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ABSTRACT

In multimodal learning, CLIP has been recognized as the de facto method for
learning a shared latent space across multiple modalities, placing similar rep-
resentations close to each other and moving them away from dissimilar ones.
Although CLIP-based losses effectively align modalities at the semantic level, the
resulting latent spaces often remain only partially shared, revealing a structural
mismatch known as the modality gap. While the necessity of addressing this phe-
nomenon remains debated, particularly given its limited impact on instance-wise
tasks (e.g., retrieval), we prove that its influence is instead strongly pronounced
in group-level tasks (e.g., clustering). To support this claim, we introduce a
novel method designed to consistently reduce this discrepancy in two-modal set-
tings, with a straightforward extension to the general n-modal case. Through
our extensive evaluation, we demonstrate our novel insight: while reducing the
gap provides only marginal or inconsistent improvements in traditional instance-
wise tasks, it significantly enhances group-wise tasks. These findings may re-
shape our understanding of the modality gap, highlighting its key role in im-
proving performance on tasks requiring semantic grouping. Code available at:
https://anonymous.4open.science/r/CloseTheGap-7B0F.

1 INTRODUCTION

Figure 1: Reducing the gap consistently im-
proves clustering metrics, while leaving un-
affected retrieval ones. On the contrary, in-
creasing the gap downgrades the V-Measure,
bringing no improvements in R@1. In CLIP,
the gap results in very poor clustering perfor-
mance due to the latent space fragmentation.

The canonical goal of contrastive representation learn-
ing is to learn information from the original data by
embedding semantically similar data points nearby
and dissimilar ones far apart. Multimodal research
has inherited this goal, assuming that a video, its
caption, and its soundtrack should share the same
neighborhood in a joint latent space. Unfortunately,
the multimodal latent space shows different behav-
ior, and representations tend instead to preserve their
modality cluster, hindering the semantic alignment.
This phenomenon, known as the modality gap Liang
et al. (2022), is prevalent in all multimodal models
grounded on the conventional and widespread con-
trastive InfoNCE loss function van den Oord et al.
(2018) like CLIP Radford et al. (2021). Before train-
ing, samples from the same modality initially cluster
together due to different random model weights ini-
tialization, forming distinct modality-specific groups.
Unfortunately, these clusters persist even after train-
ing, resulting in a sparse and fragmented latent space.

In recent works, the modality gap has been studied
and partially addressed for image and text pairs Es-
lami & de Melo (2025); Yaras et al. (2025); Fahim
et al. (2024); Schrodi et al. (2025); Mistretta et al. (2025). Concurrently, other works are instead
accepting the gap, letting the space as it is while focusing on hyperbolic similarities Ramasinghe et al.
(2024). However, the reasons for mitigating or untouching such a gap are not well-grounded and the

1

https://anonymous.4open.science/r/CloseTheGap-7B0F


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

advantages in common downstream tasks such as retrieval are inconsistent throughout the literature.
Yaras et al. (2025) argues that closing the gap may improve the retrieval performance in downstream
tasks, while Schrodi et al. (2025) found that a larger modality gap has a mild positive correlation with
downstream performance. Moreover, all these approaches draw conclusions focusing only on the
two-modal case (mainly image and text), without advancing cues in the case of multiple modalities.

Rather than following conventional views, we reconsider the modality gap in the context of group-
wise tasks. We provide evidence that the modality gap is irrelevant for instance-wise tasks, such as
retrieval, which depend on relative rankings, but strongly impacts multimodal group-wise tasks, such
as clustering, which rely on absolute distances among representations of multimodal data in the latent
space. Specifically, we show that closing the modality gap reduces the within-group scatter, leading to
more coherent semantic groupings and better clustering performance, while leaving retrieval rankings
mostly unaffected, as it is clear from Fig. 1. To address this, we propose a novel and effective
objective function that explicitly encourages the alignment of matching pairs while maintaining a
uniform and expressive latent structure. We show that our method effectively reduces the modality
gap in both bimodal and trimodal benchmarks, improves clustering performance by several points
in V-Measure, and maintains or slightly increases retrieval accuracy. These results confirm that the
modality gap is not a harmless artifact, but a central factor shaping the geometry of the multimodal
latent space. Crucially, we show that it can be effectively minimized through a simple objective,
enabling better semantic organization without compromising instance-level precision.

Our main contributions can be summarized as follows.

• We demonstrate that the modality gap, while irrelevant to instance-wise tasks such as
retrieval, directly impacts group-wise semantics reflecting in tasks, like clustering, that
require explicitly closing the gap.

• We introduce a novel objective that combines true-pair alignment and centroid-based unifor-
mity to effectively close the modality gap. Our method scales to multiple modalities and
requires no architectural changes or post-hoc corrections.

• Across both bimodal and trimodal benchmarks, our approach reduces the gap while im-
proving clustering and preserving retrieval performance, confirming its effectiveness for
multimodal representation learning.

2 RELATED WORK

Multimodal Learning. Starting from CLIP Radford et al. (2021) several multimodal models have
been developed for two modalities like CLAP Elizalde et al. (2023) or CLIP4Clip Luo et al. (2021).
Lately, the same InfoNCE loss van den Oord et al. (2018) has been extended to multiple modalities in
ImageBind Girdhar et al. (2023) or VAST Chen et al. (2023b). More recently, novel approaches have
been proposed for multimodal learning to avoid the cosine similarity loss, namely GRAM Cicchetti
et al. (2025) and Symile Saporta et al. (2024).

Modality Gap. The modality gap has been observed for the first time by Liang et al. (2022), and
then studied mainly for the CLIP model Wu et al. (2023); Fahim et al. (2024); Shi et al. (2023) or for
generic image and text pairs Mistretta et al. (2025); Yaras et al. (2025); Schrodi et al. (2025); Wu et al.
(2023); Zhang et al. (2023). These works provide theoretical justification for the gap and propose to
mitigate the gap by fixing the temperature Yaras et al. (2025), by applying post-hoc translations in
the latent space Liang et al. (2022); Schrodi et al. (2025), or by sharing the transformer encoder and
the projection layer in the vision and language encoders Eslami & de Melo (2025). In any case, each
of these methods studied the modality gap in the case of two modalities, without advancing clues on
the case of three or more modalities.

Effect of Temperature in Contrastive Learning. The temperature τ in the InfoNCE loss van den
Oord et al. (2018) is recognized among the primary knobs for steering what features a contrastive
learner captures. SimCLR Chen et al. (2020) noted that smaller τ sharpens the softmax and boosts
instance-level retrieval accuracy. Wang & Isola (2020) proved that τ trades off alignment against
uniformity, while higher τ instead favors cluster or class structure. Gradient-based analyses later
showed that τ effectively controls the penalty on hard negatives, with low values concentrating
gradients on the most confusable samples Wang & Liu (2020). Building on this view, Kukleva et al.
(2023) introduced a schedule between high-τ (group-wise) and low-τ (instance-wise) phases. Most
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recently, Dinu et al. (2025) showed that increasing τ compresses embeddings, lowering intrinsic
dimensionality while preserving task performance, suggesting a second-order role for τ in model size
and deployment efficiency.

3 WHY CLOSING THE GAP?

3.1 PRELIMINARIES

We consider a training batch B = {(x1
i ,x

2
i , . . . ,x

M
i )}Ni=1, where each sample is observed across M

modalities, indexed by m = {1, 2, . . . ,M}. For each modality m, the encoder fm : Xm → Rd maps
the input xm

i into a d-dimensional embedding vector zmi = fm(xm
i ), that is further normalized to

obtain a unitary norm vector. We use sim(zmi , znj ) to denote the cosine similarity between embeddings
from modality m and n, i.e., sim(zmi , znj ) = ⟨zmi , znj ⟩.

