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Abstract

In modern time series problems, one aims at forecasting multiple times series with possible missing
and noisy values. In this paper, we introduce the Sliding Mask Method (SMM) for forecasting mul-
tiple nonnegative time series by means of nonnegative matrix completion: observed noisy values
and forecast/missing values are collected into matrix form, and learning is achieved by represent-
ing its rows as a convex combination of a small number of nonnegative vectors, referred to as the
archetypes. We introduce two estimates, the mask Archetypal Matrix factorization (mAMF) and
the mask normalized Nonnegative Matrix Factorization (mNMF) which can be combined with the
SMM method. We prove that these estimates recover the true archetypes with an error proportional
to the noise. We use a proximal alternating linearized method (PALM) to compute the archetypes
and the convex combination weights. We compared our estimators with state-of-the-art methods
(Transformers, LSTM, SARIMAX...) in multiple time series forecasting on real data and obtain that
our method outperforms them in most of the experiments.

1 Introduction

This article investigates forecasting multiple nonnegative times series with missing or noisy entries. We observe N Ø 1
time series M

(1)
, . . . , M

(N)
œ RT over a period of time of length T Ø 1 and we would like to forecast the next F Ø 1

future values by means of matrix completion, see Figure 1.
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Figure 1: [Left] Consider noisy multiple time series observations (green) with possible missing entries (question
mark) from N Ø 1 time series and their F forecast values in red. [Right] Matrix completion problem under
consideration: missing and forecast values FN◊F (gray and red diamonds) are not observed.

The matrix completion problem depicted on the right hand side of Figure 1 is ill-posed, it is not possible to complete
the red values by any low-rank technique. To address this issue, we consider a linear transform � defined as follows.

• We denote by P Ø 1 some time series length parameter referred to as the periodicity. However, our analysis
does not assume any periodicity in the data and the practitioner is free to chose any value for P . If some
periodicity appears in the data, she can choose P as a multiple of this periodicity. Note that our method
works even if P is not chosen in this way.
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• We partition the T +F columns (right side of Figure 1) into B sub-blocks of length P so that B = (T +F )/P .
Padding at most P ≠1 forecasts columns to the right of the matrix, one can assume, without loss of generality,
that B is an integer.

• Now, the rows of the output matrix have length WP , gathering W consecutive row sub-blocks together. It
amounts in sliding a window of length WP by jumps of length P on successive rows of the input matrix.

• We assume that W and P are such that WP > F . Up to row permutation, one obtain an output four blocks
matrix whose bottom right block is the forecast values, see Figure 2.
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Figure 2: Given an input matrix of size N ◊ (T + F ), the output sliding mask matrix is composed of 4 blocks,
the bottom right one being of size N ◊ F with the F last columns of the input matrix, denoted by FN◊F . In this
example, we consider a periodicity of P = 3, giving B = 3 sub-blocks per row of the input matrix and we gather
W = 2 consecutive sub-blocks in an output row. To ease readability, we denote by a, . . . , f the missing values and by
g, . . . , x the values to forecast. After row permutation, we obtain the output sliding mask matrix. The matrix �1(M)
(resp. �2(M), �3(M)) is a sub-matrix of size N(B ≠ W ) ◊ (WP ≠ F ) (resp. N(B ≠ W ) ◊ F , N ◊ (WP ≠ F ))
of the input matrix M.

Given the input multiple time series matrix M of size N ◊ T , define the observation matrix X as the matrix of size
N(B + 1 ≠ W ) ◊ WP obtained by dropping out the forecast and missing entries (gray and red entries in Figure 2)
and keeping the observed values of M (green entries). Given any matrix N of size N(B + 1 ≠ W ) ◊ WP , the mask
operator T(N) is defined by dropping out the forecast and missing entries (red and gray entries in Figure 2). By a
slight abuse of notation, one has X = T(�(M)).

We introduce the mask normalized Nonnegative Matrix Factorization (mNMF):

min
W1=1,WØ0

HØ0

T(N)=X

ÎN ≠ WHÎ
2
F

, (mNMF)

where Î · ÎF is the Frobenius norm, 1 is the vector of ones, i.e. solutions N are such that T(N) = X, the values of N

corresponding to the green entries in Figure 2 are equal to observed values. We also introduce the mask Archetypal
Matrix Factorization (mAMF):

min
WØ0,W1=1

VØ0,V1=1

T(N)=X

ÎN ≠ WHÎ
2
F

+ ⁄ÎH ≠ VNÎ
2
F

, (mAMF)

where ⁄ Ø 0 is a tuning parameter.
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The weight matrix W has size n ◊ K where n = N(B + 1 ≠ W ) and K Ø 1 is referred to as the nonnegative rank.
The matrix W satisfies the constraint W Ø 0 and W1 = 1, this being later referred to as normalization. Its rows
(wi,1, . . . , wi,K) are convex combination weights and each row of WH is a convex combination of the K rows of H.
The matrix H has size K ◊p where p = WP , referred to as the nonnegative basis (resp. archetypes basis) in (mNMF)
(resp. (mAMF)). Hence we get the following decomposition of the i

th row of WH,

(WH)(i) =
Kÿ

k=1
wi,kHk . (1)

Forecasts M̂ œ R
N◊F are given by the bottom right N ◊ F sub-matrix of WH, see Figure 2.

