
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRETRAINING A LARGE LANGUAGE MODEL USING
DISTRIBUTED GPUS: A MEMORY-EFFICIENT DECEN-
TRALIZED PARADIGM

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretraining large language models (LLMs) typically relies on centralized clusters
equipped with hundreds or thousands of high-memory GPUs (e.g., H100/A100),
creating obstacles for a wide range of exploration in the community. Recent de-
centralized training methods reduce communication overhead by employing fed-
erated optimization; however, these methods still need to store and train the entire
model on each node, remaining constrained by GPU memory limitations. In this
work, we propose SParse Expert Synchronization (SPES), a memory-efficient
decentralized framework for pretraining mixture-of-experts (MoE) LLMs. SPES
trains only a small subset of experts on each node during training, substantially
reducing the memory footprint per node. Each node updates its local experts and
periodically synchronizes with other nodes, eliminating the need to transmit the
full set of model parameters and enabling efficient knowledge sharing across the
distributed network. To accelerate convergence, we introduce an expert-merging
warm-up strategy. Experts exchange knowledge via model merging in the early
training stages, promoting faster establishment of the foundational capabilities for
each expert. With SPES, we train a 2B-parameter MoE LLM using 16 standalone
48GB GPUs (NVIDIA L40S) over internet connections, which achieves compet-
itive performance with centrally trained LLMs under similar computational bud-
gets. We further demonstrate the scalability of SPES by training a model up to
7B parameters with open-source data, matching prior centralized baselines. Our
SPES pre-training paradigm can be extended to more low-end GPUs and train
LLM of larger scales. Code and models will be released.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Grattafiori et al., 2024; Yang et al., 2025; Liu
et al., 2024; Muennighoff et al., 2024) have shown strong generalization capabilities across various
downstream tasks, establishing themselves as fundamental components in real-world applications
such as conversational assistant (Cui et al., 2024) and embodied agent (Fung et al., 2025). How-
ever, pretraining LLMs remains highly resource-intensive. The main bottlenecks arise from the
substantial GPU memory required to store model parameters, activations, optimizer states, and gra-
dients, and the need of low-latency, high-bandwidth inter-device communication to support model
and data parallelism (Shoeybi et al., 2019; Rasley et al., 2020; Zhao et al., 2023). Consequently,
existing LLMs are typically trained under centralized settings (as shown in Fig. 1 (left)), utilizing
co-located clusters equipped with high-memory GPUs and fast interconnects (e.g., RDMA). For
instance, LLaMA3-405B (Grattafiori et al., 2024) is trained using up to 16K H100 GPUs linked
with high-bandwidth interconnects, while OLMo2 7B (OLMo et al., 2024) is trained on a cluster
of 1,024 H100 GPUs. Such high infrastructure requirements make LLM pretraining inaccessible to
most researchers in the community.

To mitigate the demands of centralized LLM training, recent works such as DiLiCo (Douillard et al.,
2023) and Photon (Sani et al., 2024) have explored decentralized pre-training paradigms (as shown
in Fig. 1 (middle)). In these approaches, each workstation performs local updates and synchro-
nizes with peers intermittently via a parameter server, following a federated optimization protocol
(e.g., FedAvg (McMahan et al., 2017)). This sparse communication mode significantly reduces the
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Figure 1: Comparison of different pretraining paradigms for LLM. Left: centralized training,
which requires high-memory GPUs and high-bandwidth interconnects (e.g., RDMA) for its tightly
coupled model or data parallelism. Middle: existing decentralized training (e.g., DiLiCo, Photon),
where each node trains a full model locally, reducing bandwidth needs but still demanding high-
memory GPUs. Right: our proposed SPES, a memory-efficient decentralized method for training
MoE-based LLMs, where each node trains only a subset of experts, substantially reducing both per-
GPU memory usage and communication overhead.

bandwidth requirements compared to centralized data- or model-parallel methods, enabling training
across geographically distributed, heterogeneous GPU clusters. While communication constraints
are relaxed, however, these approaches still require each node to update the full set of model parame-
ters. Consequently, the memory footprint per node remains substantial. This limitation is especially
significant for training large-scale LLMs, where insufficient memory can be a bottleneck.

To address this challenge, we propose SParse Expert Synchronization (SPES), a memory-efficient,
decentralized training paradigm tailored for MoE-based LLMs, as illustrated in the right panel of
Fig. 1. Compared to dense models, MoE models are inherently well-suited for decentralized en-
vironments, as each expert can be managed independently, enabling finer-grained training and re-
source management. In SPES, each node is responsible for training a distinct subset of experts,
while keeping the remaining experts frozen during local updates. This design substantially reduces
the memory requirement per node, since each node only needs to maintain the gradients and opti-
mizer states for the experts assigned to it 1. All nodes periodically synchronize their trained experts
with peers, ensuring continuous knowledge sharing across the network. By eliminating the need to
transmit the entire model weights, this sparse synchronization approach substantially reduces com-
munication overhead and enables efficient knowledge exchange between nodes. A challenge in this
sparse training regime is the limited token utilization of individual experts, as each expert is trained
on only a subset of the total training tokens, which can slow down model convergence. To address
this issue, we introduce an expert-merging warm-up strategy: in the early stages of training, we pe-
riodically merge each expert with its most similar peers in a weighted average manner, accelerating
the knowledge acquisition of each expert.

We evaluate the effectiveness of SPES by pretraining MoE LLMs on both 2B and 7B scales in de-
centralized settings. Our results show that SPES enables the training of a 2B-parameter MoE LLM
on 16 standalone NVIDIA L40S GPUs (48GB) over internet, achieving performance comparable
to centrally trained models under comparable computational budgets. Compared with previous de-
centralized training frameworks, SPES reduces up to 33.3% communication cost and significantly
lowers per-GPU memory requirements. We further demonstrate the scalability of SPES by training
a 7B MoE LLM with open-source datasets, achieving performance on par with previous models
trained with similar data and compute resources. Ablation studies and in-depth analysis are also
provided to validate the design choices of SPES.

