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Abstract. Accurate prediction of the remaining useful life (RUL) of industrial
machinery is central to predictive maintenance. The best RUL prediction accu-
racy reported in the literature is an RMSE of 11.27 on the NASA C-MAPSS
benchmark, achieved by models such as the GCU-Transformer. However, these
models act as black boxes with limited interpretability, which limits their trust in
safety-critical applications.

This study presents the Health-Aware Transformer (HAT), an extension of the
Gated Convolutional Unit—Transformer that improves prediction accuracy while
introducing transparency. HAT integrates a statistical framework based on the
Mahalanobis Distance (MD), which quantifies deviations from a multivariate Gaus-
sian baseline and serves as a clear health degradation indicator. The MD guides
the model’s attention toward cycles that significantly deviate from a healthy base-
line, linking the prediction to observable physical degradation.

The Health-Aware Transformer achieves an RMSE of 10.95 and a safety rate of
38 safe predictions out of 100, outperforming existing models including BiLSTM-
Attention (13.21), CTVAE (12.41), and the original GCU-Transformer (11.27).
By embedding MD into the attention mechanism, HAT enhances predictive accu-
racy while slightly reducing safety, reflecting the trade-off between precision and
conservative early warnings.

As a secondary analysis, without the Gated Convolutional Unit—Transformer, the
statistical ensemble of regressors based on MD trajectories achieves an RMSE of
15.51 and a safety rate of 53 engines. This interpretable model is well suited for
safety-critical contexts requiring conservative predictions.

Overall, the study quantifies the gap between transparent statistical models and
complex deep learning approaches: accuracy improves from 15.51 (statistical en-
semble) to 11.27 (GCU-Transformer) and further to 10.95 (HAT), showing con-
cretely how predictive accuracy increases with model complexity.
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1 Introduction

Industrial systems face costly risks when mechanical components fail unexpectedly. Break-
downs lead to downtime, repair costs, and safety hazards. Predicting the time of failure
is therefore central to maintaining reliability and efficiency. Predictive maintenance ad-
dresses this challenge by forecasting failures before they occur. A key task is predicting
the Remaining Useful Life (RUL), the time until a system can no longer operate reliably.
Accurate RUL prediction enables early warning and better maintenance planning, reduc-
ing operational risk. Research on RUL prediction has advanced from traditional machine
learning to deep learning. Early models such as Support Vector Machines[I], Multi-Layer
Perceptrons|[I7], and Extreme Learning Machines[29] relied on manually engineered sta-
tistical and frequency features. These approaches were sensitive to feature choice and
struggled with nonlinear, high-dimensional sensor data.

Deep learning removed the dependency on manual features. Recurrent Neural Net-
works (RNNs)[9], Convolutional Neural Networks (CNNs)[I8|[28], and Long Short-Term
Memory networks [25] captured nonlinearities and temporal dependencies, improving
predictive accuracy. More recently, Transformer and Informer architectures were success-
fully applied to RUL prediction [31I24]. The improved RUL prediction accuracy comes
at the cost of limited explainability, as is the case with most deep learning approaches.

Addressing this limitation, standard statistical approaches may provide an inter-
pretable foundation, while sacrificing accuracy. During the baseline period of engine
operation, sensor signals can be modeled as a multivariate Gaussian distribution. The
Mahalanobis Distance (MD) then serves as a natural index of deviations in terms of stan-
dard deviations from the mean. As such, MD constitutes an engine degradation metric.
The interpretability in our approach comes from this MD measure, as it produces a direct,
physically meaningful health score for each engine cycle that can be inspected indepen-
dently of the neural network. This allows every prediction to be linked to an observable
deviation from the healthy baseline rather than to hidden network activations.

In this paper, we explore whether combining the MD metric with Transformers can im-
prove RUL prediction accuracy while maintaining interpretability. The combined method
is called the Health-Aware Transformer (HAT) and endows a Transformer with health-
aware features derived from the MD metric. Through attention, HAT prioritizes cycles
that significantly deviate from the healthy baseline, creating a direct correspondence
between attention weights and degradation levels.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 presents the Health-Aware Transformer. Section 4 describes the experimental
method and Section 5 presents the results. Finally, Section 6 discusses our work and
draws conclusions.

2 Related Work

This section provides an overview of recent studies on the prediction of RUL, with a
particular focus on deep learning architectures and statistical methods that inform the
design and capabilities of our Health-Aware Transformer (HAT). For a broader review
of machine learning approaches to RUL prediction, see [20]. We highlight how exist-
ing models advance predictive accuracy and interpretability, and identify the gaps that
HAT addresses by integrating statistically-grounded health indicators into a Transformer
architecture.

Recent studies in RUL predictions combine Transformer-based methods with special-
ized enhancements to capture complex degradation dynamics from multivariate time-
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series data. While these advanced deep learning approaches, exemplified by the TI-
former [24], ATTN-+LSTM [3], and CTVAE [21], have significantly improved RUL pre-
diction accuracy by capturing complex temporal dependencies and non-linearities, they
often achieve this at the cost of limited explainability, a common challenge in most deep
learning models. Our Health-Aware Transformer (HAT) builds upon these advancements
but seeks to enhance interpretability by explicitly incorporating a health indicator.

Li et al. [3] introduced an attention-enhanced LSTM framework for RUL prediction
on turbofan engines. Their model utilizes stacked LSTM layers to learn temporal dy-
namics from sensor sequences, while an attention mechanism identifies crucial time steps
that contribute most to the final prediction. This approach allows the model to weigh
informative degradation regions more heavily than early-cycle signals, thereby improv-
ing accuracy. The authors evaluated their method on the FD0OO1 subset of the NASA C-
MAPSS dataset, achieving competitive RMSE performance and retaining interpretability
through attention visualizations. This work highlights the growing trend of combining
recurrent architectures with adaptive focus mechanisms to improve both performance
and interpretability in RUL prediction. This demonstrates the value of attention mecha-
nisms in RUL prediction, a principle that our HAT model extends by explicitly guiding
attention with statistically-derived health features.

