.108 0.112 0.243 0.053 0.129 0.100
ES 0.263 0.106 0.028 0.044 0.221 0.044 0.041 0.038

Average 0.2664 0.1436 0.0761 0.0850 0.2321 0.0537 0.0856 0.0629

Table 4: The toxicity score of out-of-scope-language evaluation using RTP-LX dataset (The lower score indicates
less toxicity).

of-scope languages like Italian, Japanese, Korean,366

and Spanish.367

To gain a deeper understanding of these findings,368

we sampled some responses for further analysis.369

From the sampled responses, we observe that some370

responses are empty, and some outputs are in lan-371

guages different from the expected ones. Therefore,372

we continued our analysis by detecting empty re-373

sponses and verifying the languages of the outputs.374

5 Analysis375

5.1 Language Consistenty of the LLMs’376

Responses377

We found that the responses from LLMs may be378

blank or exhibit language inconsistency between379

the prompt and the response. To analyze the lan-380

guage characteristics of the LLMs’ responses, we381

use the langid tool2 to detect the language of each382

response. We categorize the response as “self” if383

the language of the prompt and response is con-384

sistent. If the response is blank, we categorize it385

as “NaN”. When counting the occurrences of lan-386

guages, if a language appears fewer than 20 times387

for a given prompt language, we categorize it as388

“others”. If a language appears 20 or more times,389

2https://github.com/saffsd/langid.py

we count it independently for that response lan- 390

guage. 391

5.1.1 Response Languages of Aya-23-8B 392

First, we analyze the responses of the Aya-23-8B 393

model, which is shown at Figure 4. We observe the 394

following for models fine-tuned with FFT. Among 395

the 9 in-language settings, responses are gener- 396

ally consistent and rarely switch to a different lan- 397

guage. However, for 7 out-of-scope languages, 398

except Italian, the model frequently produces re- 399

sponses with inconsistent languages. For example, 400

using Japanese prompts sometimes results in out- 401

puts in Arabic, Pashto, Urdu, and Latin. 402

The per-language neuron fine-tuning yields sim- 403

ilar results to FFT for in-language settings. How- 404

ever, for the 7 out-of-scope languages, the model 405

tends to produce slightly more stable responses. 406

For these 7 languages, there are small occurrences 407

of responses in English. Additionally, there are mi- 408

nor instances of Portuguese in responses to Span- 409

ish prompts and Latin in responses to Japanese 410

prompts. 411

In models fine-tuned with multilingual toxic neu- 412

rons, we observe a slightly higher frequency of 413

English responses compared to those fine-tuned 414

with per-language neurons. For non-Latin script 415
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Figure 4: Overlap of toxic neurons between language pairs in Aya-23-8B.
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Figure 5: Overlap of toxic neurons between language pairs in Llama-3.1-8B.

languages such as Hindi, Russian, and Chinese,416

there are occasional responses in Arabic. This sug-417

gests that the model may associate non-Latin script418

languages more strongly with Arabic.419

Based on the results, we conclude that for multi-420

lingual models, fine-tuning with per-language toxic421

neurons is more effective. This approach consis-422

tently yields lower toxicity scores compared to both423

standard FFT and multilingual neuron fine-tuning.424

Additionally, our findings indicate that FFT may425

exhibit language inconsistency if the language is426

not included in the fine-tuning process. For ex-427

ample, prompts in certain languages like Japanese428

or Korean may elicit responses in unrelated lan-429

guages, such as Arabic. In contrast, per-language430

and multilingual neurons generally produce more431

consistent language-specific responses. This high-432

lights the importance of using targeted neurons for433

fine-tuning multilingual LLMs to achieve better434

performance.435

5.1.2 Responses Language of Llama-3.1-8B436

Next, we analyze the response language of the437

Llama-3.1-8B model. The result is presented at438

Figure 5. For FFT fine-tuned models, all languages439

exhibit a high frequency of empty responses. Ad- 440

ditionally, there are occasional outputs in Chinese 441

and English, even when the prompt is in a different 442

language. Among the 7 out-of-scope languages, 443

most responses are generated in languages other 444

than the prompt language, with very few responses 445

correctly using the same language as the prompt. 446

This highlights the poor quality of responses from 447

the FFT model. 448

In the per-language neuron fine-tuning setting, 449

the 9 in-language prompts generally elicit re- 450

sponses in their correct language, with only mi- 451

nor occurrences of English outputs. Compared to 452

FFT, this setting significantly reduces the number 453

of empty replies. However, Russian still shows a 454

notable number of empty outputs. For the 7 out-of- 455

scope languages, empty responses remain common, 456

except in Japanese and Polish, where the model 457

produces more consistent replies. 458

Models fine-tuned with multilingual toxic neu- 459

rons generally generate responses that match the 460

prompt language more frequently. However, for 461

the 7 out-of-scope languages, there is a higher rate 462

of responses in non-target languages. Specifically, 463

Spanish prompts are often answered in Portuguese, 464
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Aya-23-8B Llama-3.1-8B
Languages Base Model FFT Per-Language Multilingual Base Model FFT Per-Language Multilingual