Given a pair of modalities (m,n) with m ̸= n, we define the InfoNCE loss for modality pair as:

L(m→n) = − 1

N

N∑
i=1

log
exp (sim(zmi , zni )/τ)

N∑
j=1

exp
(
sim(zmi , znj )/τ

) , (1)

where τ > 0 is the temperature parameter controlling the softness of the distribution over negatives.
The total contrastive loss is defined by averaging the two directions of the InfoNCE loss, L(m→n) and
L(n→m). This is the standard loss used in CLIP Radford et al. (2021) and its variants for different
modalities. The temperature τ modulates the contribution of hard negatives Kukleva et al. (2023). A
low temperature penalizes harder negatives (i.e., those with high similarity to the anchor), favoring
instance-level discrimination. In contrast, a higher temperature distributes gradients more evenly
across all negatives, which typically promotes the emergence of semantic clusters and benefits group-
wise reasoning tasks Dinu et al. (2025). In multimodal learning, different approaches have been
proposed to handle the temperature effect including learning it during training or fixing at predefined
values. Throughout the paper, we refer to methods with the standard InfoNCE loss with learnable
temperature as CLIP (LT) and with fixed temperature as CLIP (FT).

3.2 UNDERSTANDING THE MODALITY GAP

A gap among modalities exists at the initialization phase, where different encoders initialized with
random weights represent data in different narrow cones in the shared latent space Liang et al. (2022).
Nevertheless, the gap persists even during the entire contrastive training phase. What is more, such
contrastive learning dynamics have been recognized to be the root cause of the gap, regardless of
the initialization. Therefore, even though the final learned space is somewhat semantically aligned,
positive pairs are decoupled and very distant, as Fig. 6 in the Appendix shows. As demonstrated by
Shi et al. (2023); Cicchetti et al. (2025), the traditional CLIP loss function easily gets stuck in local
minima, in which positive pairs are somewhat matched but far from each other, fostering the modality
gap.

In detail, previous works show that the conventional CLIP loss function is composed of two terms,
each with specific objectives Wang & Isola (2020); Shi et al. (2023): a first term tries to align positive
pairs, while the second one tries to spread away non-matching pairs. In practice, these two terms
provide opposite contributions, resulting in balanced and opposite forces. Therefore, models easily
end up in local minima, avoiding the gap closure while allowing the representations of the two
modalities to align with each other in “semantic stripes". These semantic stripes allow however
good performance in retrieval tasks since positive pairs have higher cosine similarity with respect to
non-matching pairs, even though such similarity is far from the ideal 1.0, as we show in Section 5.
Therefore, representations of matching pairs do not lie in the same portion of the latent space and are
instead quite far from each other, severely limiting the expressiveness and the group-wise alignment
of the latent space.

Following Liang et al. (2022), to measure such a gap between two generic modalities m and n, we
measure the effective Euclidean distance between the centroids of each modality:

Gapm,n = ∥cm − cn∥, (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where cm = 1
N

∑N
i=1 z

m
i . Even though the gap is zero, this does not imply that the embeddings are

effectively aligned in the latent space. Therefore, we further adopt the mean cosine similarity true
pairs metric, defined as:

Cos TPm,n =
1

N

N∑
i=1

⟨zmi , zni ⟩. (3)

This metric measures how much the normalized matching pairs are near each other in the latent space.
Intuitively, the closer to 1.0, the smaller the angle is between them, and the closer the matching pairs
lie in the latent space, being more aligned.

3.3 ALIGNING GROUP-WISE SEMANTICS

While the modality gap does not necessarily disrupt instance-wise semantics, which depend on
relative similarity rankings, it may prevent effective structuring of the latent space for group-wise
objectives such as clustering. Let us formalize the reason starting from the InfoNCE loss in equation 1.
Such a loss directly optimizes the relative ordering between the similarity of the true pair sim(zmi , zni )
and those of negatives sim(zmi , znj ), j ̸= i. The condition for retrieval success (e.g., Recall@K) is
satisfied whenever:

sim(zmi , zni ) > max
(
sim(zmi , znj )

)
, ∀j ̸= i. (4)

Thus, as long as InfoNCE ensures this inequality, the relative ranking is preserved, regardless of
whether absolute similarity values are close to 1.0 or far from it. Since instance-wise tasks like
retrieval depend only on relative ordering and not on the absolute placement of embeddings, they are
insensitive to the modality gap.

For group-wise tasks, let us build the centroid of semantic class c comprising two modalities m and
n in the following way:

µδ
s =

1

2
((zms + δ) + (zns + δ)) , (5)

where the modalities are shifted according to a constant vector δ, representing the gap impact between
the two modalities. Note that, in the case of 0 gap, the formula trivially resolves in µ0

s = 1
2 (z

m
s + zns ).

The expected within-class scatter for a generic modality (m) decomposes as

Es

[
∥zms − µδ

s∥22
]
≈ Es

[
∥zms − µ0

s∥22
]
+ ∥δ∥2, (6)

with the gap term δ summed to the expectation since it does not depend on the semantics of class
s, since it is orthogonal to the span of semantic vectors and therefore constant for each of them, as
proven by Zhang et al. (2023). Therefore, enlarging the gap uniformly inflates every semantic cluster,
degrading homogeneity and completeness, while shrinking the gap tightens such clusters.

Intuitive consequence. The modality gap leaves rank-based, instance-wise decisions mostly un-
touched, as they are the primary objective of the InfoNCE loss, but widens absolute distances and
thereby harms any objective that optimizes within/between-cluster geometry. Retrieval is therefore
almost flat across the gap value, whereas clustering (and other group-wise tasks) benefit from driving
the gap to zero, as shown in Fig. 1. For instance, suppose to retrieve a cat image caption, the
sufficient condition is that the caption remains the single most similar text, irrespective of its absolute
cosine value. Instead, if the goal is forming a “cat” cluster, the necessary condition is that every cat
image–caption pair lies close to the “cat” centroid, and a gap between the two modalities inflates that
radius, so cluster purity drops even though each individual pair is still top-ranked for retrieval.

4 CLOSING THE MODALITY GAP

We aim to close the modality gap while ensuring consistent alignment among the positive pair
distribution. To achieve such scope, we propose two novel losses. The first one, the Align True Pairs

4
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Figure 2: AV-MNIST multimodal latent space. The CLIP-based learning creates a fragmented latent
space with embeddings clearly clustered by modality and not by multimodal semantics. Our method
closes the gap and enhances group-wise semantics, placing embeddings of the same class in the same
portion of the space, effectively learning a semantically meaningful multimodal latent space.

loss LATP guarantees the alignment between true pairs. Considering M modalities, among which
a is the anchor one (i.e., the modality to which all the other modalities are aligned to Girdhar et al.
(2023); Zhu et al. (2024)), the loss is:

LATP =
1

M − 1

∑
m∈M,m̸=a

(
1

N

N∑
i=1

(
||zmi − zai ||22

))
, (7)

where m is taken from the set of available modalities, a is the anchor modality and N is the batch
size. The second one, the Centroid Uniformity loss LCU, ensures uniformity of the semantic classes
among the modalities in the latent space by:

