
Published in Transactions on Machine Learning Research (10/2024)

MoMA: Model-based Mirror Ascent for
Offline Reinforcement Learning

Mao Hong mhong26@jhu.edu
Department of Applied Mathematics and Statistics
Johns Hopkins University

Zhiyue Zhang zzhan179@jhu.edu
Department of Applied Mathematics and Statistics
Johns Hopkins University

Yue Wu ywu166@jhu.edu
Department of Applied Mathematics and Statistics
Johns Hopkins University

Yanxun Xu yanxun.xu@jhu.edu
Department of Applied Mathematics and Statistics
Division of Quantitative Sciences
Johns Hopkins University

Reviewed on OpenReview: https: // openreview. net/ forum? id= RHUKg8n9tw

Abstract

Model-based offline reinforcement learning methods (RL) have achieved state-of-the-art per-
formance in many decision-making problems thanks to their sample efficiency and gener-
alizability. Despite these advancements, existing model-based offline RL approaches either
focus on theoretical studies without developing practical algorithms or rely on a restricted
parametric policy space, thus not fully leveraging the advantages of an unrestricted policy
space inherent to model-based methods. To address this limitation, we develop MoMA, a
model-based mirror ascent algorithm with general function approximations under partial
coverage of offline data. MoMA distinguishes itself from existing literature by employing an
unrestricted policy class. In each iteration, MoMA conservatively estimates the value func-
tion by a minimization procedure within a confidence set of transition models in the policy
evaluation step, then updates the policy with general function approximations instead of
commonly-used parametric policy classes in the policy improvement step. Under some mild
assumptions, we establish theoretical guarantees for MoMA by proving an upper bound
on the suboptimality of the returned policy. We also provide a practically implementable,
approximate version of the algorithm. The effectiveness of MoMA is demonstrated via
numerical studies.

1 Introduction

Reinforcement Learning (RL) has emerged as an effective approach for optimizing sequential decision making
by maximizing the expected cumulative reward to learn an optimal policy through iterative online interactions
with the environment. RL algorithms have made significant advances in a wide range of areas such as
autonomous driving (Shalev-Shwartz et al., 2016), video games (Torrado et al., 2018), and robotics (Kober
et al., 2013). However, numerous real-world problems require methods to learn only from pre-collected and
static (i.e., offline) datasets because interacting with the environment can be expensive or unethical, such
as assigning patients to inferior or toxic treatments in healthcare applications (Gottesman et al., 2019).

1

https://openreview.net/forum?id=RHUKg8n9tw

Published in Transactions on Machine Learning Research (10/2024)

Therefore, the development of offline RL methods, which learn an optimal policy solely from offline data
without further interactions with the environment, has grown rapidly in recent decades (Levine et al., 2020).

The performance of offline RL methods often relies on the coverage of offline data. Earlier theoretical studies
of offline RL usually assume that offline data have full coverage, i.e., every possible policy’s occupancy
measure can be covered by the occupancy measure of the behavior policy that generates offline data (Munos,
2003; Antos et al., 2008; Munos & Szepesvári, 2008; Farahmand et al., 2010; Lange et al., 2012; Ross &
Bagnell, 2012; Chen & Jiang, 2019; Liu et al., 2019; Uehara et al., 2020; Xie & Jiang, 2020; 2021). This
assumption implies a highly exploratory behavior policy that can explore all state-action pairs, a condition
rarely met in practical scenarios. Recent studies have shifted from this restrictive full coverage assumption to
a more realistic partial coverage framework. This only requires the behavior policy’s occupancy measure to
cover that of the target policy. Methods developed under the partial coverage assumption fall into two main
categories: policy constraint methods and pessimistic methods. Policy constraint methods focus on learning
an optimal policy within a boundary that maintains proximity to the behavior policy (Fujimoto et al., 2019;
Kumar et al., 2019; Wu et al., 2019; Liu et al., 2019; Laroche et al., 2019; Nachum et al., 2019; Siegel et al.,
2020; Kostrikov et al., 2021; Fujimoto & Gu, 2021), ensuring that the performance of the learned policy is at
least as good as the behavior policy. On the other hand, pessimistic methods, which include both model-free
(Kumar et al., 2020; Liu et al., 2020; Jin et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021; Zanette
et al., 2021; Yin & Wang, 2021; Kostrikov et al., 2021; Cheng et al., 2022; Shi et al., 2022; Zhang et al.,
2022) and model-based approaches (Yu et al., 2020; Kidambi et al., 2020; Chang et al., 2021; Uehara & Sun,
2021; Yu et al., 2021; Rigter et al., 2022; Guo et al., 2022; Rashidinejad et al., 2022; Bhardwaj et al., 2023),
employ a principle of pessimism to penalize less-visited state-action pairs without constraining the policy,
thereby avoiding uncertain regions not covered by the offline data.

Compared to pessimistic model-free methods, a key advantage of pessimistic model-based methods lies in
their ability to utilize an unrestricted policy space (Uehara & Sun, 2021). Nonetheless, existing offline
model-based approaches (Uehara & Sun, 2021; Rigter et al., 2022; Guo et al., 2022; Rashidinejad et al.,
2022; Bhardwaj et al., 2023) either focus on theoretical studies without developing practical algorithms, or
rely on a restricted parametric policy space, thereby not fully exploiting the potential of an unrestricted
policy space inherent to model-based methods. The drawback of using parameterized policy classes becomes
evident when the optimal policy falls outside the predefined policy class. To circumvent the constraint of
parametric policy spaces, this paper aims to develop a pessimistic model-based algorithm that employs an
unrestricted policy class.

In this study, we introduce MoMA, a pessimistic model-based mirror ascent algorithm designed for offline
RL, without the need for explicit policy parameterization. At a high level, MoMA iteratively performs two
steps: conservative policy evaluation and policy improvement. In the conservative policy evaluation step, we
find a pessimistic Q function of the current policy at each iteration t by minimizing the Q function over a
confidence set of transition models. It plays a critical role in relaxing the full coverage assumption to partial
coverage in offline RL. In the policy improvement step, given the pessimistic Q function from the first step,
we update the policy by mirror ascent (Beck & Teboulle, 2003) with general function approximations. The
design of the policy improvement step is adapted from Lan (2022) to facilitate an unrestricted policy class
in our model-based offline RL setting.

The theoretical framework of MoMA separates conservative policy evaluation from policy improvement.
This separation is advantageous as it allows for independent investigation of statistical and computational
complexities. Under this theoretical framework, we establish an upper bound on the suboptimality of MoMA
with a characterization of statistical error, optimization error, and function approximation error, assuming
a computational oracle for a constrained minimization problem in the conservative policy evaluation step.
A notable distinction of our work, compared to model-free approaches like Xie et al. (2021), is that our
suboptimality upper bound does not include the size of the policy class. This is a significant advantage,
as it permits the assumption of an unrestricted policy class. In model-free settings, the policy-dependent
confidence set must maintain certain properties uniformly across all policies in the class, resulting in the
inclusion of the policy class size in the suboptimality upper bound. In contrast, in our model-based approach,
the confidence set is independent of the policy. This independence eliminates the need to factor in the size of
the policy class, thereby removing constraints on its expansiveness. On the computational side, we develop

2

Published in Transactions on Machine Learning Research (10/2024)

a practically implementable algorithm that serves as an approximation of the theoretical algorithm. In
particular, a primal-dual step is designed to address the computational oracle requirement - approximately
solving the constrained minimization problem in the conservative policy evaluation step.

The rest of the paper is organized as follows. Section 2 introduces some preliminary settings and definitions.
In Section 3, we present MoMA, the proposed algorithm, followed by Section 4, which discusses its practical,
approximate version suitable for implementation. Section 5 establishes the main theoretical results for MoMA
under some assumptions. Numerical results in both synthetic dataset and D4RL benchmark are included
in section 6. Section 7 discusses the comparison between MoMA and several existing works in offline RL.
Finally, Section 8 concludes the paper with a discussion.

2 Preliminaries

Markov decision processes and offline RL: We consider an infinite-horizon Markov decision process
(MDP) M = (S,A, P, r, γ, µ0), with continuous state space S, discrete action space A = {A1, A2, ..., Am}, a
transition dynamics P (s′ | s, a) with s, s′ ∈ S and a ∈ A, a reward function r : S×A → [0, 1], a discount factor
γ ∈ [0, 1), and an initial state distribution µ0. We assume a model space P for the transition dynamic, i.e.
P ∈ P. The reward function r is assumed to be known throughout this work. A stochastic policy π maps from
state space to a distribution over actions, representing a decision strategy to pick an action with probability
π(·|s) given the current state s, i.e. π(· | s) ∈ ∆(A) := {p ∈ Rm :

∑m
i=1 pi = 1, pi ≥ 0,∀i} for all s ∈ S.

Given a policy π and a transition dynamics P , the value function V π
P (s) := EP,π[

∑∞
t=0 γ

tr(st, at)|s0 = s]
denotes the expected cumulative discounted reward of π under the transition dynamics P with an initial
state s and a reward function r. We use V π

P := Es∼µ0V
π

P (s) to denote the expected value integrated
over S with an initial distribution µ0. The action-value function (i.e., Q function) is defined similarly:
Qπ

P (s, a) = EP,π[
∑∞

t=0 γ
tr(st, at)|s0 = s, a0 = a]. Let dπ

P (s, a) := (1−γ)
∑∞

t=0 γ
tPr(st = s, at = a|s0 ∼ µ0) be

the occupancy measure of the policy π under the dynamics P . Then V π
P can be expressed as E(s,a)∼dπ

P
[r(s, a)].

Assuming that a static offline dataset Dn = {(si, ai, ri, s
′
i) : i = 1, ..., n} is generated by some behavior policy

under the ground truth transition dynamics P ∗, model-based offline RL methods aim to learn an optimal
policy that maximizes the value V π

P ∗ through learning the dynamics from the offline dataset without any
further interactions with the environment.

Partial coverage: One fundamental challenge in offline RL is distribution shift (Levine et al., 2020):
the visitation distribution of states and actions induced by the learned policy inevitably deviates from the
distribution of offline data. The concept of coverage has been introduced to measure the distribution shift
using the density ratio (Chen & Jiang, 2019). Denote ρ(s, a) to be the offline distribution that generates the
state-action pairs (si, ai)n

i=1 in offline data. Full coverage means sups,a d
π
P ∗(s, a)/ρ(s, a) < ∞ for all possible

policies π, which may not hold in practice. In contrast, partial coverage only assumes that the offline
distribution covers the visitation distribution induced by some comparator policy π† (Xie et al., 2021), such
that sups,a d

π†

P ∗(s, a)/ρ(s, a) < ∞. Our work aims to learn the optimal policy among all polices covered by
offline data, i.e., Π := {π : sups,a d

π
p∗(s, a)/ρ(s, a) < ∞}.

3 Model-based mirror ascent for offline RL

In this section, we present MoMA, which is summarized in Algorithm 1. MoMA can be separated into
two steps in each iteration: 1) In the policy evaluation step, we conservatively evaluate the updated policy
through a minimization procedure within a confidence set of transition models; 2) In the policy improvement
step, we update the policy based on mirror ascent (MA) under the current transition model. The conservative
policy optimization procedure is designed to mitigate distribution shift by penalizing the value of state-action
pairs that are rarely visited, thereby addressing the high uncertainty in their value estimation. This approach
ensures performance under a partial coverage assumption rather than a full coverage assumption. We provide
details for the policy evaluation and policy improvement in section 3.1 and section 3.2 respectively.

