

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PRETRAINING A LARGE LANGUAGE MODEL USING DISTRIBUTED GPUS: A MEMORY-EFFICIENT DECEN- TRALIZED PARADIGM

Anonymous authors

Paper under double-blind review

ABSTRACT

Pretraining large language models (LLMs) typically relies on centralized clusters equipped with hundreds or thousands of high-memory GPUs (*e.g.*, H100/A100), creating obstacles for a wide range of exploration in the community. Recent decentralized training methods reduce communication overhead by employing federated optimization; however, these methods still need to store and train the entire model on each node, remaining constrained by GPU memory limitations. In this work, we propose **SP**arse **E**xpert **S**ynchronization (**SPES**), a memory-efficient decentralized framework for pretraining mixture-of-experts (MoE) LLMs. SPES trains only a small subset of experts on each node during training, substantially reducing the memory footprint per node. Each node updates its local experts and periodically synchronizes with other nodes, eliminating the need to transmit the full set of model parameters and enabling efficient knowledge sharing across the distributed network. To accelerate convergence, we introduce an expert-merging warm-up strategy. Experts exchange knowledge via model merging in the early training stages, promoting faster establishment of the foundational capabilities for each expert. With SPES, we train a 2B-parameter MoE LLM using 16 standalone 48GB GPUs (NVIDIA L40S) over internet connections, which achieves competitive performance with centrally trained LLMs under similar computational budgets. We further demonstrate the scalability of SPES by training a model up to 7B parameters with open-source data, matching prior centralized baselines. Our SPES pre-training paradigm can be extended to more low-end GPUs and train LLM of larger scales. Code and models will be released.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Grattafiori et al., 2024; Yang et al., 2025; Liu et al., 2024; Muennighoff et al., 2024) have shown strong generalization capabilities across various downstream tasks, establishing themselves as fundamental components in real-world applications such as conversational assistant (Cui et al., 2024) and embodied agent (Fung et al., 2025). However, pretraining LLMs remains highly resource-intensive. The main bottlenecks arise from the substantial GPU memory required to store model parameters, activations, optimizer states, and gradients, and the need of low-latency, high-bandwidth inter-device communication to support model and data parallelism (Shoeybi et al., 2019; Rasley et al., 2020; Zhao et al., 2023). Consequently, existing LLMs are typically trained under centralized settings (as shown in Fig. 1 (left)), utilizing co-located clusters equipped with high-memory GPUs and fast interconnects (*e.g.*, RDMA). For instance, LLaMA3-405B (Grattafiori et al., 2024) is trained using up to 16K H100 GPUs linked with high-bandwidth interconnects, while OLMo2 7B (OLMo et al., 2024) is trained on a cluster of 1,024 H100 GPUs. Such high infrastructure requirements make LLM pretraining inaccessible to most researchers in the community.

To mitigate the demands of centralized LLM training, recent works such as DiLiCo (Douillard et al., 2023) and Photon (Sani et al., 2024) have explored decentralized pre-training paradigms (as shown in Fig. 1 (middle)). In these approaches, each workstation performs local updates and synchronizes with peers intermittently via a parameter server, following a federated optimization protocol (*e.g.*, FedAvg (McMahan et al., 2017)). This sparse communication mode significantly reduces the

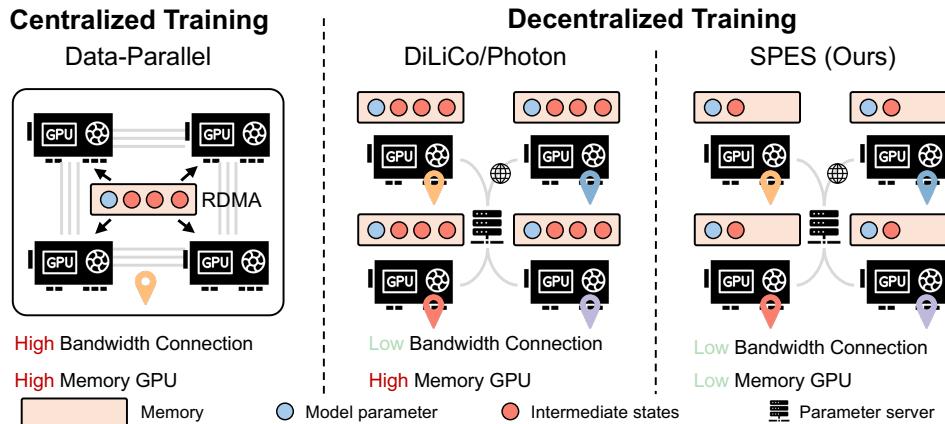


Figure 1: **Comparison of different pretraining paradigms for LLM.** **Left:** centralized training, which requires high-memory GPUs and high-bandwidth interconnects (e.g., RDMA) for its tightly coupled model or data parallelism. **Middle:** existing decentralized training (e.g., DiLiCo, Photon), where each node trains a full model locally, reducing bandwidth needs but still demanding high-memory GPUs. **Right:** our proposed SPES, a memory-efficient decentralized method for training MoE-based LLMs, where each node trains only a subset of experts, substantially reducing both per-GPU memory usage and communication overhead.

bandwidth requirements compared to centralized data- or model-parallel methods, enabling training across geographically distributed, heterogeneous GPU clusters. While communication constraints are relaxed, however, these approaches still require each node to update the full set of model parameters. Consequently, the memory footprint per node remains substantial. This limitation is especially significant for training large-scale LLMs, where insufficient memory can be a bottleneck.

To address this challenge, we propose **SP**arse **E**xpert **S**ynchronization (SPES), a memory-efficient, decentralized training paradigm tailored for MoE-based LLMs, as illustrated in the right panel of Fig. 1. Compared to dense models, MoE models are inherently well-suited for decentralized environments, as each expert can be managed independently, enabling finer-grained training and resource management. In SPES, each node is responsible for training a distinct subset of experts, while keeping the remaining experts frozen during local updates. This design substantially reduces the memory requirement per node, since each node only needs to maintain the gradients and optimizer states for the experts assigned to it¹. All nodes periodically synchronize their trained experts with peers, ensuring continuous knowledge sharing across the network. By eliminating the need to transmit the entire model weights, this sparse synchronization approach substantially reduces communication overhead and enables efficient knowledge exchange between nodes. A challenge in this sparse training regime is the limited token utilization of individual experts, as each expert is trained on only a subset of the total training tokens, which can slow down model convergence. To address this issue, we introduce an expert-merging warm-up strategy: in the early stages of training, we periodically merge each expert with its most similar peers in a weighted average manner, accelerating the knowledge acquisition of each expert.

We evaluate the effectiveness of SPES by pretraining MoE LLMs on both 2B and 7B scales in decentralized settings. Our results show that SPES enables the training of a 2B-parameter MoE LLM on 16 standalone NVIDIA L40S GPUs (48GB) over internet, achieving performance comparable to centrally trained models under comparable computational budgets. Compared with previous decentralized training frameworks, SPES reduces up to 33.3% communication cost and significantly lowers per-GPU memory requirements. We further demonstrate the scalability of SPES by training a 7B MoE LLM with open-source datasets, achieving performance on par with previous models trained with similar data and compute resources. Ablation studies and in-depth analysis are also provided to validate the design choices of SPES.

¹Note that optimizer states and gradients typically dominate the static memory footprint (excluding activations) in model training. For example, AdamW (Loshchilov & Hutter, 2017) can consume up to 75% of the total static memory usage.

108 Our contributions can be summarized as follows. **(i) A memory-efficient decentralized pretrain-
 109 ing framework.** We propose SPES, a memory-efficient decentralized framework for pretraining
 110 large MoE-based LLMs, where each node trains only a subset of experts, significantly reducing
 111 per-device memory and communication overhead. **(ii) An expert-merging warm-up strategy.** We
 112 introduce an expert-merging warm-up strategy to periodically aggregate similar experts during early
 113 training, enabling stronger expert representations with sparse decentralized training. **(iii) Empirical
 114 results.** We demonstrate the effectiveness of SPES by training 2B and 7B MoE LLMs using pub-
 115 licly available datasets on weakly connected GPUs. SPES achieves competitive performance but
 116 with significantly lower communication and memory costs compared to previous approaches.