Mo et al. [15] proposed a framework for RUL prediction that combines a Trans-
former encoder with a Gated Convolutional Unit (GCU). This combination simultane-
ously captures long-term dependencies and local contextual information in time-series
data. Unlike traditional CNN- or RNN-based approaches, which may suffer from limited
receptive fields or sequential processing constraints, their model leverages the Trans-
former’s self-attention mechanism to access global dependencies across all time steps
without performance bottlenecks. To address the insensitivity of Transformer outputs to
neighboring time steps, a GCU module was introduced, incorporating reset and update
gates to re-emphasize local feature importance. Experiments on the C-MAPSS datasets
demonstrated that the GCU-Transformer achieved superior performance, obtaining the
lowest Root Mean Square Error (RMSE) on FD001 (11.27) and FD003 (11.42), surpass-
ing previous methods like CNN-FNN (RMSE 12.61) and LSTM-FNN (RMSE 16.14).
Averaged over all datasets, the model reached an RMSE of 17.59, ranking second overall
while maintaining consistent gains under simple and complex operating conditions. An
ablation study further confirmed the effectiveness of both architectural enhancements:
removing the GCU module increased the RMSE by 2.15 on FD002, and eliminating
the output Sigmoid activation led to an additional 0.61 RMSE degradation. This work
is particularly relevant to our study because the GCU-Transformer serves as the foun-
dational baseline architecture that our Health-Aware Transformer (HAT) extends and
directly compares against. Its success, demonstrated by achieving superior performance
with an RMSE of 11.27 on FDO001, established a strong benchmark for Transformer-
based RUL prediction. The model’s ability to leverage Transformer’s self-attention for
global dependencies while using GCU for local feature importance provides a powerful
base, highlighting the potential for further improvements by integrating explicit health
awareness into its attention mechanism.

Hangjun Wu et al. [24] proposed TI-former, an end-to-end RUL prediction model that
integrates Transformer and Informer components. While Transformers capture global
dependencies through full self-attention, they scale quadratically with sequence length
(O(L?)). Informer mitigates this by using ProbSparse Attention, which focuses on domi-
nant queries and reduces complexity to O(Llog L) while retaining essential dependencies.
TI-former combines a Transformer encoder for global feature extraction with an Informer
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decoder for efficient long-range temporal modeling. It also introduces a learnable query
vector that guides decoding attention toward relevant parts of the sequence, enhancing ro-
bustness under noise and high dimensionality. The model was evaluated on the XJTU-SY
Bearing dataset and the ETDataset of electrical equipment degradation. On XJTU-SY
(35Hz-12kN), it achieved an RMSE of 0.0941, outperforming CNN-Informer (0.1163). On
ETDataset, it further improved RMSE and computational efficiency, demonstrating its
generalization across domains. The TI-former’s focus on efficient attention mechanisms
and enhanced robustness is a critical advancement, and HAT similarly aims for more
effective attention by explicitly guiding it with health-aware features.

Wang et al. [2I] proposed the Convolutional Transformer Variational Autoencoder
(CTVAE) for RUL prediction. This model integrates 1D CNNs for local feature extrac-
tion with Transformer encoders for global temporal dependencies. Unlike standard Trans-
formers, its embedding layer encodes each sensor’s full signal as a feature vector, which
enhances inter-sensor attention. A Variational Autoencoder (VAE) projects learned fea-
tures into a two-dimensional latent space, allowing engines to form smooth degradation
trajectories from healthy to failure clusters. This provides interpretable health progres-
sion and supports anomaly detection. A lightweight MLP then regresses these latent
features to scalar RUL values. On C-MAPSS, CTVAE achieved a competitive RMSE
of 12.41 on FDO0O1 (close to GCU-Transformer at 11.27). It also outperformed CNN,
LSTM, and Transformer baselines on FD002 (14.24 vs. 22.81-24.49) and FD004 (15.70 vs.
24.86-28.17), demonstrating stronger generalization across complex fault modes. While
CTVAE offers interpretability through learned latent space trajectories, HAT pursues
a different, more direct form of health awareness by integrating a statistically-grounded
Mahalanobis Distance metric into the attention mechanism, aiming for transparent health
indicators that directly guide predictions, distinguishing our approach from these existing
methods.

Hybrid architectures have expanded RUL prediction beyond single paradigms. Fan et
al. [6] combined a Bidirectional LSTM autoencoder with a Transformer encoder under a
self-supervised denoising framework, which improved robustness to noise. A Transformer-
GRU network was also proposed for aero-engine prognostics, utilizing GRU units to
stabilize Transformer outputs across degradation sequences [I2]. Other works explore
LSTM and Transformer based methods for RUL prediction, considering challenges such
as censored data [16]. Our work aligns with this trend of hybrid models, but specifically
focuses on integrating statistical methods with Transformer architectures to create a
"health-aware’ model, thereby addressing the acknowledged trade-off between accuracy
and interpretability.