1Note that optimizer states and gradients typically dominate the static memory footprint (excluding activa-
tions) in model training. For example, AdamW (Loshchilov & Hutter, 2017) can consume up to 75% of the
total static memory usage.
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Our contributions can be summarized as follows. (i) A memory-efficient decentralized pretrain-
ing framework. We propose SPES, a memory-efficient decentralized framework for pretraining
large MoE-based LLMs, where each node trains only a subset of experts, significantly reducing
per-device memory and communication overhead. (ii) An expert-merging warm-up strategy. We
introduce an expert-merging warm-up strategy to periodically aggregate similar experts during early
training, enabling stronger expert representations with sparse decentralized training. (iii) Empirical
results. We demonstrate the effectiveness of SPES by training 2B and 7B MoE LLMs using pub-
licly available datasets on weakly connected GPUs. SPES achieves competitive performance but
with significantly lower communication and memory costs compared to previous approaches.

As most existing decentralized LLM training frameworks are not open-sourced, we implement a
custom server-client communication protocol based on gRPC (gRPC, 2015) and integrate it into a
mainstream LLM pretraining framework (Muennighoff et al., 2024). Our model and code will be
released to facilitate future research on decentralized training.

2 RELATED WORK

Decentralized Training. Decentralized training has been studied for both fine-tuning (Wu et al.,
2025; Bai et al., 2024; Sun et al., 2024) and pretraining (Douillard et al., 2023; Sani et al., 2024;
Jaghouar et al., 2024) LLMs. The works on finetuning pretrained LLMs usually target for privacy-
preserving adaptation. FATE-LLM (Fan et al., 2023) explores federated fine-tuning for advertising
generation. Subsequent works (Kuang et al., 2024; Zhang et al., 2024a; Ye et al., 2024) extend fed-
erated LLM fine-tuning to instruction-tuning settings. To reduce communication and memory costs,
parameter-efficient federated fine-tuning methods have been proposed, such as FedLoRA (Yi et al.,
2023) and FedPETuning (Zhang et al., 2023). The works on pretraining LLMs train LLMs from
scratch under communication constraints. DiLiCo (Douillard et al., 2023) and Photon (Sani et al.,
2024) are among the first to study decentralized LLM pretraining. With FedAvg (McMahan et al.,
2017), they achieve comparable perplexities to centrally trained models while substantially reduc-
ing communication cost. Jaghouar et al. (2024) introduced INTELLECT-1, a 10B-parameter LLM
pretrained across multiple independent computing devices, and Charles et al. (2025) demonstrated
the scalability of this communication-efficient paradigm. Despite such advances, those methods
still incur significant memory and communication overhead due to full-model training and synchro-
nization. In contrast, our SPES only needs to train a subset of parameters per node, substantially
reducing both the memory and communication costs.

Memory-Efficient Pretraining. Methods to reduce memory in LLM pretraining primarily leverage
sharding and parallelism on tightly coupled accelerators. Data parallelism such as ZeRO (Rajbhan-
dari et al., 2020) and FSDP (Zhao et al., 2023) partition optimizer states, gradients, and model
parameters, enabling distributed storage and computation. Model-parallel techniques (Shoeybi
et al., 2019)—including pipeline, tensor, and expert parallelism—split model computation to ac-
commodate larger architectures. However, these strategies typically assume a centralized cluster
with high-bandwidth interconnects to facilitate frequent synchronization. Orthogonal techniques
include mixed precision (Micikevicius et al., 2017), activation checkpointing, memory-efficient at-
tention (Dao et al., 2022; Dao, 2023), and optimizer quantization (Dettmers et al., 2021). Our
proposed SPES enables cross-node expert sharding with sparse synchronization: gradients and opti-
mizer states are distributed across geographically heterogeneous nodes, each of which trains only the
MoE experts assigned to it and communicates only necessary updates. SPES is designed for envi-
ronments with heterogeneous, low-bandwidth interconnects, such as single-GPU nodes where intra-
node sharding is infeasible. Moreover, SPES complements existing parallelism paradigms: when
multiple GPUs are available per node, SPES can be combined with previous parallelism strategies
to maximize memory efficiency and scalability.

3 MEMORY-EFFICIENT DECENTRALIZED PRETRAINING

In this section, we present the details of our proposed SParse Expert Synchronization (SPES), a
memory-efficient decentralized pretraining framework for MoE-based LLMs. SPES partitions ex-
pert training across weakly connected nodes and synchronizes weights intermittently, substantially
reducing both the memory usage and the communication overhead compared to prior paradigms. We
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begin with the preliminaries (Section 3.1), followed by the overview of the framework (Section 3.2),
and the details of the SPES methodology (Section 3.3).

3.1 PRELIMINARIES

Decentralized Training. Let S = {η1, . . . , ηN} denote N distributed nodes, each node ηi having
its local training data Di. Existing decentralized training frameworks such as DiLiCo (Douillard
et al., 2023) decompose model optimization into two levels: an outer optimizer that governs global
synchronization and an inner optimizer that performs local node updates. In the tth communication
round, the global parameters obtained in the previous round, denoted by θ(t−1), are broadcast to
all nodes. Each node runs H steps the inner optimizer (e.g., AdamW (Loshchilov & Hutter, 2017))
on its shard Di, producing the updated local parameters θ(t)i . The parameter server then aggregates
the local updates by averaging the differences between the local and global models, and applies the
outer optimizer to update the global parameters as follows:

θ(t) ← OuterOpt

(
θ(t−1),

1

N

∑N

i=1

(
θ
(t)
i − θ

(t−1)
))

. (1)

When the outer optimizer is set to SGD, the above training procedures become the FedAvg (McMa-
han et al., 2017), which enables distributed training while minimizing communication overhead.
However, each node is required to train the entire model, which needs to store a large amount of
intermediate optimizer states, limiting its applicability to memory-constrained devices.

