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Abstract

Inductive relation prediction (IRP)—where entities can be different during training
and inference—has shown great power for completing evolving knowledge graphs.
Existing works mainly focus on using graph neural networks (GNNs) to learn the
representation of the subgraph induced from the target link, which can be seen
as an implicit rule-mining process to measure the plausibility of the target link.
However, these methods cannot differentiate the target link and other links during
message passing, hence the final subgraph representation will contain irrelevant
rule information to the target link, which reduces the reasoning performance and
severely hinders the applications for real-world scenarios. To tackle this problem,
we propose a novel single-source edge-wise GNN model to learn the Rule-inducEd
Subgraph represenTations (REST), which encodes relevant rules and eliminates
irrelevant rules within the subgraph. Specifically, we propose a single-source
initialization approach to initialize edge features only for the target link, which
guarantees the relevance of mined rules and target link. Then we propose several
RNN-based functions for edge-wise message passing to model the sequential
property of mined rules. REST is a simple and effective approach with theoretical
support to learn the rule-induced subgraph representation. Moreover, REST does
not need node labeling, which significantly accelerates the subgraph preprocessing
time by up to 11.66×. Experiments on inductive relation prediction benchmarks
demonstrate the effectiveness of our REST2.

1 Introduction

Knowledge graphs are a collection of factual triples about human knowledge. In recent years, knowl-
edge graphs have been successfully applied in various fileds, such as natural language processing [1],
question answering [2] and recommendation systems [3].

However, due to issues such as privacy concerns or data collection costs, many real-world knowledge
graphs are far from completion. Moreover, knowledge graphs are continuously evolving with new
entities or triples emerging. This dynamic change causes even the large-scale knowledge graphs,
e.g., Freebase [4], Wikidata [5] and YAGO3 [6], to still suffer from incompleteness. Most existing
knowledge graph completion models, e.g., RotatE [7], R-GCN [8], suffer from handling emerging
new entities as they require test entities to be observed in training time. Therefore, inductive relation
prediction, which aims at predicting missing links in evolving knowledge graphs, has attracted
extensive attention[9, 10].

∗The Corresponding Author.
2Our code is available at https://github.com/smart-lty/REST
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The key idea of inductive relation prediction on knowledge graphs is to learn logical rules, which
can capture co-occurrence patterns between relations in an entity-independent manner and can thus
naturally generalize to unseen entities [11, 12]. Some existing models, e.g., AMIE+[13], Neural
LP[14], explicitly mine logical rules for inductive relation prediction with good interpretability[14],
while their performances are limited due to the large searching space and discrete optimization[15, 16].
Recently, some subgraph-based methods, e.g., GraIL[11], TACT[12], CoMPILE[17], have been
proposed to implicitly mine logical rules by reasoning over the subgraph induced from the target link.

target link

Irrelevant Rules

Relevant Rules

Relevant
Rules

Figure 1: Relevant and irrelevant rules.

However, there are still some irrelevant rules[18] within
the subgraph. Considering the rule body and the rule head
as a cycle[19], the relevant rules are cycles that pass the
target link. As illustrated in Figure 1, u → v → e4 →
u and u → v → e2 → e1 → u are relevant rules as
they pass the target link, while e1 → e3 → e2 → e1
are irrelevant rules as they do not contain the target link.
Existing methods cannot differentiate the target link and
other links during message passing. Thus, they will mine
plenty of irrelevant rules and encode them into the final
subgraph representation, which makes the model prone to
over-fitting and severely hinders reasoning performance.

In this paper, we propose a novel single-source edge-wise
GNN model to learn the Rule-inducEd Subgraph repre-
senTations (REST), which encodes relevant rules and
eliminates irrelevant rules within the subgraph. Specif-
ically, we observe that the information flow originating

from a unique edge and returning to this edge will form a cycle automatically. Consequently, the
information flow originating from the target link can encode the relevant logical rules. Inspired by this
observation, we propose a single-source initialization approach to assign a nonzero initial embedding
for the target link according to its relation and zero embeddings for other links. Then we propose
several RNN-based functions for edge-wise message passing to model the sequential property of
mined rules. Finally, we use the representation of the target link as the final subgraph representation.

We theoretically show that with appropriate message passing functions, REST can learn the rule-
induced subgraph representation for reasoning. Notably, REST avoids the heavy burden of node
labeling in subgraph preprocessing, which significantly accelerates the time of subgraph preprocess-
ing by up to 11.66×. Experiments on inductive relation prediction benchmarks demonstrate the
effectiveness of our REST.

2 Related Work

Existing works for IRP can be mainly categorized into rule-based methods and subgraph-based
methods. While rule-based methods explicitly learn logical rules in knowledge graphs, subgraph-
based methods implicitly mine logical rules by learning the representation of subgraphs. Moreover,
we discuss some graph neural network methods that reason over the whole graph.

Rule-based methods. Rule-based approaches mine logical rules that are independent of entities and
describe co-occurrence patterns of relations to predict missing factual triples. Such a rule consists of
a head and a body, where a head is a single atom, i.e., a fact in the form of Relation(head entity, tail
entity), and a body is a set of atoms. Given a head R(y, x) and a body {B1, B2, · · · , Bn}, there is a
rule R(y, x)← B1 ∧B2 ∧ · · · ∧Bn. The rule-based methods have been studied for a long time in
Inductive Logic Programming [20], yet traditional approaches face the challenges of optimization and
scalability. Recently, Neural LP [14] presents an end-to-end differentiable framework that enables
modern gradient-based optimization techniques to learn the structure and parameters of logical rules.
DRUM[21] analyzes Neural LP from the perspective of low-rank tensor approximation and uses
bidirectional RNNs to mine more accurate rules. Moreover, for automatically learning rules from
large knowledge graphs, RLvLR [22] proposes an effective rule searching and pruning strategy,
which shows promising results on both scalability and accuracy for link prediction. However, these
explicit rule-based methods lack expressive power due to rule-based nature, and cannot scale to large
knowledge graphs as well.
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Subgraph-based methods. Subgraph-based methods extract a local subgraph around the target link
and use GNNs to learn subgraph representation to predict link existence. Such a subgraph is usually
induced by the neighbor nodes of the target link, which encodes the rules related to the target link.
GraIL[11] is the first subgraph-based inductive relation prediction model. It defines the enclosing
subgraph as the graph induced by all the nodes in the paths between two target nodes. After labeling
all the nodes with double radius vertex labeling[23], it employs R-GCNs[8] to learn subgraph
representation. CoMPILE[17] extracts directed enclosing subgraphs to handle the asymmetric /
anti-symmetric patterns of the target link. TACT[12] converts the original enclosing subgraph into
a relational correlation graph, and proposes a relational correlation network to model different
correlation patterns between relations. More recently, SNRI[24] extracts enclosing subgraphs with
complete neighboring relations to consider neighboring relations for reasoning. ConGLR[25] converts
the original enclosing subgraph into a context graph to model relational paths. However, these methods
cannot differentiate the target link and other links during message passing. Therefore, the GNNs will
mine plenty of irrelevant rules for other links and encode them into subgraph representation, which
reduces the accuracy of reasoning.