LCU = log

 1

N

N∑
i=1

N∑
j=1,j ̸=i

exp
(
−2||µi − µj ||22

) , (8)

in which µk, with k = i, j, are the centroids defined as:

µk =
1

M

∑
m∈M

zmk , (9)

and ck is the centroid of the k-th element of the batch built by averaging all the modalities embeddings.
The effect of the two losses is complementary. The LATP promotes closeness between positive pairs,
effectively enhancing the mean cosine similarity between them. However, involving solely such a loss
may produce a side effect: the entire latent space collapses into small portions, placing representations
of dissimilar data in the same portion of the latent space, as we show in the Appendix. Therefore,
the contribution of the LCU loss becomes crucial, ensuring the sparsification of the latent space by
enforcing uniformity to the centroids while preserving the learned alignment. Indeed, moving the
centroids of matching pairs in the space implies moving the modalities representations accordingly,
effectively preserving alignment while leveraging the whole space. Without centroids, uniformity
should have been applied independently to each modality as in Wang & Isola (2020), disrupting the
learned alignment among similar semantic pairs, as we show in the Appendix. Additionally, the
radial basis function (RBF) kernel in equation 8 is well related to the uniform distribution on the
unit hypersphere where multimodal representations lie Wang & Isola (2020), therefore enforcing the
coverage of the whole surface of the hypersphere. The overall proposed loss function that aims at
aligning the true pairs and closing the modality gap is a sum of the two terms:

Lgap = LATP + LCU. (10)

Such loss should be then combined with the contrastive loss to obtain:

LCLgap = Lgap +
1

2

(
L(m→n) + L(n→m)

)
, (11)

for the two-modality m and n case to lighten the notation, but it can be expanded to more modalities.
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5 EXPERIMENTAL VALIDATION

We perform extensive evaluations in controlled and real-world scenarios with four different datasets,
four tasks, and a diverse number of modalities.

5.1 SETTING

To evaluate the proposed method in multimodal scenarios, we design a series of experiments that pro-
gressively increase in complexity and scale. Following the literature, we begin with two foundational
experiments using the CIFAR-10 and AV-MNIST datasets, which involve two and three modalities,
respectively. Subsequently, we scale up our experiments using the MSCOCO and MSR-VTT datasets,
which offer more complex multimodal data.

CIFAR10 (Image-Text). The CIFAR10 dataset consists of 60k 32×32 color images evenly distributed
across 10 classes, with 50k images for training and 10k for testing Krizhevsky et al. (2009). For our
experiments, we pair each image with its corresponding class label as text, creating a bimodal dataset.
For CIFAR10, we use two separate ResNet50 encoders, one for text and the other for images.

AV-MNIST (Audio-Visual-Text). AV-MNIST is a synthetic dataset combining visual, auditory, and
textual modalities. It is the union of two well-known datasets: the MNIST dataset composed of 60k
28×28 digit images and the Audio-MNIST Becker et al. (2023) containing 30k audio samples of
spoken digits (0-9) from diverse speakers. Each sample is also associated with a textual label that
represents the digit. Encoder details in the Appendix.

MSCOCO (Image-Caption). The MSCOCO dataset contains over 330k images, each annotated
with five human-generated captions, totaling more than 1.5M captions Lin et al. (2014), and it is a
well-known benchmark for analyzing the modality gap. To scale up the model capabilities and test
our approach in this challenging dataset, we use EVA-CLIP ViT-G Sun et al. (2023) as the visual
encoder and BERT-B Devlin et al. (2019) to process the textual captions.

MSR-VTT (Video-Audio-Text). The MSR-VTT dataset comprises 10k video clips spanning 20
categories, with each clip annotated with approximately 20 natural language sentences, resulting
in a total of 200k captions Xu et al. (2016). Each video clip includes visual frames, audio tracks,
and corresponding textual descriptions, making it a trimodal dataset. Each sample in the dataset is
associated to one of the 20 categories. This makes the dataset useful to be evaluated with clustering
metrics. We maintain the same architectures used for MSCOCO plus BEATs Chen et al. (2023a), a
transformer-based model, used to extract features from the audio tracks.

5.2 TASKS

We conduct a suite of experiments covering both instance-wise and group-wise tasks.

Cross-Modal (CM) Retrieval. We evaluate the model ability to associate related data across
modalities (e.g., text to audio or text to image) with cross-modal retrieval. For a given query in one
modality, the task is to retrieve matching items from another modality using cosine similarity in the
shared latent space. This task quantifies the instance-level alignment and cross-modal discrimination
capacity of the learned embeddings.

Clustering. We assess the structural organization of the latent space using supervised and unsu-
pervised clustering. We apply standard clustering algorithms (k-means and k-NN) and evaluate the
resulting clusters using V-Measure and k-NN accuracy. High performance in clustering indicates that
the latent space preserves semantic coherence across modalities and aligns samples belonging to the
same class or coarse-grained semantic group closely, regardless of the input domain.

Multimodal (MM) Retrieval with Cross-Conditioning. We evaluate the performance of down-
stream models that use the extracted embeddings from the modality encoders following Li et al.
(2021). For this task, we involve an additional multimodal encoder that takes as input all the modali-
ties and fuses them. Therefore, a proper alignment is crucial in this task. Such a multimodal encoder
outputs the probability score of the semantic match among them. To this purpose, following Chen
et al. (2023b), as the multimodal downstream encoder we reuse the text encoder attaching an MLP
on top of it to extract the probability value. Along with our brand-new loss functions, we add the
data-anchor matching (dam) loss function to train these components, as in Li et al. (2021); Chen et al.
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(2023b); Cicchetti et al. (2025):

Ldam = E(a,m2,··· ,mk)∼(A,M2,··· ,Mk) [y log pdam + (1− y) log(1− pdam)] . (12)

This task stresses the ability of the encoders to build coherent, modality-agnostic representations
and provides insight into the expressiveness and compositionality of the learned space. Higher
performance in this task highlights an increased facility by the multimodal encoder to detect interde-
pendencies among modalities.

Captioning. A downstream task to evaluate the benefit of an aligned and well-structured latent
space is data captioning. Following Yan et al. (2022), we involve a decoder serving as the language
generator model and we add a specific loss term that, along with our proposed loss functions, trains
the encoder-decoder structure for this specific task. Intuitively, the more aligned and semantically
coherent the latent space, the better the model will generate the captions. The captioning loss is:

Lcap = −
T∑

t=1

logPθ(yt|y<t,x), (13)

where y is the exact tokenized text the model aims to learn by maximizing the conditional likelihood
under the forward autoregressive factorization. Pθ(yt|y<t,x) denotes the probability assigned to the
token yt given as input the past history y<t and the input features x. Captioning requires both accurate
semantic grounding and compositional generalization, and therefore serves as a complementary proxy
for evaluating the usefulness of the learned features in downstream generative tasks.

5.3 RESULTS

Aligning group-wise semantics

Figure 3: (a) Following Liang et al. (2022), we place six sim-
ulated image-text embedding pairs on a 3D sphere, with two
mismatched pairs. We artificially move these pairs toward
closing or enlarging the gap among them and we track the
loss landscape during the simulation. (b) During the same
simulation we keep track also of the gradient magnitude re-
ceived by the six embeddings pairs through our design loss
function LCLgap . When the gap is closer to zero, the contribu-
tion to the loss is just matter of the non matching pairs.