3

Published in Transactions on Machine Learning Research (10/2024)

Algorithm 1 MoMA: Model-based mirror ascent for offline RL
Input: The learning rate {ηt}T

t=1, a consistent estimate P̂ and its corresponding αn.
Initialization: Initialize π0(·|s) = Unif(A).
for t = 1 to T do

Conservative policy evaluation:
Let Pt = argminP ∈Pn,αn

V πt

P , where Pn,αn = {P ∈ P : En(P) ≤ αn}.
Policy improvement: πt+1(· | s) = arg max

p∈∆(A)

{
⟨Qπt

Pt
(s, ·), p⟩ − 1

ηt
D (πt(· | s), p)

}
,∀s.

end for

3.1 Policy evaluation: conservative estimate of Q

In the policy evaluation step, inspired by Uehara & Sun (2021), we first construct a confidence set

Pn,αn = {P ∈ P : En(P) ≤ αn}

for transition models. Here
En(P) := L̂n(P) − L̂n(P̂),

where L̂n : P → R+ is an empirical loss function for P , depending on the offline dataset Dn, and

P̂ = arg min
P ∈P

L̂n(P)

is an estimator based on L̂n. For example, if L̂n(P) denotes the negative log-likelihood function of P , then
P̂ is the maximum likelihood estimator (MLE) for P . αn can be understood as the radius of the confidence
set. Then, we find Pt that minimizes the value function V πt

P within Pn,αn
, which is formulated as

Pt =argminP ∈Pn,αn
V πt

P . (1)

If the radius of the confidence set αn is set to zero, then Pt exactly corresponds to the MLE for P . In
this scenario, no uncertainty penalization is considered. A positive αn allows us to construct a perturba-
tion around the MLE. Finding the most pessimistic Pt within the confidence region implicitly imposes an
uncertainty penalization for rarely visited state-action pairs.

The minimizer Pt, combined with the current policy πt, can be used to evaluate Qπt

Pt
through Monte Carlo

methods. In section 4.3, we will provide an example using negative log-likelihood to illustrate the implemen-
tation procedure.

The conservative policy evaluation step is designed to provide a pessimistic estimate of the value function
given a policy. This idea has been employed in pessimistic model-free actor-critic algorithms (Khodadadian
et al., 2021; Zanette et al., 2021; Xie et al., 2021), where the critic lower bounds the Q function. For example,
Khodadadian et al. (2021) constructed the pessimism for Q under the tabular setting. Zanette et al. (2021)
assumed a linear Q function and conservatively estimated Q by minimizing Q within a confidence set of the
coefficients for Q. Xie et al. (2021) conservatively estimated Q in a general function approximation setting,
however, the size of the function class was limited by the sample size of offline data. Compared to these
model-free methods, MoMA has several advantages. First, unlike Xie et al. (2021), the size of the function
class for approximation in MoMA can be arbitrarily large. Second, MoMA has no restriction on the policy
class, which is crucial when the optimal policy is not contained in a restricted parametric policy class. See
Appendix 7 for a detailed discussion about the comparisons between our work and existing literature in the
policy evaluation step.

3.2 Policy improvement: mirror ascent

In the policy improvement step, we use mirror ascent, which maximizes the Q function with a regularizer that
penalizes the Bregman distance D(·, ·) between the next policy and the current policy. We first introduce

4

Published in Transactions on Machine Learning Research (10/2024)

Algorithm 2 MoMA: A Practical Algorithm
Input: The learning rate ηt, Pn,αn .
Initialization: Initialize π0 = Unif(A).
for t = 1 to T do

Conservative policy evaluation:
Compute Pt := Pϕ(K) , where ϕ(K) is the output from eq. (4).
Policy improvement:
Sample {sj}N

j=1 from dπt

Pt
.

for j = 1 to N do
Input {ft−1,i(s; β̂t−1,i)}m

i=1 and sj into algorithm 4, and output {Q̃ω,t(sj , Ai)}m
i=1.

end for
Find β̂t,i that solves eq. (6) for each i = 1, ...,m.
Save the parametric function {ft,i(s; β̂t,i)}m

i=1 as an input for iteration t+ 1.
end for

the definition of the Bregman distance. Let ∥ · ∥ be a given norm in ∆(A) and ω : ∆(A) → R be a strongly
convex function with respect to (w.r.t.) ∥ · ∥. Then D(·, ·) is a Bregman distance if

D (p, p′) := ω (p′) − [ω (p) + ⟨∇ω (p) , p′ − p⟩] ≥ 1
2 ∥p′ − p∥2

,∀p, p′ ∈ ∆(A),

where ⟨·, ·⟩ denotes the inner product. For clarity, we consider Qπt

Pt
(s, ·) ∈ Rm with i-th element Qπt

Pt
(s,Ai).

Given a pre-specified learning rate ηt > 0, the proposed update rule is:

πt+1(· | s) = arg max
p∈∆(A)

{
⟨Qπt

Pt
(s, ·), p⟩ − 1

ηt
D (πt(· | s), p)

}
∀s. (2)

Intuitively, the update rule aims to maximize the value function while ensuring minimal deviation from the
previous step. The distance D measures the divergence between the updated policy and the original policy
from the previous step. The parameter ηt can be interpreted as the step size, indicating the weight placed on
distance control. This update rule is distinct from existing literature in that it does not require any explicit
policy parameterization. This feature underscores the advantage of MoMA over existing model-based offline
algorithms that rely on parametric policy classes, e.g., Rigter et al. (2022); Guo et al. (2022); Rashidinejad
et al. (2022); Bhardwaj et al. (2023).

As the Bregman distance defines a general class of distance measures, one can design corresponding algo-
rithms based on specific distance measures if desired. Notably, natural policy gradient (NPG) (Kakade,
2001) is a special case of policy mirror ascent when D(·, ·) is set to be KL divergence.

We remark that for a continuous state space S, it is impossible to enumerate (2) for infinitely many states.
To overcome this issue, in section 4.2 we provide a computationally efficient algorithm through function
approximation, which is one of the key advantages of MoMA compared to existing literature, e.g., Algorithm
1 in Xie et al. (2021).

4 A practical algorithm

In this section, we present an implementable algorithm that approximately solves the constrained minimiza-
tion problem (1), summarized in algorithm 2.

4.1 Primal-dual (PD) for solving the constrained optimization problem

In order to approximately solve the constrained minimization problem (1) in the policy evaluation step, we
introduce its Lagrangian form:

max
λ>0

min
P ∈P

V πt

P + λ(En(P) − αn). (3)

5

Published in Transactions on Machine Learning Research (10/2024)

Suppose the transition model P is parameterized by ϕ, denoted as Pϕ. To solve (3), we design a model
gradient primal-dual method with the following update rule:

ϕ(k+1) = ϕ(k) − κ1∇ϕLV,t(ϕ(k), λ(k)), λ(k+1) = ProjΛ
(
λ(k) + κ2 (En(Pϕ) − αn)

)
. (4)

Here ProjΛ is the projection to a pre-specified interval Λ for λ, and LV,t(ϕ(k), λ(k)) is the Lagrangian function:
V πt

P
ϕ(k)

+ λ(k)(En(Pϕ(k)) − αn). Here Λ is a user-defined interval designed to prevent λ(k) from reaching 0 or
+∞.

4.2 Function approximation in MA

In the policy improvement step of algorithm 1, updating πt+1(· | s) for an infinite number of states s is
computationally impossible, as Qπt

Pt
can only be evaluated when πt(· | s) is known for all s. Although Monte

Carlo estimation may be utilized in evaluating Qπt

Pt
in eq. (2), the computational complexity would grow

exponentially with the number of iterations T , resulting in computational inefficiency. Notably, this issue
is also present in Algorithm 1 of Xie et al. (2021). In contrast, our practical algorithm exhibits polynomial
dependence on T , which is computationally efficient. A detailed justification for this claim is provided in
Appendix 7.

By the definition of D(πt(· | s), p), the objective function in the policy improvement step of algorithm 1 is
equivalent to

⟨Qπt

Pt
(s, ·), p⟩ + 1

ηt
⟨∇ω (πt(· | s)) , p⟩ − 1

ηt
ω(p).

We define the augmented action-value function as

Q̃ω,t(s, p) :=
m∑

i=1
Q̃ω,t(s,Ai)pi =

〈
Q̃ω,t(s, ·), p

〉
,

where
Q̃ω,t(s,Ai) := Qπt

Pt
(s,Ai) + 1

ηt
∇ω(πt(· | s))i

and Q̃ω,t(s, ·) is a vector with its i-th element as Q̃ω,t(s,Ai). The augmented action-value function not
only incorporates information about the action-value function but also includes information about the policy
itself. Following Lan (2022), we approximate Q̃ω,t(s, p) by a parametric function ft(s, p;βt) ∈ Ft such that
ft(s, p;β∗

t) ≈ Q̃ω,t(s, p) for some β∗
t , which is sufficient to approximate Q̃ω,t(s,Ai) for each Ai according to

Q̃ω,t(s, p) =
〈
Q̃ω,t(s, ·), p

〉
. To this end, for each i = 1, ...,m, we introduce ft,i(s;βt,i) ∈ Ft,i to approximate

Q̃ω,t(s,Ai), and thus

ft(s, p;βt) =
m∑

i=1
ft,i(s;βt,i)pi := ⟨ft(s;βt), p⟩.

Here, Ft,i can be chosen as e.g. reproducing kernel Hilbert spaces (RKHS) or neural networks.

For each i = 1, ...,m, the optimal parameter β∗
t,i can be obtained as follows,

β∗
t,i ∈ argminβt,i

Es∼d
πt
Pt

[(
Q̃ω,t(s,Ai) − ft,i(s;βt,i)

)2]
. (5)

Specifically, we can generate {sj}N
j=1 ∼ dπt

Pt
, and then minimize the empirical version of (5):

β̂t,i ∈ argminβt,i

1
N

N∑
j=1

[(
Q̃ω,t(sj , Ai) − ft,i(sj ;βt,i)

)2]
, (6)

where {Q̃ω,t(sj , Ai)}N
j=1 are output from algorithm 4 (see Appendix E). The computable β̂t,i satisfies the

property that ft,i(s; β̂t,i) ≈ ft,i(s;β∗
t,i) ≈ Q̃ω,t(s,Ai) for each i = 1, ...,m.

6

Published in Transactions on Machine Learning Research (10/2024)

With the obtained {ft,i(s; β̂t,i)}m
i=1, the update rule in the policy improvement step can be written as below

and solved by standard optimization algorithms,

πt+1(· | s) = arg max
p∈∆(A)

{
m∑

i=1
ft,i(s; β̂t,i)pi − 1

ηt
ω(p)

}
,∀s ∈ S. (7)

Such a design of function approximation enjoys several benefits. 1) The objective function in (7) is concave
which can be solved by standard first-order optimization methods. 2) Compared to commonly-used para-
metric policy classes, our policy class is unrestricted, ensuring it includes the optimal policy. 3) The function
approximation error in eq. (5) can be made arbitrarily small by enlarging the function classes Ft,i.

4.3 An example

We provide a concrete example to illustrate the implementation procedure of the proposed practical algo-
rithm 2, though our framework is general and different settings can be considered if desired.

Policy evaluation step. We consider the following empirical loss function L̂n for transition models:

L̂n(Pϕ) = − 1
n

n∑
i=1

logPϕ(s′
i | si, ai).

Then P̂ = P
ϕ̂

is exactly the MLE, and

En(Pϕ) = 1
n

n∑
i=1

log
P

ϕ̂
(s′

i | si, ai)
Pϕ(s′

i | si, ai)
.

The gradient of the Lagrangian function is:

∇ϕLV,t(ϕ, λ) = ∇ϕV
πt

Pϕ
+ λ∇ϕEn(Pϕ).