Graph neural network for link prediction. Some methods use GNNs to reason over the whole
graph rather than a subgraph for inductive relation prediction. INDIGO[26] converts the KG into
a node-annotated graph and fully encodes it into a GNN. NBFNet[27] generalizes Bellman-Ford
algorithm and proposes a general GNN framework to learn path representation for link prediction.
MorsE [28] considers transferring entity-independent meta-knowledge by GNNs. While these
methods share some spirit with subgraph-based methods, they are essentially different with subgraph-
based methods. These methods need to reason over the whole graph for a test example, while
subgraph-based methods only need to reason over a subgraph. Meanwhile, these methods tend
to predict entities rather than relations for a query, while subgraph-based methods tend to predict
relations, as the subgraph only needs to be extracted once for relation prediction. As these methods
benefit from a larger number of negative sampling, we do not take them into comparison.

3 Problem Definition

We define a training graph as Gtr = (Etr,Rtr, Ttr), where Etr, Rtr, and Ttr ⊂ Etr ×Rtr × Etr are
the set of entities, relations and triples during training, respectively. We aim to train a model such
that for any graph G′ = (E ′,R′, T ′) whose relations are all seen during training (i.e., R′ ⊆ Rtr),
the model can predict missing triples in G′, i.e., (?, rt, v), (u, ?, v), (u, rt, ?), where u, v ∈ E ′ and
rt ∈ R′. We denote the set of any possible entities as {E} and the set of knowledge graphs whose
relation set R are subset of Rtr as {G}tr. The model we would like to train is a score function f :
{G}tr×{E}×Rtr×{E} → R, (G′, u, rt, v) 7→ f(G′, u, rt, v), where G′ = (E ′,R′, T ′),R′ ⊆ Rtr

and u, v ∈ E ′. For a query triple (u, rt, ?), we enumerate valid candidate tail entities v′ and use the
model to get the score s′ of this triple (u, rt, v

′). We call the query triple (u, rt, v) as target link and
u, v as target nodes, respectively.

4 Methodology

In this section, we describe the architecture of the proposed REST in detail. Following existing
subgraph-based methods, we first extract a subgraph for each query triple. Then we apply single-
source initialization and edge-wise message passing to update edge features iteratively. Finally, the
representation of the target link is used for scoring. REST organizes the two methods in a unified
framework to perform inductive relation prediction. Figure 2 gives an overview of REST.

4.1 Subgraph Extraction

For a query triple (u, rt, v), the subgraph around it contains the logical rules to infer this query, thus
we extract a local subgraph SGu,rt,v to implicitly learn logical rules for reasoning. Specifically, we
first compute the k-hop neighbors Nk(u) and Nk(v) of the target nodes u and v. Then we define
enclosing subgraph as the graph induced by Nk(u) ∩Nk(v) and unclosing subgraph as the graph
induced by Nk(u) ∪Nk(v). Note that the subgraph extraction process of our REST omits the node
labeling, as node features are unnecessary in edge-wise message passing, which significantly reduces
the time cost of subgraph preprocessing.
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Figure 2: An overview of REST. REST organizes the single-source initialization method and the
edge-wise message passing method in a unified framework to learn relevant rules representations
within the subgraph for the target link. Different relevant rules are shown in different colors in part 3.

4.2 Single-source Initialization

Single-source initialization is a simple and effective initialization approach, which initializes a nonzero
embedding to the query triple according to rt and zero embeddings for other triples. Specifically, the
embeddings of links and nodes within SGu,r,v are initialized as follows:

e0x,y,z = 1
(u,r,v)

(x, y, z)⊙ ry =

{
ry, if (x, y, z) = (u, rt, v)

0, if (x, y, z) ̸= (u, rt, v)

h0
v = 0 for ∀v ∈ E ,

(1)

where e0x,y,z and h0
v are the initial representation of edge (x, y, z) and node v, respectively. 1 is the

indicator function to differentiate the target link and other links. ⊙ is Hadamard product. Note that
the representation of nodes is used as temporary variables in edge-wise message passing. With this
initialization approach, we ensure the relevance between mined rules and the target link.

4.3 Edge-wise Message Passing

After initializing all the edges and nodes, we perform edge-wise message passing to encode all
relevant rules into the final subgraph representation. Specifically, each iteration of edge-wise message
passing consists of three parts, (1) applying message function to every link, (2) updating node features
by aggregating message and (3) updating edge features by temporary node features, which are
described as follows:

mk
x,y,z = MESSAGE(hk−1

x , ek−1
x,y,z, ry) = (hk−1

x ⊗1 ry) ⊎ (ek−1
x,y,z ⊗2 ry) (2)

hk
z = AGGRAGATE

(x,y,z)∈T
(mk

x,y,z) =
⊕

(x,y,z)∈T

mk
x,y,z (3)

ekx,y,z = UPDATE(hk
x, e

k−1
x,y,z) = hk

x ⋄ ek−1
x,y,z (4)

Here, ⊎,⊕, ⋄,⊗1,⊗2 are binary operators which denote a function to parameterize.
⊕

denotes
the large size operator of ⊕. hk

z and ekx,y,z respectively represent the feature of node z and link
(x, y, z) after k iterations of edge-wise message passing. We visualize the comparison between
conventional message passing framework developed by GraIL[11] and proposed edge-wise message
passing framework in Figure 3.
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Figure 3: Comparison between conventional message passing framework developed by GraIL[11]
and our REST. First, REST initializes node and edge features with single-source initialization. Then,
REST employs UPDATE function to update edge features. Finally, REST directly uses the embedding
of the target link as the final subgraph representation, rather than the pooling of all node embeddings.