Mixture-of-Experts (MoE) LLM. MoE architectures (Lepikhin et al., 2020; Muennighoff et al.,
2024; Dai et al., 2024) extend standard transformer-based LLMs by introducing a set of M expert
sub-networks {Ej}Mj=1, each sub-network Ej being parameterized by ϕj . Given an input token x, a
gating function G(x) is used to select a sparse subset of experts to process it. The output of the MoE
block is computed as a weighted sum of the selected experts:

MoE(x) =
∑

j∈{1,...,M}

Gj(x) · Ej(x), (2)

where Gj(x) is the gating weight for the j-th expert. MoE enables scaling by activating only a subset
of experts per token, thus increasing the model capacity without increasing the computation.

3.2 OVERALL FRAMEWORK

Previous sharding strategies, such as FSDP (Zhao et al., 2023) and ZeRO (Rajbhandari et al., 2020),
partition LLM model training in centralized data-parallel setups. Each node is responsible for a sub-
set of model modules, which alleviates individual memory constraints. However, when inter-node
communication bandwidth is limited, the tight coupling between model shards may lead to subop-
timal performance due to insufficient synchronization of model updates. To address this issue, we
adopt the MoE architecture to train the LLM, where expert modules can be managed independently,
thus relaxing synchronization requirements and enabling fine-grained resource allocation. Follow-
ing prior works (Touvron et al., 2023; OLMo et al., 2024; Bai et al., 2023), We employ a standard
decoder-only MoE LLM, which is composed of self-attention layers, sparse expert feed-forward
networks selected via a routing mechanism, and normalization layers, as illustrated in Fig. 2(a). Po-
sitional encoding is implemented using RoPE (Su et al., 2024), SwiGLU (Shazeer, 2020) is adopted
as the activation function, and normalization is performed with RMSNorm (Zhang & Sennrich,
2019). Bias terms are omitted to enhance stability. Specifically, we utilize the drop-less MoE (Gale
et al., 2023), as suggested by Muennighoff et al. (2024), to maximize expert utilization.

In this work, our goal is to train an MoE-based LLM using distributed GPUs. Compared to tradi-
tional centralized training, the key challenge of our decentralized training lies in the memory and
communication bottlenecks. We therefore propose Sparse Expert Synchronization (SPES) to solve
this issue. As illustrated in Fig. 2(b), we take advantage of the inherent modularity of MoE LLM by
distributing expert training across the N nodes. Each node is assigned with some shared modules
and a unique subset of the M experts, allowing memory-efficient local updates. During training,
the nodes perform efficient synchronization to share knowledge. To improve data utilization for
each expert, we further propose an expert-merging warm-up strategy. The details of our SPES are
presented in the following section.
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Figure 2: (a) Illustration of our model structure, in which we utilize an MoE LLM comprising
standard self-attention blocks, normalization layers, and routed feed-forward modules. (b) Illus-
tration of SPES, where each node performs local training on a disjoint subset of experts to reduce
memory consumption. During weight synchronization, only the trained parameters are transmitted
to the parameter server, minimizing communication overhead. To improve data utilization, we pro-
pose an expert-merging strategy that merges similar experts to facilitate knowledge sharing.

3.3 SPARSE EXPERT SYNCHRONIZATION

Expert Assignment and Local Training. We denote by Φ = {ϕj}Mj=1 the set of parameters of all
experts. Refer to Fig. 2(b), we partition Φ into N disjoint subsets, so that Φ = Φ1∪Φ2∪ . . .∪ΦN ,
where Φi denotes the subset of experts assigned to node ηi. We denote by Φi the set of unassigned
experts for node ηi, and denote by ψi the parameters of the shared modules. At the start of each
local training round t, node ηi receives the global model parameters updated at round t − 1 from
the server and then performs H rounds of local updates on its local data Di. The designated expert
parameters Φi and the shared parametersψi will be optimized while keeping Φi fixed. The updated
local parameters at round t can be denoted as:

θ
(t)
i =

(
ψ

(t)
i , Φ

(t)
i , Φ

(t−1)

i

)
. (3)

In the above process, although each node stores a full copy of the model parameters, the gradi-
ents and optimizer states are only required exclusively for the parameters to be updated, thereby
substantially reducing the per-node memory overhead.

Sparse Synchronization. At the end of each local training round t, node ηi holds updated local
parameters θ(t)i , where the shared parameter ψi and the assigned experts Φi are updated. During
synchronization, each node transmits the updated parameters to the server. Shared parameters are
aggregated using FedAvg (McMahan et al., 2017), while experts are updated via direct assignment:

θ(t) =

(
1

N

∑N

i=1
ψ

(t)
i ,

N⋃
i=1

Φ
(t)
i

)
. (4)

The aggregated global parameters θ(t) are then broadcast to all nodes for the next round of train-
ing. By synchronizing only assigned experts and shared parameters, SPES substantially reduces
communication overhead, enabling scalable decentralized training under limited bandwidth.

Expert-Merging Warm-Up. While achieving notable memory efficiency, SPES faces a practical
challenge in sparse training: each node updates only its local experts, leaving many tokens assigned
to frozen (unassigned) experts without contributing to gradient updates. This leads to lower token
utilization compared to centralized training with an equivalent token budget. To address this issue,
we propose an expert-merging warm-up strategy to improve token utilization. The core idea is to
periodically merge parameters of similar experts across nodes during synchronization.

Instead of updating each expert solely with local assignments, we identify peer experts with similar
input projections and merge their parameters to facilitate knowledge sharing. Specifically, for the
j-th expert, we compute pairwise cosine similarities between input projection layers:

Aj,k =
⟨win

j , win
k ⟩

∥win
j ∥2 ∥win

k ∥2
, j, k ∈ {1, . . . ,M}, (5)
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where win
j denotes the input projection weights of the expert Ej , for which we select the K most

similar experts Qj = TopKk(Aj,k), excluding itself. The merged parameters for Ej are then com-
puted using task arithmetic (Ilharco et al., 2022):

ϕ̃
(t)
j = ϕ

(t)
j + α

1

K

∑
k∈Qj

(
ϕ

(t)
k − ϕ

(t)
j

)
, (6)

where α is a scaling factor. To preserve the specialization of experts in later training stages, we
perform merging only in the initial Tmerge steps and linearly decay α to zero. This expert-merging
strategy enables each expert to benefit from gradients from multiple nodes, which improves token
utilization and accelerates knowledge acquisition in decentralized sparse training settings.