Here the model gradient ∇ϕV
πt

Pϕ
can be calculated using the proposition 2 of Rigter et al. (2022). Specifically,

let
Mϕ(s′, s, a, πt) :=

(
r(s, a) + γV πt

ϕ (s′)
)

× ∇ϕ logPϕ (s′ | s, a) ,

then
∇ϕV

πt

Pϕ
= Es,a∼d

πt
Pϕ

,s′∼Pϕ(·|s,a)Mϕ(s′, s, a, πt).

For ∇ϕEn(Pϕ), we have ∇ϕEn(Pϕ) = − 1
n

∑n
i=1 ∇ϕ logPϕ(s′

i | si, ai). Then the expressions of ∇ϕLV,t(ϕ, λ),
∇ϕV

πt

Pϕ
, and ∇ϕEn(Pϕ) can be plugged into (4) and output a Pt := Pϕ(K) .

Policy improvement step. We consider

ω(p) :=
m∑

i=1
pi log pi

and introduce a multi-layer neural network ft,i(s;βt,i) for approximating Q̃ω,t(s,Ai). For each i = 1, ...,m, in
order to find the best βt,i, we first sample {sj}N

j=1 i.i.d. from dπt

Pt
, then run any policy evaluation procedure

such as Monte Carlo (algorithm 4 in Appendix E) for Q̃ω,t(sj , Ai) for each j = 1, ..., N . Using training data
(sj , Q̃ω,t(sj , Ai))N

j=1, we can obtain β̂t,i by standard neural network (NN) training procedure. In addition,
thanks to the form of ω, we have a closed form solution to (7) which is the update rule

πt+1 (Ai | s) ∝ exp(ηtft,i(s; β̂t,i))

for i = 1, . . . ,m. Besides NN for ft,i(s;βt,i) for each i = 1, . . . ,m, alternative general function classes, such
as infinite-dimensional RKHS, can also be employed for function approximations.

7

Published in Transactions on Machine Learning Research (10/2024)

4.4 Efficient policy update

We provide a detailed discussion of the computational complexity for each step in our MoMA algorithm here.
We first consider the case ω(p) =

∑m
i=1 pi log pi, which leads to a closed function form of πt+1 (Ai | s) ∝

exp
(
ηtft,i

(
s; β̂t,i

))
for each i = 1, . . . ,m. In the policy evaluation step t, given β̂t−1 which is the output

from the (t − 1)-th iteration, we can count the number of calls of πt(s) from t to t + 1 as by realizing we
need πt in the Monte Carlo evaluation of V πt

Pk
for k = 1, . . . ,K and the sampling from dπt

P in the policy
evaluation step. Specifically, for each sampling or Monte Carlo evaluation, the effective numbers of using πt

is 1
1−γ , which is the effective trajectory length in an infinite-horizon discounted MDP. Therefore, for each t,

in the policy evaluation step, we need to use πt for a total of O
(

KL2

1−γ

)
times, where L denotes the number

of Monte Carlo trajectories. In the policy improvement step, we need πt in the sampling of (sj , Ai)N
j=1 and

Monte Carlo evaluation of Q̃ω,t(sj , Ai) for each j, i. Therefore, we need O
(

NL
(1−γ)2

)
Monte Carlo trajectories

starting from (sj , pj) for each j = 1, . . . , N . Therefore, collectively at each t in algorithm 2, we need to
evaluate the function πt (Ai | ·) = exp

(
ft−1,i

(
·; β̂t−1,i

))
/C approximately O

(
KL2

1−γ + NL
(1−γ)2

)
times, which

is independent of t. More generally, when ω does not induce an explicit solution to (7)), then I more steps
for gradient descent of (7) may be needed. In that case, running algorithm 2 costs O

(
IT
(

KL2

1−γ + NL
(1−γ)2

))
operations related to policy updates, which is polynomial on all the key parameters.

4.5 Extension to continuous action space

We now extend MoMA to handle complex RL tasks with nonlinear dynamics and continuous action spaces.
Instead of considering p ∈ ∆(A) introduced in section 3.2 where A is assumed to be finite, we consider a
continuous action space A ⊂ RdA in this section. Here dA is the dimension of the action space and A is
assumed to be a compact convex set. In the continuous-action case, we consider the deterministic policy
π : S → A, i.e. π(s) ∈ A is a feasible action for each state s ∈ S.

In this case, a proposed update rule is

πt+1(s) = arg max
a∈A

{
Qπt

Pt
(s, a) − 1

ηt
D (πt(s), a)

}
∀s. (8)

Still, since the update rule (8) is computationally infeasible for infinitely many s, we propose a version with
function approximation that is similar to section 4.2. Specifically, by expanding D(πt(s), a), the objective
function in (8) is equivalent to Qπt

Pt
(s, a)+ 1

ηt
⟨∇ω (πt(s)) , a⟩− 1

ηt
ω(a). We also define Q̃ω,t(s, a) := Qπt

Pt
(s, a)+

1
ηt

⟨∇ω (πt(s)) , a⟩ as the augmented action-value function. We then approximate Q̃ω,t(s, a) by a parametric
function ft(s, a;βt) ∈ Ft such that ft(s, a;β∗

t) ≈ Q̃ω,t(s, a) for some β∗
t . Here Ft can be RKHS or Neural

Networks.

In particular, the optimal parameter β∗
t can be obtained as follows,

β∗
t ∈ argminβt

E(s,a)∼d
πt
Pt

[(
Q̃ω,t(s, a) − ft(s, a;βt)

)2]
. (9)

Specifically, we can generate {sj , aj}N
j=1 ∼ dπt

Pt
, and then minimize the empirical version of (5):

β̂t ∈ argminβt

1
N

N∑
j=1

[(
Q̃ω,t(sj , aj) − ft(sj , aj ;βt)

)2]
, (10)

where {Q̃ω,t(sj , aj)}N
j=1 are output from algorithm 5 (see Appendix E). The computable β̂t satisfies the

property that ft(s, a; β̂t) ≈ ft(s, a;β∗
t) ≈ Q̃ω,t(s, a).

Finally, the update rule involving function approximation can be written as

8

Published in Transactions on Machine Learning Research (10/2024)

πt+1(s) = arg max
a∈A

{
ft(s, a; β̂t) − 1

ηt
ω(a)

}
,∀s ∈ S. (11)

A standard optimization procedure such as accelerated gradient descent method can be employed to solve
(11).

For completeness, we summarize the whole algorithm for the continuous-action case in algorithm 3.

Algorithm 3 MoMA: A Practical Algorithm in the continuous-action case
Input: The learning rate ηt, Pn,αn .
Initialization: Initialize π0 = Unif(A).
for t = 1 to T do

Conservative policy evaluation:
Compute Pt := Pϕ(K) , where ϕ(K) is the output from eq. (4).
Policy improvement:
Sample {sj , aj}N

j=1 from dπt

Pt
.

for j = 1 to N do
Input ft−1(s, a; β̂t−1) and (sj , aj) into algorithm 5, and output Q̃ω,t(sj , aj).

end for
Find β̂t,i that solves eq. (10).
Save the parametric function ft(s, a; β̂t) as an input for iteration t+ 1.

end for

5 Theoretical analysis

In this section, we present the upper bound on the suboptimality of the learned policy π̂ in Algorithm 2 in
terms of sample size, number of iterations and all key parameters. All proofs are presented in Appendix C.
We first present the following assumptions.
Assumption 1. The following conditions hold.
(a) (Data generation). The dataset D = (si, ai, ri, s

′
i)n

i=1 satisfies (si, ai)
i.i.d.∼ ρ with s′

i ∼ P ∗(· | si, ai), where
ρ denotes the offline distribution induced by the behavior policy under P ∗.
(b) (Coverage of any comparator policy π†). Cπ† := sups,a

dπ†
P ∗ (s,a)
ρ(s,a) < ∞.

(c) (Realizability). P ∗ ∈ P.
(d) There exist c1

n ≤ αn = o(1), c2√
n

≤ δn = o(1) such that with high probabilities P∗ ∈ Pn,αn and

εest := sup
P ∈Pn,αn

E(s,a)∼ρ[∥P (· | s, a) − P ∗(· | s, a)∥1] ≤ δn. (12)

Assumption 1(a) is related to offline data generation, common in offline RL theoretical literature. Assumption
1(b) essentially requires the partial coverage of the offline distribution. The concentrability coefficient Cπ†

measures the distribution mismatch between the offline distribution and the occupancy measure induced
by π†. Assumption 1(c) requires that the model class P is sufficiently large such that there is no model
misspecification error. Assumption 1(d) is needed to provide a fast statistical rate uniformly over the
confidence set. We remark that assumption 1(d) is a mild condition. For example, commonly-used empirical
risk functions (e.g. negative log-likelihood) satisfy it. See proposition 1, corollary 1 for more details in
Appendix B.

Now we provide the suboptimality upper bound for algorithm 2 in the following theorem, assuming an
access to a computational oracle for solving the contained minimization problem (1) in the conservative
policy evaluation step. Theoretical results for algorithm 1, in which we assume no function approximation,
are summarized in Theorem 2 in Appendix B.

9

Published in Transactions on Machine Learning Research (10/2024)

Theorem 1. Under Assumption 1, if ηt = (1 − γ)
√

2 log(|A|)
T for every fixed T , then we have

V π†

P ∗ − V π̂
P ∗ ≲ (γ

(1 − γ)2 + γ

(1 − γ)3)Cπ† εest︸ ︷︷ ︸
model error

+ 1
(1 − γ)2

1√
T︸ ︷︷ ︸

policy optimization error

+ 1
(1 − γ) 3

2
|A|

√
sup

s

dπ†
P ∗(s)
µ0(s) (εapprox +

√
maxt,i |Ft,i|√

N
)︸ ︷︷ ︸

function approximation error

with high probability. Here π̂ ∼ Unif(π0, π1, ..., πT −1) where {πt}T −1
t=0 are output by Algorithm 2, and εapprox

is defined in Definition A.3.

A brief proof sketch is provided here. The proof of Theorem 1 is based on a decomposition of suboptimality:

V π†

P ∗ − V πt

P ∗ =
(
V π†

P ∗ − V π†

Pt

)
︸ ︷︷ ︸

(a)

+
(
V π†

Pt
− V πt

Pt

)
︸ ︷︷ ︸

(b)

+
(
V πt

Pt
− V πt

P ∗

)︸ ︷︷ ︸
(c)

. (13)

Term (a) can be bounded by the distance between the true dynamic model P ∗ and Pt, which converges to 0
as the sample size increases to ∞. Term (b) is managed through the mirror ascent update rule, which tends
to 0 as the number of iterations k → ∞. Term (c) is negative thanks to the construction of the confidence
set and the definition of Pt. The proof is completed by averaging both sides of the above equation over T .

The upper bound in Theorem 1 includes three terms: a model error (depending on fixed n) coming from
using offline data for estimation of the transition model, an optimization error (depending on iteration T)
from the policy improvement, and a function approximation error coming from using Monte Carlo samples
approximating the augmented Q function. The model error is a finite-sample term that cannot be reduced
under the offline setting, while the optimization error can be reduced when the number of iterations T
increases. Typically, we have εest = OP (1/

√
n). The function approximation error involves an approximation

error εapprox that decreases as the function class is enlarged maxt,i |Ft,i| → ∞, an estimation error that
scales with OP (1/

√
N), and a distribution mismatch sups d

π†

P ∗(s)/µ0(s) between the initial distribution and
the occupancy measure induced by a single π† under P ∗. Indeed, if maxt,i |Ft,i| → ∞, then εapprox → 0 by
Definition A.3. Consequently, the function approximation error can converge to 0 as long as maxt,i |Ft,i| → ∞
and N → ∞ at the same speed based on its expression in Theorem 1. The function approximation error and
the model error share similar intuitive interpretations. In the model error, Cπ† measures the transfer of εest

changing from the offline distribution to the target distribution dπ†

P ∗ . Analogously, sups d
π†

P ∗(s)/µ0(s) in the
function approximation error measures the transfer of εapprox +

√
maxt,i |Ft,i|

√
N

from the initial distribution to
the target distribution dπ†

P ∗ .