4.4 RNN-based Functions

Message passing functions in existing works use order-independent binary operators such as ADD
and MUL, which cannot model the sequential property of rules and lead to incorrect rules[21]. To
tackle this problem, we introduce several RNN-based methods as message passing functions.

Message Functions. For the edge-wise message passing process, each iteration REST takes in
hk−1
x , ek−1

x,y,z and ry to form a message. We modify GRU[29] as message function as follows:

δk = σg(W
k
δ,1ry ⊙ ek−1

x,y,z +Wk
δ,2h

k−1
x + bk

δ )

γk = σg(W
k
γ,1ry ⊙ ek−1

x,y,z +Wk
γ,2h

k−1
x + bk

γ)

ck = σh(W
k
c,1ry ⊙ ek−1

x,y,z +Wk
c,2(γk ⊙ hk−1

x ))

mk
x,y,z = δk ⊙ ck + (1− δk)⊙ hk−1

x

(5)

Here, δk is the update gate vector, γk is the reset gate vector and ck is the candidate activation vector.
The operator ⊙ denotes the Hadamard product, σg denotes Sigmoid activation function and σh

denotes Tanh activation function. During each iteration of message passing, we only use GRU once,
therefore k-layer message passing includes k GRUs, which can model sequence with length l ≤ k.

Aggregate Functions. The aggregate function aggregates messages for each node from its neighbor-
ing edges. Here, we use simplified PNA[30] to consider different types of aggregation.

hk
z,1 = mean

(x,y,z)∈T
(mk

x,y,z), h
k
z,2 = max

(x,y,z)∈T
(mk

x,y,z),

hk
z,3 = min

(x,y,z)∈T
(mk

x,y,z), h
k
z,4 = std

(x,y,z)∈T
(mk

x,y,z),

hk
z = Wk

agg[h
k
z,1;h

k
z,2;h

k
z,3;h

k
z,4;h

k−1
z ]

(6)

Here, [; ] denotes the concatenation of vectors, Wk
agg denotes the linear transformation matrix in the

k-th layer.

Update Functions. The update function is used to update the edge feature. We propose to update
the edge feature with LSTM[31]. Specifically, LSTM needs three inputs: a hidden vector, a current
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input vector and a cell vector. We use hk
x as the hidden vector and ek−1

x,y,z as the current input vector.
Moreover, we expect that each edge can differentiate the target link during message passing, which
requires each edge to specify the query information. Therefore, we initialize each edge with another
query feature as the cell vector. All the edges are initialized with the same query embedding rqr
related to the query relation r.

q0
x,y,z = rqr (7)

Then the update function can be described as follows:

ekx,y,z,q
k
x,y,z = LSTM(ek−1

x,y,z,q
k−1
x,y,z,h

k
x) (8)

After updating the edge feature by k iterations of edge-wise message passing, we output eku,r,v as the
subgraph representation. Then we use a linear transformation and an activation function to get the
score of the target link.

f(u, rt, v) = σ(Wse
k
u,rt,v + bs) (9)

5 Analysis

In this section, we theoretically analyze the effectiveness of our REST. We first define the rule-induced
subgraph representation, which utilizes encoded relevant rules to infer the plausibility of the target
link. Then we show that our REST is able to learn such a rule-induced subgraph representation for
reasoning.

5.1 Rule-induced Subgraph Representation Formulation

Our rule-induced subgraph representation aims to encode all relevant rules into the subgraph repre-
sentation for reasoning. Therefore, we can define the rule-induced subgraph representation as the
aggregation of these relevant rules:

Su,rt,v =
⊕
c∈C

pc, (10)

where C denotes the set of all possible relevant rules within SGu,rt,v and pc is the representation of
a relevant rule c. Following the idea of Neural LP[14] to associate each relation in the rule with a
weight, we model the representation of a rule as a function of its relation set. Therefore, we give the
definition of rule-induced subgraph representation.

Definition 1 (Rule-induced subgraph representation.) Given a subgraph SGu,rt,v, its rule-
induced subgraph representation is defined as follows:

Su,rt,v =

k⊕
i=1

⊕
(u,rt,v)

⊕
(v,y0,x0)

...
⊕

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt ⊗ αi2ry0
⊗ ...⊗ αiiryi−2

(11)

where i denotes the length of the cycle, ryi is the representation of relation yi, (xi, yi, xi−1) is an
existing triple in SGu,rt,v . {(u, rt, v), (v, y0, x0), ..., (xi−3, yi−2, u)} is a cycle at length i.

Note that ⊕ and ⊗ denote binary aggregation functions. Intuitively, rule-induced subgraph represen-
tation captures all relevant rules within the subgraph and is expressive enough for reasoning.

5.2 Rule-induced Subgraph Representation Learning

Here, we show that our REST can learn such a rule-induced subgraph representation. First, we show
this in a simple case.

Theorem 1 Single-source edge-wise GNN can learn rule-induced subgraph representation if ⊎ =
+,⊕ = +, ⋄ = +, ⊗1 = ×,⊗2 = ×. i.e., there exists nonzero αi,j such that

eku,rt,v =

k∑
i=1

∑
(u,rt,v)

∑
(v,y0,x0)

...
∑

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt × αi2ry0 × ...× αiiryi−2 (12)
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We prove this in Appendix A. This theorem states that our REST can learn the rule-induced subgraph
representation in the basic condition. Then we generalize this theorem to a general version.