Figure 1 shows that increasing the
modality gap leads to a drop in clus-
tering metrics, despite having a negli-
gible effect on retrieval scores, while
decreasing it considerably improves
the clustering metric (+17.5 points).
This suggests that instance-level align-
ment is tolerant to cross-modal off-
sets, while group-wise metrics benefit
from a more globally structured latent
space. Crucially, the optimal clus-
tering performance coincides with
the zero-gap configuration, indicat-
ing that full semantic overlap facili-
tates more coherent clusters. The plot
is obtained by starting from the gap
value of standard CLIP on the MSR-
VTT dataset and then posthoc shifting
the matching pairs up to 0.0 and 1.0 gap. Second, the simulation in Figure 3(a) shows that, in presence
of data mismatching, our proposed loss induces a landscape in which the global minimum is
achieved when the modality gap is zero. In contrast, standard contrastive losses such as CLIP
achieve the minimum around 60 degrees, thus when matching pairs are still quite far in the latent
space. Proof in the Appendix. Therefore, we can train the model with the proposed losses to reach
the zero modality gap while aligning group-wise semantics and improving the clustering performance
without affecting retrieval performance. The underlying mechanism is clarified in Figure 3(b), which
shows that as the modality gap narrows, the gradient magnitude associated with non-matching
pairs increases, while that of matching pairs decreases. With a large gap, non-matching samples
provide the same gradient contribution as matching ones. As the gap closes, these negatives become
harder and more semantically informative, thus dominating the optimization process and encouraging
the model to better shape the space by adjusting the missing matches. This naturally improves the
structuring of semantic clusters without altering the rank of positive pairs (which have nearly zero
gradients with the closed gap), hence preserving (or improving) retrieval performance. Altogether,
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Figure 4: Most similar vectors from the MSCOCO vector databases with both modalities embedded.
CLIP learned space has a gap of 0.47 and, for a text query, all the closest embeddings come from the
text modality, meaning that embeddings are clustered according to the modality and not according to
the overall multimodal semantics. On the contrary, the proposed method has nearly a zero gap, and
most similar samples come from both the image and text modalities, proving that we can effectively
build a multimodal latent space that is semantically coherent among the modalities. The same
behavior holds for an image query.

these observations highlight that minimizing the modality gap leads to more informative gradient
signals by emphasizing semantically meaningful negatives, thereby improving the alignment and
group-wise structure of the latent space. This reflects in improved clustering performance without
affecting retrieval. By explicitly encouraging the zero-gap configuration, our proposed loss LCLgap

provides a straightforward method to close the gap and align group-wise semantics.

Figure 2 shows the latent space plot in the case of embedding dimension equal to 3 in the AV-MNIST
dataset. Notably, the plotted spaces are not stochastically generated but the real latent space in R3.
As it is clear, the proposed method closes the gap better than conventional CLIP-based learning.
Crucially, this consistently improves group-wise clustering, placing embeddings from the same class
closer to each other in a semantically meaningful latent space.

Table 1 quantitatively proves our claims on the relation between the gap and the group-wise semantics.
Indeed, as the gap is progressively closed with the proposed method, the clustering performance
crucially improves, while retrieval accuracy between text and video (TV) and text and audio (TA) is
barely affected by the gap. Overall, this intuition is congruous across diverse datasets with different
numbers (two and three) and types of modalities (image, video, text, audio), even though the simpler
the dataset, the easier is for the model to align group-wise semantics.
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Figure 5: CosTP and gap during training.

Closing the gap

Figure 4 shows the most similar samples by
querying the learned latent spaces of CLIP and
of our method without forcing the query to be
cross-modal by construction. This means that
the similarity cares about the semantics only,
regardless of the modality. Interestingly, when
querying the CLIP space for the nearest vec-
tors, while returning semantically similar sam-
ples, the embeddings always belong to the same
modality as the query. In contrast, in the gap-
free latent space learned with our method, the
closest vectors not only share the same seman-
tics but also come from different modalities.
This proves that closing the modality gap ef-
fectively helps build a semantically aligned multimodal latent space.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Instance-wise (cross-modal (CM) retrieval) vs group-wise (clustering) tasks correlated to the
gap value. The harder the dataset, the more evident the results.

CM Retrieval Clustering

Method Dataset Gap ↓ TV R@1 TA R@1 V-Measure kNN

CLIP (LT) (Radford et al., 2021) CIFAR10
(2 modal)

0.86 82.0 - 67.0 81.2
CLIP (FT) (Yaras et al., 2025) 0.14 82.1 - 67.6 81.9
Ours 0.09 82.4 - 67.9 82.4
CLIP (LT) Radford et al. (2021) MSCOCO

(2 modal)

0.47 74.6 - 12.98 26.3
CLIP (FT) Yaras et al. (2025) 0.12 73.2 - 12.99 31.0
Ours 0.03 70.3 - 23.63 36.4
CLIP (LT) (Radford et al., 2021) AV-MNIST

(3 modal)

0.20 87.1 84.2 77.6 87.0
CLIP (FT) (Yaras et al., 2025) 0.24 84.1 80.4 73.8 85.0
Ours 0.09 88.7 89.1 82.7 89.2
CLIP (LT) (Radford et al., 2021) MSR-VTT

(3 modal)

0.29 34.2 10.3 23.3 52.9
CLIP (FT) (Yaras et al., 2025) 0.19 34.8 10.1 31.3 55.7
Ours 0.07 32.8 11.8 32.1 58.0

Table 2: Multimodal (MM) retrieval and captioning results.
Space Measures MM Retrieval Captioning

Method Dataset Gap ↓ Cos TP ↑ R@1 BLEU@1 BLEU@3 CIDEr

CLIP (LT)

MSCOCO
(2 modal)

0.47 0.34 72.5 45.8 22.5 153.2
CLIP (FT) 0.12 0.63 73.8 45.9 23.0 155.0
NotAGap 0.17 0.11 75.6 45.4 22.2 153.3
Ours 0.03 0.77 77.3 46.1 23.2 160.9
CLIP (LT)

MSR-VTT
(3 modal)

0.24 0.27 30.6 26.7 9.5 63.6
CLIP (FT) 0.17 0.37 30.3 26.2 9.4 63.2
NotAGap 0.09 0.07 29.9 24.3 8.7 53.8
Ours 0.06 0.53 33.3 26.8 9.6 64.4

Table 2 compares the proposed method and the current literature in closing the gap and downstream
tasks. As it is clear from Tab. 2, our novel loss closes the multimodal gap by achieving nearly 0.0
distance between the modality clusters centroids. Additionally, we better align true pairs by crucially
increasing their cosine similarity from 0.34 of the standard CLIP (LT) to 0.77 in MS COCO. The
capabilities of modeling the multimodal latent space are evident in Fig. 5 too, where the proposed
method outperforms the conventional CLIP, other solutions with fixed temperature (FT) Yaras et al.
(2025), and NotAGap Fahim et al. (2024). Importantly and counter-intuitively, during training, the
cosine similarity of true pairs slightly but progressively decreases in comparison configurations. This
means that the true pairs are progressively worse aligned. On the contrary, the proposed method
considerably increases the cosine similarity between true pairs, truly aligning them, while also
definitely closing the gap among modalities, regardless of whether there are two or three modalities.