6 Numerical studies

We perform numerical studies on both an illustrative synthetic dataset and MuJoCo (Todorov et al., 2012)
benchmark datasets, where we extend MoMA to the continuous-action setting.

6.1 Synthetic dataset: an illustration

We design a test environment based on a modified random walk with terminal goal states to generate data
with partial coverage and understand how pessimism helps MoMA avoid common pitfalls faced by model-
based offline RL methods. ω(p) is set to be

∑m
i=1 pi log(pi).

Environment and offline dataset For each episode that starts with an initial state s0 ∼ U(−2, 2),
at time n a particle undergoes a random walk and transits according to a mixture of Gaussian dynamics:
sn+1 −sn =: ∆s ∼ ψaN (µ1,a, 0.1)+(1−ψa)N (µ2,a, 0.1), where the discrete action a ∈ {−1, 0, 1} corresponds

10

Published in Transactions on Machine Learning Research (10/2024)

to Left, Stay, and Right, respectively. We generate a partially covered offline dataset collected by a biased (to
the left) behavioral policy β that penalizes over-exploitation of the MLE. The full details for the environment
and the behavioral policy are given in Appendix F.1.

MoMA performance The implementation follows Algorithm 2, with details in Appendix F.1. We com-
pare with 1) model-based NPG, which can be seen as a simplified version of MoMA without the conservative
policy evaluation; 2) model-free neural fitted Q-iteration (NFQ) (Riedmiller, 2005); and 3) a uniformly ran-
dom policy. All algorithms are offline trained to convergence, and then put into the environment for 1000
online evaluation episodes. We choose the number of episode steps as the metric for this shortest path
problem, and report the means and standard deviations for the scores of all 4 algorithms in Table 1. MoMA
has significantly superior performance compared to the baselines, while the model-based peer NPG achieves
the second best performance. This is not surprising since a learned dynamics model in general helps gen-
eralization in tasks with continuous state spaces, and NFQ’s lack of generalization ability is exacerbated in
this partial coverage setting.

Table 1: Average episode length (± std.) over 1000 online evaluation episodes; shorter is better.
MoMA NPG NFQ Uniform
2.63 ± 1.61 3.20 ± 2.33 4.39 ± 2.96 6.13 ± 5.07

Contribution from pessimism To understand pessimism empirically, we zoom into the state s = 0.1,
where the optimal policy is consecutive Right, the data-supported suboptimal policy is consecutive Left,
and the faulty policy centers on Stay. Due to inaccurate MLE, a model-based algorithm without pessimism
over exploits the model and converges to the faulty action Stay. In contrast, pessimism allows MoMA to
trust the model on Left which has high coverage, while cautiously modifying the model such that Stay does
not lead to substantial Right movement, i.e., ψ̂0 increases (see Figure 2 in Appendix F). This behavior is
clearly captured during the training process: shown in the right plot of Figure 1, while the weight of the
faulty action Stay monotonically increases for NPG, it decreases from the 10th epoch for MoMA. As a result,
the suboptimal action weight (shown middle) eventually dominates for MoMA but vanishes for NPG, and
NPG’s value function V (0.1) under the true dynamics (shown left) decreases due to the over exploitation of
the learned dynamics model.

Figure 1: MoMA vs NPG training behavior, zoomed in at state 0.1. Left: the value function V (0.1); middle:
the data-supported suboptimal action weight; right: the model-mislead faulty action weight.

Furthermore, in Appendix F.2, we provide an illustrative example demonstrating that assuming a nonpara-
metric policy class leads to better performance compared to a parametric class, highlighting scenarios where
the limitations of parametric policies become evident.

6.2 Continuous action D4RL benchmark experiments

We now extend MoMA to handle complex RL tasks with nonlinear dynamics and continuous action spaces
by approximating Q̃ω,t(s, a), ∀a ∈ continuous A rather than approximating Q̃ω,t(s,Ai) for discrete actions.

11

Published in Transactions on Machine Learning Research (10/2024)

See section 4.5 for more implementation details. We adjust the implmentation accordingly, and evaluate on
D4RL (Fu et al., 2020) MuJoCo benchmark datasets.

We consider the medium, medium-replay, and medium-expert datasets for the Hopper, HalfCheetah, and
Walker2D tasks (all v0), respectively. We compare against SOTA model-based baseline algorithms MOPO
(Yu et al., 2020) and RAMBO (Rigter et al., 2022), and model-free baseline algorithms CQL (Kumar et al.,
2020) and IQL (Kostrikov et al., 2021). With the exception of RAMBO for which we cite the results
reported in Rigter et al. (2022), we train all algorithms for 1E6 steps with early stopping and with 5 different
random seeds; additional experimental details are given in Appendix F.3. We summarize the scores (average
returns of 10 evaluation episodes) in Table 2. MoMA consistently demonstrates performance that is at least
comparable to state-of-the-art (SOTA) algorithms. Notably, in 4 out of 9 cases, our algorithm outperforms
the other two model-based RL algorithms, achieving the highest performance.

Table 2: D4RL benchmark averaged performance over 5 random seeds (± std.).
Ours Model-based Model-free
MoMA MOPO RAMBO IQL CQL

Hopper, medium 42.9 ± 12.9 58.2 ± 15.2 92.8 ± 6.0 101.1 ± 0.5 100.6 ± 1.0
Hopper, medium-replay 102.2 ± 0.8 101.2 ± 0.9 96.6 ± 7.0 66.0 ± 16.2 89.2 ± 9.3
Hopper, medium-expert 102.5 ± 3.4 46.3 ± 17.1 83.3 ± 9.1 106.7 ± 7.1 82.8 ± 19.0
HalfCheetah,medium 44.2 ± 0.8 26.5 ± 10.1 77.6 ± 1.5 42.5 ± 0.1 41.3 ± 0.3
HalfCheetah, medium-replay 55.4 ± 1.0 53.0 ± 2.0 68.9 ± 2.3 42.6 ± 0.1 45.9 ± 0.1
HalfCheetah, medium-expert 98.4 ± 12.6 95.5 ± 10.6 93.7 ± 10.5 96.9 ± 1.8 85.3 ± 7.9
Walker2D medium 36.8 ± 20.4 12.8 ± 7.1 86.9 ± 2.7 58.8 ± 4.4 83.1 ± 0.8
Walker2D, medium-replay 28.7 ± 5.8 67.9 ± 5.8 85.0 ± 15.0 22.5 ± 11.1 28.3 ± 9.3
Walker2D, medium-expert 98.5 ± 5.5 94.6 ± 16.0 68.3 ± 20.6 108.4 ± 1.8 106.3 ± 15.5

As one of the anonymous reviewers suggested, the confidence intervals (CIs) reported in our study can be
biased due to being based on only a small number of seeds.

As a supplement to the standard mean of evaluation scores reported in Table 2, we have adopted the evalu-
ation scheme proposed by Agarwal et al. (2021). Their method emphasizes the use of distributional metrics,
which are less sensitive to outliers, providing a clearer and more robust picture of algorithm performance
across different runs.

Specifically, we now include the interquartile mean (IQM) and the optimality gap as aggregate metrics,
along with 95% bootstrap CIs. The IQM provides a robust measure of central tendency by focusing on
the middle 50% of the data, reducing the influence of extreme values. The optimality gap measures how
close the performance is to an optimal policy, offering a meaningful interpretation of results. Additionally, we
present performance profiles based on score distributions, which offer a comprehensive view of the algorithm’s
performance across different scenarios. These results are detailed in Appendix F.2.

7 Comparisons with existing works

In this section, we present a discussion on the comparisons with some existing works in the field of offline
reinforcement learning.

7.1 The policy evaluation step

In Section 3.1, we mentioned two fundamental advantages that can be attributed to the MoMA’s design in
the policy evaluation phase: 1) better expressiveness of the policy class, and 2) more flexibility of function
approximations. We add more explanations about these two points here. First, we elaborate on better
expressiveness of the policy class and more flexibility of the value function class. Indeed, these two advantages
mainly stem from the construction of a confidence set as well as the separation of estimation and optimization
under our model-based framework. Specifically, the offline dataset is only used to infer the transition model
rather than directly infer the value function (which also depends on a policy). Thanks to this model-based

12

Published in Transactions on Machine Learning Research (10/2024)

feature and the framework for the proposed algorithm, neither the size of the value function class nor that
of the policy class is limited by the size of the offline dataset. In fact, the policy class in our settings can be
taken large enough to contain the optimal policy, and the size of the value function class can keep growing
until it contains the true value as long as we run Algorithm 4 enough times to generate sufficient Monte Carlo
samples. These features result in an optimal rate of O(1/

√
n) as shown in Theorem 1, which outperforms

the existing work (Xie et al., 2021). To illustrate this, we compare Corollary 5 of Section 4.1 in Xie et al.
(2021) with Theorem 6.11 from our work, both discussing the suboptimality gaps under general function
approximation. Corollary 5 in Xie et al. (2021) presented a convergence rate relative to the offline sample size
n as O(1/n1/5), while Theorem 6.11 established a rate of O(1/

√
n). Therefore, MoMA enjoys the benefits

of possessing more general policy classes and value function classes, while making no sacrifice on the data
efficiency.

7.2 The policy improvement step

For the policy improvement step, we have developed the first computationally efficient algorithm under
general function approximations (rather than linear approximations) with a theoretical guarantee. Existing
literature is only computationally efficient either under linear approximation settings (Zanette et al., 2021;
Xie et al., 2021), or without a theoretical guarantee for the policy improvement step (Cheng et al., 2022).
We give detailed comparisons below.

Though Algorithm 1 of Xie et al. (2021) employs a mirror ascent method, it is not efficiently implementable
when |S| = ∞, since it is impossible to enumerate every s in a continuous state space to update the policy
when the ft in Algorithm 1 of Xie et al. (2021) actually needs the access to πt(· | s) for every s. Even if
finitely many πt(s) are employed for obtaining ft via Monte Carlo methods, it still incurs an exponential
complexity of at least Ω

(
CT
)
. To clearly show the difference, we exhibit our proposed algorithm and the

one in Xie et al. (2021):

• Our proposed update rule when ω(p) =
∑m

i=1 pi log pi:

πt+1 (Ai | s) ∝ exp
(
ηtft,i(s; β̂t,i)

)
for each i = 1, . . . ,m.

• The update rule in Algorithm 1 in Xie et al. (2021):

πt+1 (Ai | s) ∝ exp
(
ηtf̃t

(
s; β̂t,i

))
πt (Ai | s)

for each i = 1, . . . ,m.

In the update rule of Xie et al. (2021), πt+1 (Ai | s) does not obtain a closed form without iteratively calling
the previous iteration. In the continuous state space, this procedure is computationally inefficient. Moreover,
assuming that the number of calls of πt(·) used to approximate f̃t

(
·; β̂t,i

)
is C, then at least Ω

(
CT
)

number
of operations related to policies are needed. (See 4.4). In contrast, our algorithm’s cost related to evaluating
policies is O

(
T
(

KL2

1−γ + NL
(1−γ)2

))
, evidently more computationally efficient.