Theorem 2 Single-source edge-wise GNN can learn rule-induced subgraph representation if ⊎ =
⊕,⊕ = ⊕, ⋄ = ⊕, ⊗1 = ⊗,⊗2 = ⊗, where ⊕ and ⊗ are binary operators that satisfy 0 ⊕ a =
a, 0⊗ a = 0. i.e., there exists nonzero αi,j such that

eku,rt,v =

k⊕
i=1

⊕
(u,rt,v)

⊕
(v,y0,x0)

...
⊕

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt ⊗ αi2ry0 ⊗ ...⊗ αiiryi−2 (13)

We prove this in Appendix A. Intuitively, we can get this theorem by replacing +,× with ⊕,⊗.
The key step to learn rule-induced subgraph representation is to ensure e0x,y,z ̸= 0 if and only if
(x, y, z) = (u, rt, v). Existing models[11, 12] do not satisfy this requirement, as they initialize
both the target link and the other links with nonzero embeddings. Therefore, their final subgraph
representations contain irrelevant rule terms, which leads to suboptimal results. On the contrary,
we show that with appropriate message passing functions, REST learns rule-induced subgraph
representation. As the rule-induced subgraph representation encodes all relevant rules within the
subgraph, REST is expressive enough to infer the plausibility of any reasonable triple, while it
eliminates the negative influence of irrelevant rules.

Our analysis gives some insight of IRP methods. First, eliminating noises within the extracted
subgraph is crucial for subgraph-based methods. While existing methods focus on data level to
extract ad-hoc subgraphs, our model proposes a simple way for denoising at the model level, i.e.,
single-source edge-wise message passing. Second, labeling tricks such as single-source initialization
can effectively improve the model performance. Last but not least, the idea of learning links is
especially important in IRP task, as links play a vital role in reasoning.

6 Experiments

In this section, we first introduce the experiment setup including datasets and implementation details.
Then we show the main results of REST on several benchmark datasets. Finally, we conduct ablation
studies, case studies and further experiments.

6.1 Experiment Setup

Datasets and Implementation Details We conduct experiments on three inductive benchmark
datasets proposed by GraIL[11], which are dervied from WN18RR[32], FB15K-237[33], and NELL-
995[34]. For inductive relation prediction, the training set and testing set should have no overlapping
entities. Details of the datasets are summarized in Appendix B. We use PyTorch[35] and DGL[36] to
implement our REST. Implementation Details of REST are summarized in Appendix C.

6.2 Main Results

We follow GraIL[11] to rank each test triple among 50 other randomly sampled negative triples. We
report the Hits@10 metric on the benchmark datasets. Following the standard procedure in prior
work [37], we use the filtered setting, which does not take any existing valid triples into account at
ranking. We demonstrate the effectiveness of the proposed REST by comparing its performance with
both rule-based methods including Neural LP [14], DRUM [21] and RuleN [38] and subgraph-based
methods including GraIL [11], CoMPILE [17], TACT[12], SNRI[24] and ConGLR [25]. We run
each experiment five times with different random seeds and report the mean results in Table 1.

From the Hits@10 results in Table 1, we make the observation that our model REST significantly
outperforms existing methods on 12 versions of 3 datasets. Specifically, our REST can outperform
rule-based baselines, including Neural LP, DRUM and RuleN by a large margin. And compared
with existing subgraph-based methods, e.g., GraIL, CoMPILE, TACT, SNRI and ConGLR, REST
has achieved average improvements of 17.89%, 9.35%, 13.76%; 16.23%, 8.18%, 13.04%; 13.58%,
8.06%, 8.96%; 10.89%, 4.55%,“-” and 5.58%, 5.82%, 5.1% on three datasets respectively. As REST
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Table 1: Hits@10 results on the inductive benchmark datasets extracted from WN18RR, FB15k-237
and NELL-995. The results of Neural LP, DURM, RuleN, GraIL, CoMPILE and ConGLR are taken
from the paper [25].

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Rule-Based
Neural LP 74.37 68.93 46.18 67.13 52.92 58.94 52.90 55.88 40.78 78.73 82.71 80.58
DRUM 74.37 68.93 46.18 67.13 52.92 58.73 52.90 55.88 19.42 78.55 82.71 80.58
RuleN 80.85 78.23 53.39 71.59 49.76 77.82 87.69 85.60 53.50 81.75 77.26 61.35

Subgraph-Based

GraIL 82.45 78.68 58.43 73.41 64.15 81.80 82.83 89.29 59.50 93.25 91.41 73.19
CoMPILE 83.60 79.82 60.69 75.49 67.64 82.98 84.67 87.44 58.38 93.87 92.77 75.19
TACT 84.04 81.63 67.97 76.56 65.76 83.56 85.20 88.69 79.80 88.91 94.02 73.78
SNRI 87.23 83.10 67.31 83.32 71.79 86.50 89.59 89.39 - - - -
ConGLR 85.64 92.93 70.74 92.90 68.29 85.98 88.61 89.31 81.07 94.92 94.36 81.61

REST(ours) 96.28 94.56 79.50 94.19 75.12 91.21 93.06 96.06 88.00 94.96 96.79 92.61

only assigns the embedding of the target link, these improvements demonstrate the effectiveness of
our REST via distilling all relevant rules within the subgraph.

6.3 Ablation Study

We conduct ablation studies to validate the effectiveness of proposed single-source initialization and
edge-wise message passing. We show the main results of ablation studies in Table 2.

Table 2: Hits@10 ablation results on the inductive benchmark datasets. The SUM and MUL functions
are the ablation for the message function GRU. The MLP function is the ablation for the update
function LSTM. ∆ denotes the performance decrease.