Variational methods have been applied for interpretability in RUL prediction. Build-
ing on foundational work in variational autoencoders [I0], Costa and Sanchez [2] pro-
jected health trajectories into a low-dimensional latent space using a VAE. Similarly,
Xiang et al. [26] integrated temporal-channel fusion with variational encoding to dis-
entangle degradation dynamics. Both approaches demonstrated interpretable latent tra-
jectories that aligned with degradation progression. Furthermore, conditional variational
transformers have been developed for bearing RUL prediction, focusing on selecting im-
portant features correlated with RUL [22]. These methods clearly demonstrate a trend
toward enhancing the interpretability of RUL models through learned representations.
However, they achieve interpretability primarily through abstract latent spaces. Our work
with HAT seeks to provide a complementary and more explicit form of interpretability
by directly integrating a well-understood, statistically-grounded degradation metric (Ma-
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halanobis Distance) into the model’s attention mechanism, offering a transparent health
indicator that directly guides predictions.

Mahalanobis Distance (MD) has been widely applied in prognostics and health mon-
itoring as both a similarity metric and a health indicator. Early applications include the
Mahalanobis-Taguchi System approach for RUL prediction [§]. In similarity-based RUL
prediction, MD provides a multivariate measure for matching feature vectors [32]. Exten-
sions such as weighted MD (WMD) have been utilized for ball screw systems to emphasize
defect-relevant features [13]. In bearing prognostics, MD has served as a sensitive health
index when combined with GRU-based models [30]. The extensive application of MD
in various prognostic tasks, including its extensions like WMD [I3] and its combination
with GRU-based models [30], validates its effectiveness as a robust, interpretable health
indicator capable of quantifying multivariate deviations from a healthy baseline. This
inherent capability to account for inter-sensor correlations makes MD an ideal candidate
for forming the explicit health-aware features in our HAT model.

Despite its proven utility, the direct integration of MD into deep learning models for
RUL prediction remains limited. This identified gap—the employment of MD mostly as
a separate thresholding mechanism or a standalone health indicator rather than deeply
integrated—is precisely what our Health-Aware Transformer aims to address. While other
domains, such as NLP and fault diagnosis, have successfully demonstrated the benefits of
coupling MD with modern sequence models like Transformer encoders [11},?], its potential
for deeply guiding attention in RUL prediction to simultaneously improve accuracy and
offer transparent health insights remains largely unexplored in this specific domain, thus
motivating our HAT model.

MD has also been employed for multivariate outlier detection. Dashdondov and
Kim [4] applied an MD-based thresholding approach to remove abnormal samples in
hypertension prediction. Their method combined feature selection, MD outlier detection
(p < 0.001), and classification with Random Forest and XGBoost, improving accuracy,
Fl-score, and AUC. Although this example comes from the healthcare domain, it re-
inforces MD’s ability to identify significant deviations and highlight informative struc-
ture—principles that are directly transferable and crucial to our approach in HAT, where
MD signals deviations from a healthy state to guide the Transformer’s attention towards
critical degradation phases in RUL prediction.

Recent surveys reinforce the potential of integrating statistical and deep learning
methods. Wu et al. [23] reviewed deep learning methods for RUL, emphasizing Transformer-
and VAE-based models. Similarly, Zhou et al. [32] summarized health-indicator-driven
prediction strategies for rotating machinery. Crucially, both surveys identify the persis-
tent trade-off between predictive accuracy and interpretability. These findings collectively
corroborate the fundamental motivation behind our Health-Aware Transformer (HAT):
the need to bridge this gap by integrating statistically-grounded measures like MD into
deep learning pipelines for RUL prediction, thereby validating our hybrid approach.

3 The Health-Aware Transformer

In this section, we present the Health-Aware Transformer that consists of two main
components: Health-aware features derived from the multi-variate statistics of sensor
data and the MD metric (Section , and the Transformer model in which the health-
aware features guide attention weights (Section .
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3.1 Health-aware Features

The health-aware features are defined in terms of the multivariate Gaussian distribution
and the joint covariance of the multidimensional sensor time series. The Mahalanobis
Distance (MD) is used as a metric to quantify deviations from a healthy baseline [14],[5],
[27].

The healthy state of the sensor signals is assumed to correspond to the initial part of
the sensor time series. We have empirically verified that the first 25% of the time series
provides a good choice (see the Appendix for further details).

The health-aware features are formally defined as follows. For two vectors x and vy,
the squared MD is defined as:

diy(w,y) = (z —y) 27Nz —y). (1)

with vectors x,y € R? and ¥ the covariance matrix. In the HAT, z represent the
sensor signals and y the baseline mean vector (healthy state) w, giving the squared
health-aware MD:

MD = das(e, ) = £ (@e — ) T2 — p). (2)

The health-aware feature MD captures the sensor correlations and feature variances,
reflecting the inter-dependencies among sensor signals and providing a direct, inter-
pretable measure of how far each engine state deviates from the healthy baseline.

As an illustration of the validity of the health-aware feature, we plot the MD of the
multivariate sensor readings of our dataset. Figure [I] shows the development of MD as
a function of cycle number for one engine (Engine 69) that fails at cycle 362. During
the initial 25% of the cycles (health state), the MD is relatively stable and increases as
degradation progresses towards failure at cycle 362. The illustration suggests that health-
aware features provide a reliable estimate of RUL, and that each MD value serves as a
transparent health score that can be inspected independently of the neural network.

Engine 69: Mahalanobis vs Cycle
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Fig. 1: Mahalanobis Distance (raw and smoothed) for Engine 69.

3.2 Health-aware Attention

We build our Health-Aware Transformer (HAT) on the GCU-Transformer [I5]. It has
two parts: (1) a Gated Convolutional Unit (GCU) with 128 filters and kernel size 3,
which reduces noise and highlights degradation patterns; (2) a Transformer encoder with
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1 layer, 4 heads, and 128 hidden dimensions, followed by a regression head for normalized
RUL.