117 As most existing decentralized LLM training frameworks are not open-sourced, we implement a
 118 custom server-client communication protocol based on gRPC (gRPC, 2015) and integrate it into a
 119 mainstream LLM pretraining framework (Muennighoff et al., 2024). Our model and code will be
 120 released to facilitate future research on decentralized training.

122 2 RELATED WORK 123

124 **Decentralized Training.** Decentralized training has been studied for both fine-tuning (Wu et al.,
 125 2025; Bai et al., 2024; Sun et al., 2024) and pretraining (Douillard et al., 2023; Sani et al., 2024;
 126 Jaghouar et al., 2024) LLMs. The works on finetuning pretrained LLMs usually target for privacy-
 127 preserving adaptation. FATE-LLM (Fan et al., 2023) explores federated fine-tuning for advertising
 128 generation. Subsequent works (Kuang et al., 2024; Zhang et al., 2024a; Ye et al., 2024) extend fed-
 129 erated LLM fine-tuning to instruction-tuning settings. To reduce communication and memory costs,
 130 parameter-efficient federated fine-tuning methods have been proposed, such as FedLoRA (Yi et al.,
 131 2023) and FedPETuning (Zhang et al., 2023). The works on pretraining LLMs train LLMs from
 132 scratch under communication constraints. DiLiCo (Douillard et al., 2023) and Photon (Sani et al.,
 133 2024) are among the first to study decentralized LLM pretraining. With FedAvg (McMahan et al.,
 134 2017), they achieve comparable perplexities to centrally trained models while substantially reduc-
 135 ing communication cost. Jaghouar et al. (2024) introduced INTELLECT-1, a 10B-parameter LLM
 136 pretrained across multiple independent computing devices, and Charles et al. (2025) demonstrated
 137 the scalability of this communication-efficient paradigm. Despite such advances, those methods
 138 still incur significant memory and communication overhead due to full-model training and synchro-
 139 nization. In contrast, our SPES only needs to train a subset of parameters per node, substantially
 140 reducing both the memory and communication costs.

141 **Memory-Efficient Pretraining.** Methods to reduce memory in LLM pretraining primarily leverage
 142 sharding and parallelism on tightly coupled accelerators. Data parallelism such as ZeRO (Rajbhan-
 143 dari et al., 2020) and FSDP (Zhao et al., 2023) partition optimizer states, gradients, and model
 144 parameters, enabling distributed storage and computation. Model-parallel techniques (Shoeybi
 145 et al., 2019)—including pipeline, tensor, and expert parallelism—split model computation to ac-
 146 commodate larger architectures. However, these strategies typically assume a centralized cluster
 147 with high-bandwidth interconnects to facilitate frequent synchronization. Orthogonal techniques
 148 include mixed precision (Micikevicius et al., 2017), activation checkpointing, memory-efficient at-
 149 tention (Dao et al., 2022; Dao, 2023), and optimizer quantization (Dettmers et al., 2021). Our
 150 proposed SPES enables cross-node expert sharding with sparse synchronization: gradients and opti-
 151 mizer states are distributed across geographically heterogeneous nodes, each of which trains only the
 152 MoE experts assigned to it and communicates only necessary updates. SPES is designed for envi-
 153 ronments with heterogeneous, low-bandwidth interconnects, such as single-GPU nodes where intra-
 154 node sharding is infeasible. Moreover, SPES complements existing parallelism paradigms: when
 155 multiple GPUs are available per node, SPES can be combined with previous parallelism strategies
 156 to maximize memory efficiency and scalability.

157 3 MEMORY-EFFICIENT DECENTRALIZED PRETRAINING 158

159 In this section, we present the details of our proposed **SParse Expert Synchronization (SPES)**, a
 160 memory-efficient decentralized pretraining framework for MoE-based LLMs. SPES partitions ex-
 161 pert training across weakly connected nodes and synchronizes weights intermittently, substantially
 162 reducing both the memory usage and the communication overhead compared to prior paradigms. We

begin with the preliminaries (Section 3.1), followed by the overview of the framework (Section 3.2), and the details of the SPES methodology (Section 3.3).

3.1 PRELIMINARIES

Decentralized Training. Let $\mathcal{S} = \{\eta_1, \dots, \eta_N\}$ denote N distributed nodes, each node η_i having its local training data \mathcal{D}_i . Existing decentralized training frameworks such as DiLiCo (Douillard et al., 2023) decompose model optimization into two levels: an outer optimizer that governs global synchronization and an inner optimizer that performs local node updates. In the t^{th} communication round, the global parameters obtained in the previous round, denoted by $\theta^{(t-1)}$, are broadcast to all nodes. Each node runs H steps the inner optimizer (e.g., AdamW (Loshchilov & Hutter, 2017)) on its shard \mathcal{D}_i , producing the updated local parameters $\theta_i^{(t)}$. The parameter server then aggregates the local updates by averaging the differences between the local and global models, and applies the outer optimizer to update the global parameters as follows:

$$\theta^{(t)} \leftarrow \text{OuterOpt} \left(\theta^{(t-1)}, \frac{1}{N} \sum_{i=1}^N (\theta_i^{(t)} - \theta^{(t-1)}) \right). \quad (1)$$

When the outer optimizer is set to SGD, the above training procedures become the FedAvg (McMahan et al., 2017), which enables distributed training while minimizing communication overhead. However, each node is required to train the entire model, which needs to store a large amount of intermediate optimizer states, limiting its applicability to memory-constrained devices.

Mixture-of-Experts (MoE) LLM. MoE architectures (Lepikhin et al., 2020; Muennighoff et al., 2024; Dai et al., 2024) extend standard transformer-based LLMs by introducing a set of M expert sub-networks $\{\mathcal{E}_j\}_{j=1}^M$, each sub-network \mathcal{E}_j being parameterized by ϕ_j . Given an input token x , a gating function $\mathcal{G}(x)$ is used to select a sparse subset of experts to process it. The output of the MoE block is computed as a weighted sum of the selected experts:

$$\text{MoE}(x) = \sum_{j \in \{1, \dots, M\}} \mathcal{G}_j(x) \cdot \mathcal{E}_j(x), \quad (2)$$

where $\mathcal{G}_j(x)$ is the gating weight for the j -th expert. MoE enables scaling by activating only a subset of experts per token, thus increasing the model capacity without increasing the computation.

3.2 OVERALL FRAMEWORK

Previous sharding strategies, such as FSDP (Zhao et al., 2023) and ZeRO (Rajbhandari et al., 2020), partition LLM model training in centralized data-parallel setups. Each node is responsible for a subset of model modules, which alleviates individual memory constraints. However, when inter-node communication bandwidth is limited, the tight coupling between model shards may lead to suboptimal performance due to insufficient synchronization of model updates. To address this issue, we adopt the MoE architecture to train the LLM, where expert modules can be managed independently, thus relaxing synchronization requirements and enabling fine-grained resource allocation. Following prior works (Touvron et al., 2023; OLMo et al., 2024; Bai et al., 2023), We employ a standard decoder-only MoE LLM, which is composed of self-attention layers, sparse expert feed-forward networks selected via a routing mechanism, and normalization layers, as illustrated in Fig. 2(a). Positional encoding is implemented using RoPE (Su et al., 2024), SwiGLU (Shazeer, 2020) is adopted as the activation function, and normalization is performed with RMSNorm (Zhang & Sennrich, 2019). Bias terms are omitted to enhance stability. Specifically, we utilize the drop-less MoE (Gale et al., 2023), as suggested by Muennighoff et al. (2024), to maximize expert utilization.

In this work, our goal is to train an MoE-based LLM using distributed GPUs. Compared to traditional centralized training, the key challenge of our decentralized training lies in the memory and communication bottlenecks. We therefore propose Sparse Expert Synchronization (SPES) to solve this issue. As illustrated in Fig. 2(b), we take advantage of the inherent modularity of MoE LLM by distributing expert training across the N nodes. Each node is assigned with some shared modules and a unique subset of the M experts, allowing memory-efficient local updates. During training, the nodes perform efficient synchronization to share knowledge. To improve data utilization for each expert, we further propose an expert-merging warm-up strategy. The details of our SPES are presented in the following section.