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

REST 96.28 94.56 79.50 94.19 75.12 91.21 93.06 96.06 88.00 94.96 96.79 92.61

Full Initialization 92.55 90.70 68.76 79.49 71.71 79.29 89.25 91.22 83.00 86.13 94.54 68.26
∆ -3.73 -3.86 -10.74 -14.70 -3.41 -11.92 -3.81 -4.84 -5.00 -8.83 -2.25 -24.35

SUM 93.08 85.03 69.59 91.39 64.88 84.30 89.48 89.96 81.00 91.39 96.17 64.57
∆ -3.20 -9.53 -9.91 -2.80 -10.24 -6.91 -3.58 -6.10 -7.00 -3.57 -0.62 -28.04

MUL 85.64 93.19 56.03 81.04 63.90 78.24 85.20 90.66 69.00 79.20 93.70 36.11
∆ -10.64 -1.37 -23.47 -13.15 -11.22 -12.97 -7.86 -5.40 -19.00 -15.76 -3.09 -56.50

MLP 95.74 93.65 78.84 90.69 71.07 90.25 92.60 94.94 83.00 94.12 96.41 91.38
∆ -0.54 -0.91 -0.66 -3.50 -4.05 -0.96 -0.46 -1.12 -5.00 -0.84 -0.38 -1.23

Single-source initialization. Single-source initialization is vital for learning rule-induced subgraph
representation. To demonstrate the effectiveness of single-source initialization, we perform another
full initialization method as a comparison, which initializes all edges according to their relations. As
illustrated in Table 2, we can find that single-source initialization is significant for capturing relevant
rules for reasoning. Without single-source initialization, the performance of REST will exhibit a
significant decrease, e.g., from 92.61 to 68.26 in NELL-995 v4. This result exhibits the effectiveness
of single-source initialization.

Edge-wise message passing. To demonstrate the necessity of proposed RNN-based functions, we
conduct ablation studies on various combinations of message functions, including SUM, MUL, and
GRU, as well as update functions, including LSTM and MLP. These functions are defined as follows:

SUM : mk
x,y,z = hk−1

x + ek−1
x,y,z + ry

MUL : mk
x,y,z = hk−1

x ⊙ ek−1
x,y,z ⊙ ry

MLP : ekx,y,z = We[e
k−1
x,y,z;q

k−1
x,y,z;h

k
x]

qk
x,y,z = Wq[e

k−1
x,y,z;q

k−1
x,y,z;h

k
x]

(14)

In general, REST benefits from RNN-based functions, as they can capture the sequential properties
of rules. Using order-independent binary operators, such as ADD and MUL, leads to a decline in
performance across all datasets, as they cannot differentiate correct and incorrect rules.
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6.4 Further Experiments

Case Study One appealing feature of our single-source initialization and edge-wise message passing
approach is the ability to interpret the significance of each relevant cycle. This interpretation provides
insight into the contribution of each cycle towards the plausibility of the target link (u, rt, v).We
generate all relevant rule cycles for each relation with a length of no more than 4, and input them
to the REST model to obtain a score for each relevant rule cycle.We normalize these scores using
sigmoid function and select the top-3 cycles with the highest scores as visualized in Table 7.

Table 3: Some relations and their top-3 relevant relations. The relations are taken from WN18RR.

Rule Head Rule Body Scores

_similar_to -> _hypernym−1 0.89
_hypernym _also_see-> _hypernym−1 0.84

_hypernym−1->_also_see->_verb_group 0.67

_derivationally_related_form->_also_see 0.82
_derivationally_related_form _has_part− > _also_see 0.76

_derivationally_related_form-> _also_see-> _has_part 0.66

_has_part-> _synset_domain_topic_of 0.77
_member_meronym has_part-> _synset_domain_topic_of-> _derivationally_related_form 0.76

_has_part-> _derivationally_related_form 0.71

_has_part-> _also_see 0.95
_synset_domain_topic_of _synset_domain_topic_of−1-> _similar_to 0.91

_has_part-> _synset_domain_topic_of−1 0.81

The results demonstrate that REST is able to learn the degree of correlation between relevant rule
cycles and the target relation. As evidence for predicting the rule head, the cycle containing the
"_similar_to→ _hypernym−1" rule body received the highest score among all cycles that include
the "_hypernym" relationship. This indicates that REST can effectively infer a strong correlation
between "_silimar_to → _hypernym−1" and "_hypernym". Notably, this cycle is also human-
understandable, which highlights the practical interpretability of REST.

Subgraph Extraction Efficiency Different from the subgraph-based methods mentioned above[11,
12, 17], REST eliminates the need for node labeling within the subgraph, which substantially
improves time efficiency. We assess the time consumption involved in extracting both enclosing and
unenclosing subgraphs for GraIL and REST, and present the running time results in Table 4. All the
experiments are conducted on the same CPU with only single process. Our observations indicate a
significant improvement of time efficiency over 11× when extracting unenclosing subgraphs from
the FB15k-237 dataset and over 6× across all inductive datasets. This improvement demonstrates the
efficiency of our REST on subgraph extraction.

Table 4: The comparison of subgraph extraction time between GraIL and REST. (Unit: Second)
WN18RR FB15k-237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Enclosing Subgraph
GraIL 121.77 537.42 1127.14 194.98 949.48 2933.04 8423.59 15089.74 136.55 1197.24 6112.77 1303.97
REST 54.01 251.97 617.16 91.76 111.34 338.24 868.79 1,626.77 61.19 213.45 688.14 219.33
Efficiency 2.25× 2.13× 1.83× 2.12× 8.53× 8.67× 9.70× 9.28× 2.23× 5.61× 8.88× 5.95×

Unclosing Subgraph
GraIL 127.69 517.94 1194.18 199.00 1287.35 4166.63 11499.32 21738.29 167.06 1611.97 8044.53 1542.82
REST 56.27 260.20 631.71 95.23 123.36 386.55 985.81 1890.54 64.72 245.41 858.23 248.00
Efficiency 2.27× 1.99× 1.89× 2.09× 10.44× 10.78× 11.66× 11.50× 2.58× 6.57× 9.37× 6.22×

7 Conclusion and Future Work

Limitations. Our REST shares the same limitation as subgraph-based methods. While subgraph-
based methods are theoretically more expressive, they incur high computational costs both in training
and inference. Alleviating this issue is crucial for scalability.