6 CONCLUSION

In this work, we revisited the modality gap in multimodal representation learning, providing insights
into the impact of this phenomenon on downstream tasks. Through theoretical analysis and extensive
experiments across bimodal and trimodal datasets, we showed that while the modality gap has
limited influence on instance-level tasks such as retrieval, it significantly affects group-wise tasks
like clustering. To address this, we proposed a novel objective that explicitly aligns true pairs while
promoting latent space uniformity. Our method consistently reduces the modality gap and improves
clustering performance without compromising retrieval accuracy, offering a simple yet effective
solution for better semantic organization in multimodal spaces.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sören Becker, Johanna Vielhaben, Marcel Ackermann, Klaus-Robert Müller, Sebastian Lapuschkin,
and Wojciech Samek. AudioMNIST: Exploring explainable artificial intelligence for audio analysis
on a simple benchmark. Journal of the Franklin Institute, 2023.

Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, Wanxiang Che,
Xiangzhan Yu, and Furu Wei. BEATs: Audio pre-training with acoustic tokenizers. In International
Conference on Machine Learning, pp. 5178–5193, 2023a.

Sihan Chen, Handong Li, Qunbo Wang, Zijia Zhao, Ming-Ting Sun, Xinxin Zhu, and J. Liu. VAST:
A vision-audio-subtitle-text omni-modality foundation model and dataset. In Neural Information
Processing Systems (NeurIPS), 2023b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
pp. 1597–1607. PMLR, 2020.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818–2829, 2023.

Giordano Cicchetti, Eleonora Grassucci, Luigi Sigillo, and Danilo Comminiello. Gramian multimodal
representation learning and alignment. International Conference on Learning Representations
(ICLR), 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Association for Computational
Linguistics, 2019.

Georgiana Dinu, Corey D Barrett, Yi Xiang, Miguel Romero Calvo, Anna Currey, and Xing Niu.
Effective post-training embedding compression via temperature control in contrastive training. In
International Conference on Learning Representations (ICLR), 2025.

Benoit Dufumier, Javiera Castillo Navarro, Devis Tuia, and Jean-Philippe Thiran. What to align
in multimodal contrastive learning? In International Conference on Learning Representations
(ICLR), 2025.

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. CLAP: learning
audio concepts from natural language supervision. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Sedigheh Eslami and Gerard de Melo. Mitigate the gap: Investigating approaches for improving
cross-modal alignment in clip. International Conference on Learning Representations (ICLR),
2025.

Abrar Fahim, Alex Murphy, and Alona Fyshe. It’s not a modality gap: Characterizing and addressing
the contrastive gap. ArXiv preprint: arXiv:2405.18570, 2024.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
Joulin, and Ishan Misra. ImageBind one embedding space to bind them all. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15180–15190, 2023.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). 2009.

Anna Kukleva, Moritz Böhle, Bernt Schiele, Hilde Kuehne, and Christian Rupprecht. Temperature
schedules for self-supervised contrastive methods on long-tail data. In International Conference
on Learning Representations (ICLR), 2023.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq R. Joty, Caiming Xiong, and
Steven C. H. Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. In Neural Information Processing Systems, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Zou. Mind the gap:
Understanding the modality gap in multi-modal contrastive representation learning. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision–
ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
part v 13, pp. 740–755. Springer, 2014.

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. CLIP4Clip: An
empirical study of clip for end to end video clip retrieval. Neurocomputing, 508:293–304, 2021.

Marco Mistretta, Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Andrew D. Bagdanov.
Cross the gap: Exposing the intra-modal misalignment in clip via modality inversion. In Interna-
tional Conference on Learning Representations (ICLR), 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In International Conference
on Machine Learning (ICML), 2021.

Sameera Ramasinghe, Violetta Shevchenko, Gil Avraham, and Ajanthan Thalaiyasingam. Accept the
modality gap: An exploration in the hyperbolic space. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 27253–27262, 2024.

Adriel Saporta, Aahlad Manas Puli, Mark Goldstein, and Rajesh Ranganath. Contrasting with symile:
Simple model-agnostic representation learning for unlimited modalities. In Neural Information
Processing Systems, 2024.

Simon Schrodi, David T. Hoffmann, Max Argus, Volker Fischer, and Thomas Brox. Two effects, one
trigger: On the modality gap, object bias, and information imbalance in contrastive vision-language
models. In International Conference on Learning Representations (ICLR), 2025.

Peiyang Shi, Michael C. Welle, Mårten Björkman, and Danica Kragic. Towards understanding the
modality gap in CLIP. In ICLR 2023 Workshop on Multimodal Representation Learning: Perks
and Pitfalls, 2023.

Quan Sun, Yuxin Fang, Ledell Yu Wu, Xinlong Wang, and Yue Cao. EVA-CLIP: Improved training
techniques for clip at scale. ArXiv preprint: arXiv:2303.15389, 2023.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. ArXiv preprint: arXiv:1807.03748, 2018.

Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2495–2504, 2020.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Xiang Wang, and Xiangnan He. Understanding
contrastive learning via distributionally robust optimization. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
video and language. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5288–5296, 2016. doi: 10.1109/CVPR.2016.571.

Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu, and Jiahui Yu.
VideoCoCa: Video-text modeling with zero-shot transfer from contrastive captioners, 2022.

Can Yaras, Siyi Chen, Peng Wang, and Qing Qu. Explaining and mitigating the modality gap in
contrastive multimodal learning. In Conference on Parsimony and Learning (CPAL), 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuhui Zhang, Jeff Z. HaoChen, Shih-Cheng Huang, Kuan-Chieh Wang, James Zou, and Serena
Yeung. Diagnosing and rectifying vision models using language. In International Conference on
Learning Representations (ICLR), 2023.

Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Hongfa Wang, Yatian Pang, Wenhao Jiang,
Junwu Zhang, Zongwei Li, Wancai Zhang, Zhifeng Li, Wei Liu, and Liejie Yuan. LanguageBind:
Extending video-language pretraining to n-modality by language-based semantic alignment. In
International Conference on Learning Representations (ICLR), 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A.1 PROOFS AND MOTIVATIONS

The gap is nearly the same for all the pairs. We empirically prove our theoretical claims and
we compute both the Euclidean distance and the cosine similarities among true matching pairs,
which could both be interpreted as gap measures. As it is clear from Tab. 3, the variance in the
gap is extremely low and nearly 0, so all the points have the same gap. Thus, it is reasonable and
empirically-grounded to assume the same δ as a measure for the gap in Sec. 4, or to use the gap
measured as centroid distance in equation 2, being it a single measure for the overall gap. The same
findings can be applied to equation 6 as well. Concurrently, Zhang et al. (2023) demonstrated that the
gap vector is orthogonal to the text and image embeddings, and that the gap can be approximated
with a constant vector, confirming our findings.

Table 3: Mean and variance of the distance between the pairs in MSCOCO and MSR-VTT datasets.
Dataset Distance Mean Distance Var Cos TP Mean Cos TP Var

MSCOCO (T-I) 1.153 0.004 0.334 0.005
MSR-VTT (T-V) 1.163 0.009 0.319 0.012
MSR-VTT (T-A) 1.252 0.010 0.211 0.016

Proof for global minimum in Fig. 3. The 60 minimum in Fig. 3 is a direct outcome of the controlled
synthetic setup and the dynamics of the InfoNCE loss L(m→n). In the experiment, image (v) and
text (t) embeddings lie on two fixed rings with an initial angular offset of ∆ = 120. During the
optimization, the true image–text pairs are brought closer (current gap = θ), while the swapped pairs
(i.e., the negatives) remain at their original positions. Therefore, from the image anchor perspective,
these negatives are now at an angular distance of ∆− θ. This geometric property is exact and does
not rely on any symmetry or regular placement.