HAT adds health-aware features via an MD-based bias in self-attention. This focuses
attention on cycles far from the healthy baseline. Let Q, K € RT*? be queries and
keys for sequence length 7', and m € R” the smoothed MD sequence. Here, attention
weights represent the learned importance scores indicating how much the model focuses
on different cycles within the input sequence. The attention logits S become:

_ QK
- Vd

where W projects m per head, tanh squashes to [—1,1], a scales the bias, and 17
broadcasts it. Final attention is:

S

+ actanh(Wm)1", (3)

Attention(Q, K, V) = softmax(s) V, (4)
T

with 7 = 1.2 for smoother weights. The MD bias boosts logits for high-MD (degraded)
cycles.

Engine Degradation Pattern (Mahalanobis Distance)

— Mahalanobis Distance
Healthy Baseline

MD-Guided Attention Weights

3 5 10 15 20 25 30
MD-Guided Attention Heatmap

eeeeeeee

Fig. 2: Conceptual illustration of health-aware attention in HAT. Mahalanobis Distance
rises with degradation and biases attention to focus on later cycles.

Figure [2] provides a conceptual illustration of health-aware attention using a simu-
lated degradation pattern to demonstrate the intended mechanism. The top panel shows
Mahalanobis Distance (MD, blue) starting near the healthy baseline (green dashed) and
rising with degradation. The MD sequence m enters the bias term of self-attention in
Equation [3] The middle panel shows per-cycle attention weights (red), i.e., the average
attention mass a cycle receives across heads and queries after biasing and temperature
softmax. MD is projected Wm, squashed tanh, scaled o, broadcast 17, and added to the
attention logits as in Equation

The softmax with temperature 7 = 1.2 in Equation [4] smooths the distribution and
increases focus on degraded cycles. Here, « controls the strength of the MD-based bias,
determining how strongly health information influences the attention weights, while 7
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scales the attention logits before softmax normalization. Both parameters were empiri-
cally selected through validation to balance interpretability and predictive precision. The
bottom heatmap compares MD in the top row and the corresponding per-cycle atten-
tion weights in the bottom row. The single red line is the per-cycle summary, while the
heatmap places these values next to MD for comparison.

4 Experimental Set-up

In this section we provide the details about the implementation and experimental eval-
uation of the health-aware features and of the complete HAT.

4.1 Dataset

The Health-Aware Transformer (HAT) is evaluated on RUL prediction using the NASA
C-MAPSS dataset [19]. This dataset simulates turbofan engine degradation with 21 sen-
sors and 3 operational settings. Tablesummarizes four subsets (FD001-FD004). FD001,
our focus, has 100 training and 100 testing engines, one operating condition, and one fault
mode (high-pressure compressor). FD002-FD004 add more conditions or faults.

Table 1: C-MAPSS subsets.

Subset FD001 FD002 FD003 FDO004
Training Engines 100 260 100 249
Testing Engines 100 259 100 248
Operating Conditions 1 6 1 6
Fault Modes HPC HPC HPC HPC
Fan Fan

The NASA C-MAPSS FDO001 subset is a widely used benchmark in Prognostics and
Health Management (PHM) research. It is structured to ensure a clear separation between
model development and evaluation, and includes:

1. A training set with full run-to-failure sensor trajectories for 100 engines.

2. A test set with truncated sensor sequences for another 100 engines, where the true
Remaining Useful Life (RUL) is unknown.

3. A ground-truth file with the actual RUL values for each test engine, used only for
final model evaluation.

This strict division ensures unbiased performance assessment and supports rigorous
experimental protocols.

Each engine (train or test) is represented by 21 sensor measurements. Figure [3| shows
the histograms of engine 69 sensors, the longest-lived engine in the training set. Narrow
spike distributions (e.g., sensor_1) indicate zero variance and no informative value.
Bell-shaped distributions (e.g., sensor_2) suggest stable behavior suitable for health
modeling. Based on variance and trend analysis, we retain the following 14 sensors:

sensor_2, sensor_3, sensor_4, sensor_7, sensor_8, sensor_9, sensor_11, sensor_12,
sensor_13, sensor_14, sensor_15, sensor_17, sensor_20, sensor_21.

These sensors exhibit stable variance and clear degradation behavior. Figure [] shows
the correlation structure among them for Engine 69’s baseline (first 25% of its cycles),
confirming that many of these sensors are jointly informative of engine health.
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Fig. 3: Histograms for Engine 69. Spikes show zero-variance sensors (e.g., sensor_1); bell
shapes show Gaussian-like sensors (e.g., sensor_2).

Correlation Matrix of Selected Sensors in Baseline (First 25%) 10

Correlation Coefficient

Fig. 4: Heatmap of sensor correlations for Engine 69 in baseline (first 25%), showing rela-
tionships among selected sensors with colors: red for high similarity, blue for differences.
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4.2 Health-Aware Transformer

The experimental setup of the Health-Aware Transformer (HAT) is described in two
parts: the Health-Aware Features (Section and the Health-Aware Attention (Sec-

tion .
4.3 Health-Aware Features

Building on the Mahalanobis Distance (MD) described in Section this approach
quantifies deviations from the healthy state of the engines. The baseline distribution is
estimated from the first 25% of cycles in the training set (see Appendix). MD values are
then computed for each subsequent cycle to track degradation. These MD features are
used as input for the second part of HAT. Below, we detail the experimental procedure
for evaluating RUL prediction using MD features alone.