Conclusion. In this paper, we propose a novel single-source edge-wise graph neural network model
called REST, which effectively mines relevant rules within subgraphs for inductive reasoning. REST
consists of single-source initialization and edge-wise message passing, which is simple, effective
and provable to learn rule-induced subgraph representation. Notably, REST accelerates subgraph
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extraction by up to 11.66×, which significantly decreases the time cost of subgraph extraction.
Experiments demonstrate that our proposed REST outperforms existing state-of-the-art methods on
inductive relation prediction benchmarks.

Future Work. For future work, we target at enhancing the scalability of our REST to conduct
reasoning on large-scale knowledge graphs. Moreover, REST can serve as a complementary reasoning
model to help large language models conduct reasoning with promising and interpretable results.
Hopefully, REST will facilitate the future development of reasoning ability.
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A Proof of Theorem 1 and 2

Theorem 1 Single-source edge-wise GNN can learn rule-induced subgraph representation if ⊎ =
+,⊕ = +, ⋄ = +, ⊗1 = ×,⊗2 = ×. i.e., there exists nonzero αi,j such that

eku,rt,v =

k∑
i=1

∑
(u,rt,v)

∑
(v,y0,x0)

...
∑

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt × αi2ry0
× ...× αiiryi−2

(15)

Proof In this case, the rule-induced subgraph representation is:

Su,rt,v =

k∑
i=1

∑
(u,rt,v)

∑
(v,y0,x0)

...
∑

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt × αi2ry0
× ...× αiiryi−2

(16)

Then we will show that single-source edge-wise GNN can learn this rule-induced sugraph representa-
tion in induction.

k = 1. we have

e1u,rt,v = h1
u + rrt = rrt +

∑
(x0,y0,u)∈T

(h0
x0

+ e0x0,y0,u)× ry0

Note that e0x0,y0,u ̸= 0 if and only if (x0, y0, u) = (u, rt, v). However, this is impossible as u ̸= v.
Thus e1u,rt,v satisfies the definition of rule-induced subgraph representation.

k = 2. we have:

e2u,rt,v = h2
u + e1u,rt,v =

∑
(x0,y0,u)∈T

(h1
x0

+ e1x0,y0,u)× ry0
+ rrt

=
∑

(x0,y0,u)∈T

2h1
x0
× ry0

+ rrt

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

2(h0
x1

+ e0x1,y1,x0
)× ry1

× ry0
+ rrt

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

2e0x1,y1,x0
× ry1

× ry0
+ rrt

(17)

We can find that e0x1,y1,x0
̸= 0 if and only if (x1, y1, x0) = (u, rt, v), i.e. there exists both (u, rt, v)

and (v, rt, u). Obviously, e2u,rt,v satisfies the definition of rule-induced subgraph representation.

Assume that this conclusion exists for n ≤ k − 1. Now we check the k-th term.

eku,rt,v = hk
u +

k−1∑
i=1

∑
(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(v,yi−2,x0)︸ ︷︷ ︸
i−1

αi1rrt ⊗ αi2ryi−2 ⊗ ...⊗ αiiry0 (18)
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First, we consider hk
u.

hk
u =

∑
(x0,y0,u)

(hk−1
x0

+ ek−1
x0,y0,u)× ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

(hk−2
x1

+ ek−2
x1,y1,x0

)× ry1 × ry0 +
∑

(x0,y0,u)

ek−1
x0,y0,u × ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xk−1,yk−1,xk−2)︸ ︷︷ ︸
k

e0xk−1,yk−1,xk−2
× ryk−1

× ryk−2
× ...× ry0

+
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xk−2,yk−2,xk−3)︸ ︷︷ ︸
k−1

e1xk−2,yk−2,xk−3
× ryk−2

× ...× ry0

+ ...

+
∑

(x0,y0,u)

ek−1
x0,y0,u × ry0

(19)

Notice that
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xk−1,yk−1,xk−2)︸ ︷︷ ︸
k

e0xk−1,yk−1,xk−2
× ryk−1

× ryk−2
× ...× ry0 ̸= 0 if

and only if (xk−1, yk−1, xk−2) = (u, rt, v). In this situation, this term is exactly the k-th term in the
expression of eku,rt,v . Now we want to prove that:

∑
(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xk−2,yk−2,xk−3)︸ ︷︷ ︸
k−1

e1xk−2,yk−2,xk−3
× ryk−2

× ...× ry0

+ ...

+
∑

(x0,y0,u)

ek−1
x0,y0,u × ry0

(20)

can be fused in top k − 1 term of Equation. 16. Let’s check the j-th term of Equation. 20.
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∑
(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

ek−j
xj−1,yj−1,xj−2

× ryj−1
× ...× ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

(ek−j−1
xj−1,yj−1,xj−2

+ hk−j
xj−1

)× ryj−1 × ...× ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

(e0xj−1,yj−1,xj−2
+ hk−j

xj−1
+ ...++h1

xj−1
)× ryj−1

× ...× ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

e0xj−1,yj−1,xj−2
× ryj−1

× ...× ry0

+
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)

∑
(xj ,yj ,xj−1)︸ ︷︷ ︸

j+1

(hk−j−1
xj

+ ...+ h0
xj

+ ek−j−1
xj ,yj ,xj−1

+ ...+ e0xj ,yj ,xj−1
)× ryj−1

× ...× ry0

(21)

Note that e0xj−1,yj−1,xj−2
̸= 0 if and only if (xj−1, yj−1, xj−2) = (u, rt, v), thus the term can be

fused into the j-th term of Equation. 16. e0xj ,yj ,xj−1
can be fused into the (j + 1)-th term and so on.