The InfoNCE loss balances attraction to the true pair and repulsion from negatives. Its derivative
becomes zero when the similarity to the true caption matches the similarity to the closest negative
(this occurs when θ = ∆/2). In our test case, that means CLIP converges to 60, as observed in Fig. 3.
Importantly, this also implies that InfoNCE never drives θ to 0, regardless of the initial gap ∆.

In contrast, our method includes the explicit LATP term that always decreases as θ → 0, and
does not depend on the position of the negatives. Formally, our loss can be written as LCLgap =

L(m→n) + LATP + LCU. The LATP term is LATP ∝ ||v − t||22 = 2(1 − cos θ), whose gradient is
∂LATP = 2 sin θ, always pulling the pair toward perfect overlap (θ = 0) and has no counteracting
repulsion. The LCU term depends only on the class centroids, not on the intra-pair angle, so ∂LCU = 0.
Therefore, the total derivative becomes

∂LCLgap

∂θ
=

∂L(m→n)

∂θ
+ 2 sin θ, (14)

with the extra term 2 sin θ shifting the sole stationary point to θ = 0, which is now a global minimum.
This holds for any initial configuration.

Proof for equation 6. For a semantic class s and two modalities m,n, the class centroid under a
uniform shift δ is equation 5):

µδ
s =

1

2

(
(zms + δ) + (zns + δ)

)
= µ0

s + δ, (15)

where

µ0
s =

1

2
(zms + zns ) . (16)

We expand the squared deviation:
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∥∥zms − µδ
s

∥∥2
2
=
∥∥zms − (µ0

s + δ)
∥∥2
2

=
∥∥(zms − µ0

s)− δ
∥∥2
2

= ∥zms − µ0
s∥22 + ∥δ∥22 − 2

〈
zms − µ0

s, δ
〉
.

(17)

Taking the expectation over classes yields:

Es

[∥∥zms − µδ
s

∥∥2
2

]
= Es

[∥∥zms − µ0
s

∥∥2
2

]
+ ∥δ∥22 − 2Es

[〈
zms − µ0

s, δ
〉]

. (18)

Since δ is approximately constant across classes and orthogonal to the span of semantic vectors
Zhang et al. (2023), the cross-term vanishes:

Es

[〈
zms − µ0

s, δ
〉]

≈ 0. (19)

Thus, we obtain equation 6:

Es

[∥∥zms − µδ
s

∥∥2
2

]
≈ Es

[∥∥zms − µ0
s

∥∥2
2

]
+ ∥δ∥22. (20)

A.2 EXPERIMENTS DETAILS

To process the AudioMNIST dataset, we compute the Mel spectrograms with 128 nmels, fmax at
8000, hop length equal to 512, and 2048 nfft. As image encoder, we employ a convolutional neural
network (CNN) comprising a two-layer convolutional architecture with 32 and 64 filters, respectively,
ReLU activation functions, Max Pooling, and a final MLP layer to map the features into the latent
space. For the audio modality, we design a three-layer convolutional encoder with 16, 32, and 64
filters, ReLU activations, and an MLP layer to similarly project audio features into the latent space.

Clustering on MSCOCO. MSCOCO contains the information about objects that are present inside
an image, and each image could contain more than one object, up to an undefined upper bound (also
10 different objects in an image), making standard clustering hard to apply. However, we devise a
pipeline to perform cross-modal clustering on this dataset. We take into consideration images from
the test dataset that contain only a single object, so that we have a univocal correspondence between
the image and a single textual caption representing such an object. We report clustering results on
MSCOCO in Tab.1.

Computing resources. The AV-MNIST experiments are conducted on an RTX4080 with 16GB. The
CIFAR10 experiments on an A6000 with 48GB. The experiments on MS COCO and MSR-VTT
experiments on a node with 4× A100.

A.3 ADDITIONAL EXPERIMENTS

We visualize the PCA latent spaces for two (MSCOCO) and three modalities (MSR-VTT) at initial-
ization, after the conventional CLIP-based training, and after the training with the proposed method.
Figure 6 shows the results. From Fig. 6, the gap closure is evident. Contrary to CLIP-based learning,
our method can close the gap and spread modality embeddings leveraging the whole hypersphere
space. Interestingly, Fig. 6 shows a similar behavior of the gap for the two- and three-modal case. At
initialization, one modality tends to occupy more space, being more sparse, while the other/others
are much more grouped. With CLIP-based learning, the modalities still tend to similarly lie in the
space. However, regardless of the initialization and of the number of modalities, the proposed method
completely closes the gap, building a more compact and well-aligned space.

Additional gap measures. Together with the gap formulation in equation 2, we further measure the
gap as suggested in Schrodi et al. (2025), where the authors proposed the Relative Modality Gap
(RMG) measure. We report the results in Tab. 4.

Closing the gap zero-shot. We consider the models trained on MS COCO and then evaluate them in
a zero-shot fashion on the validation set of OpenImage-V7. The entire validation set contains 41620
images, each of them has associated one class among more than 20k image classes. We evaluate the
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Figure 6: Left, latent spaces at initialization with the modality clusters clearly defined. Center, learned
after training from CLIP-based learning that preserves the modality gaps. Right, space learned with
our method, covering the whole space with overlapping clusters. PCA visualizations.

Table 4: Relative Modality Gap (RMG) measure for the methods on MSCOCO and MSR-VTT
datasets.

MSCOCO MSR-VTT (T-V) MSR-VTT (T-A)

CLIP (LT) 0.43 0.44 0.48
CLIP (FT) 0.27 0.40 0.46
Ours 0.17 0.33 0.44

ability of the proposed loss combinations to zero-shot closing the gap on the whole validation set,
measuring the gap as in equation 2, the Cosine True Pairs (Cos TP) as in equation 3, and also the
Relative Modality Gap (RMG) suggested in Schrodi et al. (2025). The results in Tab. 5 shows that the
proposed method well-scale to large-scale datasets, achieving consistent results in all the metrics and
outperforming the comparisons by considerably reducing the modality gap (absolute and relative).
Furthermore, we also evaluate the clustering performance of the methods on this dataset. For this
purpose, we select from the validation set the images containing one category among the 10 more
common classes: ’Plant’, ’Car’, ’Person’, ’Clothing’, ’Food’, ’Flower’, ’Tree’, ’Mammal’, ’Wheel’,
’Dog’. Moreover, we rebalance the dataset so that, in the final version, each class contains an equal
number of samples. In this experiment too, the V-Measure achieved by the proposed method is the
highest with respect to other methods, proving the effectiveness of the proposed method once again.

Table 5: Zero-shot gap and clustering results on OpenImage-V7 validation set.
Method V-Measure ↑ Gap ↓ RMG ↓ Cos TP ↑
CLIP (LT) 16.7 0.459 0.462 0.210
CLIP (FT) 13.5 0.374 0.516 0.224
Ours 17.2 0.311 0.429 0.273

Relation between gap and clustering performance. To further highlight the relation between
clustering performance and the gap, we plot the gap measure and the V-Measure during the training
of the ResNet50 encoders on the CIFAR10 dataset. Fig 7 shows the results. As the gap decreases,
the V-Measure evaluations increase reaching the best score with the proposed method, which better
closes the gap.