Prediction Strategy. The prediction strategy follows a two-model framework for
mapping MD to RUL. In the first model, the last-cycle prediction, the final MD value
of each test engine is mapped to an Predicted Remaining Useful Life (RUL), denoted as
~“RUL, which is then capped at min(125, RU L). In the second model, a threshold-aware
moving average, a degradation threshold of dj; > 8 marks the onset of degradation.
This threshold was empirically determined on the training set as the most stable value
for balancing early detection against false alarms, with sensitivity analysis indicating
that small variations did not significantly alter performance. When an engine does not
cross this threshold, predictions default to the last-cycle approach. Once the threshold is
crossed, subsequent MD values are converted into RUL mapped values, each capped at
min(125, RUL). The final RUL is then computed as the moving average of the last five
predictions. Both strategies are applied with the two regressors, and their outputs are
merged by ensemble weighting (Figure [5)).

Regression Models and Tuning. Two regressors were implemented. The first,
Direct Bin Mapping, groups training pairs (dys, RUL) into bins of width 0.1. The median
RUL in each bin defines an empirical mapping curve. Bins with insufficient samples are
discarded, and the degradation threshold (dj; > 8) is applied as described above. The
second, Gradient Boosting, is implemented with 500 estimators, maximum depth of 2,
and a learning rate of 0.2. Each regressor was applied under both prediction strategies:
last-cycle and threshold-aware moving average.

Ensemble and Weighting Strategy. Final predictions were obtained by weighted
averaging of the two regressors. Weights were optimized by constrained grid search under
the condition Y w; = 1. The selected configuration assigned higher weight to Gradient
Boosting, with Direct Bin Mapping providing complementary stability after the degra-
dation threshold.

4.4 Health-Aware Attention

Health-Aware Transformer Architecture. The Health-Aware Transformer (HAT)
is built upon the GCU-Transformer [I5] and processes input data from 14 selected sen-
sors, segmented into overlapping 30-cycle windows. Its architecture incorporates a Gated
Convolutional Unit (GCU) with 128 filters and a kernel size of 3, which reduces noise
and highlights degradation patterns. This is followed by a single Transformer encoder
layer employing 4 attention heads and a hidden size of 128. The unique aspect of HAT
is a learned health-aware bias, derived from a smoothed Mahalanobis Distance (MD)
trajectory, that modulates cycle-to-cycle attention weights within the Transformer en-
coder. The MD trajectory itself is smoothed using a Savitzky—Golay filter (window of 7,
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Fig.5: Pipeline for RUL prediction from Health-Aware Features. Mahalanobis Distance
decides between last-cycle mapping and moving-average smoothing; both feed the en-
semble.

polynomial order of 3). Finally, a fully connected linear layer maps the encoder output
to normalized RUL values, rescaled to a maximum of 125 cycles.

Encoder Depth. A single Transformer encoder layer was found optimal, achieving
an RMSE of 10.71 on the FD001 dataset. Increasing to two layers elevated the error, sug-
gesting that the MD-guided bias sufficiently captures long-term degradation information,
reducing the need for deeper architectures.

Training Loss. The model is trained using Mean Squared Error (MSE) loss with
capped RUL labels (< 125). The cap reduces variance in early-cycle predictions, consis-
tent with prior work [T9UT5].

Optimizer and Scheduler. Optimization is performed with Adam at learning rate
1.42 x 10™*. A linear learning rate warm-up followed by constant schedule is applied.

Training Protocol. Experiments were conducted using the designated FDO0O01 train-
ing and test datasets. The HAT model was trained on the training data file (100 full life
engines), with this set further split into 90/10 into training and validation sets. Follow-
ing the training and validation phase, the model’s final performance was evaluated in
the separate test data file (100 distinct engines), with predictions for each test engine
subsequently compared against the corresponding actual RUL values from the dedicated
actual RUL file, using the metrics detailed in the next sub-section

Hyperparameters. The fixed hyperparameters across experiments include an input
sequence of 30 cycles, one Transformer layer with 4 heads and hidden size 128, a batch
size of 32, MSE loss with a 125-cycle RUL cap, a temperature of 7 = 1.2 for scaled logits,
and an attention bias initialized at 0.03.

4.5 Evaluation Metrics

To evaluate RUL prediction performance, we report the following three metrics:

Root Mean Squared Error (RMSE) quantifies the average squared difference between
predicted and true RUL values. It treats early and late predictions symmetrically. Let
RUL; be the predicted RUL for engine i, and RUL; the true RUL. Then the RMSE is:
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1N 2
RMSE = N;(RULi—RULi) (5)

NASA Asymmetric Score (Saxena Score) [19] penalizes late predictions more heavily
than early ones, due to the higher operational cost of delayed maintenance. It is defined
as:

RUL: — RUL, o
- RURU) ¢ FUL, < RUL,
aq
S=2, RUL: — RUL, _ (©6)
i=1 exp H)—l, if RUL; > RUL;
(6%)

where a; = 13, ay = 10.

Safety Classification Metric counts how many engines were predicted with an RUL
that does not exceed the actual value. This represents the number of safe predictions,
avoiding late (dangerous) failures:

N
Safe = 3 [}?U\Li < RULZ} (7)
i=1
Equation [7] offers a binary, interpretable view of safety performance. It complements
the Saxena score by explicitly quantifying how often the model avoids overestimating the
remaining life.
All metrics above are computed after generating final RUL predictions from the mod-
els under evaluation and are used in Section 5] to compare the reproduced baseline, the
proposed HAT model, and the statistical ensemble.

5 Results

Table [2 presents the results of our experiments. The top three rows list the SOTA results
on the RUL prediction task. The last four rows show our experimental results. The first
two are the results obtained with the Health-Aware Features, the last two are those
obtained with HAT, with and without the attentional bias.