Efficiency Analysis. SPES achieves substantial improvements in both memory and communication
efficiency compared to conventional decentralized training methods. For example, when using the
AdamW optimizer, DiLiCo (Douillard et al., 2023) requires each node to store optimizer states and
gradients for all model parameters, resulting in a memory cost of 4× (|ψ|+ |Φ|) and a communica-
tion cost of 2×N × (|ψ|+ |Φ|) per round. In contrast, SPES exploits expert partitioning, and each
node only needs to store the intermediate states for the shared parameters and the assigned experts,
which reduces the per-node memory cost to 4 × |ψg| + |Φ| + 3 × |Φi|. Similarly, communication
overhead is also significantly reduced, as only shared parameters and updated experts are synchro-
nized, resulting in a cost of N × (2 × |ψg| + |Φ| + |Φi|) per round. SPES achieves significant
reductions in both memory and communication cost, especially as the number of nodes increases.
For instance, when training a 2B-parameter MoE model with 16 experts in 16 nodes (one GPU per
node; see Fig. 3 for details), DiLiCo requires 55GB of memory per node, whereas SPES reduces
this requirement to 35GB. In addition, SPES achieves a 33.3% reduction in communication cost.

Training Losses. Our model is trained with three losses: standard cross-entropy loss for next token
prediction, z-loss (Chowdhery et al., 2023; Zoph et al., 2022) for enhancing training stability, and
a load-balancing loss (Lepikhin et al., 2020) to encourage uniform expert utilization. Within each
node, PyTorch FSDP and mixed-precision are used to further improve memory efficiency. For cross-
node synchronization, we use our customized gRPC-based communication protocol.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Implementation Details. We conduct experiments by training our SPES models at three scales: 1B,
2B, and 7B parameters (see Table 1 for detailed configurations). All ablation studies are performed
on the 1B model, while the 2B and 7B models are trained to compare with previous work. For the
7B model, our training is distributed over N = 4 compute nodes, each equipped with 8 NVIDIA
A800 GPUs interconnected via NVLink. A parameter server with a 96-core Intel Xeon processor
(2.90 GHz) and 1.44TB RAM is used for parameter aggregation. The nodes communicate with the
server over a 13 Gbps Ethernet network, with each node training eight experts (approximately 2.5B
trainable parameters per node).

For the 2B model, training is performed on N = 16 nodes, each hosting one NVIDIA L40S GPU.
The parameter server comprises a 64-core Intel Xeon Gold 6148 (2.40 GHz) and 720GB RAM, with
nodes connected via 17 Gbps Ethernet. Each node manages the training of one expert, resulting in
roughly 0.7B trainable parameters per node. The expert merging warmup steps, Tmerge, is set to
12,500 training steps, with merging executed for every 500 steps. The initial value of α is set
to 0.1. All models are trained with AdamW optimizer (Loshchilov & Hutter, 2017). Additional
implementation details are provided in the Appendix A.

Training Data. We train our models exclusively on publicly available datasets, ensuring accessi-
bility for the research community. The 2B and 7B models are trained on data sampled from Ultra-
FineWeb (Wang et al., 2025) and SlimPajama (Soboleva et al., 2023), complemented by openweb-
math, algebraic stack, pes2o, arxiv, and StarCoder drawn from olmo-mix-1124 (OLMo et al., 2024)
to provide domain-specialized coverage in reasoning, scientific, and programming knowledge. The
1B model is trained solely on SlimPajama for a lightweight and efficient pretraining. For tokeniza-
tion, we use the tokenizer trained by Bai et al. (2023), which offers efficient subword segmentation

6
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Table 1: Model configurations. “#Param” indicates activated/total parameters.

#Param #Layers #Heads Hidden Size Intermediate Size #Experts #Act. Experts

0.3B/1.1B 12 12 768 2048 16 2
0.8B/2.1B 16 24 1536 1280 16 2
1.6B/7.3B 16 16 2048 2048 32 4

Table 2: Performance comparison across different training paradigms.

Method ARC(e) ARC(c) PIQA SciQ OBQA BoolQ SIQA WinoGrande Avg.

Centralized 49.7 24.4 68.9 74.0 30.6 54.3 42.0 53.5 49.7
DiLiCo 51.7 26.6 68.4 77.4 29.6 55.7 43.4 51.1 50.5
SPES 51.7 26.3 68.1 78.0 29.8 59.8 43.0 51.5 51.0

Training GPU Memory (2B) Training GPU Memory (7B)Uplink Volume per Round (2B) Uplink Volume per Round (7B)

(a) (b) (c) (d)

Figure 3: Memory and communication costs for different training paradigms. Experiments are
conducted with a batch size of 2 and a sequence length of 2048. For the 2B parameter model, we
employ standard PyTorch DDP. For the 7B parameter model, we utilize FSDP across 8 GPUs.

and robust multilingual support. For each node, the training data Di for different nodes is randomly
sampled from the whole dataset. Please refer to the Appendix B for more details.

Evaluation Details. We evaluate our model using the lm-evaluation-harness library (Gao
et al., 2024) and report results on several commonsense reasoning benchmarks, including SIQA (Sap
et al., 2019), ARC (easy and challenging) (Clark et al., 2018), SciQ (Johannes Welbl, 2017),
PIQA (Bisk et al., 2020), OpenBookQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al.,
2021) and BoolQ (Clark et al., 2019). To assess general knowledge, we utilize MMLU (Hendrycks
et al., 2020), CMMLU (Li et al., 2023), and C-Eval (Huang et al., 2023). Additional evaluation
details are included in the Appendix C.