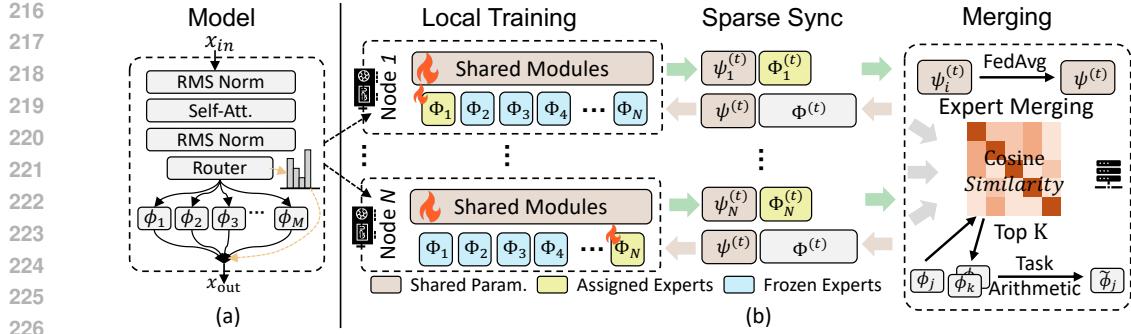


Figure 2: (a) **Illustration of our model structure**, in which we utilize an MoE LLM comprising standard self-attention blocks, normalization layers, and routed feed-forward modules. (b) **Illustration of SPES**, where each node performs local training on a disjoint subset of experts to reduce memory consumption. During weight synchronization, only the trained parameters are transmitted to the parameter server, minimizing communication overhead. To improve data utilization, we propose an expert-merging strategy that merges similar experts to facilitate knowledge sharing.

3.3 SPARSE EXPERT SYNCHRONIZATION

Expert Assignment and Local Training. We denote by $\Phi = \{\phi_j\}_{j=1}^M$ the set of parameters of all experts. Refer to Fig. 2(b), we partition Φ into N disjoint subsets, so that $\Phi = \Phi_1 \cup \Phi_2 \cup \dots \cup \Phi_N$, where Φ_i denotes the subset of experts assigned to node η_i . We denote by $\bar{\Phi}_i$ the set of unassigned experts for node η_i , and denote by ψ_i the parameters of the shared modules. At the start of each local training round t , node η_i receives the global model parameters updated at round $t-1$ from the server and then performs H rounds of local updates on its local data \mathcal{D}_i . The designated expert parameters Φ_i and the shared parameters ψ_i will be optimized while keeping $\bar{\Phi}_i$ fixed. The updated local parameters at round t can be denoted as:

$$\theta_i^{(t)} = \left(\psi_i^{(t)}, \Phi_i^{(t)}, \bar{\Phi}_i^{(t-1)} \right). \quad (3)$$

In the above process, although each node stores a full copy of the model parameters, the gradients and optimizer states are only required exclusively for the parameters to be updated, thereby substantially reducing the per-node memory overhead.

Sparse Synchronization. At the end of each local training round t , node η_i holds updated local parameters $\theta_i^{(t)}$, where the shared parameter ψ_i and the assigned experts Φ_i are updated. During synchronization, each node transmits the updated parameters to the server. Shared parameters are aggregated using FedAvg (McMahan et al., 2017), while experts are updated via direct assignment:

$$\theta^{(t)} = \left(\frac{1}{N} \sum_{i=1}^N \psi_i^{(t)}, \bigcup_{i=1}^N \Phi_i^{(t)} \right). \quad (4)$$

The aggregated global parameters $\theta^{(t)}$ are then broadcast to all nodes for the next round of training. By synchronizing only assigned experts and shared parameters, SPES substantially reduces communication overhead, enabling scalable decentralized training under limited bandwidth.

Expert-Merging Warm-Up. While achieving notable memory efficiency, SPES faces a practical challenge in sparse training: each node updates only its local experts, leaving many tokens assigned to frozen (unassigned) experts without contributing to gradient updates. This leads to lower token utilization compared to centralized training with an equivalent token budget. To address this issue, we propose an expert-merging warm-up strategy to improve token utilization. The core idea is to periodically merge parameters of similar experts across nodes during synchronization.

Instead of updating each expert solely with local assignments, we identify peer experts with similar input projections and merge their parameters to facilitate knowledge sharing. Specifically, for the j -th expert, we compute pairwise cosine similarities between input projection layers:

$$A_{j,k} = \frac{\langle \mathbf{w}_j^{\text{in}}, \mathbf{w}_k^{\text{in}} \rangle}{\|\mathbf{w}_j^{\text{in}}\|_2 \|\mathbf{w}_k^{\text{in}}\|_2}, \quad j, k \in \{1, \dots, M\}, \quad (5)$$

270 where w_j^{in} denotes the input projection weights of the expert \mathcal{E}_j , for which we select the K most
 271 similar experts $\mathcal{Q}_j = \text{TopK}_k(A_{j,k})$, excluding itself. The merged parameters for \mathcal{E}_j are then com-
 272 puted using task arithmetic (Ilharco et al., 2022):
 273

$$274 \quad \tilde{\phi}_j^{(t)} = \phi_j^{(t)} + \alpha \frac{1}{K} \sum_{k \in \mathcal{Q}_j} \left(\phi_k^{(t)} - \phi_j^{(t)} \right), \quad (6)$$

$$275$$

$$276$$

277 where α is a scaling factor. To preserve the specialization of experts in later training stages, we
 278 perform merging only in the initial T_{merge} steps and linearly decay α to zero. This expert-merging
 279 strategy enables each expert to benefit from gradients from multiple nodes, which improves token
 280 utilization and accelerates knowledge acquisition in decentralized sparse training settings.
 281

282 **Efficiency Analysis.** SPES achieves substantial improvements in both memory and communication
 283 efficiency compared to conventional decentralized training methods. For example, when using the
 284 AdamW optimizer, DiLiCo (Douillard et al., 2023) requires each node to store optimizer states and
 285 gradients for all model parameters, resulting in a memory cost of $4 \times (|\psi| + |\Phi|)$ and a communica-
 286 tion cost of $2 \times N \times (|\psi| + |\Phi|)$ per round. In contrast, SPES exploits expert partitioning, and each
 287 node only needs to store the intermediate states for the shared parameters and the assigned experts,
 288 which reduces the per-node memory cost to $4 \times |\psi_g| + |\Phi| + 3 \times |\Phi_i|$. Similarly, communication
 289 overhead is also significantly reduced, as only shared parameters and updated experts are synchro-
 290 nized, resulting in a cost of $N \times (2 \times |\psi_g| + |\Phi| + |\Phi_i|)$ per round. SPES achieves significant
 291 reductions in both memory and communication cost, especially as the number of nodes increases.
 292 For instance, when training a 2B-parameter MoE model with 16 experts in 16 nodes (one GPU per
 293 node; see Fig. 3 for details), DiLiCo requires 55GB of memory per node, whereas SPES reduces
 294 this requirement to 35GB. In addition, SPES achieves a 33.3% reduction in communication cost.
 295

296 **Training Losses.** Our model is trained with three losses: standard cross-entropy loss for next token
 297 prediction, z-loss (Chowdhery et al., 2023; Zoph et al., 2022) for enhancing training stability, and
 298 a load-balancing loss (Lepikhin et al., 2020) to encourage uniform expert utilization. Within each
 299 node, PyTorch FSDP and mixed-precision are used to further improve memory efficiency. For cross-
 300 node synchronization, we use our customized gRPC-based communication protocol.
 301

302 4 EXPERIMENTS

303 4.1 EXPERIMENTS SETUP

304 **Implementation Details.** We conduct experiments by training our SPES models at three scales: 1B,
 305 2B, and 7B parameters (see Table 1 for detailed configurations). All ablation studies are performed
 306 on the 1B model, while the 2B and 7B models are trained to compare with previous work. For the
 307 7B model, our training is distributed over $N = 4$ compute nodes, each equipped with 8 NVIDIA
 308 A800 GPUs interconnected via NVLink. A parameter server with a 96-core Intel Xeon processor
 309 (2.90 GHz) and 1.44TB RAM is used for parameter aggregation. The nodes communicate with the
 310 server over a 13 Gbps Ethernet network, with each node training eight experts (approximately 2.5B
 311 trainable parameters per node).
 312