Impact of the initialization. According to Liang et al. (2022) that first discovered the modality gap
phenomenon, the gap exists at initialization and it is then preserved by the conventional contrastive
loss. Nevertheless, the key reason for the modality gap is the contrastive behavior of the InfoNCE

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: Clustering performance (V-Measure) and gap measure during training on the CIFAR10
dataset.

loss and not the initialization. To prove it, we compare two configurations with the same setup, model
(ResNet50), and loss (InfoNCE). We enforce an initial sparsification of the learned space for the first
epoch so that the encoders first learn to sparsify the embeddings, regardless of the modality. We do
so by using as loss the uniformity loss over the hypersphere by Wang & Isola (2020). However, once
the encoders learn the sparsification and we activate instead the conventional contrastive learning
loss, the encoders start to separate the modalities again and the gap begins to be recreated, as we
show in Fig. 8. We conduct the same experiment with the proposed losses to close the gap, and
no effect is revealed with the initial sparsification as well. Therefore, although the gap is created
at initialization, this does not impact the learning procedure and it is therefore the conventional
contrastive loss function that tends to create such a gap.

Figure 8: Latent space visualization during training of the conventional InfoNCE loss. The gap
is created at initialization, as already known in Liang et al. (2022). However, even if we initially
train the models to learn to sparsify the latent space (second plot) and reduce the gap, as soon as we
reintroduce the conventional InfoNCE loss function, the gap is recreated (third plot). Experiment
with ResNet50 from scratch on MS COCO dataset.

Experiments on the MultiBench classification task. We perform additional experiments with
comparison methods in a different task. We rerun the experiments using CoMM Dufumier et al.
(2025) repository in three datasets (MOSI, UR-FUNNY, MuSTARD) for the classification task from
MultiBench. Then, we apply on CoMM the method proposed in Yaras et al. (2025) for a further
comparison (CoMM + Yaras et al. (2025)). Finally, we add our proposed losses to the CoMM
framework (CoMM + Ours line in the table below). We report gap and accuracy measures. As it is
clear from Tab. 6, the proposed loss combination improves results in terms of accuracy with respect
to CoMM and reduces the gap in all the datasets.

Visualizing the semantic stripes. In the presence of the modality gap, embeddings tend to form
“semantic stripes". Such stripes allow good performance in retrieval tasks since positive pairs have
higher cosine similarity with respect to non-matching pairs, even though such similarity is far from
the ideal 1.0, but low performance in group-wise tasks as embeddings coming from the same semantic
concept lie separately in the space. We visualize these stripes in the AV-MNIST dataset with 3-
dimensional embeddings in Fig. 9. Audio (triangles) and vision (squares) embeddings lie in separate
regions of the latent space. Nevertheless, they form “semantic stripes" with each other, in which
classes (colors) are matched in stripes with the corresponding class of a different modality.
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Table 6: Classification results in MultiBench datasets compared with CoMM Dufumier et al. (2025)
and with CoMM + Yaras et al. (2025).

MOSI UR-FUNNY

Method Gap Acc Gap Acc

CoMM Dufumier et al. (2025) 0.33 65.91 0.81 62.83
CoMM + Yaras et al. (2025) 0.28 66.42 0.63 61.10
CoMM + Ours 0.24 67.65 0.77 63.25

Figure 9: Semantic stripes in the AV-MNIST dataset for CLIP (LT).

Intra-modal expressiveness. Modality specific features are essential for some instance level or
downstream tasks. Reducing the gap between modalities does not imply discarding or collapsing the
unique characteristics of each modality. The proposed losses act only on the relative positioning of
positive pairs. They encourage samples that share the same semantics to move closer without limiting
the expressiveness of the individual encoders, as confirmed by our experiments. To support such
claims, we conduct an additional experiment to verify whether intra-modal discriminative features
are preserved. We use pretrained encoders on the MSR-VTT dataset, specifically Eva-CLIP for visual
features, BEATs for audio features, and BERT for textual features. After extracting the embeddings,
we apply both the k-NN algorithm and a simple linear classifier (In MSR-VTT each sample belongs
to one of the 20 categories). Table 7 reports the accuracy obtained by these two methods when applied
independently to the features of each modality. Each experiment is conducted 5 times. The results
show that the expressive power of each individual encoder remains unaffected by the introduction of
our additional losses and by the consequent reduction of the modality gap. In fact, both the kNN and
linear probing performance are essentially unchanged in the scenario where the gap is present (CLIP
(LT)) and in the scenario where the gap is reduced (Ours). These results mean that the discriminative
intra-modality features are preserved even when the gap is mitigated, thus the embeddings are likely
to preserve the intra-modality features.

Table 7: Accuracy of kNN and linear classification on modality-specific features (visual, textual,
and audio) using pretrained encoders. The results demonstrate that the proposed losses preserve
discriminative intra-modality features, as accuracy remains consistent across both the original and
reduced modality gap settings.

Method Only Visual Features Only Textual Features Only Audio Features
kNN Acc kNN Acc kNN Acc

CLIP (LT) 60.39 ± 2.9 63.84 ± 1.2 45.79 ± 2.4 48.49 ± 2.5 38.28 ± 2.5 42.36 ± 3.5
CLIP (FT) 59.62 ± 2.3 64.40 ± 0.8 44.61 ± 3.3 47.90 ± 0.5 37.71 ± 2.7 41.80 ± 3.4

Ours 60.39 ± 2.1 64.20 ± 1.0 44.34 ± 2.5 49.98 ± 1.8 37.50 ± 2.8 42.26 ± 2.6
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Figure 10: Schematic representation of losses contributions.

A.4 ABLATION STUDIES

Why using L(m→n) in combination with the proposed losses? LATP and LCU regularise the global
geometry (closing the modality gap and preventing centroid collapse), but they do not provide the
instance-level repulsion that keeps different samples apart. Instead, the InfoNCE supplies exactly
that term, so all three losses are somewhat complementary required to obtain representations that are
simultaneously well aligned (no gap), uniformly spread, and discriminative. To prove our claims, we
perform an ablation study to highlight the critical role of the InfoNCE loss (L(m→n)) in achieving
optimal performance. While overall semantic alignment can still be attained using a combination
of LATP and LCU , as evidenced by comparable results in R@5 and R@10, the absence of L(m→n)

leads to a noticeable drop in R@1 performance. This indicates that the framework becomes less
accurate in retrieving the top-1 correct caption when the contrastive loss is removed, underscoring its
importance for fine-grained alignment between modalities.

Table 8: Ablation on the contribution of L(m→n) in combination with the proposed losses.
L(m→n) Cos TP ↑ Gap ↓ T2V R@1 T2V R@5 T2V R@10 V2T R@1 V2T R@5 V2T R@10

✗ 0.71 0.05 30.0 68.3 83.0 31.2 69.3 82.0
✓ 0.63 0.04 35.2 71.5 84.2 36.4 72.1 83.8

Furthermore, we visualize the contributions of each of the three losses L(m→n), LATP, and LCU
in Fig. 10. The first one, the InfoNCE loss, aligns multimodal matching pairs while spreading all
non-matching ones apart. This dual behavior encourages the formation of a gap between modalities,
as demonstrated in numerous previous works Liang et al. (2022); Shi et al. (2023). The InfoNCE loss
function often becomes trapped in local minima, where the loss is minimized (semantic alignment is
maximized) but a non-zero gap remains Shi et al. (2023). The LATP loss forces the match among true
pairs, consistently reducing the modality gap. However, the LATP does not consider non-matching
pairs, potentially making the latent space collapse in small regions, thus the contribution of LCU
becomes crucial. Indeed, the LCU loss spreads the semantic centroids (i.e., the centroids of matching
pairs) while preserving the alignment.