Additionally, while Cheng et al. (2022) considers a parametric policy class, they do not provide a theoretical
analysis for the actor step. Further, Zanette et al. (2021) only focuses on linear approximations, which may
not be applicable in more general settings.

In summary, MoMA can be utilized when policy classes and value function classes of greater generality are
needed, with no sacrifice on computational efficiency.

8 Conclusion

We developed MoMA, a model-based mirror ascent algorithm for offline RL, with general function approx-
imation under the assumption of partial coverage. A key strength of MoMA is its ability to fully exploit

13

Published in Transactions on Machine Learning Research (10/2024)

the potential of an unrestricted policy space, a characteristic advantage of model-based methods. This has
been achieved through a combination of our theoretical framework and the application of mirror ascent
techniques. Additionally, we have developed a practical, implementable version of MoMA that serves as an
approximation of the theoretical algorithm. The efficacy of this practical algorithm has been demonstrated
through a series of numerical experiments. While the numerical results do not consistently outperform the
SOTA, one plausible reason is that the policy classes used in other offline algorithms might be sufficiently
rich for these tasks. The proposed algorithm would gain more advantage in tasks where the optimal policy
is harder to approximate. Improving the algorithm to consistently match the SOTA is an important area
for future research.

There are several other intriguing avenues for future research. One promising area involves the development of
algorithms that can theoretically address the computational challenges posed by the conservative evaluation
step, particularly the need for a computational oracle. Another direction involves the integration of prior
domain-specific knowledge, such as physical principles in mechanical systems or clinical insights in medical
applications, into the transition model. Incorporating Bayesian estimators within our framework could
provide a robust means of estimating transition models in these contexts. In addition, we can consider model
misspecification, e.g., P ∗ /∈ P, analyze both the estimation error and approximation error, and investigate
how they affect the suboptimality gap.

Acknowledgements

We thank the Assigned Action Editor, Shixiang Gu, and the reviewers for their insightful comments and
suggestions that significantly improve this paper. Yanxun Xu is supported in part by National Science
Foundation grants 1918854 and 1940107, and National Institute of Health grant R01MH128085.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep

reinforcement learning at the edge of the statistical precipice. Advances in neural information processing
systems, 34:29304–29320, 2021.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-residual
minimization based fitted policy iteration and a single sample path. Machine Learning, 71:89–129, 2008.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167–175, 2003.

Mohak Bhardwaj, Tengyang Xie, Byron Boots, Nan Jiang, and Ching-An Cheng. Adversarial model for
offline reinforcement learning. arXiv preprint arXiv:2302.11048, 2023.

Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating covariate
shift in imitation learning via offline data with partial coverage. Advances in Neural Information Processing
Systems, 34:965–979, 2021.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pp. 1042–1051. PMLR, 2019.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic for offline
reinforcement learning. arXiv preprint arXiv:2202.02446, 2022.

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate policy
and value iteration. Advances in Neural Information Processing Systems, 23, 2010.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-
driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132–20145, 2021.

14

Published in Transactions on Machine Learning Research (10/2024)

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration.
In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Subhashis Ghosal and Aad Van der Vaart. Fundamentals of nonparametric Bayesian inference, volume 44.
Cambridge University Press, 2017.

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale Doshi-Velez,
and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. Nature medicine, 25(1):16–18,
2019.

Kaiyang Guo, Shao Yunfeng, and Yanhui Geng. Model-based offline reinforcement learning with pessimism-
modulated dynamics belief. Advances in Neural Information Processing Systems, 35:449–461, 2022.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In International
Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14, 2001.

Sajad Khodadadian, Zaiwei Chen, and Siva Theja Maguluri. Finite-sample analysis of off-policy natural
actor-critic algorithm. In International Conference on Machine Learning, pp. 5420–5431. PMLR, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-based
offline reinforcement learning. Advances in neural information processing systems, 33:21810–21823, 2020.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The Interna-
tional Journal of Robotics Research, 32(11):1238–1274, 2013.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning with fisher
divergence critic regularization. In International Conference on Machine Learning, pp. 5774–5783. PMLR,
2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. Advances in Neural Information Processing Systems, 32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Guanghui Lan. Policy optimization over general state and action spaces. arXiv preprint arXiv:2211.16715,
2022.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pp. 45–73. Springer, 2012.

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with baseline
bootstrapping. In International conference on machine learning, pp. 3652–3661. PMLR, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with state
distribution correction. arXiv preprint arXiv:1904.08473, 2019.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy re-
inforcement learning without great exploration. Advances in neural information processing systems, 33:
1264–1274, 2020.

Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in Applied
Probability, 29(2):429–443, 1997.

Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pp. 560–567. Citeseer,
2003.

15

Published in Transactions on Machine Learning Research (10/2024)

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9(5), 2008.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice: Policy
gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline reinforcement
learning and imitation learning: A tale of pessimism. Advances in Neural Information Processing Systems,
34:11702–11716, 2021.

Paria Rashidinejad, Hanlin Zhu, Kunhe Yang, Stuart Russell, and Jiantao Jiao. Optimal conservative offline
rl with general function approximation via augmented lagrangian. arXiv preprint arXiv:2211.00716, 2022.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In Machine Learning: ECML 2005: 16th European Conference on Machine Learning,
Porto, Portugal, October 3-7, 2005. Proceedings 16, pp. 317–328. Springer, 2005.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline reinforce-
ment learning. arXiv preprint arXiv:2204.12581, 2022.

Stephane Ross and J Andrew Bagnell. Agnostic system identification for model-based reinforcement learning.
arXiv preprint arXiv:1203.1007, 2012.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement learning for
autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic q-learning for offline reinforcement
learning: Towards optimal sample complexity. In International Conference on Machine Learning, pp.
19967–20025. PMLR, 2022.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas
Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE, 2012.

Ruben Rodriguez Torrado, Philip Bontrager, Julian Togelius, Jialin Liu, and Diego Perez-Liebana. Deep
reinforcement learning for general video game ai. In 2018 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 1–8. IEEE, 2018.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial cov-
erage. In International Conference on Learning Representations, 2021.

Masatoshi Uehara, Jiawei Huang, and Nan Jiang. Minimax weight and q-function learning for off-policy
evaluation. In International Conference on Machine Learning, pp. 9659–9668. PMLR, 2020.

Sara A Van de Geer and Sara van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge
university press, 2000.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
university press, 2019.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

Tengyang Xie and Nan Jiang. Q* approximation schemes for batch reinforcement learning: A theoretical
comparison. In Conference on Uncertainty in Artificial Intelligence, pp. 550–559. PMLR, 2020.

Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability. In International
Conference on Machine Learning, pp. 11404–11413. PMLR, 2021.

16

Published in Transactions on Machine Learning Research (10/2024)

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent pessimism
for offline reinforcement learning. Advances in neural information processing systems, 34:6683–6694, 2021.

Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with pessimism.
Advances in neural information processing systems, 34:4065–4078, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization. Advances in neural information processing systems,
34:28954–28967, 2021.

Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic methods for
offline reinforcement learning. Advances in neural information processing systems, 34, 2021.

Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. Corruption-robust offline reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pp. 5757–5773. PMLR, 2022.

A Notations and definitions

Definition A.1 (Integral Probability Metric (IPM)(Müller, 1997)). dF is an IPM defined by F if

dF (P,Q) := sup
f∈F

∣∣∣∣ E
x∼P

[f (x)] − E
x∼Q

[f (x)]
∣∣∣∣

where P and Q are two probability measures.

By considering different function class F , we have the relationships between IPM and several popular mea-
sures of distance, such as TV and Wasserstein distance.
Definition A.2 (Slater’s condition). The problem satisfies Slater’s condition if it is strictly feasible, that is:

∃x0 ∈ D : fi (x0) < 0, i = 1, . . . ,m, hi (x0) = 0, i = 1, . . . , p

The next definition essentially measures the size of the function classes Ft,i’s. If maxt,i |Ft,i| is sufficiently
large, then εapprox ≈ 0.
Definition A.3 (Approximation error).

εapprox := sup
P,π,t,i

inf
ft,i∈Ft,i

∥Q̃ω,t(s,Ai) − ft,i(s;βt,i)∥2,dπ
P
.

Definition A.4 (Localized Population Rademacher Complexity). (Wainwright, 2019, chap. 14). For a
given radius δ > 0 and function class F , a localized population Rademacher complexity is defined as

R̄n(δ; F) = Eε,x

 sup
f∈F

∥f∥2≤δ

∣∣∣∣∣ 1n
n∑

i=1
εif (xi)

∣∣∣∣∣
 ,

where {xi}n
i=1 are i.i.d. samples from some underlying distribution P, and {εi}n

i=1 are i.i.d. Rademacher
variables taking values in {−1,+1} equiprobably, independent of the sequence {xi}n

i=1.
Definition A.5 (Star-shaped function class). (Wainwright, 2019, chap. 14). A function class F is
star-shaped around origin if for any f ∈ F and scalar α ∈ [0, 1], the function αf also belongs to F .
Definition A.6 (Strongly convexity). f is strongly convex with modulus µ if the following holds:

f(y) ≥ f(x) + ∇f(x)T (y − x) + µ

2 ∥y − x∥2. (14)

17

Published in Transactions on Machine Learning Research (10/2024)

B Additional theoretical results

The following proposition shows that the commonly-used empirical risk functions satisfy Assumption 1(d).
Proposition 1. Consider a uniformly bounded function class L(P) := {(s′, s, a) 7→ l(P, s′, s, a), P ∈ P} that
is star-shaped (defined in Appendix A) around the true P ∗. Suppose δ2

n ≥ c1
n is a solution to the inequality

R̄n(δ; L(P)) ≤ δ2 where R̄n(δ; L(P)) is the localized Rademacher complexity (defined in appendix A) of the
function class. Assume l(P, s′, s, a) is l0-Lipschitz w.r.t. P , i.e.,

l(P1, s
′, s, a) − l(P2, s

′, s, a) ≤ l0|P1(s′|s, a) − P2(s′|s, a)|.

Assume further that l(P, s′, s, a) is also strongly convex w.r.t. P (s′, s, a) under the norm ∥ · ∥L2,P ∗ . Suppose
H2(P ∗(· | s, a), P (· | s, a)) ≤ c3Es′∼P ∗(·||s,a)l(P, s′, s, a) − c3Es′∼P ∗ l(P ∗, s′, s, a). Let α = c1δ

2
n, then with

high probabilities, we have P ∗ ∈ Pn,αn
and

sup
P ∈Pn,αn

E(s,a)∼ρ[∥P (· | s, a) − P ∗(· | s, a)∥1] ≤ c2δn.

proposition 1 covers the commonly-used negative likelihood function classes, in which the empirical risk
minimizers are exactly MLEs. We show such a construction satisfies assumption 1(d) in the following
corollary.
Corollary 1. Consider l(P, s′, s, a) := − logP (s′ | s, a) and L̂n(P) = − 1

n logP . Assume there exist b >
0, ν > 0 such that

sup
P ∈P

sup
s′,s,a

P (s′|s, a) < b, and, inf
s′,s,a

P ∗(s′|s, a) ≥ ν. (15)

If δ2
n ≥ (1 + b

ν) 1
n solves the following inequality for the local Rademacher complexity of P:

R̄n(δ; P) ≤ δ2
√
b+ ν

,

then assumption 1(d) holds with αn = c1δ
2
n and ϵest = c2δn for some constants c1, c2.

In the following, we prove a suboptimality upper bound for the policy returned by algorithm 1.