313 For the 2B model, training is performed on $N = 16$ nodes, each hosting one NVIDIA L40S GPU.
 314 The parameter server comprises a 64-core Intel Xeon Gold 6148 (2.40 GHz) and 720GB RAM, with
 315 nodes connected via 17 Gbps Ethernet. Each node manages the training of one expert, resulting in
 316 roughly 0.7B trainable parameters per node. The expert merging warmup steps, T_{merge} , is set to
 317 12,500 training steps, with merging executed for every 500 steps. The initial value of α is set
 318 to 0.1. All models are trained with AdamW optimizer (Loshchilov & Hutter, 2017). Additional
 319 implementation details are provided in the [Appendix A](#).
 320

321 **Training Data.** We train our models exclusively on publicly available datasets, ensuring accessi-
 322 bility for the research community. The 2B and 7B models are trained on data sampled from Ultra-
 323 FineWeb (Wang et al., 2025) and SlimPajama (Soboleva et al., 2023), complemented by openweb-
 324 math, algebraic stack, pes2o, arxiv, and StarCoder drawn from olmo-mix-1124 (OLMo et al., 2024)
 325 to provide domain-specialized coverage in reasoning, scientific, and programming knowledge. The
 326 1B model is trained solely on SlimPajama for a lightweight and efficient pretraining. For tokeniza-
 327 tion, we use the tokenizer trained by Bai et al. (2023), which offers efficient subword segmentation
 328

324

325

Table 1: **Model configurations.** “#Param” indicates activated/total parameters.

326

327

#Param	#Layers	#Heads	Hidden Size	Intermediate Size	#Experts	#Act. Experts
0.3B/1.1B	12	12	768	2048	16	2
0.8B/2.1B	16	24	1536	1280	16	2
1.6B/7.3B	16	16	2048	2048	32	4

330

331

Table 2: **Performance comparison across different training paradigms.**

332

333

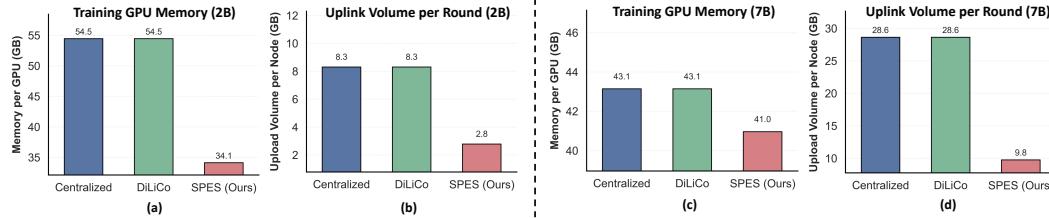
Method	ARC(e)	ARC(c)	PIQA	SciQ	OBQA	BoolQ	SIQA	WinoGrande	Avg.
Centralized	49.7	24.4	68.9	74.0	30.6	54.3	42.0	53.5	49.7
DiLiCo	51.7	26.6	68.4	77.4	29.6	55.7	43.4	51.1	50.5
SPES	51.7	26.3	68.1	78.0	29.8	59.8	43.0	51.5	51.0

334

335

336

337



338

339

340

341

342

343

344

345

Figure 3: **Memory and communication costs for different training paradigms.** Experiments are conducted with a batch size of 2 and a sequence length of 2048. For the 2B parameter model, we employ standard PyTorch DDP. For the 7B parameter model, we utilize FSDP across 8 GPUs.

346

347

348

349

350

351

352

and robust multilingual support. For each node, the training data \mathcal{D}_i for different nodes is randomly sampled from the whole dataset. Please refer to the **Appendix B** for more details.

353

354

355

356

357

358

359

Evaluation Details. We evaluate our model using the lm-evaluation-harness library (Gao et al., 2024) and report results on several commonsense reasoning benchmarks, including SIQA (Sap et al., 2019), ARC (easy and challenging) (Clark et al., 2018), SciQ (Johannes Welbl, 2017), PIQA (Bisk et al., 2020), OpenBookQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al., 2021) and BoolQ (Clark et al., 2019). To assess general knowledge, we utilize MMLU (Hendrycks et al., 2020), CMMLU (Li et al., 2023), and C-Eval (Huang et al., 2023). Additional evaluation details are included in the **Appendix C**.

360

361

4.2 MAIN RESULTS

362

363

364

365

366

367

368

369

370

371

Memory Cost Comparison. Figs. 3 (a) and (c) compare the training memory footprints of SPES, DiLiCo, and centralized training. Both centralized training and DiLiCo require each node to update the full set of model parameters, resulting in high memory consumption. For example, training a 2B model requires more than 50GB memory per GPU, making it infeasible to train on commonly available 48GB GPUs. Furthermore, decentralized methods like DiLiCo cannot effectively leverage sharded training strategy due to limited inter-node bandwidth, further restricting the maximum trainable model size. In contrast, SPES keeps per-GPU memory under 40GB for a 2B model on 16 nodes without any sharding strategy. SPES can be combined with intra-node sharding for additional memory savings, as illustrated in Fig. 3(c). This efficiency arises from sparse training: each node updates only a subset of parameters, substantially reducing per-GPU memory.

372

373

374

375

376

377

Communication Cost Comparison. Figs. 3 (b) and (d) compare the communication overhead of different training schemes. In each round, both DiLiCo and centralized training need to upload the full set of model parameters, whereas SPES transmits only the updated parameters. In each communication round, both DiLiCo and centralized training require each node to upload the entire set of model parameters, whereas SPES only requires uploading the parameters that are actually updated. For instance, when training a 7B model on 4 nodes, SPES requires only 9.8GB data to be uploaded per node per round, compared to 28.6GB for DiLiCo and centralized training—a reduction of 65% in

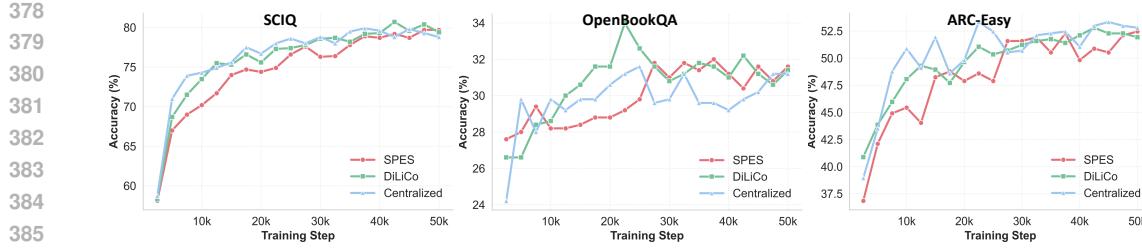


Figure 4: **Performance comparison across different training paradigms.** Performance during training is evaluated using the evaluation suite integrated into the open-source OLMo codebase.

Table 3: **Performance comparison with previous LLMs.**

Method	#Params	#Tokens	SciQ	PIQA	SIQA	BoolQ	ARC(e)	ARC(c)
Models Trained with Significantly More Tokens								
Qwen2.5-0.5B (Qwen et al., 2025)	0.5B/0.5B	18T	93.0	69.9	47.1	61.7	64.6	35.8
Qwen3-0.6B (Yang et al., 2025)	0.6B/0.6B	36T	93.5	70.1	46.9	69.7	65.5	45.9
Llama3.2-1B (Dubey et al., 2024)	1.1B/1.1B	9T	91.3	73.7	45.0	63.7	71.6	43.5
Qwen2.5-1.5B (Qwen et al., 2025)	1.5B/1.5B	18T	94.1	75.8	53.5	72.6	75.3	53.9
SmolLM2-1.7B (Allal et al., 2025)	1.7B/1.7B	11T	93.2	77.4	46.7	72.4	77.8	54.1
Qwen3-1.7B (Yang et al., 2025)	1.7B/1.7B	36T	95.9	75.6	52.2	79.3	73.7	55.1
OLMoE-1B-7B (Muennighoff et al., 2024)	1.3B/7B	5T	94.9	80.6	47.8	74.4	78.0	55.2
Models with $\leq 3\text{B}$ Parameters								
OpenELM-0.5B (Mehta et al., 2024)	0.5B/0.5B	1.5T	87.2	72.3	-	55.8	48.1	27.6
MobiLlama-0.8B (Thawakar et al., 2024)	0.8B/0.8B	1.3T	85.9	73.2	43.1	60.0	49.6	28.8
TinyLlama-1.1B (Zhang et al., 2024b)	1.1B/1.1B	3T	88.9	73.3	-	57.8	55.3	30.1
OpenELM-1.1B (Mehta et al., 2024)	1.1B/1.1B	1.5T	90.6	75.6	-	63.6	55.4	32.3
OPT-1.3B (Zhang et al., 2022)	1.3B/1.3B	180B	84.3	71.7	43.7	57.7	57.0	29.7
MobiLlama-1.3B (Thawakar et al., 2024)	1.3B/1.3B	1.3T	89.1	74.8	44.7	60.3	56.7	36.7
Pythia-1.4B (Biderman et al., 2023)	1.4B/1.4B	300B	86.4	70.9	44.6	63.3	60.7	31.2
OPT-2.7B (Zhang et al., 2022)	2.7B/2.7B	180B	85.8	73.1	44.1	60.4	60.8	34.0
Pythia-2.8B (Biderman et al., 2023)	2.8B/2.8B	300B	88.3	74.0	44.5	64.7	66.4	36.4
Open-LLaMA-3B (Geng & Liu, 2023)	3B/3B	1T	91.8	76.2	-	-	66.5	39.0
SPES-2B (ours)	0.8B/2.1B	500B	85.0	69.3	42.3	61.4	63.8	35.3
Models with $\geq 7\text{B}$ Parameters								
MoE++ 7B (Jin et al., 2024)	1.2B/7B	1T	89.7	78.0	45.7	64.9	66.9	43.2
LLaMA-MoE-3.0B (Zhu et al., 2024)	3.0B/7B	2.2T	89.9	77.5	-	-	66.8	40.9
OpenMoE-8B/32E (Xue et al., 2024)	2.1B/8B	1.1T	-	74.2	-	61.2	64.1	30.3
SPES-7B (ours)	1.6B/7B	500B	89.9	74.7	44.8	62.7	72.1	43.8