4.2 MAIN RESULTS

Memory Cost Comparison. Figs. 3 (a) and (c) compare the training memory footprints of SPES,
DiLiCo, and centralized training. Both centralized training and DiLiCo require each node to update
the full set of model parameters, resulting in high memory consumption. For example, training a
2B model requires more than 50GB memory per GPU, making it infeasible to train on commonly
available 48GB GPUs. Furthermore, decentralized methods like DiLiCo cannot effectively lever-
age sharded training strategy due to limited inter-node bandwidth, further restricting the maximum
trainable model size. In contrast, SPES keeps per-GPU memory under 40GB for a 2B model on 16
nodes without any sharding strategy. SPES can be combined with intra-node sharding for additional
memory savings, as illustrated in Fig. 3(c). This efficiency arises from sparse training: each node
updates only a subset of parameters, substantially reducing per-GPU memory.

Communication Cost Comparison. Figs. 3 (b) and (d) compare the communication overhead of
different training schemes. In each round, both DiLiCo and centralized training need to upload the
full set of model parameters, whereas SPES transmits only the updated parameters. In each commu-
nication round, both DiLiCo and centralized training require each node to upload the entire set of
model parameters, whereas SPES only requires uploading the parameters that are actually updated.
For instance, when training a 7B model on 4 nodes, SPES requires only 9.8GB data to be uploaded
per node per round, compared to 28.6GB for DiLiCo and centralized training—a reduction of 65% in
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OpenBookQA ARC-EasySCIQ

Figure 4: Performance comparison across different training paradigms. Performance during
training is evaluated using the evaluation suite integrated into the open-source OLMo codebase.

Table 3: Performance comparison with previous LLMs.

Method #Params #Tokens SciQ PIQA SIQA BoolQ ARC(e) ARC(c)

Models Trained with Significantly More Tokens

Qwen2.5-0.5B (Qwen et al., 2025) 0.5B/0.5B 18T 93.0 69.9 47.1 61.7 64.6 35.8
Qwen3-0.6B (Yang et al., 2025) 0.6B/0.6B 36T 93.5 70.1 46.9 69.7 65.5 45.9
Llama3.2-1B (Dubey et al., 2024) 1.1B/1.1B 9T 91.3 73.7 45.0 63.7 71.6 43.5
Qwen2.5-1.5B (Qwen et al., 2025) 1.5B/1.5B 18T 94.1 75.8 53.5 72.6 75.3 53.9
SmolLM2-1.7B (Allal et al., 2025) 1.7B/1.7B 11T 93.2 77.4 46.7 72.4 77.8 54.1
Qwen3-1.7B (Yang et al., 2025) 1.7B/1.7B 36T 95.9 75.6 52.2 79.3 73.7 55.1
OLMoE-1B-7B (Muennighoff et al., 2024) 1.3B/7B 5T 94.9 80.6 47.8 74.4 78.0 55.2

Models with ≤ 3B Parameters

OpenELM-0.5B (Mehta et al., 2024) 0.5B/0.5B 1.5T 87.2 72.3 - 55.8 48.1 27.6
MobiLlama-0.8B (Thawakar et al., 2024) 0.8B/0.8B 1.3T 85.9 73.2 43.1 60.0 49.6 28.8
TinyLlama-1.1B (Zhang et al., 2024b) 1.1B/1.1B 3T 88.9 73.3 - 57.8 55.3 30.1
OpenELM-1.1B (Mehta et al., 2024) 1.1B/1.1B 1.5T 90.6 75.6 - 63.6 55.4 32.3
OPT-1.3B (Zhang et al., 2022) 1.3B/1.3B 180B 84.3 71.7 43.7 57.7 57.0 29.7
MobiLlama-1.3B (Thawakar et al., 2024) 1.3B/1.3B 1.3T 89.1 74.8 44.7 60.3 56.7 36.7
Pythia-1.4B (Biderman et al., 2023) 1.4B/1.4B 300B 86.4 70.9 44.6 63.3 60.7 31.2
OPT-2.7B (Zhang et al., 2022) 2.7B/2.7B 180B 85.8 73.1 44.1 60.4 60.8 34.0
Pythia-2.8B (Biderman et al., 2023) 2.8B/2.8B 300B 88.3 74.0 44.5 64.7 66.4 36.4
Open-LLaMA-3B (Geng & Liu, 2023) 3B/3B 1T 91.8 76.2 - - 66.5 39.0
SPES-2B (ours) 0.8B/2.1B 500B 85.0 69.3 42.3 61.4 63.8 35.3

Models with ≥ 7B Parameters

MoE++ 7B (Jin et al., 2024) 1.2B/7B 1T 89.7 78.0 45.7 64.9 66.9 43.2
LLaMA-MoE-3.0B (Zhu et al., 2024) 3.0B/7B 2.2T 89.9 77.5 - - 66.8 40.9
OpenMoE-8B/32E (Xue et al., 2024) 2.1B/8B 1.1T - 74.2 - 61.2 64.1 30.3
SPES-7B (ours) 1.6B/7B 500B 89.9 74.7 44.8 62.7 72.1 43.8

uplink communication volume. This demonstrates the significant communication efficiency brought
by the sparse training strategy of SPES.

Training Speed Comparison. We compare the training throughput of SPES against its centralized
training counterpart. For the centralized setting, we adopt hybrid FSDP and train on four nodes,
each equipped with 8×NVIDIA A800 GPUs and interconnected via RDMA. Each node contains
four Mellanox InfiniBand HDR adapters, with each port operating at 100 Gbps (2×HDR lanes). In
this configuration, centralized training reaches 3.79k tokens/s per GPU. Under the SPES setting (see
the section of implementation details), throughput with H = 50 achieves 3.67k tokens/s. Despite
running on a weaker hardware environment without high-bandwidth interconnects, SPES achieves
a comparable speed. In addition, its throughput can be further improved by reducing the synchro-
nization frequency, highlighting its scalability under resource-constrained conditions.

Comparison with Previous Training Paradigms. We evaluate SPES against both centralized train-
ing and the decentralized baseline DiLiCo, using 1B models trained on 100B tokens. As shown in
Table 2, SPES achieves competitive performance on multiple benchmarks. Fig. 4 presents per-
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Table 4: Performance with and without expert merging.