HAT (with bias) achieves the best performance (lowest RMSE of 10.95), outperform-
ing the version without bias and all other models. Interestingly, in terms of Safety per-
centage, the Health-Aware Features outperform HAT and have the additional advantage
of offering transparency.

5.1 Details on Health-Aware Features Results

We examined the results obtained with both Health-Aware Features variants. Figure [Ga]
shows the best performance with the moving-average variant. The graph displays RUL as
a function of cycle, using the last 5-cycle moving average on the stabilized predictions and
ensemble weights [0.2, 0.8] for Direct Mapping (DM) and Gradient Boosting (GB),
respectively. The black curve shows the actual RUL (not strictly linear due to irregular
sampling), while the red curve represents the predicted RUL.

Figure [6D] presents the corresponding error distribution. Most errors lie between —20
and +20 cycles, with a central block near zero. The distribution is asymmetric, with
several negative outliers below —60 cycles. These outliers explain the improved RMSE
but lower Safety, with only 50 safe predictions.
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Table 2: Overview of results on the RUL prediction task. Saxena scores and Safety per-
centages are not reported in prior works.

Model Description = RMSE Saxena Score Safety %
GCU-Transformer [15] Transformer 11.27 - -
+ Gated Convolution
CTVAE [21] Conv. Transformer 12.41 226.21 -
+ VAE

BiLSTM-Attention [7] Bi-LSTM + Attention  13.21 320 -
Heal.th-Aware Features Mahalanobis 1551 412 50
(Moving Avg.) Distance (MD)

Health- Aware Features Mahalanobis 15.80 453 53
(Last Cycle) Distance (MD)

HAT without Attn. bias

(Baseline, Ours) GCU-Transformer 11.23 211.41 43
HAT (Ours) GCU-Transformer 10.95 191.29 38
+ MD bias

Error Distribution for statistical Moving Average Ensemble

Predicion Exor (Preccted - Actual RUL)

(a) Actual and predicted RUL for Health-  (b) Error distribution for Ensemble + Moving
Aware Features with moving average (best  Average (DM = 0.2, GB = 0.8).
RMSE).

Fig. 6: Performance of Health-Aware Features with moving average. (a) RUL prediction
trajectories. (b) Corresponding error distribution.
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5.2 Base Strategy (Best Safety)

This strategy uses the final-cycle MD without smoothing, combined through ensemble
weights [0.1, 0.9] for Direct Mapping (DM) and Gradient Boosting (GB) respectively.

Figure [7h] shows the error distribution of this configuration. Errors are concentrated
between —5 and +10 cycles, with fewer extreme outliers than in the Moving Average
variant. This tighter distribution explains the higher Safety rate (53 safe predictions),
despite a slightly higher RMSE.

Eror Distribution for Statistical Last Cycle Ensemble)

Frequency

50 Bt E ©

(a) Actual and predicted RUL for Ensemble +  (b) Error distribution for Ensemble + Base
Base strategy (best Safety). strategy (DM = 0.1, GB = 0.9).

Fig.7: Performance of Health-Aware Features with Base strategy. (a) RUL prediction
trajectories. (b) Corresponding error distribution.

As highlighted in Figures [6D] and [7D] the two ensemble strategies exhibit distinct
error behaviors. The Moving Average ensemble reduces variance and improves RMSE but
introduces more extreme negative outliers, lowering Safety. In contrast, the Base ensemble
yields a narrower and more symmetric error distribution, achieving higher Safety at a
minor increase in RMSE. This trade-off underscores the operational priority of safety,
where avoiding late RUL predictions is critical to prevent unplanned failures.

5.3 GCU-Transformer Baseline

The reproduced baseline closely matches published results [15], achieving an RMSE of
11.23 and 43 safe predictions. Figure shows the predicted and actual RUL, while
Figure [8b] presents the corresponding error distribution. Errors are more dispersed than
in our methods, with outliers between —30 and +38 cycles, reflecting higher variance.

Error Distribution for GCU-Transformer

Frequency

-30 -20 -10 0 10 20
Prediction Error (Predicted - Actual)

(a) Actual and predicted RUL. (b) Error distribution.

Fig. 8: Performance of the reproduced GCU-Transformer baseline. (a) RUL prediction
trajectories. (b) Corresponding error distribution.
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5.4 Health-Aware Transformer (HAT)

HAT incorporates a health-aware bias into the attention mechanism. It achieves the
lowest RMSE (10.95) and Saxena Score (191), but only 38 safe predictions. Figure [0g]
shows the predicted and actual RUL, while Figure [0D] presents the error distribution.
Compared to the baseline, the error spread is narrower and concentrated between —5
and 415 cycles, but this comes at the cost of fewer safe predictions.

Error Distribution for HHAT

Predicton Eror Preccted - Actul)

(a) RUL prediction trajectories. (b) Error distribution.

Fig.9: Performance of the Health-Aware Transformer (HAT). (a) Actual vs. predicted
RUL. (b) Corresponding error distribution.

To demonstrate the internal mechanism of HHAT', we extracted real attention weights
from the trained model during inference. Figure a) shows Engine 100 across multi-
ple sequences, where normalized MD and learned attention weights exhibit moderate
to strong positive correlations (r = 0.58-0.76). The attention mechanism demonstrates
adaptive behavior, with correlations varying across engines and operational phases. Fig-
ure b) provides a comprehensive view of Engine 100, showing how MD-attention
correlations evolve throughout the engine’s operational life. The correlation progression
from near-zero to 0.7 indicates that the model progressively learns to associate attention
patterns with degradation indicators, validating the effectiveness of our HAT’s Health
aware attention mechanism.

A high MD value means that the joint sensor vector shifts away from the healthy
covariance structure. It reflects a collective change across correlated sensors, not a single
anomaly. Thus, MD quantifies how normal inter-sensor relationships distort as degrada-
tion progresses, linking deviation strength to physical deterioration.