Theorem 2. Under assumption 1, if ηt = (1 − γ)
√

2 log(|A|)
T for every fixed T , then we have

V π†

P ∗ − V π̂
P ∗ ≤ (γ

(1 − γ)2 + γ

(1 − γ)3)Cπ† εest︸ ︷︷ ︸
statistical error

+ 1
(1 − γ)2

√
2 log(|A|)

T︸ ︷︷ ︸
policy optimization error

with high probability, where π̂ ∼ Unif(π0, π1, ..., πT −1).

The upper bound in Theorem 2 includes two terms: a statistical error (depending on fixed n) coming from
using offline data for estimation, and an optimization error (depending on iteration T) coming from the
policy improvement. Different from Theorem 1, function approximation is not involved in this case. The
sacrifice is that the update rule is computationally infeasible.

C Technical proofs

In this section, we present all the technical proofs of the main theoretical results. We first prove theorem 2
in appendix C.1, which is a simplified version of theorem 1. Then we prove theorem 1 in appendix C.2 by
further analyzing the effect of function approximation.

18

Published in Transactions on Machine Learning Research (10/2024)

C.1 Proofs of theorem 2

Proof of theorem 2. In this proof, we let ∆m=∆(A) and π(s) = π(· | s) for clarity. We first split the average
regret into the sum of three parts. We will deal with the three parts separately.

V π†

P ∗ − 1
T

T −1∑
t=0

V πt

P ∗ = 1
T

T −1∑
t=0

(
V π†

P ∗ − V π†

Pt

)
+ 1
T

T −1∑
t=0

(
V π†

Pt
− V πt

Pt

)
+ 1
T

T −1∑
t=0

(
V πt

Pt
− V πt

P ∗

)
. (16)

For the first term, we can upper bound V π†

P ∗ − V π†

Pt
for each t. By the simulation lemma (1),

V π†

P ∗ − V π†

Pt
= γ

1 − γ
E(s,a)∼dπ†

P ∗

[
Es′∼P ∗(·|s,a)V

π†

Pt
(s′) − Es′∼Pt(·|s,a)V

π†

Pt
(s′)
]

≤ γ

1 − γ
E(s,a)∼dπ†

P ∗

[∥∥∥V π†

Pt

∥∥∥
∞

∥P ∗(·|s, a) − Pt(·|s, a)∥1

]
≤ γ

(1 − γ)2E(s,a)∼dπ†
P ∗

∥P ∗(·|s, a) − Pt(·|s, a)∥1

≤ γ

(1 − γ)2Cπ†E(s,a)∼ρ ∥P ∗(·|s, a) − Pt(·|s, a)∥1

≤ γ

(1 − γ)2Cπ†εest

(17)

where we used the definitions of Cπ† and εest (see assumption 1).

The third term in (16) is negative with high probability: by assumption 1(d), P ∗ ∈ Pn,αn with high
probability. Recall the updating rule in (1), Pt = argminP ∈Pn,αn

V πt

P . So V πt

Pt
≤ V πt

P ∗ for all t with high
probability. Then the following holds with high probability:

1
T

T −1∑
t=0

(
V πt

Pt
− V πt

P ∗

)
≤ 0. (18)

Then it remains to upper bound V
π†

Pt
− V πt

Pt
. By performance difference lemma,

1
T

T −1∑
t=0

(
V π†

Pt
− V πt

Pt

)
= 1
T (1 − γ)

T −1∑
t=0

E(s,a)∼dπ†
Pt

[
Aπt

Pt
(s, a)

]
= 1
T (1 − γ)

T −1∑
t=0

E(s,a)∼dπ†
P ∗

[
Aπt

Pt
(s, a)

]
+ 1
T (1 − γ)

T −1∑
t=0

(E(s,a)∼dπ†
Pt

− E(s,a)∼dπ†
P ∗

)
[
Aπt

Pt
(s, a)

]
.

(19)

To further deal with the term above, we will first establish an upper bound for the advantage function
Aπt

Pt
(s, a).

Recall the policy update rule in (2),

πt+1(s) = arg max
p∈∆m

{
⟨Qπt

Pt
(s, ·), p⟩ − 1

ηt
D (πt(s), p)

}
or equivalently,

πt+1(s) = arg min
p∈∆m

{
−⟨Qπt

Pt
(s, ·), p⟩ + 1

ηt
D (πt(s), p)

}
. (20)

By the optimality condition of (20), we have for any p ∈ ∆m,〈
−Qπt

Pt
(s, ·) + 1

ηt
∇pD (πt(s), p = πt+1(s)) , p− πt+1(s)

〉
≥ 0.

19

Published in Transactions on Machine Learning Research (10/2024)

Note that D(πt, p) = ω(p) − ω(πt) − ⟨∇ω(πt), p− πt⟩. We can explicitly write out the gradient term in the
inequality above, then we get

〈
−Qπt

Pt
(s, ·) + 1

ηt

(
∇ω(πt+1(s)) − ∇ω(πt(s))

)
, p− πt+1(s)

〉
≥ 0. (21)

By definition of D(·, ·), we can derive that

D(πt(s), p) −D(πt(s), πt+1(s)) −D(πt+1(s), p) = ⟨∇ω(πt+1(s)) − ∇ω(πt(s)), p− πt+1(s)⟩ .

So (21) becomes

〈
Qπt

Pt
(s, ·), p− πt+1(s)

〉
≤ 1
ηt

(
D(πt(s), p) −D(πt(s), πt+1(s)) −D(πt+1(s), p)

)
.

We can rewrite it in terms of advantage function:

〈
Aπt

Pt
(s, ·), p

〉
=
〈
Qπt

Pt
(s, ·), p

〉
− V πt

Pt
(s)

≤
〈
Qπt

Pt
(s, ·), πt+1(s)

〉
− V πt

Pt
(s) + 1

ηt

(
D(πt(s), p) −D(πt(s), πt+1(s)) −D(πt+1(s), p)

)
=
〈
Qπt

Pt
(s, ·), πt+1(s) − πt(s)

〉
+ 1
ηt

(
D(πt(s), p) −D(πt(s), πt+1(s)) −D(πt+1(s), p)

)
.

Let p = π†(s):

〈
Aπt

Pt
(s, ·), π†(s)

〉
≤
〈
Qπt

Pt
(s, ·), πt+1(s) − πt(s)

〉
+ 1
ηt

(
D(πt(s), π†(s)) −D(πt(s), πt+1(s)) −D(πt+1(s), π†(s))

)
≤
〈
Qπt

Pt
(s, ·), πt+1(s) − πt(s)

〉
− 1

2ηt
∥πt+1(s) − πt(s)∥2

1

+ 1
ηt

(
D(πt(s), π†(s)) −D(πt+1(s), π†(s))

)
≤ ∥Qπt

Pt
(s, ·)∥∞∥πt+1(s) − πt(s)∥1 − 1

2ηt
∥πt+1(s) − πt(s)∥2

1

+ 1
ηt

(
D(πt(s), π†(s)) −D(πt+1(s), π†(s))

)
≤ ηt

2 ∥Qπt

Pt
(s, ·)∥2

∞ + 1
ηt

(
D(πt(s), π†(s)) −D(πt+1(s), π†(s))

)
≤ ηt

2(1 − γ)2 + 1
ηt

(
D(πt(s), π†(s)) −D(πt+1(s), π†(s))

)

(22)

where the third line above is because D(p′, p) ≥ 1
2 ∥p− p′∥2 (see section 3.2). For simplicity, we assume the

norm is L1-norm here. Even in the general case, recall that this norm ∥ · ∥ is defined on Rm, and by a well
known result in functional analysis, all norms on a finite dimension linear space are equivalent. So we can
still establish a step similar to the third line in (22), replacing the second term by − C

2ηt
∥πt+1(s) − πt(s)∥2

1
for some constant C. Then in the last line in (22), the first term changes to ηt

2C ∥Q∥2
∞ and the remaining are

the same. We will see this difference does not affect the general form of the theorem, while it only changes
some constant.

20

Published in Transactions on Machine Learning Research (10/2024)

Then we can use (22) to upper bound the first term in (19):

T −1∑
t=0

E(s,a)∼dπ†
P ∗

[
Aπt

Pt
(s, a)

]
=

T −1∑
t=0

E
s∼dπ†

P ∗

〈
Aπt

Pt
(s, ·), π†(s)

〉
≤

T −1∑
t=0

E
s∼dπ†

P ∗

[
ηt

2(1 − γ)2 + 1
ηt

(
D(πt(s), π†(s)) −D(πt+1(s), π†(s))

)]

= 1
2(1 − γ)2

T −1∑
t=0

ηt + E
s∼dπ†

P ∗

T −1∑
t=0

(
D(πt(s), π†(s)) −D(πt+1(s), π†(s))

)
.

(23)

The second term in (23) can be bounded by the following telescoping technique. By assumption, {ηt} is
non-decreasing. Also note that the Bregman divergence is non-negative, so we have

T −1∑
t=0

(
1
ηt
D
(
πt(s), π†(s)

)
− 1
ηt
D(πt+1(s), π†(s))

)

= 1
η0
D
(
π0(s), π†(s)

)
+

T −1∑
t=1

(1
ηt

− 1
ηt−1

)D
(
πt(s), π†(s)

)
− 1
ηT −1

D(πT (s), π†(s))

≤ 1
η0
D
(
π0(s), π†(s)

)
≤ 1
η0
D0.

(24)

Then (23) becomes

T −1∑
t=0

E(s,a)∼dπ†
P ∗

[
Aπt

Pt
(s, a)

]
≤ 1

2(1 − γ)2

T −1∑
t=0

ηt + D0

η0
. (25)

The second term in (19) can be handled with simulation lemma: Let r̃(s, a) = Aπt

Pt
(s, a). Consider two

modified MDPs, M̃t = (S,A, Pt, r̃, γ) and M̃∗ = (S,A, P ∗, r̃, γ). We still focus on the policy π† and evaluate
it under both modified MDPs. Since the visitation measure only depends on the transition probabilities and
the discounting factor, we can rewrite the expectation of r̃ under visitation measure as the value function of
modified MDP. Then directly apply simulation lemma:

1
1 − γ

(
E(s,a)∼dπ†

Pt

− E(s,a)∼dπ†
P ∗

)
Aπt

Pt
(s, a)

= V π†

M̃t
− V π†

M̃∗

= γ

1 − γ
E(s,a)∼dπ†

P ∗

[
Es′∼Pt(·|s,a)V

π†

M̃t
(s′) − Es′∼P ∗(·|s,a)V

π†

M̃t
(s′)
]
.

21

Published in Transactions on Machine Learning Research (10/2024)

Note that the original reward function satisfies r ∈ [0, 1], so both Qπt

Pt
(·, ·) and V πt

Pt
(·) are bounded in [0, 1

1−γ].
Then |r̃| ≤ 1

1−γ , |V π†

M̃t

(s′)| ≤ 1
(1−γ)2 . So

1
1 − γ

(
E(s,a)∼dπ†

Pt

− E(s,a)∼dπ†
P ∗

)
Aπt

Pt
(s, a)

= γ

1 − γ
E(s,a)∼dπ†

P ∗

[
Es′∼Pt(·|s,a)V

π†

M̃t
(s′) − Es′∼P ∗(·|s,a)V

π†

M̃t
(s′)
]

≤ γ

1 − γ
E(s,a)∼dπ†

P ∗

[∥∥∥V π†

M̃t

∥∥∥
∞

∥Pt(·|s, a) − P ∗(·|s, a)∥1

]
≤ γ

(1 − γ)3E(s,a)∼dπ†
P ∗

∥Pt(·|s, a) − P ∗(·|s, a)∥1

≤ γ

(1 − γ)3Cπ†E(s,a)∼ρ ∥Pt(·|s, a) − P ∗(·|s, a)∥1

≤ γ

(1 − γ)3Cπ†εest

(26)

where the penultimate line comes from assumption 1(b), and the last step is by the definition of εest (see
assumption 1(d)).