1.1 Mask nonnegative matrix completion statistical guarantees

Consider the mask operator T(N) that sets to zero N ◊ F values of a n ◊ p matrix N. Namely, given N œ Rn◊p, we
define

T(N) =
5

N1 N2
N3 0N◊F

6
and T

‹(N) =
5

0 0

0 N4

6
where N =

5
N1 N2
N3 N4

6
.

For sake of readability, we did not consider missing values in the mask operator (entries a, . . . , f in Figure 2), but our
results easily extend to them, changing the definition of T by also zeroing out entries corresponding to the missing
values of �(M).

Our goal is to solve the following nonnegative matrix completion problem: We observe a matrix X œ Rn◊p

containing the multiple time values, with n = N(B + 1 ≠ W ) and p = WP , given by the transformation presented
in Figure 2. The missing values and the forecast values are arbitrarily set to zero, i.e., T

‹(X) = 0. This choice is
not restrictive since the values of X corresponding to the missing and forecast entries are not observed and since our
study is insensitive to the values of these entries. Given a normalized nonnegative rank K approximation of X, we
introduce:

X0 := W0H0 œ arg min
W01=1

W0Ø0

H0Ø0

Ó..X ≠ T(W0H0)
..2

F

Ô
, (2a)

where W0 œ Rn◊K and H0 œ RK◊p. As K grows, the approximation error ÎX ≠ T(W0H0)ÎF decreases. The
matrix X0 is referred to as the best normalized nonnegative rank K approximation of X. The goal is to recover the
matrices W0 (weights) and H0 (archetypes) from the observation matrix X. The observation can be written as

X = T(X0) + F , (2b)

where F is some additive error term, referred to as the noise.

Contributions SMM inputs the forecast values and it can be viewed as a nonnegative matrix completion algorithm
under low nonnegative rank assumption. This framework raises two issues. A first question is the uniqueness of
the decomposition, also referred to as identifiability of the model. In Theorem 3, we introduce a new condition that
ensures uniqueness from partial observation of the target matrix. An other challenge, as pointed out by Vavasis (2009)
for instance, is that solving exactly NMF decomposition problem is NP-hard. Nevertheless NMF-type problems can
be solved efficiently using (accelerated) proximal gradient descent method Parikh & Boyd (2013) for block-matrix
coordinate descent in an alternating projection scheme, e.g., Javadi & Montanari (2020a) and references therein. We
rely on these techniques to introduce algorithms inputting the forecast values based on NMF decomposition, see
Section 3. Theorem 6 complements the theoretical analysis by proving the robustness of NMF-type algorithms when
entries are missing or corrupted by noise. Our main theoretical contributions are as follows:

• A uniqueness decomposition result (Theorem 3) showing that the decomposition W0H0 is unique given
partial observations, namely

If T(WH) = T(W0H0) then (W, H) © (W0, H0) , (Pu)

where © means up to positive scaling and permutation1.
1if an entry-wise nonnegative pair (W, H) is given then (WPD, D