Ablation on LATP and LCU. We conduct an ablation study for the proposed loss functions. We train
from scratch two ResNet50 encoders with OpenCLIP Cherti et al. (2023) on the CIFAR10 dataset
for 100 epochs. We set the temperature parameter of the CLIP objective to 0.07 and we perform
sensitivity experiments, weighting the two proposed losses. To this purpose, we introduce two new
hyperparameters for equation 10, λ1 and λ2, combining the losses as

LCLgap = L(m→n) + λ1LATP + λ2LCU. (21)

Tab. 9 reports the results for retrieval (R@1) and clustering (V) across all the investigated configura-
tions.

It is interesting to note that the configuration with λ1 = λ2 = 0 (the standard InfoNCE loss alone)
achieves the lowest performance in both retrieval and clustering tasks. Furthermore, the results show
a clear trend: increasing λ2 consistently leads to improved performance, indicating the importance of
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Table 9: Sensitivity study on λ1 (row) and λ2 (column) showing retrieval (R@1), clustering (V-
Measure), and their average (Avg) on the CIFAR10 dataset. Bold indicates the best value; underlines
highlight competitive second-best settings.

λ1\λ2 0.00 0.25 0.50 0.75 1.00

0.00

R@1: 79.39
V: 61.65

Avg: 70.52

R@1: 78.64
V: 63.67

Avg: 71.16

R@1: 83.61
V: 67.70

Avg: 75.66

R@1: 84.05
V: 66.87

Avg: 75.46

R@1: 86.20
V: 66.64

Avg: 76.42

0.25

R@1: 80.59
V: 66.05

Avg: 73.32

R@1: 79.39
V: 63.26

Avg: 71.33

R@1: 80.15
V: 64.47

Avg: 72.31

R@1: 84.06
V: 69.93

Avg: 76.99

R@1: 83.82
V: 69.77

Avg: 76.80

0.50

R@1: 82.37
V: 68.96

Avg: 75.67

R@1: 79.34
V: 63.16

Avg: 71.25

R@1: 81.69
V: 66.90

Avg: 74.30

R@1: 82.43
V: 65.17

Avg: 73.80

R@1: 84.14
V: 70.42

Avg: 77.28

0.75

R@1: 79.23
V: 65.27

Avg: 72.25

R@1: 78.40
V: 62.89

Avg: 70.65

R@1: 82.20
V: 67.60

Avg: 74.90

R@1: 81.82
V: 65.74

Avg: 73.78

R@1: 84.03
V: 70.17

Avg: 77.10

1.00

R@1: 80.80
V: 66.84

Avg: 73.82

R@1: 78.13
V: 61.55

Avg: 69.84

R@1: 78.89
V: 60.67

Avg: 69.78

R@1: 84.21
V: 70.88

Avg: 77.55

R@1: 84.64
V: 71.47

Avg: 78.06

Table 10: Quantification of collapse in the latent space with (w/) and without (w/o) LCU.
Gap Cos TP AV (t) AV (v) T2V R@1 V2T R@1

w/o LCU 0.08 0.76 0.122 0.091 30.86 31.64

w/ LCU 0.09 0.58 0.001 0.005 37.5 38.67

the LCU component. In contrast, performance appears less sensitive to variations in λ1, suggesting a
smaller but still complementary contribution of the LATP term. Additionally, without LCU, the LATP
only makes representations latent space collapsing in a small region of the space, as we show in Fig.
11, thus limiting the expressiveness of the space in downstream tasks. Involving both the proposed
losses, instead, builds a more compact and well-aligned latent space, as the third plot in Fig. 11
shows.

A quantitative measure of this collapse is also given in Tab. 6, where we report the gap, the cosine
true pairs, and the additional Angular Value (AV) per modality. This metric measures the intra-modal
average cosine similarity. It indicates how much the embeddings of a single modality are spread
across the hypersphere. A value of this metric higher than 0 indicates that all the embeddings are
very close to each other, while a value of 0 means that the intra-cosine similarity ranges from -1 to 1,
indicating a good sparsification of the latent space. We conduct these experiments on the MSCOCO
dataset with two ResNet50 encoder backbones. Table 6 shows that without LCU the space built by
solely the InfoNCE and LATP losses tends to have true pairs closer (Cos TP higher) at the cost of a
lower sparsification (AV higher). This directly impacts retrieval results as the space is much more
condensed and it is harder for the model to discriminate between matching and non-matching pairs.

Promoting centroids uniformity vs overall uniformity. Wang & Isola (2020) proved and empirically
demonstrated that the conventional InfoNCE loss can be decomposed into two objectives, one that
pulls together embeddings from similar samples, and another that spreads all embeddings evenly on
the hypersphere to avoid collapse and improve generalization. The latter (i.e., the embeddings spread)
applies to all embeddings regardless of the class. However, enforcing uniformity at the sample level
tends to scatter representations arbitrarily, potentially disrupting the tight alignment that the alignment
term aims to enforce. For this reason, we adapt the uniformity principle to the multimodal setting
by applying it not to individual embeddings, but to the centroids of aligned samples, that is, to the
average representations of semantically matching pairs across modalities. This design retains the
benefits of uniform coverage of the latent space while avoiding crucial interference with alignment.
The LCU loss encourages the centroids of aligned multimodal samples to be well-separated on the
hypersphere, effectively ensuring that different semantic concepts remain distinguishable. At the same
time, the LATP loss guarantees that all modalities representing the same semantic concept are tightly
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Figure 11: Latent space visualization of different learned spaces in ablation studies, with the precise
effect of each of the proposed losses. Experiments with ResNet50 from scratch on MS COCO dataset.

grouped around their centroid. To prove the limitations of the uniform spread of all embeddings, we
perform an ablation study on the CIFAR10 dataset, in which we apply the uniformity loss proposed
in Wang & Isola (2020) and our LCU loss. As it is clear from Tab. 11, without any other changes, the
proposed LCU improves the performance of both retrieval (R@1) and clustering (V-Measure) over
the uniformity loss of Wang & Isola (2020).

Table 11: Comparison between uniformity and our centroid-based uniformity loss.
Method R@1 ↑ V-Measure ↑
Luniform Wang & Isola (2020) 82.47 64.72
LCU (ours) 84.64 71.47

A.5 LIMITATIONS

While our method effectively reduces the modality gap and enhances group-wise alignment across
multiple modalities, it does not directly address potential limitations arising from highly imbalanced
datasets or scenarios where semantic alignment is ambiguous or weakly defined. Indeed, we observe
in our experiments, which contain datasets with diverse modalities imbalances, a different impact
of the proposed method. While MSR-VTT and MSCOCO have one diverse matching sample for
each modality (i.e., each image corresponds to a single textual description in MSCOCO and similar
in MSR-VTT), so there is no imbalance between modalities, CIFAR10 and AV-MNIST have a
different structure. AV-MNIST contains three modalities, where images and audio have the same
size, while only 10 diverse textual captions are present in the dataset, making this modality slightly
imbalanced. What is more, the CIFAR10 datasets contains only 60k images but only 10 testual
captions corresponding to "A photo of class". The CIFAR10 is the most imbalanced dataset in our
set of experiments. Coming to our method tests, we can observe that, even though our method
outperforms previous ones in all the experiments, the increase in the CIFAR10 is the most tight
(+0.9 in V-Measure), followed by the AV-MNIST (+4.4 in V-Measure), likely due to the imbalanced
modalities structure. Indeed, we find the highest improvements in the balanced datasets, in which we
got +10.65 in V-Measure for MSCOCO and +8.8 in MSR-VTT.

Moreover, although we validate our approach on both bimodal and trimodal benchmarks, extending
the evaluation to more complex or underexplored modality combinations remains future work.
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