So now we can use (25) and (26) to control the two terms in (19):

1
T

T −1∑
t=0

(
V π†

Pt
− V πt

Pt

)
= 1
T (1 − γ)

T −1∑
t=0

E(s,a)∼dπ†
P ∗

[
Aπt

Pt
(s, a)

]
+ 1
T (1 − γ)

T −1∑
t=0

(E(s,a)∼dπ†
Pt

− E(s,a)∼dπ†
P ∗

)
[
Aπt

Pt
(s, a)

]
≤ 1

2T (1 − γ)3

T −1∑
t=0

ηt + D0

T (1 − γ)η0
+ γ

(1 − γ)3Cπ†εest.

(27)

Finally, we use (17), (18), (27) to upper bound the three terms in (16):

V π†

P ∗ − 1
T

T −1∑
t=0

V πt

P ∗

= 1
T

T −1∑
t=0

(
V π†

P ∗ − V π†

Pt

)
+ 1
T

T −1∑
t=0

(
V π†

Pt
− V πt

Pt

)
+ 1
T

T −1∑
t=0

(
V πt

Pt
− V πt

P ∗

)
≤ γ

(1 − γ)2Cπ†εest + 1
2T (1 − γ)3

T −1∑
t=0

ηt + D0

T (1 − γ)η0
+ γ

(1 − γ)3Cπ†εest + 0

≤ c1Cπ†εest + 1
2T (1 − γ)3

T −1∑
t=0

ηt + D0

T (1 − γ)η0
.

C.2 Proofs for theorem 1

Proof of theorem 1. We first focus on V π†
Pt

−V πt

Pt
. Let A = {A1, A2, ..., Am}, and the goal is to find an optimal

randomized policy in the probability simplex ∆m := {p ∈ Rm :
∑m

i=1 pi = 1, pi ≥ 0, i = 1, . . . ,m}. Then, for
a given πt(s) ∈ ∆m, we use

Qπt

Pt
(s,Ai) := R (s,Ai) + γ

∫
V πt

Pt
(s′)P (s′ | s,Ai) ds′, i = 1, . . . ,m,

Q̃ω,t(s,Ai) := Qπt

Pt
(s,Ai) + 1

ηt
∇iω (πt(s)) , i = 1, . . . ,m

(28)

22

Published in Transactions on Machine Learning Research (10/2024)

to denote the action value function and the augmented action value function evaluated at the action Ai.
Then for any p ∈ ∆m

Q̃ω,t(s, p) = Qπt

Pt
(s, p) + ⟨∇ω (πt(s)) , p⟩ /ηt

=
m∑

i=1
Qπt

Pt
(s,Ai) pi + ⟨∇ω (πt(s)) , p⟩ /ηt

:=
〈
Q̃ω,t(s, ·), p

〉 (29)

where Q̃ω,t(s, ·) is defined as an m-dimensional vector with its i-th element as Q̃ω,t(s,Ai).

That means, if we want to approximate Q̃ω,t(s, p) which is a linear function of Q̃ω,t(s, ·), then we only need
to approximate Q̃ω,t(s,Ai) for each i = 1, ...,m.
For each i = 1, ...,m, we consider the approximation

ft,i(s;βt,i) ≈ Q̃ω,t(s,Ai) (30)

where ft,i(s;βt,i) denotes some function class parameterized by β.

Then the update rule in (7) is reduced to

πt+1(s) = arg max
p∈∆m

{
⟨ft(s;βt), p⟩ − 1

ηt
ω(p)

}
,∀s ∈ S. (31)

For simplicity, we consider an equivalent rule of (31):

πt+1(s) = arg min
p∈∆m

{
− ⟨ft(s;βt), p⟩ + 1

ηt
ω(p)

}
,∀s ∈ S. (32)

Here we notice that since ω is assumed to be strongly convex with modulus 1, and ⟨ft(s;β), p⟩ is a convex
function of p, we have a strongly convex objective function in (32) with modulus 1

ηt
. Also, ∆m is a convex

space. Therefore the optimization procedure in (32) is meaningful.

Then, by the optimality condition of (32), we have

⟨∇
{

− ⟨ft(s;βt), πt+1(s)⟩ + 1
ηt
ω(πt+1(s))

}
, p− πt+1(s)⟩ ≥ 0

for any p ∈ ∆m. By expanding this inequality, we get

⟨−ft(s;βt), p− πt+1(s)⟩ ≥ − 1
ηt

⟨∇ω(πt+1(s)), p− πt+1(s)⟩

= 1
ηt

(
D(πt+1(s), p)) − ω(p) + ω(πt+1(s)

)
.

We rewrite it as
−
〈
Q̃ω,t(s, ·), p

〉
+
〈
Q̃ω,t(s, ·) − ft(s;βt), p

〉
≥ −

〈
Q̃ω,t(s, ·), πt+1(s)

〉
+
〈
Q̃ω,t(s, ·) − ft(s;βt), πt+1(s)

〉
+ 1
ηt
ω(πt+1(s)) − 1

ηt
ω(p) + 1

ηt
D(πt+1(s), p).

(33)

We notice that
〈
Q̃ω,t(s, ·), p

〉
is exactly Q̃ω,t(s, p). For clarity, we denote

δt(s) := Q̃ω,t(s, ·) − ft(s;βt)

which represents the error in the approximation step in algorithm 2. By previous notations, δt(s) is also
an m-dimension vector. Plugging

〈
Q̃ω,t(s, ·), p

〉
= Q̃ω,t(s, p) = Qπt

Pt
(s, p) + ⟨∇ω (πt(s)) , p⟩ /ηt for any p, and

23

Published in Transactions on Machine Learning Research (10/2024)

δt(s) = Q̃ω,t(s, ·) − ft(s;βt) into (33), then we have

−Qπt

Pt
(s, p) − ⟨∇ω (πt(s)) , p⟩ /ηt + ⟨δt(s), p⟩

≥ −Qπt

Pt
(s, πt+1(s)) − ⟨∇ω (πt(s)) , πt+1(s)⟩ /ηt + ⟨δt(s), πt+1(s)⟩

+ 1
ηt
ω(πt+1(s)) − 1

ηt
ω(p) + 1

ηt
D(πt+1(s), p).

(34)

By definition of D(·, ·), we have

ω (πt+1(s)) − ω(p) − ⟨∇ω (πt(s)) , πt+1(s) − p⟩ = D (πt(s), πt+1(s)) −D (πt(s), p) . (35)

Then (34) becomes

Qπt

Pt
(s, πt+1(s)) −Qπt

Pt
(s, p)

≥ ⟨δt(s), πt+1(s) − p⟩ + 1
ηt
D(πt+1(s), p) + 1

ηt
D (πt(s), πt+1(s)) − 1

ηt
D (πt(s), p) .

(36)

Therefore we have

Aπt

Pt
(s, πt+1(s)) −Aπt

Pt
(s, p)

=Qπt

Pt
(s, πt+1(s)) − V πt

Pt
(s) −Qπt

Pt
(s, p) + V πt

Pt
(s)

=Qπt

Pt
(s, πt+1(s)) −Qπt

Pt
(s, p)

≥ ⟨δt(s), πt+1(s) − p⟩ + 1
ηt
D(πt+1(s), p) + 1

ηt
D (πt(s), πt+1(s)) − 1

ηt
D (πt(s), p) .

(37)

Reorganize it and we have

Aπt

Pt
(s, p)

≤ Aπt

Pt
(s, πt+1(s)) − ⟨δt(s), πt+1(s) − p⟩ + 1

ηt
D (πt(s), p) − 1

ηt
D(πt+1(s), p)

− 1
ηt
D (πt(s), πt+1(s))

≤ Aπt

Pt
(s, πt+1(s)) − ⟨δt(s), πt+1(s) − p⟩ + 1

ηt
D (πt(s), p) − 1

ηt
D(πt+1(s), p)

− 1
2ηt

∥πt+1(s) − πt(s)∥2
1

= ⟨Qπt

Pt
(s), πt+1(s) − πt(s)⟩ − 1

2ηt
∥πt+1(s) − πt(s)∥2

1

− ⟨δt(s), πt+1(s) − p⟩ + 1
ηt
D (πt(s), p) − 1

ηt
D(πt+1(s), p)

≤ ∥Q∥∞∥πt+1(s) − πt(s)∥1 − 1
2ηt

∥πt+1(s) − πt(s)∥2
1

− ⟨δt(s), πt+1(s) − p⟩ + 1
ηt
D (πt(s), p) − 1

ηt
D(πt+1(s), p)

≤ ηt

2 ∥Q∥2
∞ − ⟨δt(s), πt+1(s) − p⟩ + 1

ηt
D (πt(s), p) − 1

ηt
D(πt+1(s), p)

(38)

where the third line above is because D(p′, p) ≥ 1
2 ∥p−p′∥2 (see section 3.2). The reason we assume L1-norm

was already explained in the proof of theorem 2 (see the remark after (22) in section appendix C.1).

24

Published in Transactions on Machine Learning Research (10/2024)

Now we return to the analysis for V π†

Pt
− V πt

Pt
:

1
T + 1

T∑
t=0

(V π†

Pt
− V πt

Pt
)

= 1
T + 1

T∑
t=0

1
1 − γ

E(s,a)∼dπ†
Pt

Aπt

Pt
(s, a)

= 1
T + 1

T∑
t=0

1
1 − γ

E(s,a)∼dπ†
P ∗
Aπt

Pt
(s, a) + 1

T + 1

T∑
t=0

1
1 − γ

(
E(s,a)∼dπ†

Pt

− E(s,a)∼dπ†
P ∗

)
Aπt

Pt
(s, a).

(39)

For the first term in (39), we can let the randomized policy p in (38) be π†(s):

1
T + 1

T∑
t=0

1
1 − γ

E(s,a)∼dπ†
P ∗
Aπt

Pt
(s, a)

= 1
T + 1

T∑
t=0

1
1 − γ

E
s∼dπ†

P ∗
Aπt

Pt
(s, π†(s))

≤ 1
(T + 1)(1 − γ)

T∑
t=0

E
s∼dπ†

P ∗

[
ηt

2 ∥Q∥2
∞ −

〈
δt(s), πt+1(s) − π†(s)

〉
+ 1
ηt
D
(
πt(s), π†(s)

)
− 1
ηt
D(πt+1(s), π†(s))

]
≤ 1

2(T + 1)(1 − γ)3

T∑
t=0

ηt + 1
(T + 1)(1 − γ)

T∑
t=0

E
s∼dπ†

P ∗

〈
δt(s), π†(s) − πt+1(s)

〉
+ 1

(T + 1)(1 − γ)Es∼dπ†
P ∗

T∑
t=0

(
1
ηt
D
(
πt(s), π†(s)

)
− 1
ηt
D(πt+1(s), π†(s))

)
.