≠1
P

€
H) is also a nonnegative decomposition WH = WPD ◊

D
≠1

P
€

H, where D scales and P permutes the columns (resp. rows) of W (resp. H)
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Algorithms mAMF mNMF BasisFormer RFR EXP SARIMAX LSTM GRU
Metrics RRMSE RMPE RRMSE RMPE RRMSE RMPE RRMSE RMPE RRMSE RMPE RRMSE RMPE RRMSE RMPE RRMSE RMPE
daily electricity 14.42% 36.85% 15.86% 46.66% 7.56% 6.64% 12.16% 47.78% 11.25% 43.83% 9.85% 43.16% 12.42% 46.49% 12.03% 45.90%
weekly electricity 14.80% 17.50% 11.09% 13.79% 8.76% 9.07% 7.25% 8.61% 10.07% 7.98% 9.05% 7.42% 27.85% 15.64% 26.04% 15.92%
gas 21.71% 18.55% 37.46% 42.79% 57.45% 52.10% 66.80% 71.61% 63.35% 68.16% 45.58% 52.83% 62.97% 68.38% 62.87% 67.90%
Istanbul 15.67% 17.80% 14.18% 16.77% 14.83% 12.54% 15.37% 18.32% 15.46% 18.64% 14.75% 17.01% 16.22% 20.96% 20.01% 26.87%
ETTh1 10.24% 15.23% 12.30% 14.16% 14.57% 13.61% 12.96% 17.98% 12.37% 13.65% 13.36% 15.94% 14.86% 18.78% 14.71% 18.85%
ETTh2 9.42% 13.07% 4.87% 6.66% 54.66% 53.66% 6.47% 7.60% 14.06% 13.67% 12.76% 13.03% 14.17% 13.75% 14.44% 14.36%
ETTm1 10.12% 15.22% 9.94% 12.25% 13.58% 12.31% 12.81% 17.42% 11.45% 14.20% 12.29% 16.45% 13.39% 17.96% 14.13% 18.63%
ETTm2 8.19% 11.65% 5.08% 7.41% 55.52% 54.95% 5.81% 7.16% 13.18% 12.88% 13.16% 12.95% 14.29% 13.89% 14.46% 14.03%
electricity1 6.59% 13.17% 11.11% 15.28% 26.93% 28.19% 12.75% 16.09% 38.27% 34.44% >100.00% >100.00% 8.51% 10.13% 7.19% 9.61%

electricity2 8.09% 16.82% 8.82% 12.17% 35.38% 39.73% 12.05% 15.67% 47.40% 40.36% 43.38% 38.98% 9.05% 12.83% 10.30% 13.28%
electricity3 10.57% 13.95% 12.43% 14.04% 34.30% 37.25% 12.45% 14.14% 40.37% 33.48% 37.05% 33.01% 10.70% 11.62% 10.70% 11.02%

electricity4 11.02% 24.30% 25.07% 29.71% 39.42% 40.66% 23.16% 19.50% 54.42% 43.63% 63.08% 46.59% 12.18% 13.88% 9.53% 11.05%

electricity5 9.52% 19.05% 7.72% 15.48% 46.22% 49.60% 25.96% 26.84% 56.76% 49.31% * * 21.92% 28.79% 20.73% 27.02%
electricity6 10.11% 17.04% 14.30% 18.62% 45.50% 46.86% 13.81% 16.26% 51.87% 37.35% 52.10% 40.56% 7.58% 11.74% 7.13% 10.32%

electricity7 8.34% 16.75% 37.49% 30.03% 40.17% 43.20% 29.51% 22.96% 53.00% 45.95% * * 17.74% 14.72% 16.55% 14.19%

electricity8 10.03% 17.49% 23.81% 20.59% 30.64% 30.99% 19.33% 17.98% 36.83% 40.46% 38.54% 41.23% 12.16% 15.73% 13.89% 17.08%
electricity9 19.45% 38.90% 21.15% 41.72% 34.88% 38.85% 18.18% 37.53% 35.90% 38.65% >100.00% >100.00% 18.00% 37.77% 18.80% 38.21%
electricity10 5.13% 12.53% 5.40% 11.29% 29.78% 31.79% 12.11% 13.42% 33.88% 34.89% 36.55% 38.92% 7.66% 10.25% 7.77% 9.94%

synthetic1 6.40% 9.30% 5.81% 8.01% 8.06% 12.32% 5.79% 9.44% 5.73% 9.32% 5.76% 8.81% 6.67% 11.87% 6.77% 11.89%
synthetic2 19.04% 20.28% 20.35% 25.30% 31.32% 47.88% 17.12% 20.24% 21.09% 25.87% 28.41% 35.53% 21.55% 29.04% 21.48% 28.94%
low-noise 0.10% 0.26% 0.10% 0.26% 23.71% 51.94% 8.65% 22.76% 16.97% 48.02% 0.19% 0.33% 16.52% 46.03% 16.76% 46.46%
medium-noise 2.41% 5.23% 1.92% 4.81% 21.68% 48.48% 8.42% 21.95% 15.94% 44.25% 1.97% 4.94% 15.66% 42.68% 15.67% 42.98%
high-noise 12.69% 28.04% 10.39% 26.43% 18.44% 45.77% 11.73% 30.26% 13.02% 33.27% 15.24% 27.37% 13.03% 33.67% 12.97% 33.47%

Figure 3: Best results in bold, and second best results underlined. Some values have not been evaluated due to
numerical errors on matrix inversion, reported as a star symbol ú. Datasets include: electricity consumption (daily,
weekly, electricity1-10), gas sensor measurements (gas), stock exchange returns (Istanbul), electricity transformer
temperatures (ETTh1, ETTh2, ETTm1, ETTm2), and various synthetic datasets, see Section 4 for details.

• A robustness result (Theorem 6) showing that (mNMF) and (mAMF) recover H0 with an error proportional
to ÎFÎF .