Method ARC(e) ARC(c) PIQA SciQ OBQA BoolQ SIQA WinoGrande Avg.

w/o merging 52.8 26.5 68.4 75.9 30.0 58.0 42.4 50.3 50.5
w/ merging 52.1 27.7 67.4 77.8 28.8 60.4 42.7 53.5 51.3

formance trajectories during training. Although SPES exhibits a slightly slower initial learning
curve, attributable to its sparse expert updates, it rapidly converges and ultimately matches or out-
performs both baselines. Notably, SPES achieves this with substantially lower per-node GPU mem-
ory consumption and reduced synchronization bandwidth relative to centralized and decentralized
alternatives. These results highlight that SPES provides a favorable trade-off between computational
efficiency and model quality, enabling decentralized pretraining to attain competitiveness with large-
scale centralized training under significantly lower resource budgets.

Performance Comparison with Existing LLMs. Finally, we compare our 2B and 7B models,
which are trained with less than 500B tokens, with those open-source models of similar activation
parameter scales and trained with less than 3T tokens. The results are shown in Table 3. We also
show the results of models trained with significantly more tokens for reference.

We can see that across several commonsense reasoning benchmarks, both our 2B and 7B models
consistently outperform most of their counterparts. It is worth noting that SPES-2B was trained in
a decentralized manner on only 16 weakly connected 48GB GPUs, yet it remains competitive with
models such as MobiLLama and OpenELM, which rely on substantially larger datasets and cen-
tralized infrastructures. This highlights the effectiveness of SPES in achieving strong performance
under constrained hardware budgets. Moreover, SPES-7B attains results comparable to MoE++,
which employs more advanced MoE designs (e.g., zero-computation experts) and larger training
corpora. These findings indicate that SPES not only scales effectively and efficiently, but also re-
tains significant room for improvement in architecture and data utilization, underscoring its potential
as an extensible alternative to existing LLM training frameworks.

Expert-Merging Warm-Up. As shown in Table 4, utilizing expert merging increases the average
score from 50.5 to 51.3, with notable improvements on BoolQ and SciQ. This indicates that cross-
node parameter sharing enhances token utilization and promotes faster knowledge establishment,
thus improving generalization across a range of reasoning and comprehension tasks.

For ablation studies on key hyperparameters, including the merging factor α, warm-up steps Tmerge,
local training steps H , and the number of nodes N , please refer to the Appendix D for details.

5 CONCLUSION

We introduced SPES, a decentralized and memory-efficient pretraining paradigm for MoE-based
LLMs. SPES assigned distinct subsets of experts to individual nodes and synchronized them only,
substantially reducing per-device memory usage and communication overhead compared to central-
ized and prior decentralized approaches. To improve token utilization per expert, we introduced
an expert-merging warm-up strategy to accelerate convergence in early training stages. Empirical
results on 2B- and 7B-parameter MoE LLMs showed that SPES enabled efficient pretraining across
weakly connected, geographically distributed GPU clusters, while achieving performance on par
with comparable centralized baselines. Beyond lowering infrastructure demands, SPES broadened
access to large-scale pretraining and could support more inclusive participation in LLM research,
facilitating further advances in decentralized and memory-efficient training of foundation models.

Limitations and Future Work. Due to limited computational resources, our largest model com-
prises 7B parameters and was trained on a corpus of fewer than 500B tokens. Consequently, the
scalability of our approach to significantly larger models or extended training contexts remains to
be validated. A systematic exploration of these scaling behaviors represents an important direction
for future research. In addition, our evaluation is confined to language understanding tasks in this
work. In the future, we will investigate the applicability of SPES training to multimodal reasoning
or generative tasks. Extending our framework to encompass these broader domains would provide
a more comprehensive assessment of its generality and limitations.
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APPENDIX

We provide the following materials in this appendix:

A. Implementation Details: more details of training hyper-parameters.

B. Data Details: dataset descriptions and sampling ratios.

C. Evaluation Details: evaluation datasets and metrics.

D. Additional Results: results on additional benchmarks and ablations on hyper-parameters.

E. Declaration of LLM Assistance: description of LLM usage in manuscript preparation.

A. IMPLEMENTATION DETAILS

Table A1 shows our training configurations. For the 7B model, we train on the first 340B tokens
using the settings specified in the table, then we reduce the per-node batch size to 1M tokens and set
H = 50 to accelerate convergence. For the 2B model, we train on 440B tokens under the default
configuration, then reduce the per-node batch size to 0.5M tokens and set H = 50.

For the 1B model, we perform ablation on expert-merging with a per-node batch size of 1024 to fa-
cilitate comparison with baselines trained under larger token budgets (400B). All other experiments
use the hyper-parameters presented in Table A1. The training token budget is set to 100B for the
ablations on H and N , and 50B for α and Tmerge to allow faster validation. For all experiments,
the loss coefficients are fixed across the models as follows: cross-entropy (1), load-balancing (0.01),
MoE z-loss (0.001), and standard z-loss (1× 10−5).

B. DETAILS OF DATASETS AND SAMPLING RATIO

We train the model on data sampled from several open-source corpora, with sampling ratios provided
in Table A2. Following OLMo et al. (2024), we apply a filter that removes all documents containing
sequences of 32 or more repeated n-grams (an n-gram denotes any span of 1–13 tokens). The
datasets used in our experiments are summarized as follows.

Ultra-FineWeb. Ultra-FineWeb (Wang et al., 2025) is a large-scale web corpus constructed from
FineWeb (Penedo et al., 2024) and Chinese FineWeb (Yu et al., 2025) using an efficient verification-
based filtering pipeline. The approach combines lightweight fastText classification with a verifica-
tion mechanism, enabling reliable data selection at substantially reduced computational cost. The
final corpus comprises roughly 1 trillion English tokens and 120 billion Chinese tokens. By en-
hancing overall data quality, Ultra-FineWeb provides a strong foundation for LLM training and
contributes to the dataset used in MiniCPM4 (Team et al., 2025).