Encoder Depth Ablation To examine the influence of Transformer depth on Remain-
ing Useful Life (RUL) prediction, HAT was trained with one to five encoder layers under
identical settings. Table [3] summarizes the RMSE, Saxena Score, correlation, and safety
percentage for each configuration. Performance degrades progressively with increased
depth, showing that one encoder layer captures the relevant degradation dynamics most
effectively once Mahalanobis Distance (MD) guidance is applied.

The results confirm that increasing the number of Transformer layers does not im-
prove accuracy or stability. The one-layer configuration achieves the lowest RMSE and
highest correlation while maintaining balanced safety performance. This indicates that
the MD bias already embeds sufficient temporal degradation context, reducing the need
for additional self-attention depth.
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(a) MD-attention correlation across sequences. (b) Correlation evolution over engine lifetime.

Fig.10: Empirical validation of MD-guided attention. (a) Correlation strengthens as
degradation progresses.(b) Real attention weights correlate with health indicators.

Table 3: Ablation on Transformer encoder depth for the FD001 dataset.
Layers RMSE Saxena Score Correlation Safety (%)

1 10.95 191.29 0.9655 38
2 11.91 216.63 0.9593 44
3 12.53 297.63 0.9562 38
4 13.09 314.41 0.9528 36
5 13.02 304.47 0.9519 44

5.5 Trade-offs and Discussion

Figures [Bb] and [0 show contrasting error patterns. The GCU-Transformer baseline has
higher variance and wider error ranges, yet yields more safe predictions (43) than HAT
(38). In contrast, the HAT model, which incorporates a health-aware attention bias,
achieved a lower RMSE of 10.95 and a safety rate of 38%. Compared to the baseline, the
error spread is narrower and concentrated between —5 and +15 cycles, but this comes
at the cost of fewer safe predictions.

A significant architectural finding for HAT was that a single Transformer layer proved
optimal; deeper stacks led to degraded performance, suggesting that the integrated
health-aware bias already provides sufficient long-term degradation context. This im-
plies that the MD bias effectively acts as a compact, external source of degradation
memory, reducing the need for the Transformer’s inherent sequential processing to learn
long-term dependencies across multiple layers. This interaction highlights how combining
statistical insights with deep learning can streamline model architecture and give it an
interpretable characteristic.

These findings collectively demonstrate a clear trade-off: the GCU-Transformer base-
line tends to produce safer outcomes by issuing more conservative predictions, while
HAT reduces error but shifts predictions upward. This implies that the baseline model
is preferable when operational safety is prioritized, whereas HAT is more suitable when
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maximizing predictive accuracy is the goal. The trade-off arises from model behavior.
HAT, optimized for minimal error, tends to produce confident but sometimes late pre-
dictions near failure, whereas the statistical ensemble, using direct MD mappings, reacts
earlier once deviations appear, leading to conservative estimates. The asymmetry in er-
ror distribution therefore reflects differing confidence and risk attitudes between the two
approaches.

6 Conclusion

This study presents the Health-Aware Transformer (HAT), a novel approach that in-
tegrates statistical health indicators with deep learning architectures to advance both
predictive accuracy and interpretability in Remaining Useful Life (RUL) prediction. Our
primary contribution lies in developing and implementing health-aware features through
Mahalanobis Distance (MD) and demonstrating how these can guide attention mecha-
nisms in Transformer architectures.

The Health-Aware Transformer achieved state-of-the-art performance on NASA C-
MAPSS FD001 with an RMSE of 10.95, surpassing reproduced GCU baseline best results
(11.27 RMSE) while providing interpretable insights into model behavior. Through em-
pirical analysis of real attention weights, we demonstrated that the health aware attention
mechanism successfully learns to correlate with degradation patterns (r = 0.58-0.76), val-
idating our approach’s theoretical foundation.

A key strength of our methodology is its emphasis on explainability and interpretabil-
ity. Unlike black-box deep learning approaches, HAT provides transparent health indica-
tors through MD calculations and interpretable attention patterns that reveal how the
model focuses on different degradation phases. The statistical ensemble approach fur-
ther demonstrates that interpretable methods, while achieving higher error rates (RMSE
15.51-15.80), provide superior safety rates (50-53%) compared to deep learning models
(38%), highlighting important trade-offs for safety-critical applications.

This work establishes the foundational framework for health-aware attention mech-
anisms. The current focus on FDOO1 (single operating condition, single fault mode)
provides a controlled environment to validate the core concepts of the attention. The
demonstrated success of integrating statistical health indicators with neural attention
mechanisms opens clear pathways for extension to more complex scenarios.

Future work will naturally extend this framework to the remaining C-MAPSS datasets
(FD002-FDO004), which feature multiple operating conditions and concurrent fault modes.
These datasets introduce varying operating regimes, requiring either separate healthy
baselines per condition or a cluster-based adaptive covariance structure to maintain a
meaningful Mahalanobis Distance interpretation. This progression will test the robust-
ness and generalizability of health-aware attention mechanisms across diverse operational
scenarios. Additional research directions include adapting the MD-based health indica-
tors to handle increased sensor noise, missing data, and variable operating environments
encountered in real-world industrial settings. Another promising direction is decompos-
ing the Mahalanobis Distance into sensor-level contributions to identify which sensors
or sensor groups drive deviations from the healthy baseline, enabling finer-grained inter-
pretability.