Our analysis is completed by an algorithmic and numerical study that

• introduces a Proximal Alternating Linearized Minimization (PALM) method to solve (mAMF) and shows
that PALM reaches a stationary point (Theorem 7).

• reports a performance improvement of (mNMF) and (mAMF) against state-of-the-art algorithms on real
datasets for RRMSE and RMPE (Table 3). The relative root-mean-squared error (RRMSE) and the relative
mean-percentage error (RMPE) are defined by

RRMSE = ÎMF ≠ M
ı

F
ÎF

ÎM
ı

F
ÎF

, RMPE = ÎMF ≠ M
ı

F
Î1

ÎM
ı

F
Î1

.

where M
ı

F
are the true values and MF the forecasts (see Section 4).

Comments on low rank modeling Sparse or Low-Rank representations are ubiquitous in applications and well
studied in the literature. In our analysis a time series is cut into several smaller W sub-blocks time series with the
same length p = WP . For instance, observing sales over a period of one year, one can consider 52 weekly time series
(one per week). These observations are the rows of our observed matrix X. The normalized nonnegative low rank
hypothesis assumes that the p-length multiple time series of the dataset can be decomposed as a sum of K basis time
series H plus an error term. Of course, this error term can incorporate the model approximation error as depicted
in (2a). The K basis time series H are learned on the entire dataset X. This technique can be seen as dimension
reduction, each observation can be summarized as K weights W such that the resulting convex combination of basis
time series (1) is a good approximation of the observation X.

The relevance of such a hypothesis on real data cannot be proven beforehand. Our numerical study on real data shows
that we improve results in prediction, better than standard methods in time series analysis: Seasonal AutoRegres-
sive Integrated Moving Average with eXogenous variables model (SARIMAX), EXPonential moving average (EXP),
Random Forest Regressor (RFR), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), BasisFormer
(Attention-based Time Series Forecasting with Learnable and Interpretable Basis). It suggests that the low rank as-
sumption is reasonable for the datasets studied in the paper.
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1.2 Related works

Our proposed method, the Sliding Mask Method (SMM) deeply exploits Nonnegative Matrix Factorization (NMF)
approaches, see for instance Paatero & Tapper (1994) and Lee & Seung (1999). For further details, we refer the
interested reader to the surveys Wang & Zhang (2013); Gillis (2015; 2017) and references therein. NMF has been
widely used in the contexts of document analysis Xu et al. (2003); Essid & Fevotte (2013), hidden Markov chain Fu
et al. (1999), representation learning Lee & Seung (1999), community discovery Wang et al. (2011), and clustering
Turkmen (2015). Forecasting time series has been previously done before through a mixed linear regression and matrix
factorization as in Yu et al. (2016), matrix completion for one temporal time series as in Gillard & Usevich (2018),
tensor factorization as in de Araujo et al. (2017); Yokota et al. (2018); Tan et al. (2016), and multiple time series with
auto-corelation regularization Mei et al. (2017) or side information Mei et al. (2018).

Uniqueness of NMF can be tracked back to Thomas (1974); Donoho & Stodden (2004); Recht et al. (2012) with a
simplicial polyhedral cone analysis. This paper extends this analysis to matrix completion framework, where some
entries are not observed. Uniqueness and robustness of archetypal analysis have been studied in Javadi & Montanari
(2020a) for simplicial polyhedral cone approximation of a dataset, denoted in data matrix form by X œ Rn◊p in this
paper. This paper extends this latter analysis to the case where some data entries might be missing and some data
blocks are not observed (forecast, red values in Fig. 2).

Notation Denote by A
€ the transpose of matrix A. Denote by ÎAÎ

2
F

= tr(A€
A) the Frobenius norm of A. We

use Rn◊p

+ to denote n ◊ p nonnegative matrices. It would be useful to consider the columns description Ak œ Rn1 of
matrix A = [A1 · · · An2 ] and the row decomposition A

(k)
œ Rn2 of a matrix A using A

€ = [(A(1))€
· · · (A(n1))€]

for A œ Rn1◊n2 . Notation Ai,j indicates the elements of matrix A; [n] represents the set {1, 2, . . . , n}; 1d is the
all-ones vector of size d; and 1A is the indicator function of A, such that 1A = 0 if condition A is verified, Œ

otherwise.

Proofs Unless otherwise stated, all the proofs are given in Supplement Material.

2 Uniqueness and estimation guarantees

2.1 The train and test paradigm, link with forecasting multiple nonnegative time series

The model under consideration is presented in Equations (2). Our goal is to estimate the K-best normalized non-
negative approximation X0, defined in Equation (2a), from the partial and noisy observation X. We denote by X

ı is
the mask of X0, namely

X
ı := T(X0) =

5
X1 X2
X3 0N◊F

6
, (3a)

where X1 œ R(n≠N)◊(p≠F ), X2 œ R(n≠N)◊F , and X3 œ RN◊(p≠F ) are blocks of X0. Note that X = X
ı + F,

where F is the noise term, see Equation (2b).