uplink communication volume. This demonstrates the significant communication efficiency brought by the sparse training strategy of SPES.

Training Speed Comparison. We compare the training throughput of SPES against its centralized training counterpart. For the centralized setting, we adopt hybrid FSDP and train on four nodes, each equipped with 8xNVIDIA A800 GPUs and interconnected via RDMA. Each node contains four Mellanox InfiniBand HDR adapters, with each port operating at 100 Gbps (2xHDR lanes). In this configuration, centralized training reaches 3.79k tokens/s per GPU. Under the SPES setting (see the section of implementation details), throughput with $H = 50$ achieves 3.67k tokens/s. Despite running on a weaker hardware environment without high-bandwidth interconnects, SPES achieves a comparable speed. In addition, its throughput can be further improved by reducing the synchronization frequency, highlighting its scalability under resource-constrained conditions.

Comparison with Previous Training Paradigms. We evaluate SPES against both centralized training and the decentralized baseline DiLiCo, using 1B models trained on 100B tokens. As shown in Table 2, SPES achieves competitive performance on multiple benchmarks. Fig. 4 presents per-

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 4: Performance with and without expert merging.

Method	ARC(e)	ARC(c)	PIQA	SciQ	OBQA	BoolQ	SIQA	WinoGrande	Avg.
w/o merging	52.8	26.5	68.4	75.9	30.0	58.0	42.4	50.3	50.5
w/ merging	52.1	27.7	67.4	77.8	28.8	60.4	42.7	53.5	51.3

formance trajectories during training. Although SPES exhibits a slightly slower initial learning curve, attributable to its sparse expert updates, it rapidly converges and ultimately matches or outperforms both baselines. Notably, SPES achieves this with substantially lower per-node GPU memory consumption and reduced synchronization bandwidth relative to centralized and decentralized alternatives. These results highlight that SPES provides a favorable trade-off between computational efficiency and model quality, enabling decentralized pretraining to attain competitiveness with large-scale centralized training under significantly lower resource budgets.

Performance Comparison with Existing LLMs. Finally, we compare our 2B and 7B models, which are trained with less than 500B tokens, with those open-source models of similar activation parameter scales and trained with less than 3T tokens. The results are shown in Table 3. We also show the results of models trained with significantly more tokens for reference.

We can see that across several commonsense reasoning benchmarks, both our 2B and 7B models consistently outperform most of their counterparts. It is worth noting that SPES-2B was trained in a decentralized manner on only 16 weakly connected 48GB GPUs, yet it remains competitive with models such as MobiLLama and OpenELM, which rely on substantially larger datasets and centralized infrastructures. This highlights the effectiveness of SPES in achieving strong performance under constrained hardware budgets. Moreover, SPES-7B attains results comparable to MoE++, which employs more advanced MoE designs (e.g., zero-computation experts) and larger training corpora. These findings indicate that SPES not only scales effectively and efficiently, but also retains significant room for improvement in architecture and data utilization, underscoring its potential as an extensible alternative to existing LLM training frameworks.

Expert-Merging Warm-Up. As shown in Table 4, utilizing expert merging increases the average score from 50.5 to 51.3, with notable improvements on BoolQ and SciQ. This indicates that cross-node parameter sharing enhances token utilization and promotes faster knowledge establishment, thus improving generalization across a range of reasoning and comprehension tasks.

For ablation studies on key hyperparameters, including the merging factor α , warm-up steps T_{merge} , local training steps H , and the number of nodes N , please refer to the Appendix D for details.

5 CONCLUSION

We introduced SPES, a decentralized and memory-efficient pretraining paradigm for MoE-based LLMs. SPES assigned distinct subsets of experts to individual nodes and synchronized them only, substantially reducing per-device memory usage and communication overhead compared to centralized and prior decentralized approaches. To improve token utilization per expert, we introduced an expert-merging warm-up strategy to accelerate convergence in early training stages. Empirical results on 2B- and 7B-parameter MoE LLMs showed that SPES enabled efficient pretraining across weakly connected, geographically distributed GPU clusters, while achieving performance on par with comparable centralized baselines. Beyond lowering infrastructure demands, SPES broadened access to large-scale pretraining and could support more inclusive participation in LLM research, facilitating further advances in decentralized and memory-efficient training of foundation models.

Limitations and Future Work. Due to limited computational resources, our largest model comprises 7B parameters and was trained on a corpus of fewer than 500B tokens. Consequently, the scalability of our approach to significantly larger models or extended training contexts remains to be validated. A systematic exploration of these scaling behaviors represents an important direction for future research. In addition, our evaluation is confined to language understanding tasks in this work. In the future, we will investigate the applicability of SPES training to multimodal reasoning or generative tasks. Extending our framework to encompass these broader domains would provide a more comprehensive assessment of its generality and limitations.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
492 Lewis Tunstall, Andrés Marafioti, Hynek Kydliček, Agustín Piqueres Lajarín, Vaibhav Srivastav,
493 et al. Smollm2: When smol goes big–data-centric training of a small language model. *arXiv*
494 *preprint arXiv:2502.02737*, 2025.

495 Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, and Yaliang Li. Federated fine-tuning of large
496 language models under heterogeneous tasks and client resources. *Advances in Neural Information
497 Processing Systems*, 37:14457–14483, 2024.

498 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
499 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

500 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
501 Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
502 Pythia: A suite for analyzing large language models across training and scaling. In *International
503 Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

504 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
505 about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial
506 Intelligence*, 2020.

507 Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur
508 Szlam, and Arthur Douillard. Communication-efficient language model training scales reliably
509 and robustly: Scaling laws for diloco. *arXiv preprint arXiv:2503.09799*, 2025.

510 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
511 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
512 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):
513 1–113, 2023.

514 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
515 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *NAACL*,
516 2019.

517 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
518 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
519 *arXiv preprint arXiv:1803.05457*, 2018.

520 Jiaxi Cui, Munan Ning, Zongjian Li, Bohua Chen, Yang Yan, Hao Li, Bin Ling, Yonghong Tian, and
521 Li Yuan. Chatlaw: A multi-agent collaborative legal assistant with knowledge graph enhanced
522 mixture-of-experts large language model, 2024.

523 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
524 Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
525 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.

526 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv*
527 *preprint arXiv:2307.08691*, 2023.

528 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
529 efficient exact attention with io-awareness. *Advances in neural information processing systems*,
530 35:16344–16359, 2022.

531 Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
532 quantization. *arXiv preprint arXiv:2110.02861*, 2021.

540 Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
 541 Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
 542 communication training of language models. *arXiv preprint arXiv:2311.08105*, 2023.