SlimPajama. SlimPajama (Soboleva et al., 2023) is a large-scale, rigorously deduplicated corpus
constructed from RedPajama (Weber et al., 2024). Using a multi-stage pipeline that combines qual-

Table A1: Training hyperparameters for different model scales.

7B 2B 1B

Maximum Learning Rate 4× 10−4 5× 10−4 5× 10−4

Minimum Learning Rate 4× 10−5 5× 10−5 5× 10−5

Optimizer ϵ 1× 10−8 1× 10−8 1× 10−8

Weight Decay 0.1 0.1 0.1
(β0, β1) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
LR Warmup Steps 2000 2000 2000
Sequence Length 2048 2048 2048
Batch Size (Tokens) 1M ×16 2M ×4 0.5M ×4
Synchronization Steps H 100 100 50
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Table A2: Sample ratios of different datasets.

Dataset Ultra-FineWeb SlimPjama StarCoder arXiv OpenWebMath Pes2o Algebric Stack

Ratio (%) 64.2 27.2 6.6 0.7 0.4 0.5 0.4

ity filtering with MinHashLSH-based deduplication at trillion-token scale, SlimPajama substantially
reduces redundancy and low-quality content, compressing the dataset from 1.21T to 627B tokens
while retaining domain coverage. The corpus spans diverse sources, including CommonCrawl, C4,
GitHub, Books, ArXiv, Wikipedia, and StackExchange.

OLMo-Mix-1124. OLMo-Mix-1124 is a 3.9-trillion-token corpus comprising over 95% web
data, constructed from DCLM (Li et al., 2024), Dolma v1.7 (Soldaini et al., 2024), and Star-
Coder (Lozhkov et al., 2024). For our work, we extract scientific-domain subsets, including arXiv,
OpenWebMath, Algebraic Stack, peS2o, and StarCoder.

C. EVALUATION DETAILS

We evaluate our models with the lm-evaluation-harness library (Gao et al., 2024), which
offers standardized benchmark implementations and facilitates direct comparison with prior work.
All experiments use version 0.4.7. The benchmarks and evaluation settings are detailed below:

SciQ (Johannes Welbl, 2017) is a science multiple-choice question-answering dataset. The questions
were generated by crowdworkers and validated against science reference materials, covering topics
such as physics, biology, and chemistry. As the questions are designed to resemble real exam-style
queries, the dataset tests scientific knowledge and reasoning skills of a model. We report 0-shot
accuracy on SciQ.

ARC (Clark et al., 2018) (AI2 Reasoning Challenge) consists of grade-school level science exam
questions, partitioned into ARC-Easy (ARC-E) and ARC-Challenge (ARC-C). ARC-E contains
questions that can often be answered by retrieval of surface-level facts, while ARC-C includes the
more demanding questions requiring reasoning and multi-step inference across scientific facts. We
report 0-shot accuracy on ARC-E and 25-shot normalized accuracy on ARC-C.

SIQA (Sap et al., 2019) (SocialIQA) benchmarks social commonsense reasoning. Each instance
presents a short human-centered scenario alongside a question about likely intents, causes, or out-
comes of human actions. This evaluates the model’s ability to handle subtle social reasoning and
cause-effect relationships in naturalistic settings. We report 0-shot normalized accuracy on SIQA.

PIQA (Bisk et al., 2020) (Physical Interaction QA) evaluates physical commonsense reasoning in
everyday situations. Given a description of a goal, the model must choose the most plausible solution
among two alternatives, testing physical feasibility and everyday world knowledge. We report 0-shot
normalized accuracy on PIQA.

OpenBookQA (Mihaylov et al., 2018) presents multiple-choice science questions paired with a
small open-book of 1,326 core scientific facts. Answering the questions typically requires com-
bining knowledge from the book with additional commonsense reasoning, making this benchmark
particularly challenging. We report 0-shot normalized accuracy on OpenBookQA.

WinoGrande (Sakaguchi et al., 2021) is a large-scale dataset for pronoun resolution, created to re-
duce annotation artifacts common in earlier benchmarks (e.g., Winograd Schema Challenge). Each
instance requires the model to resolve ambiguous pronouns based on contextual clues, testing com-
monsense reasoning and language understanding. We report 0-shot accuracy on WinoGrande.

BoolQ (Clark et al., 2019) is a reading comprehension dataset in the yes/no QA format. Questions
are naturally occurring user queries, paired with passages from Wikipedia that may or may not con-
tain the answer. Models must perform passage-level understanding to correctly infer the response.
We report 0-shot accuracy on BoolQ.

MMLU (Hendrycks et al., 2020) (Massive Multitask Language Understanding) covers 57 tasks
across diverse domains such as mathematics, history, law, medicine, and the natural sciences. As
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Table A3: Performance comparison with previous LLMs on additional benchmarks. Some
models are excluded because they neither report results on these benchmarks nor are compatible
with lm-evaluation-harness.

Method #Params #Tokens OBQA MMLU CMMLU C-Eval

Models Trained with Significantly More Tokens

Qwen2.5-0.5B (Qwen et al., 2025) 0.5B/0.5B 18T 35.4 47.3 49.5 51.0
Qwen3-0.6B (Yang et al., 2025) 0.6B/0.6B 36T 34.2 52.8 50.4 -
Llama3.2-1B (Dubey et al., 2024) 1.1B/1.1B 9T 36.2 36.6 29.4 30.9
Qwen2.5-1.5B (Qwen et al., 2025) 1.5B/1.5B 18T 40.4 59.7 66.3 68.2
SmolLM2-1.7B (Allal et al., 2025) 1.7B/1.7B 11T 43.6 48.4 31.0 32.5
Qwen3-1.7B (Yang et al., 2025) 1.7B/1.7B 36T 38.6 62.6 68.1 -
OLMoE-1B-7B (Muennighoff et al., 2024) 1.3B/7B 5T 45.2 50.5 31.9 31.1