These blocks can be be gathered into a train and test paradigm. Note that we observe the full sub-matrix Ttrain(X0) :=
[X1 X2] which we refer to as the training part. We would like to predict (forecast) the 0N◊F block of the sub-matrix
Ttest(X0) := [X3 0N◊F ] which we refer to as the test part of our observation X. Looking at Figure 2, we define

TT (X0) :=
Ë

X1
X3

È
and TF (X0) :=

Ë
X2

0N◊F

È
. (3b)

Our notation (subscripts T and F ) stems from the sliding mask method for multiple time series forecast. Note that
TT (X) gathers all the information observed up to time T , and we would like to forecast the 0N◊F block of TF (X).
Now, we know by design that X0 := W0H0. Hence, denoting H0 =: [H0T H0F ], and W

€
0 =: [W0

€
train W0

€
test],

we get that

Ttrain(X0) = W0trainH0 , X3 = W0testH0T , (3c)
TT (X0) = W0H0T , X2 = W0trainH0F .
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In light of Figures 1 and 2, the multiple forecasts M̂T +1, . . . , M̂T +F are given by the estimation of W0testH0F .
Observe that an estimation of W0test gives the weights learnt on the test sub-matrix while an estimation of H0F is
the forecast of the archetypes, see the decomposition (1).

2.2 Uniqueness from partial observations

When we observe the full matrix X0 = W0H0, the issue on uniqueness has been addressed under some sufficient
conditions on W, H, e.g., Strongly boundary closeness of Laurberg et al. (2008), Complete factorial sampling of
Donoho & Stodden (2004), and Separability of Recht et al. (2012). A necessary and sufficient condition exists as
given by the following theorem. We recall that that the K-dimensional positive orthant is the set {x œ R

K : xi Ø

0 , ’i œ [K]} and a K-simplicial cone is the set which the conic hull of K linearly independent vectors of R
K .

Theorem 1 (Thomas (1974)) The decomposition X0 := W0H0 is unique up to permutation and positive scaling of
columns (resp. rows) of W0 (resp. H0) if and only if the K-dimensional positive orthant is the only K-simplicial
cone verifying Cone(W€

0 ) ™ C ™ Cone(H0) where Cone(A) is the cone generated by the rows of A.

Our first assumption is following.

Assumption 1 In the set given by the union of sets:

{C : Cone(W0train
€) ™ C ™ Cone(H0)}

€
{C : Cone(W€

0 ) ™ C ™ Cone(H0T )} , (A1)

the nonnegative orthant is the only K-simplicial cone. Note that this assumption is implied by the following one: In
the set

{C : Cone(W0train
€) ™ C ™ Cone(H0T )} (AÕ

1)

the nonnegative orthant is the only K-simplicial cone.

We consider the following standard definition.

Definition 2 (Javadi & Montanari (2020a)) The convex hull conv(X0) has an internal radius µ > 0 if it contains
an K ≠ 1 dimensional ball of radius µ.

Our second main assumption is the following.

Assumption 2 Assume that
conv(Ttrain(X0)¸ ˚˙ ˝

=W0trainH0

) has internal radius µ > 0 . (A2)

Theorem 3 Assumption 1 implies Property (Pu). Moreover, if (A1) and (A2) holds, T(WH) = T(W0H0) and
W01 = W1 = 1 then (W, H) = (W0, H0) up to permutation of columns (resp. rows) of W (resp. H), and there is
no scaling.

Corollary 4 If decomposition of X1 = W0trainH0T is unique then (Pu) holds.

Proof. By Theorem 1, observe that (AÕ
1) is a necessary and sufficient condition for the uniqueness of the decomposition

X1 = W0trainH0T . Observe that (AÕ
1) implies (A1) and invoke Theorem 1 and Theorem 3.

This corollary shows that the uniqueness of the decomposition of the top left block X1 (which is fully observed)
implies the uniqueness of normalized decomposition of X0 given partial observations (the bottom right block is not
observed).

2.3 Robustness under partial observations

The second issue is robustness to noise. To the best of our knowledge, all the results addressing this issue assume that
the noise error term is small enough, e.g., Laurberg et al. (2008), Recht et al. (2012), or Javadi & Montanari (2020a).
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In this paper, we extend these stability result to the nonnegative matrix completion framework (partial observations)
and we also assume that noise term ÎFÎF is small enough.