543

544 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 545 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 546 *arXiv e-prints*, pp. arXiv–2407, 2024.

547 Tao Fan, Yan Kang, Guoqiang Ma, Weijing Chen, Wenbin Wei, Lixin Fan, and Qiang Yang. Fate-
 548 llm: A industrial grade federated learning framework for large language models. *arXiv preprint
 549 arXiv:2310.10049*, 2023.

550

551 Pascale Fung, Yoram Bachrach, Asli Celikyilmaz, Kamalika Chaudhuri, Delong Chen, Willy Chung,
 552 Emmanuel Dupoux, Hongyu Gong, Hervé Jégou, Alessandro Lazaric, et al. Embodied ai agents:
 553 Modeling the world. *arXiv preprint arXiv:2506.22355*, 2025.

554 Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
 555 training with mixture-of-experts. *Proceedings of Machine Learning and Systems*, 5:288–304,
 556 2023.

557

558 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 559 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
 560 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 561 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 562 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

563

564 Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https://github.com/openlm-research/open_llama.

565

566 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 567 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 568 of models. *arXiv preprint arXiv:2407.21783*, 2024.

569

570 gRPC. grpc: A high performance, open source universal rpc framework. <https://grpc.io/>,
 2015. Accessed: 2025-08-21.

571

572 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 573 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 574 arXiv:2009.03300*, 2020.

575

576 Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
 577 Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese eval-
 578 uation suite for foundation models. *Advances in Neural Information Processing Systems*, 36:
 62991–63010, 2023.

579

580 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 581 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint
 582 arXiv:2212.04089*, 2022.

583

584 Sami Jaghouar, Jack Min Ong, Manveer Basra, Fares Obeid, Jannik Straube, Michael Keiblinger,
 585 Elie Bakouch, Lucas Atkins, Maziyar Panahi, Charles Goddard, et al. Intellect-1 technical report.
 586 *arXiv preprint arXiv:2412.01152*, 2024.

587

588 Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. Moe++: Accelerating mixture-of-experts methods
 589 with zero-computation experts. *arXiv preprint arXiv:2410.07348*, 2024.

590

591 Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
 592 2017.

593

594 Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
 595 Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for
 596 fine-tuning large language models in federated learning. In *Proceedings of the 30th ACM SIGKDD
 597 Conference on Knowledge Discovery and Data Mining*, pp. 5260–5271, 2024.

594 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 595 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 596 computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.

597

598 Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timo-
 599 thony Baldwin. Cmmu: Measuring massive multitask language understanding in chinese. *arXiv*
 600 *preprint arXiv:2306.09212*, 2023.

601 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
 602 Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-Im: In search of the
 603 next generation of training sets for language models. *Advances in Neural Information Processing*
 604 *Systems*, 37:14200–14282, 2024.

605 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 606 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 607 *arXiv:2412.19437*, 2024.

608

609 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 610 *arXiv:1711.05101*, 2017.

611 Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
 612 Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
 613 next generation. *arXiv preprint arXiv:2402.19173*, 2024.

614

615 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 616 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-
 617 gence and statistics*, pp. 1273–1282. PMLR, 2017.

618 Sachin Mehta, Mohammad Hosseini Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan
 619 Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, et al. Openelm: An
 620 efficient language model family with open training and inference framework. *arXiv preprint*
 621 *arXiv:2404.14619*, 2024.

622

623 Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
 624 Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
 625 training. *arXiv preprint arXiv:1710.03740*, 2017.

626 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 627 electricity? a new dataset for open book question answering. In *EMNLP*, 2018.

628

629 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
 630 jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
 631 language models. *arXiv preprint arXiv:2409.02060*, 2024.

632

633 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
 634 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint*
 634 *arXiv:2501.00656*, 2024.

635

636 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 637 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
 638 at scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024.

639

640 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 641 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 642 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 643 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 644 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 645 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 646 URL <https://arxiv.org/abs/2412.15115>.

647 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 648 toward training trillion parameter models. In *SC20: International Conference for High Perfor-
 649 mance Computing, Networking, Storage and Analysis*, pp. 1–16. IEEE, 2020.

648 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
 649 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings*
 650 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
 651 3505–3506, 2020.

652 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 653 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

654 Lorenzo Sani, Alex Iacob, Zeyu Cao, Roysen Lee, Bill Marino, Yan Gao, Dongqi Cai, Zexi
 655 Li, Wanru Zhao, Xinchi Qiu, et al. Photon: Federated llm pre-training. *arXiv preprint*
 656 *arXiv:2411.02908*, 2024.

657 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiq: Common-
 658 sense reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

659 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

660 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 661 Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
 662 allelism. *arXiv preprint arXiv:1909.08053*, 2019.

663 Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
 664 SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023. URL <https://huggingface.co/datasets/cerebras/SlimPajama-627B>.

665 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Author,
 666 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An open corpus of
 667 three trillion tokens for language model pretraining research. *arXiv preprint arXiv:2402.00159*,
 668 2024.

669 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 670 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

671 Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-preserving federated
 672 learning. *arXiv preprint arXiv:2403.12313*, 2024.

673 MiniCPM Team, Chaojun Xiao, Yuxuan Li, Xu Han, Yuzhuo Bai, Jie Cai, Haotian Chen, Wentong
 674 Chen, Xin Cong, Ganqu Cui, et al. Minicpm4: Ultra-efficient llms on end devices. *arXiv preprint*
 675 *arXiv:2506.07900*, 2025.

676 Omkar Thawakar, Ashmal Vayani, Salman Khan, Hisham Cholakal, Rao M Anwer, Michael Fels-
 677 berg, Tim Baldwin, Eric P Xing, and Fahad Shahbaz Khan. Mobillama: Towards accurate and
 678 lightweight fully transparent gpt. *arXiv preprint arXiv:2402.16840*, 2024.

679 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 680 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 681 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

682 Yudong Wang, Zixuan Fu, Jie Cai, Peijun Tang, Hongya Lyu, Yewei Fang, Zhi Zheng, Jie Zhou,
 683 Guoyang Zeng, Chaojun Xiao, et al. Ultra-fineweb: Efficient data filtering and verification for
 684 high-quality llm training data. *arXiv preprint arXiv:2505.05427*, 2025.

685 Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
 686 aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for
 687 training large language models. *Advances in neural information processing systems*, 37:116462–
 688 116492, 2024.

689 Yebo Wu, Jingguang Li, Zhijiang Guo, and Li Li. Learning like humans: Resource-efficient feder-
 690 ated fine-tuning through cognitive developmental stages. *arXiv preprint arXiv:2508.00041*, 2025.

691 Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
 692 You. Openmoe: An early effort on open mixture-of-experts language models. *arXiv preprint*
 693 *arXiv:2402.01739*, 2024.

702 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 703 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 704 *arXiv:2505.09388*, 2025.

705 Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and
 706 Siheng Chen. Openfedllm: Training large language models on decentralized private data via
 707 federated learning. In *Proceedings of the 30th ACM SIGKDD conference on knowledge discovery*
 708 and data mining, pp. 6137–6147, 2024.

709 Liping Yi, Han Yu, Gang Wang, Xiaoguang Liu, and Xiaoxiao Li. pfedlora: Model-heterogeneous
 710 personalized federated learning with lora tuning. *arXiv preprint arXiv:2310.13283*, 2023.

711 Yijiong Yu, Ziyun Dai, Zekun Wang, Wei Wang, Ran Chen, and Ji Pei. Opencsg chinese corpus: A
 712 series of high-quality chinese datasets for llm training. *arXiv preprint arXiv:2501.08197*, 2025.

713 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in neural infor-*
 714 *mation processing systems*, 32, 2019.

715 Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and
 716 Yiran Chen. Towards building the federatedgpt: Federated instruction tuning. In *ICASSP 2024-*
 717 *2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.
 718 6915–6919. IEEE, 2024a.

719 Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
 720 language model. *arXiv preprint arXiv:2401.02385*, 2024b.

721 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christo-
 722 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
 723 language models. *arXiv preprint arXiv:2205.01068*, 2022.

724 Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and Zenglin Xu. Fed-
 725 petuning: When federated learning meets the parameter-efficient tuning methods of pre-trained
 726 language models. In *Annual Meeting of the Association of Computational Linguistics 2023*, pp.
 727 9963–9977. Association for Computational Linguistics (ACL), 2023.

728 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
 729 Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
 730 sharded data parallel. *arXiv preprint arXiv:2304.11277*, 2023.