Models with ≤ 3B Parameters

MobiLlama-0.8B (Thawakar et al., 2024) 0.8B/0.8B 1.3T 33.0 23.5 25.3 22.7
TinyLlama-1.1B (Zhang et al., 2024b) 1.1B/1.1B 3T 36.8 25.3 24.9 26.0
OPT-1.3B (Zhang et al., 2022) 1.3B/1.3B 180B 33.4 24.9 25.3 23.0
MobiLlama-1.3B (Thawakar et al., 2024) 1.3B/1.3B 1.3T 35.4 25.3 23.5 26.2
Pythia-1.4B (Biderman et al., 2023) 1.4B/1.4B 300B 33.4 24.2 25.6 23.0
OPT-2.7B (Zhang et al., 2022) 2.7B/2.7B 180B 35.2 25.6 25.3 23.0
Pythia-2.8B (Biderman et al., 2023) 2.8B/2.8B 300B 35.6 25.2 25.4 22.9
SPES-2B (ours) 0.8B/2.1B 500B 31.4 25.5 24.9 25.0

Models with 7B Parameters

MoE++ 7B (Jin et al., 2024) 1.2B/7B 1T 40.0 25.1 24.9 23.6
SPES-7B (ours) 1.6B/7B 500B 39.4 24.1 25.0 26.2

a broad knowledge benchmark, it measures both factual recall and domain-specific reasoning. We
follow standard settings and report 0-shot accuracy on MMLU.

CMMLU (Li et al., 2023) is the Chinese adaptation of MMLU. It mirrors the structure of MMLU
but uses Chinese linguistic and cultural contexts, making it suitable for evaluating reasoning and
domain knowledge in the Chinese language. We report 0-shot accuracy on C-MMLU.

C-Eval (Huang et al., 2023) is a comprehensive Chinese evaluation suite consisting of over 13,000
multiple-choice questions spanning 52 subjects, from elementary school topics to professional certi-
fication exams. It provides a fine-grained view of model performance in academic and professional
domains under Chinese cultural and linguistic settings. We report 0-shot accuracy on C-Eval.

D. ADDITIONAL RESULTS

Results on Additional Benchmarks. Table A3 reports the performance of our models on additional
benchmarks. On Chinese evaluation datasets, SPES-7B surpasses the comparable baseline MoE++
(26.2 vs. 23.6 on C-Eval; 25.0 vs. 24.9 on CMMLU), while maintaining competitive performance on
other tasks. This indicates that SPES can match the performance of centrally trained models under
resource-constrained settings, underscoring its potential to lower the barrier to LLM pretraining. In
addition, SPES-2B attains performance on par with models of similar scale using only 16 weakly
connected nodes, further validating the efficiency of our approach.

Ablation on Hyperparameters in Expert Merging. Fig. A1 shows the effect of varying merging
warmup steps Tmerge and the merging factor α on performance. A moderate warmup of 12.5k steps
achieves the best results, as shorter schedules hinder sufficient knowledge exchange, while exces-
sively long ones interfere with expert specialization. Similarly, performance peaks when α is set
to 0.1, with both smaller and larger values leading to degradation. These observations suggest that
effective expert merging requires a careful balance between inter-expert knowledge sharing and ex-
pert specialization. Overly aggressive merging may overwrite expert-specific information, whereas
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Effect of Merging Warmup Steps on Performance Effect of Merging Factor on Performance

Figure A1: Ablation on key hyper-parameters in expert merging. The reported average is com-
puted over ARC(e), SciQ, PIQA, WinoGrande, ARC(c), OBQA, OpenBookQA, and SIQA.

Sc
or
e

Synchronization Steps

Figure A2: Ablation on synchronization steps. The reported average is computed over eight
benchmarks in total, additionally including ARC(c), OBQA, OpenBookQA, and SIQA.

Table A4: Performance comparison with different numbers of nodes.

No. of Nodes ARC(e) ARC(c) PIQA SciQ OBQA BoolQ SIQA WinoGrande Avg.

2 52.0 25.7 68.7 77.6 30.4 58.0 42.2 50.4 50.6
4 51.8 27.4 67.4 75.3 29.8 49.5 43.7 52.6 49.7
8 47.9 24.6 66.3 70.8 29.4 60.1 42.8 53.9 49.5

insufficient merging yields only minor parameter updates and limits the efficiency of knowledge
sharing across experts, thereby slowing the establishment of general expert representations.

Ablation on Number of Nodes. We then study the impact of varying the number of nodes N
while keeping the global batch size fixed. As shown in Table A4, model performance remains stable
when scaling from 2 to 8 nodes. The average score decreases slightly from 50.6 (2 nodes) to 49.5
(8 nodes), yet SPES maintains competitive results across benchmarks. This behavior illustrates a
natural trade-off in decentralized sparse training: increasing the number of nodes leads to greater
fragmentation of training data and experts, which can modestly slow convergence. Nonetheless, the
results underscore the robustness of SPES. Even with reduced per-node token utilization, it maintains
overall performance. These findings demonstrate SPES’ potential of scalability, suggesting that it
can effectively leverage a larger number of participants while maintaining model quality, a key
property for practical deployment in heterogeneous, distributed environments.

Ablation on Synchronization Steps. We analyze the effect of varying the local update interval H
in the SPES framework. As illustrated in Fig. A2, performance declines when H increases from
50 to 200 or 400. This trend reflects a key trade-off in decentralized sparse training: while larger
H reduces communication frequency, it amplifies model divergence across nodes, weakening the
benefits of expert sharing. Overall, H = 50 provides the best balance between communication
efficiency and model quality, underscoring the necessity of frequent synchronization to fully exploit
SPES’ sparse expert updates under bandwidth-limited decentralized settings.

E. DECLARATION OF LLM ASSISTANCE

We use ChatGPT-5 to assist with the refinement of this manuscript. After drafting the full text, we
provided selected passages to the models for suggestions on grammar, clarity, and conciseness. All
revisions were reviewed and finalized by the authors to ensure accuracy and appropriateness.
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