In the normalized case (i.e., W1 = 1), both issues (uniqueness and robustness) can be handled with the notion of –-
uniqueness, introduced by Javadi & Montanari (2020a). This notion does not handle the matrix completion problem we
are addressing. To this end, let us introduce the following notation. Given two matrices A œ Rna◊p and B œ Rnb◊p

with same row dimension, and C œ Rna◊nb , define the divergence D(A, B) as

D(A, B) := min
CØ0 , C1nb

=1na

naÿ

a=1

...A
(a)

≠

nbÿ

b=1
CabB

(b)
...

2

F

,

= min
CØ0 , C1nb

=1na

ÎA ≠ CBÎ
2
F

. (4a)

which is the squared distance between rows of A and conv(B), the convex hull of rows of B. For B œ Rn◊p define

ÂD(A, B) := min
CØ0 , C1n=1na

T(N≠B)=0

ÎA ≠ CNÎ
2
F

. (4b)

Definition 5 (T–-unique, Javadi & Montanari (2020a)) Given X0 œ Rn◊p
, W0 œ Rn◊K , and H0 œ RK◊p, the

factorization X0 = W0H0 is T–-unique with parameter – > 0 if for all H œ RK◊p with conv(X0) ™ conv(H):

ÂD(H, X0)1/2
Ø ÂD(H0, X0)1/2 + –

Ó
D(H, H0)1/2 + D(H0, H)1/2

Ô
. (4c)

Our third main assumption is given by:

Assumption 3 Assume that

X0 = W0H0 is T–-unique (A3)

Theorem 6 (Archetypes estimation) If (A2) and (A3) hold then there exist positive reals � and � (depending on
X0) such that, for all F such that ÎFÎF Æ � and 0 Æ ⁄ Æ �, any solution („W, ‚H) to (mAMF) (if ⁄ ”= 0) or (mNMF)
(if ⁄ = 0) with observation (2b) is such that:

ÿ

¸ÆK

min
¸ÕÆK

ÎH0¸ ≠ ‚H¸ÕÎ
2
2 Æ c ÎFÎ

2
F

,

where c is a constant depending only on X0.

By Theorem 6, when the noise is sufficiently small, there exists a permutation ‡ on [K] such that

ÎH0 ≠ Ĥ‡Î
2
F

:=
ÿ

¸ÆK

ÎH0¸ ≠ Ĥ‡(¸)Î
2
2 Æ c ÎFÎ

2
F

(4d)

where Ĥ‡ is a permutation of the row of Ĥ.

3 Solving masked nonnegative/archetypal matrix factorization

3.1 Alternating Least Squares for (mNMF)

The basic algorithmic framework for matrix factorization problems is Block Coordinate Descent (BCD) method, which
can be straightforwardly adapted to (mNMF) (see Supplement Material). BCD for (mNMF) reduces to Alternating
Least Squares (ALS) algorithm (see Algorithm 4 in Appendix), when an alternative minimization procedure is per-
formed and matrix WH is projected onto the linear subspace T(N) = X by means of operator PX, as follows:

N := PX(WH) : T(N) = X and T
‹(N) = WH .

Hierarchical Alternating Least Squares (HALS) is an ALS-like algorithm obtained by applying an exact coordinate
descent method Gillis (2014). Moreover, an accelerated version of HALS is proposed in Gillis & Glineur (2012) (see
Supplement Material).

7
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3.2 Projected Gradient for (mAMF)

Proximal Alternating Linearized Minimization (PALM) method, introduced in Bolte et al. (2014) and applied to AMF
by Javadi & Montanari (2020a), can be also generalized to (mAMF) (see Algorithm 1).

Algorithm 1 PALM for mAMF
1: Initialization: chose H

0, W
0

Ø 0 such that W
0
1 = 1, set N

0 := PX(W0
H

0) and i := 0.
2: while stopping criterion is not satisfied do

3: ÂHi := H
i
≠

1
“

i
1
W

i€ !
W

i
H

i
≠ N

i
"

Û Gradient step on H, objective first term

4: H
i+1 := ÂHi

≠
⁄

⁄+“
i
1

1
ÂHi

≠ Pconv(Ni)(H̃i)
2

Û Gradient step on H, objective second term

5: W
i+1 := P�

1
W

i
≠

1
“

i
2

!
W

i
H

i+1
≠ N

i
"

H
i+1€

2
Û Projected gradient step on W

6: N
i+1 := PX

1
N

i + 1
“

i
3

!
W

i+1
H

i+1
≠ N

i
"2

Û Projected gradient step on N

7: i := i + 1
8: end while

Where Pconv(A) is the projection operator onto conv(A) and P� is the projection operator onto the (N ≠ 1)-
dimensional standard simplex �N . The two projections can be efficiently computed by means of, e.g., Wolfe algorithm
Wolfe (1976) and active set method Condat (2016) respectively.