731 Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
 732 Llama-moe: Building mixture-of-experts from llama with continual pre-training. *arXiv preprint*
 733 *arXiv:2406.16554*, 2024. URL <https://arxiv.org/abs/2406.16554>.

734 Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
 735 William Fedus. St-moe: Designing stable and transferable sparse expert models. *arXiv preprint*
 736 *arXiv:2202.08906*, 2022.

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

758 We provide the following materials in this appendix:

759 **A. Implementation Details:** more details of training hyper-parameters.

760 **B. Data Details:** dataset descriptions and sampling ratios.

761 **C. Evaluation Details:** evaluation datasets and metrics.

762 **D. Additional Results:** results on additional benchmarks and ablations on hyper-parameters.

763 **E. Declaration of LLM Assistance:** description of LLM usage in manuscript preparation.

A. IMPLEMENTATION DETAILS

770 Table A1 shows our training configurations. For the 7B model, we train on the first 340B tokens
 771 using the settings specified in the table, then we reduce the per-node batch size to 1M tokens and set
 772 $H = 50$ to accelerate convergence. For the 2B model, we train on 440B tokens under the default
 773 configuration, then reduce the per-node batch size to 0.5M tokens and set $H = 50$.

774 For the 1B model, we perform ablation on expert-merging with a per-node batch size of 1024 to fa-
 775 cilitate comparison with baselines trained under larger token budgets (400B). All other experiments
 776 use the hyper-parameters presented in Table A1. The training token budget is set to 100B for the
 777 ablations on H and N , and 50B for α and T_{merge} to allow faster validation. For all experiments,
 778 the loss coefficients are fixed across the models as follows: cross-entropy (1), load-balancing (0.01),
 779 MoE z-loss (0.001), and standard z-loss (1×10^{-5}).

B. DETAILS OF DATASETS AND SAMPLING RATIO

783 We train the model on data sampled from several open-source corpora, with sampling ratios provided
 784 in Table A2. Following OLMo et al. (2024), we apply a filter that removes all documents containing
 785 sequences of 32 or more repeated n -grams (an n -gram denotes any span of 1–13 tokens). The
 786 datasets used in our experiments are summarized as follows.

787 **Ultra-FineWeb.** Ultra-FineWeb (Wang et al., 2025) is a large-scale web corpus constructed from
 788 FineWeb (Penedo et al., 2024) and Chinese FineWeb (Yu et al., 2025) using an efficient verification-
 789 based filtering pipeline. The approach combines lightweight fastText classification with a verifica-
 790 tion mechanism, enabling reliable data selection at substantially reduced computational cost. The
 791 final corpus comprises roughly 1 trillion English tokens and 120 billion Chinese tokens. By en-
 792 hancing overall data quality, Ultra-FineWeb provides a strong foundation for LLM training and
 793 contributes to the dataset used in MiniCPM4 (Team et al., 2025).

794 **SlimPajama.** SlimPajama (Soboleva et al., 2023) is a large-scale, rigorously deduplicated corpus
 795 constructed from RedPajama (Weber et al., 2024). Using a multi-stage pipeline that combines qual-
 796

Table A1: Training hyperparameters for different model scales.

	7B	2B	1B
Maximum Learning Rate	4×10^{-4}	5×10^{-4}	5×10^{-4}
Minimum Learning Rate	4×10^{-5}	5×10^{-5}	5×10^{-5}
Optimizer ϵ	1×10^{-8}	1×10^{-8}	1×10^{-8}
Weight Decay	0.1	0.1	0.1
(β_0, β_1)	(0.9, 0.95)	(0.9, 0.95)	(0.9, 0.95)
LR Warmup Steps	2000	2000	2000
Sequence Length	2048	2048	2048
Batch Size (Tokens)	$1M \times 16$	$2M \times 4$	$0.5M \times 4$
Synchronization Steps H	100	100	50

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table A2: Sample ratios of different datasets.

Dataset	Ultra-FineWeb	SlimPajama	StarCoder	arXiv	OpenWebMath	Pes2o	Algebraic Stack
Ratio (%)	64.2	27.2	6.6	0.7	0.4	0.5	0.4

ity filtering with MinHashLSH-based deduplication at trillion-token scale, SlimPajama substantially reduces redundancy and low-quality content, compressing the dataset from 1.21T to 627B tokens while retaining domain coverage. The corpus spans diverse sources, including CommonCrawl, C4, GitHub, Books, ArXiv, Wikipedia, and StackExchange.

OLMo-Mix-1124. OLMo-Mix-1124 is a 3.9-trillion-token corpus comprising over 95% web data, constructed from DCLM (Li et al., 2024), Dolma v1.7 (Soldaini et al., 2024), and StarCoder (Lozhkov et al., 2024). For our work, we extract scientific-domain subsets, including arXiv, OpenWebMath, Algebraic Stack, peS2o, and StarCoder.

C. EVALUATION DETAILS

We evaluate our models with the `lm-evaluation-harness` library (Gao et al., 2024), which offers standardized benchmark implementations and facilitates direct comparison with prior work. All experiments use version 0.4.7. The benchmarks and evaluation settings are detailed below:

SciQ (Johannes Welbl, 2017) is a science multiple-choice question-answering dataset. The questions were generated by crowdworkers and validated against science reference materials, covering topics such as physics, biology, and chemistry. As the questions are designed to resemble real exam-style queries, the dataset tests scientific knowledge and reasoning skills of a model. We report 0-shot accuracy on SciQ.

ARC (Clark et al., 2018) (AI2 Reasoning Challenge) consists of grade-school level science exam questions, partitioned into ARC-Easy (ARC-E) and ARC-Challenge (ARC-C). ARC-E contains questions that can often be answered by retrieval of surface-level facts, while ARC-C includes the more demanding questions requiring reasoning and multi-step inference across scientific facts. We report 0-shot accuracy on ARC-E and 25-shot normalized accuracy on ARC-C.

SIQA (Sap et al., 2019) (SocialIQA) benchmarks social commonsense reasoning. Each instance presents a short human-centered scenario alongside a question about likely intents, causes, or outcomes of human actions. This evaluates the model’s ability to handle subtle social reasoning and cause-effect relationships in naturalistic settings. We report 0-shot normalized accuracy on SIQA.

PIQA (Bisk et al., 2020) (Physical Interaction QA) evaluates physical commonsense reasoning in everyday situations. Given a description of a goal, the model must choose the most plausible solution among two alternatives, testing physical feasibility and everyday world knowledge. We report 0-shot normalized accuracy on PIQA.

OpenBookQA (Mihaylov et al., 2018) presents multiple-choice science questions paired with a small open-book of 1,326 core scientific facts. Answering the questions typically requires combining knowledge from the book with additional commonsense reasoning, making this benchmark particularly challenging. We report 0-shot normalized accuracy on OpenBookQA.

WinoGrande (Sakaguchi et al., 2021) is a large-scale dataset for pronoun resolution, created to reduce annotation artifacts common in earlier benchmarks (e.g., Winograd Schema Challenge). Each instance requires the model to resolve ambiguous pronouns based on contextual clues, testing commonsense reasoning and language understanding. We report 0-shot accuracy on WinoGrande.

BoolQ (Clark et al., 2019) is a reading comprehension dataset in the yes/no QA format. Questions are naturally occurring user queries, paired with passages from Wikipedia that may or may not contain the answer. Models must perform passage-level understanding to correctly infer the response. We report 0-shot accuracy on BoolQ.

MMLU (Hendrycks et al., 2020) (Massive Multitask Language Understanding) covers 57 tasks across diverse domains such as mathematics, history, law, medicine, and the natural sciences. As

864
 865 Table A3: **Performance comparison with previous LLMs on additional benchmarks.** Some
 866 models are excluded because they neither report results on these benchmarks nor are compatible
 867 with lm-evaluation-harness.