Therefore, we have:∑
(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

ek−j
xj−1,yj−1,xj−2

× ryj−1 × ...× ry0

=

k∑
i=1

∑
(u,rt,v)

∑
(v,y0,x0)

...
∑

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt × αi2ry0
× ...× αiiryi−2

(22)

There, we prove that single-source edge-wise GNN can learn rule-induced subgraph representation in
this case. □

Theorem 2 Single-source edge-wise GNN can learn rule-induced subgraph representation if ⊎ =
⊕,⊕ = ⊕, ⋄ = ⊕, ⊗1 = ⊗,⊗2 = ⊗, where ⊕ and ⊗ are binary operators that satisfy 0 ⊕ a =
a, 0⊗ a = 0. i.e., there exists nonzero αi,j such that

eku,rt,v =

k⊕
i=1

⊕
(u,rt,v)

⊕
(v,y0,x0)

...
⊕

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt ⊗ αi2ry0
⊗ ...⊗ αiiryi−2

(23)

Proof Without loss of generality, we can replace + with ⊕ and × with ⊗ to represent a binary
operator, then we directly get this theorem. Note that we should ensure that ⊕ and ⊗ satisfy
0⊕ a = a, 0⊗ a = 0, which we use in the process of proof. □

B Details of Datasets

We summarize the details of inductive relation prediction benchmark datasets in Table 5.
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Table 5: Statistics of three inductive datasets, which contain four different versions individually. We
use #E and #R and #TR to denote the number of entities, relations, and triples.

WN18RR FB15k-237 NELL-995
#R #E #TR #R #E #TR #R #E #TR

v1 train 9 2746 6678 183 2000 5226 14 10915 5540
test 9 922 1991 146 1500 2404 14 225 1034

v2 train 10 6954 18968 203 3000 12085 88 2564 10109
test 10 2923 4863 176 2000 5092 79 4937 5521

v3 train 11 12078 32150 218 4000 22394 142 4647 20117
test 11 5084 7470 187 3000 9137 122 4921 9668

v4 train 9 3861 9842 222 5000 33916 77 2092 9289
test 9 7208 15157 204 3500 14554 61 3294 8520

C Implementation Details

In general, our proposed method is implemented in DGL[36] and PyTorch[35] and trained on single
GPU of NVIDIA GeForce RTX 3090. We apply Adam optimizer[39] with an initial learning rate
of 0.0005. Observing that batch size has little effect on the performance of the model, We adjust
batch size as large as possible for different datasets to accelerate training. We use the binary cross
entropy loss.The maximum number of training epochs is set to 10. During training, we add reversed
edges to fully capture relevant rules. The number of hop h is set to 3 which is consistent with existing
subgraph-based methods. We conduct grid search to obtain optimal hyperparameters, where we
search subgraph types in {enclosing, unclosing}, embedding dimensions in {16, 32}, number of
GNN layers in {3, 4, 5, 6} and dropout in {0, 0.1, 0.2}. Configuration for the best performance of
each dataset is given within the code.

D Transductive Results

The transductive results, as discussed in Section 6.2, were obtained using the same methodology as
the aforementioned evaluations. Specifically, REST was trained on the training graph and tested in a
similar manner. We randomly selected 10% of the links from the training graph as test links. As we
can senn in Table 6, REST outperforms GraIL and RuleN significantly across all benchmarks.

Table 6: Experiments of the transductive versions of the current benchmarks.
Model wn_v1 wn_v2 wn_v3 wn_v4 fb_v1 fb_v2 fb_v3 fb_v4 nell_v1 nell_v2 nell_v3 nell_v4
GraIL 65.59 69.36 64.63 67.28 71.93 86.30 88.95 91.55 64.08 86.88 84.19 82.33
RuleN 63.42 68.09 63.05 65.55 67.53 88.00 91.47 92.35 62.82 82.82 80.72 58.84
REST 92.02 90.90 91.59 91.63 88.01 93.98 96.43 97.71 93.62 95.76 92.79 92.47
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E More Results of Case Study

To gain more insight of the proposed RNN-based function and single-source initialization, We conduct
more experiments to obtain the rule scores on WN18RR with the ablated model without single-source
and other ablated models. In the revised paper, we will include the comprehensive results, allowing
readers to compare and analyze the impact of removing "irrelevant" rules on the overall performance
of our proposed model. We can see from Table 7, that the model without single-source initialization
assigns relatively lower scores to rules, and there are still some less precise rules present in the Top-k
rules (denoted in bold). Similarly, other ablated models exhibit less precise rules in the top-k results
in Tables 8 and 9. This serves as evidence of the effectiveness of the full-version model.

Table 7: Some relations and their top-3 relevant relations in the full initialization REST. The relations
are taken from WN18RR.

Rule Head Rule Body Scores

_hypernym _also_see-> _synset_domain_topic_of-> _derivationally_related_form 0.66
_verb_group-> _similar_to 0.59

_member_meronym-> _similar_to 0.45
_derivationally_related_form _also_see-> _instance_hypernym 0.74

_derivationally_related_form-> _also_see 0.68
_has_part-> _has_part 0.62

_member_meronym _has_part-> _hypernym 0.62
_has_part-> _instance_hypernym 0.55

_has_part-> _member_meronym-> _similar_to 0.50
_synset_domain_topic_of _synset_domain_topic_of−1-> _member_meronym-> _similar_to 0.88

_synset_domain_topic_of−1-> _similar_to 0.84
_member_meronym-> _synset_domain_topic_of−1 0.81

Table 8: Some relations and their top-3 relevant relations when using SUM as message function. The
relations are taken from WN18RR.

Rule Head Rule Body Score

_hypernym _similar_to-> _hypernym−1 0.93
_similar_to-> _member_meronym 0.90

_hypernym−1-> _also_see 0.88
_derivationally_related_form _has_part-> _similar_to 0.89

_derivationally_related_form−1-> _also_see 0.88
_synset_domain_topic_of-> _member_meronym-> _similar_to 0.88

_member_meronym _member_meronym-> _similar_to 0.90
_has_part-> _synset_domain_topic_of 0.85

_instance_hypernym-> _derivationally_related_form-> _member_meronym 0.85
_synset_domain_topic_of _also_see-> _has_part 0.95

_synset_domain_topic_of−1-> _also_see 0.95
_hypernym-> _derivationally_related_form-> _also_see 0.92

Table 9: Some relations and their top-3 relevant relations when using MUL as message function. The
relations are taken from WN18RR.