Theorem 7 If “
i

1 > ÎW
i€

W
i
ÎF , “

i

2 > max
Ó

ÎH
i+1

H
i+1€

ÎF , Á

Ô
for some Á > 0, and “

i

3 > 1, for each iteration

i, then the sequence
!
H

i
, W

i
, N

i
"

generated by Algorithm 1 converges to a stationary point of �(H, W, N) :=
f(H) + g(W) + p(N) + h(H, W, N), where:

f(H) = ⁄D(H, N) , g(W) =
q

K

k=1 1{Wkœ�} ,

p(N) = 1{N=PX(WH)} , h(H, W, N) = ÎN ≠ WHÎ
2
F

.

Proof. Proof is given in Supplement Material.

Finally, the inertial PALM (iPALM) method, introduced for NMF in Pock & Sabach (2016), is generalized to (mAMF)
in Algorithm 2.

Algorithm 2 iPALM for mAMF
1: Initialization: H

0, W
0

Ø 0 such that W
0
1 = 1, set N

0 := PX(W0
H

0), H
≠1 := H

0, W
≠1 := W

0,
N

≠1 := N
0, and i := 0.

2: while stopping criterion is not satisfied do

3: H
i

1 := H
i + –

i

1
!
H

i
≠ H

i≠1"
, H

i

2 := H
i + —

i

1
!
H

i
≠ H

i≠1"
Û Inertial H

4: ÂHi := H
i

1 ≠
1

“
i
1
W

i€ !
H

i

2W
i
≠ N

i
"

Û Gradient step on H, objective first term

5: H
i+1 := ÂHi

≠
⁄

⁄+“
i
1

1
ÂHi

≠ Pconv(Ni)(H̃i)
2

Û Gradient step on H, objective second term

6: W
i

1 := W
i + –

i

2
!
W

i
≠ W

i≠1"
, W

i

2 := W
i

1 + —
i

2
!
W

i
≠ W

i≠1"
Û Inertial W

7: W
i+1 := P�

1
W

i

1 ≠
1

“
i
2

!
W

i

2H
i+1

≠ N
i
"

H
i+1€

2
Û Projected gradient step on W

8: N
i

1 := N
i

1 + –
i

3
!
N

i
≠ N

i≠1"
, N

i

2 := N
i

1 + —
i

3
!
N

i
≠ N

i≠1"
Û Inertial N

9: N
i+1 := PX

1
N

i

1 + 1
“

i
3

!
W

i+1
H

i+1
≠ N

i

2
"2

Û Projected gradient step on N

10: i := i + 1
11: end while

Remark 8 If, for all iterations i, –
i

1 = –
i

2 = 0 and —
i

1 = —
i

2 = 0, iPALM reduces to PALM.

Stopping criterion For (mNMF), KKT conditions regarding matrix W are the following (see Supplement Material):

W ¶
!
(WH ≠ N)H€ + t 1

€
K

"
= 0 .

8
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By complementary condition, it follows that, ’j, ti = ((WH ≠ N)H€)i,j . Hence, we compute ti by selecting, for
each row W

(i), any positive entry Wi,j > 0.

Remark 9 Numerically to obtain a robust estimate of ti, we can average the corresponding values calculated per
entry Wi,j .

Let ÁW, ÁH, and ÁR be three positive thresholds. The stopping criterion for the previous algorithms consists of a
combination of:

1. the maximum number of iterations;

2. the Frobenius norm of the difference of W and H at two consecutive iterations, i.e., the algorithm stops if
ÎW

i+1
≠ W

i
ÎF Æ ÁW · ÎH

i+1
≠ H

i
ÎF Æ ÁH ;

3. a novel criterion based on KKT condition, i.e., the algorithm stops if it holds that

ÎR(Wi+1)ÎF + ÎR(Hi+1)ÎF Æ ÁR ,

where matrices R(W) and R(H) are defined as

R(W)i,j := |(WH ≠ N)H€)i,j + ti|1{Wi,j ”=0}

and R(H)i,j := |W
€(WH ≠ N))i,j |1{Hi,j ”=0}

respectively.

3.3 Large-scale dataset

Assume the observed matrix X = T(�(M)) is large-scaled, namely one has to forecast a large number N of times
series (e.g. more than 100, 000) and possibly a large number of time stamps T . The strategy, described in Section 1.3.1
in Cichocki et al. (2009) for NMF, is to learn the H œ RK◊T matrix from a submatrix Nr œ Rr◊T of K Æ r π N

rows of N œ Rn◊T , and to learn the W œ RN◊K matrix from a sub-matrix Nc œ RN◊c of K Æ c π T columns
of N œ RN◊T . We denote by Hc the submatrix of H given by the columns appearing in Nc and Wr the sub-matrix
of H given by the columns appearing in Nc.