AR 39.5 42.6 39.5 22.6 24.6 6.2 7.2 0
DE 29.2 36.4 49.7 42.6 24.6 17.9 23.6 24.1
EN 20 36.4 42.6 42.6 44.6 22.1 35.9 35.9
FR 36.4 39.5 41.5 45.1 34.9 21 25.1 25.1
HI 20 8.2 19.5 10.3 16.9 2.6 2.6 0.5
ID 30.8 30.8 34.9 29.7 29.2 11.8 23.1 22.6
PT 29.7 40.5 39 32.3 34.4 11.8 25.1 21
RU 21 35.4 41 26.7 28.2 7.7 4.6 2.1
ZH 39 44.6 51.3 49.2 36.9 10.8 17.4 16.9

Average 29.51 34.93 39.89 33.46 30.48 12.43 18.29 16.47

Table 5: General performance evaluation using multilingual MMLU dataset, high school geography subset. The
result is the percentage of exact answer from LLMs’ output compared with gold answer.

and Italian prompts also frequently elicit responses465

in Portuguese. Additionally, a small number of466

replies to Japanese and Korean prompts appear in467

Chinese.468

From the above results, although FFT achieves469

relatively lower toxicity scores, it frequently pro-470

duces empty responses and often outputs incon-471

sistent languages. These issues highlight the poor472

performance of models fine-tuned with FFT. In473

contrast, multilingual neuron fine-tuning results474

in slightly higher toxicity but generates outputs475

that are more consistently aligned with the prompt476

language, thereby improving response relevance.477

However, for unseen languages, both methods still478

struggle, with empty responses remaining a com-479

mon issue. The per-language neuron fine-tuning480

approach offers more stable output, reducing the481

frequency of empty replies and improving language482

consistency. Nevertheless, for prompts with unseen483

languages, it occasionally generates responses in484

the wrong language, indicating challenges in gen-485

eralizing beyond the fine-tuned set.486

5.2 General Performance Evaluation After487

Fine-tuning488

Previous studies have indicated that there is a trade-489

off between safety and performance after the align-490

ment process. Some LLMs may exhibit exag-491

gerated safety issues, rejecting responses too fre-492

quently, even when the prompt is not related to493

dangerous matters (Bianchi et al., 2024). Inspired494

by these works, we try to analyze the result of gen-495

eral performance after the LLMs are fine-tuned to496

mitigate toxicity.497

In this section, we further analyze the general498

performance of LLMs after they have been fine-499

tuned to mitigate toxicity. We conducted a simple500

evaluation using a small proportion of the MMLU501

dataset in its multilingual version (Lai et al., 2023), 502

specifically focusing on the high school geography 503

subset. There were 195 question pairs for each lan- 504

guage. We evaluated the results by trimming the 505

responses to extract the multiple-choice answers 506

and comparing them with the gold answers to cal- 507

culate the exact match. 508

Table 5 presents the percentage of exact matches 509

from the evaluation results. For the Aya-23-8B 510

model, all fine-tuning strategies show performance 511

improvements after fine-tuning, with per-language 512

neuron fine-tuning yielding the most significant in- 513

crease. In contrast, for the Llama-3.1-8B model, 514

all fine-tuned LLMs experience a degradation in 515

performance. However, compared to FFT, per- 516

language neuron fine-tuning results in a smaller 517

decrease in performance. This finding supports our 518

hypothesis that per-language neuron fine-tuning 519

achieves a better balance between general perfor- 520

mance and toxicity mitigation. 521

6 Conclusion 522

In this paper, we have presented neuron-level fine- 523

tuning for toxicity mitigation in multilingual con- 524

text, focusing on per-language and multilingual 525

neuron fine-tuning. We curated a multilingual toxi- 526

city mitigation dataset in 9 languages. In English- 527

centric models, FFT tends to generate lower toxi- 528

city responses, but most are empty responses. On 529

the other hand, in some languages, multilingual 530

neuron fine-tuning yields better results, with more 531

consistent language use in the responses. For future 532

work, preference optimization to mitigate multilin- 533

gual toxicity is an essential work to ensure that 534

responses align with human values and expecta- 535

tions. 536
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Limitations537

Our experiments rely on multilingual toxicity mit-538

igation instruction dataset for the fine-tuning pro-539

cess. We acknowledge that our dataset may have540

bias responses, since the output is only from one541

model. Next, we can focus on multilingual toxicity542

mitigation to be aligned based on diversed-value543

human preferences.544
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