Method	#Params	#Tokens	OBQA	MMLU	CMMLU	C-Eval
Models Trained with Significantly More Tokens						
Qwen2.5-0.5B (Qwen et al., 2025)	0.5B/0.5B	18T	35.4	47.3	49.5	51.0
Qwen3-0.6B (Yang et al., 2025)	0.6B/0.6B	36T	34.2	52.8	50.4	-
Llama3.2-1B (Dubey et al., 2024)	1.1B/1.1B	9T	36.2	36.6	29.4	30.9
Qwen2.5-1.5B (Qwen et al., 2025)	1.5B/1.5B	18T	40.4	59.7	66.3	68.2
SmolLM2-1.7B (Allal et al., 2025)	1.7B/1.7B	11T	43.6	48.4	31.0	32.5
Qwen3-1.7B (Yang et al., 2025)	1.7B/1.7B	36T	38.6	62.6	68.1	-
OLMoE-1B-7B (Muennighoff et al., 2024)	1.3B/7B	5T	45.2	50.5	31.9	31.1
Models with $\leq 3B$ Parameters						
MobiLlama-0.8B (Thawakar et al., 2024)	0.8B/0.8B	1.3T	33.0	23.5	25.3	22.7
TinyLlama-1.1B (Zhang et al., 2024b)	1.1B/1.1B	3T	36.8	25.3	24.9	26.0
OPT-1.3B (Zhang et al., 2022)	1.3B/1.3B	180B	33.4	24.9	25.3	23.0
MobiLlama-1.3B (Thawakar et al., 2024)	1.3B/1.3B	1.3T	35.4	25.3	23.5	26.2
Pythia-1.4B (Biderman et al., 2023)	1.4B/1.4B	300B	33.4	24.2	25.6	23.0
OPT-2.7B (Zhang et al., 2022)	2.7B/2.7B	180B	35.2	25.6	25.3	23.0
Pythia-2.8B (Biderman et al., 2023)	2.8B/2.8B	300B	35.6	25.2	25.4	22.9
SPES-2B (ours)	0.8B/2.1B	500B	31.4	25.5	24.9	25.0
Models with 7B Parameters						
MoE++ 7B (Jin et al., 2024)	1.2B/7B	1T	40.0	25.1	24.9	23.6
SPES-7B (ours)	1.6B/7B	500B	39.4	24.1	25.0	26.2

891
 892 a broad knowledge benchmark, it measures both factual recall and domain-specific reasoning. We
 893 follow standard settings and report 0-shot accuracy on MMLU.

894 **CMMLU** (Li et al., 2023) is the Chinese adaptation of MMLU. It mirrors the structure of MMLU
 895 but uses Chinese linguistic and cultural contexts, making it suitable for evaluating reasoning and
 896 domain knowledge in the Chinese language. We report 0-shot accuracy on C-MMLU.

897 **C-Eval** (Huang et al., 2023) is a comprehensive Chinese evaluation suite consisting of over 13,000
 898 multiple-choice questions spanning 52 subjects, from elementary school topics to professional certi-
 899 fication exams. It provides a fine-grained view of model performance in academic and professional
 900 domains under Chinese cultural and linguistic settings. We report 0-shot accuracy on C-Eval.

902 D. ADDITIONAL RESULTS

903
 904
 905 **Results on Additional Benchmarks.** Table A3 reports the performance of our models on additional
 906 benchmarks. On Chinese evaluation datasets, SPES-7B surpasses the comparable baseline MoE++
 907 (26.2 vs. 23.6 on C-Eval; 25.0 vs. 24.9 on CMMLU), while maintaining competitive performance on
 908 other tasks. This indicates that SPES can match the performance of centrally trained models under
 909 resource-constrained settings, underscoring its potential to lower the barrier to LLM pretraining. In
 910 addition, SPES-2B attains performance on par with models of similar scale using only 16 weakly
 911 connected nodes, further validating the efficiency of our approach.

912 **Ablation on Hyperparameters in Expert Merging.** Fig. A1 shows the effect of varying merging
 913 warmup steps T_{merge} and the merging factor α on performance. A moderate warmup of 12.5k steps
 914 achieves the best results, as shorter schedules hinder sufficient knowledge exchange, while exces-
 915 sively long ones interfere with expert specialization. Similarly, performance peaks when α is set
 916 to 0.1, with both smaller and larger values leading to degradation. These observations suggest that
 917 effective expert merging requires a careful balance between inter-expert knowledge sharing and ex-
 918 pert specialization. Overly aggressive merging may overwrite expert-specific information, whereas

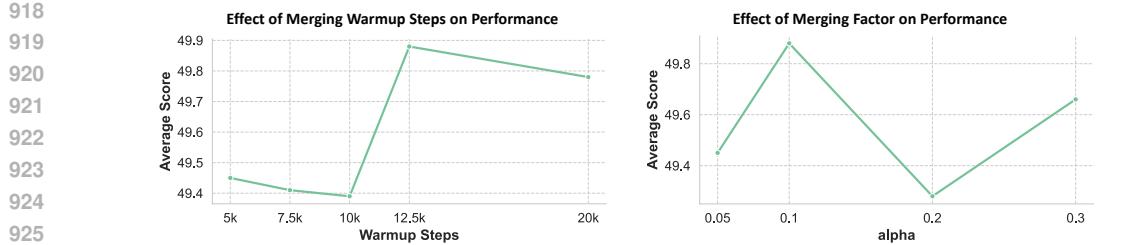


Figure A1: **Ablation on key hyper-parameters in expert merging.** The reported average is computed over ARC(e), SciQ, PIQA, WinoGrande, ARC(c), OBQA, OpenBookQA, and SIQA.

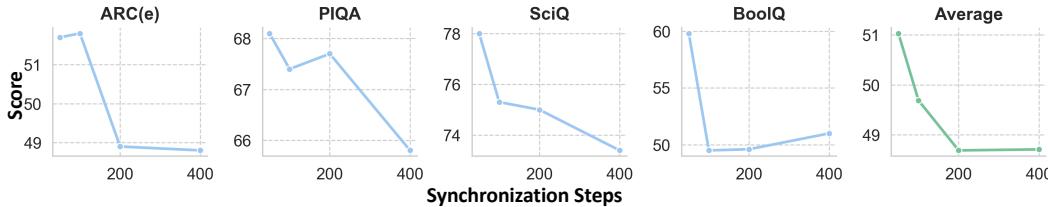


Figure A2: **Ablation on synchronization steps.** The reported average is computed over eight benchmarks in total, additionally including ARC(c), OBQA, OpenBookQA, and SIQA.

Table A4: Performance comparison with different numbers of nodes.

No. of Nodes	ARC(e)	ARC(c)	PIQA	SciQ	OBQA	BoolQ	SIQA	WinoGrande	Avg.
2	52.0	25.7	68.7	77.6	30.4	58.0	42.2	50.4	50.6
4	51.8	27.4	67.4	75.3	29.8	49.5	43.7	52.6	49.7
8	47.9	24.6	66.3	70.8	29.4	60.1	42.8	53.9	49.5

insufficient merging yields only minor parameter updates and limits the efficiency of knowledge sharing across experts, thereby slowing the establishment of general expert representations.

Ablation on Number of Nodes. We then study the impact of varying the number of nodes N while keeping the global batch size fixed. As shown in Table A4, model performance remains stable when scaling from 2 to 8 nodes. The average score decreases slightly from 50.6 (2 nodes) to 49.5 (8 nodes), yet SPES maintains competitive results across benchmarks. This behavior illustrates a natural trade-off in decentralized sparse training: increasing the number of nodes leads to greater fragmentation of training data and experts, which can modestly slow convergence. Nonetheless, the results underscore the robustness of SPES. Even with reduced per-node token utilization, it maintains overall performance. These findings demonstrate SPES’ potential of scalability, suggesting that it can effectively leverage a larger number of participants while maintaining model quality, a key property for practical deployment in heterogeneous, distributed environments.

Ablation on Synchronization Steps. We analyze the effect of varying the local update interval H in the SPES framework. As illustrated in Fig. A2, performance declines when H increases from 50 to 200 or 400. This trend reflects a key trade-off in decentralized sparse training: while larger H reduces communication frequency, it amplifies model divergence across nodes, weakening the benefits of expert sharing. Overall, $H = 50$ provides the best balance between communication efficiency and model quality, underscoring the necessity of frequent synchronization to fully exploit SPES’ sparse expert updates under bandwidth-limited decentralized settings.

E. DECLARATION OF LLM ASSISTANCE

We use ChatGPT-5 to assist with the refinement of this manuscript. After drafting the full text, we provided selected passages to the models for suggestions on grammar, clarity, and conciseness. All revisions were reviewed and finalized by the authors to ensure accuracy and appropriateness.