Rule Head Rule Body Score

_hypernym _similar_to -> _hypernym−1 0.93
_instance_hypernym-> _instance_hypernym 0.91

_instance_hypernym-> _hypernym 0.91
_derivationally_related_form _similar_to -> _derivationally_related_form 0.94

_derivationally_related_form-> _similar_to 0.93
_has_part-> _derivationally_related_form−1 0.93

_member_meronym _member_meronym-> _also_see 0.93
_hypernym-> _similar_to 0.90

_similar_to-> _synset_domain_topic_of-> _derivationally_related_form 0.87
_synset_domain_topic_of _also_see-> _verb_group 0.92

_synset_domain_topic_of−1-> _similar_to 0.86
_has_part-> _synset_domain_topic_of−1 0.84

17



F Sensitivity Analysis

We further conduct a sensitivity analysis of the subgraph hop n, where different n represents the
maximum number of neighbors extracted by REST within the subgraphs. We conduct experiments
on both the same distribution (transductive setting) and different distribution benchmarks (inductive
setting). As Tables 10, 11, 12, and 13 show, REST exhibit great robustness across different n.

Table 10: Experiments in the transductive setting with n = 2, 3, 4, where training and inference are in
the same KG.

Hop Number wn_v1 wn_v2 wn_v3 wn_v4 fb_v1 fb_v2 fb_v3 fb_v4 nell_v1 nell_v2 nell_v3 nell_v4
2hop 84.65 85.40 87.66 85.73 84.35 91.78 95.67 96.97 92.48 96.59 95.73 93.89
3hop 92.02 90.90 91.59 91.63 88.01 93.98 96.43 97.71 93.62 95.76 92.79 92.47
4hop 89.97 89.96 90.19 89.68 88.74 95.12 96.16 97.44 94.99 96.64 96.26 94.35

Table 11: Experiments in the inductive setting on WN18RR benchmark with n = 2, 3, 4, where
training and inference are in the different KGs.

Hop Number wn_v1_ind wn_v2_ind wn_v3_ind wn_v4_ind
2 hop Neighbors 92.55 89.58 76.27 89.67
3 hop Neighbors 96.28 94.56 79.50 94.19
4 hop Neighbors 94.70 93.17 77.19 92.68

Table 12: Experiments in the inductive setting on FB15k237 with n = 2, 3, 4, where training and
inference are in the different KGs.

Hop Number fb_v1_ind fb_v2_ind fb_v3_ind fb_v4_ind
2 hop Neighbors 69.53 87.47 90.55 93.68
3 hop Neighbors 75.12 91.21 93.06 96.06
4 hop Neighbors 70.44 90.12 93.45 94.59

G More fine-grained metrics on the inductive benchmarks.

As Hits@10 scores reach a fairly high level, we provide the experimental results on more difficult
and comprehensive metrics than Hits@10. Tables 14, 15, and 16 summarize the results of GraIL and
our REST on MRR, Hits@1, and Hits@5. These representative metrics suggest that there is still a
large room for improvement.

H More Baseline Results and Analysis

We provide additional baselines and our REST for comparison to obtain a more comprehensive
explanation. These baselines include NBFNET [27], RMPI [40], and NODEPIECE [41]. The
comparative results are presented in the following Table 17. REST also outperforms RMPI in a large
margin and achieves competitive results compared with NodePiece and NBFNet. This implies the
great potential for the subgraph-based methods to achieve superior results than the whole-graph-based
methods. And we will focus on this point as our furture work.
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Table 13: Experiments in the inductive setting on NELL995 with n = 2, 3, 4, where training and
inference are in the different KGs.

Hop Number nell_v1_ind nell_v2_ind nell_v3_ind nell_v4_ind
2 hop Neighbors 83.00 90.18 93.18 90.81
3 hop Neighbors 88.00 94.96 96.79 92.61
4 hop Neighbors 89.00 94.94 95.67 91.54

Table 14: MRR results on inductive benchmarks.

Model wn_v1 wn_v2 wn_v3 wn_v4 fb_v1 fb_v2 fb_v3 fb_v4 nell_v1 nell_v2 nell_v3 nell_v4
GraIL 74.09 79.32 54.25 73.34 45.91 61.78 62.79 65.09 44.82 64.49 70.73 60.45
REST 81.08 87.06 62.66 88.14 49.71 65.74 68.75 72.41 55.99 69.65 74.99 69.63

Table 15: H@1 results on inductive benchmarks.

Model wn_v1 wn_v2 wn_v3 wn_v4 fb_v1 fb_v2 fb_v3 fb_v4 nell_v1 nell_v2 nell_v3 nell_v4
GraIL 68.89 71.46 51.24 70.59 37.31 50.94 52.89 54.04 39.00 54.98 58.71 49.27
REST 71.28 82.54 54.88 84.89 39.05 53.14 56.42 60.39 43.00 56.72 61.80 57.59

Table 16: H@5 results on inductive benchmarks.

Model wn_v1 wn_v2 wn_v3 wn_v4 fb_v1 fb_v2 fb_v3 fb_v4 nell_v1 nell_v2 nell_v3 nell_v4
GraIL 80.78 75.63 55.74 72.37 53.91 75.21 73.70 78.06 47.50 81.41 87.08 59.39
REST 92.55 90.02 69.59 89.99 60.49 80.75 84.28 87.64 57.00 86.97 92.21 86.32

Table 17: More inductive baseline results on the inductive benchmark.

Model wn_v1 wn_v2 wn_v3 wn_v4 fb_v1 fb_v2 fb_v3 fb_v4 nell_v1 nell_v2 nell_v3 nell_v4
RMPI 89.63 83.22 73.14 81.42 71.71 83.37 86.01 88.69 60.50 94.01 95.36 87.62

NBFNet 94.80 90.50 89.30 89.00 83.40 94.90 95.10 96.00 - - - -
NodePiece 83.00 88.60 78.50 80.70 87.30 93.90 94.40 94.90 89.00 90.10 93.60 89.30

REST(ours) 96.28 94.56 79.50 94.19 75.12 91.21 93.06 96.06 88.00 94.96 96.79 92.61
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