This strategy can be generalized to (mNMF) and (mAMF). For (mNMF) this generalization is straightforward, and
for (mAMF) one need to change Steps 3-5 in Algorithm 1 as follows:

ÂHi := H
i
≠

1
“

i

1
(Wi

r
)€ !

W
i

r
H

i
≠ N

i

r

"

H
i+1 := ÂHi

≠
⁄

⁄ + “
i

1

1
ÂHi

≠ Pconv(Ni)(H̃i)
2

W
i+1 := P�

3
W

i
≠

1
“

i

2

!
W

i
H

i+1
c

≠ N
i

c

"
(Hi+1

c
)€

4
.

The same approach is used for Algorithm 2.

4 Numerical Experiments

We tested SMM on real-world datasets. Matrix H
0 is initially selected as in Javadi & Montanari (2020a). Each row

of matrix W
0 is generated randomly in the corresponding standard simplex. For SMM we implemented both HALS

for (mNMF) and iPALM for (mAMF).

Moreover, we have compared our method with other classically-designed mainstream time series forecasting methods
such as Random Forest Regression (RFR) and EXPonential smoothing (EXP), Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU) deep neural networks with preliminary data standardization Shewalkar et al. (2019),

9
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and Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors (SARIMAX) models Douc et al.
(2014).

The interested reader may find a Github repository on numerical experiments at [link redacted to comply with double

blind reviewing]

4.1 Real-world datasets

The numerical experiments refer to the following real-world datasets: weekly and daily electricity consumption
datasets of 370 Portuguese customers during the period 2011-2014, Trindade (2015); twin gas measurement dataset
of five replicates of an 8-MOX gas sensor, Fonollosa (2016); Istanbul Stock Exchange returns with seven other in-
ternational indexes for the period 2009-2011, Akbilgic (2013); daily electricity transformer temperature (ETT) mea-
surements, Zhou et al. (2020). Figure 3 reports the cross-validated RRMSE and RMPE on observed values obtained
during computational tests for each method.

In the majority of the cases, our method is the best or second best among all the approaches for all the dataset we
tested in terms of RRMSE and RMPE indices (except for the “weekly electricity” dataset), and there is no other
method performing better.

(mAMF) seems to be the most promising algorithm in terms of performances for the first five datasets, while (mNMF)
is the best method for the last four ETT datasets.

4.2 Comparison with BasisFormer method

We performed additional computational experiments to compare our NMF-based methodology with state-of-the-art
time series transformer models, which are suitable for large-scale time series forecasting problems. In particu-
lar, we consider the BasisFormer model recently described in Ni et al. (2023). We consider the same electric-
ity dataset as in Ni et al. (2023) and split the whole dataset into 10 small sets of 960 time steps each. We col-
lect our performance statistics, namely RRMSE and RMPE, on the original unscaled datasets. Note that in Ni
et al. (2023), the performance statistics reported are the absolute errors on the scaled dataset obtained by applying
sklearn.preprocessing.StandardScaler to the original data. For BasisFormer, we run the code in the
repository https://github.com/nzl5116190/Basisformer.

As shown in Figure 3, our method outperforms the BasisFormer methodology and is competitive against the other
methodologies (in particular, with respect to the deep learning approaches which seem the most promising methods for
these datasets). We also perform additional computational experiments on scaled datasets, collecting our performance
indices on relative errors and absolute errors as in Ni et al. (2023), and we obtain the same dominance results.

4.3 Synthetic datasets

Further computational experiments have been performed by considering additional synthetic datasets. In particular,
we generated three datasets by replicating 1, 000 short time series (with 10 time periods) 10 times and adding white
noise multiplied by a constant factor ‡ to each time series entry separately. We choose ‡ œ {0.005, 0.1, 1}. We refer
to the these datasets as “low noise”, “medium noise”, and “high noise”, respectively.

An additional synthetic dataset has been generated considering few probability vectors and computing the entire matrix
W by randomly choosing a probability vector and adding white noise. A completely randomly generated matrix H is
multiplied by W to obtain the whole matrix M

ú := WH. We refer to this dataset as “synthetic1”.

Finally, the last synthetic dataset is obtained by generating a matrix H by replicating a small time series (with 50
time periods) 100 times and adding white noise multiplied by a constant factor ‡ = 1 and matrix W of suitable
dimensions, whose rows are uniformly distributed over the corresponding dimensional simplex. Then, we set the
matrix M

ú := WH. We refer to this last dataset as “synthetic2”.

Figure 3 reports the cross-validated RRMSE and RMPE indices referring to synthetically generated datasets. The
more pronounced the periodicity of the time series or of the archetypes, the better the performances of our proposed
NMF-like methods: in this case, the more realistic the hypothesis that the whole dataset can be expressed as convex
combinations of a few archetypes, having a low-rank representation.

10
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