A Appendix

The Appendix establishes and justifies the choice of the health states (baselines) for
both training and test engines, ensuring that the subsequent health-aware features are
grounded in a consistent definition of the healthy state.
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A.1 Training-set Healthy Baseline Selection

Sensor values differ across engines due to conditions, manufacturing variation, and initial
wear. To enable comparability, z-score normalization was applied engine-wise. Means and
standard deviations were estimated from a healthy baseline segment. We compared base-
line window lengths of 20%, 25%, and 30% by modeling each baseline as a multivariate
Gaussian and analyzing the covariance structure. Table [ summarizes the results across
100 engines.

Table 4: Training-set covariance statistics for different baseline windows (FD001, n = 100
engines).

Baseline Trace mean Trace std Logdet mean Condition mean

20% 41.73 5.84 —43.84 6.94 x 10°
25% 42.30 5.54 —43.06 5.85 x 10°
30% 42.66 4.85 —42.61 5.40 x 108

Interpretation of metrics. The covariance structure was assessed using three met-
rics: Trace (the sum of eigenvalues) measures the total variance across all sensors; Log-
determinant (log of the product of eigenvalues) measures the generalized variance or
volume of the covariance ellipsoid; Condition number (ratio of largest to smallest eigen-
value) indicates numerical stability, with large values reflecting ill-conditioned covariance
matrices.

While each metric provides complementary information, we also examined the com-
bined value of trace mean + logdet mean as a simple stability indicator. When this
sum is negative, the covariance remains dominated by healthy-state variability. When
it approaches zero or becomes positive, early degradation cycles begin to influence the
baseline.

At 20%, the covariance matrix is less stable, as indicated by the more negative log-
determinant (—43.84) and the higher condition number (6.94 x 10°%). At 30%, stability
improves (—42.61, 5.40 x 10%), but a critical observation arises: the combined measure
of trace mean and log-determinant mean shifts sign between 25% and 30%. Up to 25%,
the sum remains negative, reflecting a covariance structure dominated by healthy-state
variability. At 30%, the sum becomes slightly positive, suggesting that early degradation
cycles begin to influence the baseline statistics. To maintain precaution and avoid con-
tamination by degradation, we therefore step back from 30% to 25%. This provides a
balanced and conservative estimate of the healthy state, consistent with robust baseline
selection practice.

Figure illustrates this transition across all engines. The aggregated trend of trace
and log-determinant shows that the 25% baseline lies just before the sign change at 30%,
making the shift visually clear.

To further support this conclusion, Figure [[Ib]shows Engine 39 as an example. Here
the three baselines diverge: the 20% baseline inflates Mahalanobis distances, the 30%
baseline delays the onset of degradation, and the 25% baseline provides a balanced tra-
jectory between the two extremes.

A.2 Test-set Healthy Baseline Selection

For the test set, percentage-based baselines cannot be defined because the total lifetime is
unknown. We therefore evaluated fixed baseline windows W € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
cycles. Table [5| reports the covariance statistics.
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Baseline selection (15-55%) using trace + logdet (all engines)

Engine 39 — MD vs Cycle (20% vs 25% vs 30%)

S ES s
6 ) o 2 50
] ] B

trace_mean + logdet_mean

) % ) E) E) 100 130
Baseline window (%) Cycle

(a) Aggregated baseline statistics (trace +  (b) Engine 39 MD trajectories under 20%,
logdet, baselines 15-55%). 25%, and 30% baselines.

Fig. 11: Baseline justification: (a) dataset-level stability, (b) engine-level example. The
25% baseline provides the most balanced definition of the healthy state.

Table 5: Test-set fixed-window covariance statistics (FD001, n = 100 engines). Engines
with fewer than W cycles used all available cycles as baseline.

Cycles Trace mean Trace std Logdet mean Condition mean

10 39.65 974 —1.28 x10% 2.34 x 103
20 41.40 7.08 —4.82 x 10* 1.89 x 107
30 42.14 597 —4.48 x 10! 8.01 x 10°
40 42.93 511 —4.36 x 10 6.49 x 10°
50 43.29 479  —4.29 x 100 5.64 x 10°
60 43.42 445  —4.25 x 10* 5.23 x 10°
70 43.81 4.07 —4.21 x 100  5.08 x 10°
80 44.72 428 —4.18 x 10* 4.95 x 10°
90 45.41 458  —4.15 x 10* 4.77 x 10°

100 46.40 506 —4.13x 10"  4.76 x 10°
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Very short windows are unstable. At W = 10, the log-determinant is highly negative
(—1.28 x 10?) and the condition number reaches 2.34 x 103, indicating near-singular
covariance. At W = 20, instability persists (—4.82 x 10!, 1.89 x 107).

Stability emerges between 30 and 40 cycles. At W = 30, the log-determinant improves
to —4.48 x 10! and the condition number drops to 8.01 x 106. At W = 40, the values
further stabilize (—4.36 x 10, 6.49 x 10°). Figure [12| shows this stabilization trend.

A clear knee appears at W = 50: the log-determinant aligns with the training baseline
values (—4.29 x 10') and the condition number reaches 5.64 x 10°. Beyond 50 cycles,
further improvements are marginal, while the number of engines decreases (93 at 50
cycles versus 70 at 100).

Because W = 50 lies at this stability knee, is consistent with the training baseline
length (8090 cycles on average), and retains nearly all engines, we adopted 50 cycles
as the fixed baseline for the test set. For engines with fewer than 50 cycles, all available
cycles were used to define the baseline.

Test-set baseline stability (fixed windows)
T

t_mean

gde

trace_mean + lo

—80 -

2‘0 4‘0 6‘0 8‘0 160
Baseline window (cycles)
Fig. 12: Test-set aggregated baseline statistics across fixed windows (W = 10-100). A
stability knee appears at W = 50.
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