(40)

The second term in (40) is bounded by approximation error:

E
s∼dπ†

P ∗

〈
δt(s), π†(s) − πt+1(s)

〉
= E

s∼dπ†
P ∗

〈
Q̃ω,t(s, ·) − ft(s;βt), π†(s) − πt+1(s)

〉
≤ E

s∼dπ†
P ∗

〈
|Q̃ω,t(s, ·) − ft(s;βt)|, π†(s)

〉
+ E

s∼dπ†
P ∗

〈
|Q̃ω,t(s, ·) − ft(s;βt)|, πt+1(s)

〉
≤ 2|A| max

i
E

s∼dπ†
P ∗

∣∣Q̃ω,t(s,Ai) − ft,i(s;βt,i)
∣∣

≤ 2|A| max
i

√
E

s∼dπ†
P ∗

(
Q̃ω,t(s,Ai) − ft,i(s;βt,i)

)2

≤ 2|A| max
i

∥∥∥∥∥dπ†

P ∗(s)
dπt

Pt
(s)

∥∥∥∥∥
1
2

∞

√
Es∼d

πt
Pt

(
Q̃ω,t(s,Ai) − ft,i(s;βt,i)

)2

≤ 2|A| maxi√
1 − γ

∥∥∥∥∥dπ†

P ∗(s)
µ0(s)

∥∥∥∥∥
1
2

∞

√
Es∼d

πt
Pt

(
Q̃ω,t(s,Ai) − ft,i(s;βt,i)

)2
.

25

Published in Transactions on Machine Learning Research (10/2024)

By the updating rule in (6),

Es∼d
πt
Pt

(
Q̃ω,t(s,Ai) − ft,i(s;βt,i)

)2

≤ min
βt,i

Es∼d
πt
Pt

(
Q̃ω,t(s,Ai) − ft,i(s;βt,i)

)2 + c
|Ft,i|
N

,w.h.p.

≤ sup
P,π

inf
βt,i

Es∼dπ
P

(
Q̃ω,t(s,Ai) − ft,i(s;βt,i)

)2 + c
|Ft,i|
N

,w.h.p.

= ε2
approx + c

|Ft,i|
N

,w.h.p.

where the second step follows from the analysis of standard M-estimator (Van de Geer & van de Geer, 2000)
and the last step is because of definition A.3.

Combine the previous two inequalities, then we get

E
s∼dπ†

P ∗

〈
δt(s), π†(s) − πt+1(s)

〉
≤ 2|A|√

1 − γ

∥∥∥∥∥dπ†

P ∗(s)
µ0(s)

∥∥∥∥∥
1
2

∞

(εapprox + c

√
maxt,i |Ft,i|

N
). (41)

The third term in (40) can be bounded by the same method from appendix C.1. (see (24)). So we have
T∑

t=0

(
1
ηt
D
(
πt(s), π†(s)

)
− 1
ηt
D(πt+1(s), π†(s))

)
≤ 1
η0
D0. (42)

By (40), (41), (42), we obtain the following inequality, which is an upper bound for the first term in (39):

1
T + 1

T∑
t=0

1
1 − γ

E(s,a)∼dπ†
P ∗
Aπt

Pt
(s, a)

≤ 1
2(T + 1)(1 − γ)3

T∑
t=0

ηt + 1
(T + 1)(1 − γ)

T∑
t=0

E
s∼dπ†

P ∗

〈
δt(s), π†(s) − πt+1(s)

〉
+ 1

(T + 1)(1 − γ)Es∼dπ†
P ∗

T∑
t=0

(
1
ηt
D
(
πt(s), π†(s)

)
− 1
ηt
D(πt+1(s), π†(s))

)

≤ 1
2(T + 1)(1 − γ)3

T∑
t=0

ηt + 1
1 − γ

2|A|√
1 − γ

∥∥∥∥∥dπ†

P ∗(s)
µ0(s)

∥∥∥∥∥
1
2

∞

(εapprox + c

√
maxt,i |Ft,i|

N
)

+ D0

(T + 1)(1 − γ)η0
.

(43)

The second term in (39) can be handled by the same method from appendix C.1. (see (26)). So we have
1

1 − γ

(
E(s,a)∼dπ†

Pt

− E(s,a)∼dπ†
P ∗

)
Aπt

Pt
(s, a) ≤ γ

(1 − γ)3Cπ†εest. (44)

So now we can use (43) and (44) to control the two terms in (39) respectively:

1
T

T −1∑
t=0

(V π†

Pt
− V πt

Pt
)

= 1
T

T −1∑
t=0

1
1 − γ

E(s,a)∼dπ†
P ∗
Aπt

Pt
(s, a) + 1

T

T −1∑
t=0

1
1 − γ

(
E(s,a)∼dπ†

Pt

− E(s,a)∼dπ†
P ∗

)
Aπt

Pt
(s, a)

≤ 1
2T (1 − γ)3

T −1∑
t=0

ηt + 1
1 − γ

2|A|√
1 − γ

∥∥∥∥∥dπ†

P ∗(s)
µ0(s)

∥∥∥∥∥
1
2

∞

εapprox + D0

T (1 − γ)η0
+ γ

(1 − γ)3Cπ†εest.

(45)

26

Published in Transactions on Machine Learning Research (10/2024)

Finally, we consider V π†

P ∗ − V πt

P ∗ :

V π†

P ∗ − 1
T

T −1∑
t=0

V πt

P ∗ = 1
T

T −1∑
t=0

(
V π†

P ∗ − V π†

Pt

)
+ 1
T

T −1∑
t=0

(
V π†

Pt
− V πt

Pt

)
+ 1
T

T −1∑
t=0

(
V πt

Pt
− V πt

P ∗

)
. (46)

The second term in (46) is already upper bounded by (45).

The third term in (46) is negative with high probability: by assumption 1(c), P ∗ ∈ Pn,αn with high proba-
bility. Recall the updating rule in (1), Pt = argminP ∈Pn,αn

V πt

P . So V πt

Pt
≤ V πt

P ∗ for all t with high probability.
Then the following holds with high probability:

1
T

T −1∑
t=0

(
V πt

Pt
− V πt

P ∗

)
≤ 0. (47)

The first term in (46) can be dealt by simulation lemma, which is same to (17) in appendix C.1:

V π†

P ∗ − V π†

Pt
≤ γ

(1 − γ)2Cπ†εest. (48)

By (45), (46), (47), (48),

V π†

P ∗ − 1
T

T −1∑
t=0

V πt

P ∗ ≤ γ

(1 − γ)2Cπ†εest + 1
2T (1 − γ)3

T −1∑
t=0

ηt

+ 1
1 − γ

2|A|√
1 − γ

∥∥∥∥∥dπ†

P ∗(s)
µ0(s)

∥∥∥∥∥
1
2

∞

(εapprox + c

√
maxt,i |Ft,i|

N
)

+ D0

T (1 − γ)η0
+ γ

(1 − γ)3Cπ†εest + 0

≤ c1Cπ†εest + c2|A|

√
sup

s

dπ†
P ∗(s)
µ0(s) (εapprox + c

√
maxt,i |Ft,i|

N
)

+ 1
2T (1 − γ)3

T −1∑
t=0

ηt + D0

T (1 − γ)η0
.

C.3 Proofs of proposition 1

Proof. Here we adapt a result from theorem 3. Specifically, given the conditions in proposition 1, we have

∥P̂ − P ∗∥2 ≤ c1δn

and
E(l(P̂) − l(P ∗)) ≤ c2δ

2
n.

Now we prove the first result in proposition 1, i.e., P ∗ ∈ Pn,αn
with high probability. Consider L̂n(P ∗) −

L̂n(P̂) where P̂ minimize L̂n(P), and L̂n(P) = 1
n

∑n
i=1 l(P)(si, ai, s

′
i). We also use the notion L(P) := El(P)

which is an population counterpart of L̂n. Then we have

L̂n(P ∗) − L̂n(P̂)
=L̂n(P ∗) − L(P ∗) + L(P ∗) − L(P̂) + L(P̂) − L̂n(P̂)
=(L̂n(P ∗) − L̂n(P̂) + L(P̂) − L(P ∗)) + L(P ∗) − L(P̂)
≤|(L̂n(P ∗) − L̂n(P̂) + L(P̂) − L(P ∗))|.

(49)

27

Published in Transactions on Machine Learning Research (10/2024)

as the third term is less than 0.

By (b) of theorem 3, we have

|(L̂n(P ∗) − L̂n(P̂) + L(P̂) − L(P ∗))|
∥P̂ − P ∗∥2

≤ sup
P

|(L̂n(P ∗) − L̂n(P) + L(P) − L(P ∗))|
∥P − P ∗∥2

≤ c3δn.

Then we get
|(L̂n(P ∗) − L̂n(P̂) + L(P̂) − L(P ∗))| ≤ c3δn∥P̂ − P ∗∥2 ≤ c4δ

2
n.

Therefore we get L̂n(P ∗) − L̂n(P̂) ≤ c4δ
2
n, and it implies

P ∗ ∈ Pn,αn

where α is set to be cδ2
n.

Next, we show that Es,a∼ρ∥P (·|s, a) − P ∗(·|s, a)∥1 ≤ cδn for every P ∈ Pn,αn
. Here we incorporate an

assumption that Es,a∼ρH
2(P, P ∗) ≤ L(P) − L(P ∗) for every P. Then we have

Es,a∼ρH
2(P, P ∗)

≤ L(P) − L(P ∗)
= L(P) − L̂n(P) + L̂n(P) − L̂n(P ∗) + L̂n(P ∗) − L(P ∗)
≤ |L(P) − L̂n(P) + L̂n(P ∗) − L(P ∗)| + |L̂n(P) − L̂n(P ∗)|
≤ |L(P) − L̂n(P) + L̂n(P ∗) − L(P ∗)| + |L̂n(P) − L̂n(P̂)| + |L̂n(P̂) − L̂n(P ∗)|
≤ c1δ

2
n + c2αn + c2αn

≤ cδ2
n.

(50)

Since H2 is an upper bound for TV distance, we have

sup
P ∈Pn,αn

Es,a∼ρ∥P (·|s, a) − P ∗(·|s, a)∥1 ≤ cδn.

And the proof is done.

C.4 Proofs of corollary 1

Proof. Let

L̂n(P) = 1
n

n∑
i=1

P ∗(s′
i | si, ai)

P (s′
i | si, ai)

and its population counterpart:

L(P) = E(s,a)∼ρ,s′∼P ∗(·|s,a)
P ∗(s′ | s, a)
P (s′ | s, a) = DKL(P ∗∥P).

We prove P ∗ ∈ Pn,αn
first. Consider L̂n(P ∗) − L̂n(P̂) where P̂ minimize L̂n(P). Then we have

L̂n(P ∗) − L̂n(P̂)
=L̂n(P ∗) − L(P ∗) + L(P ∗) − L(P̂) + L(P̂) − L̂n(P̂)
=(a) + (b) + (c)

(51)

Terms (a)(c) can be bounded by
sup
P ∈P

|(L̂n − L)(P)|.

Again, we use theorem 3 to show that supP ∈P |(L̂n − L)(P)| ≤ δ2
n.

28

Published in Transactions on Machine Learning Research (10/2024)

For term (b), we notice that L(P ∗) − L(P̂) = DKL(P ∗∥P̂). Combining lemma 3 which shows convergence
rate of MLE under Hellinger distance and lemma 4, which upper bounds KL divergence by Hellinger distance
when P has a lower bound, then we have

(b) = DKL(P ∗∥P̂) ≤ δ2
n

with high probability.

Then we have shown that
L̂n(P ∗) − L̂n(P̂) ≤ cδ2

n = α

with probability at least 1 − δ. This implies that P ∗ ∈ Pα with probability at least 1 − δ.

For the second part, we show

sup
P ∈Pn,αn

(E(s,a)∼ρ[df (P (· | s, a), P ∗(· | s, a))2]) 1
2 ≤ c2δn. (52)

To see this, we bound the Hellinger distance by KL divergence (lemma 4), specifically, for any P ∈ Pn,αn
we

have
H2(P, P ∗) ≤ KL(P∥P ∗)

= L(P) − L(P ∗)
= L(P) − L̂n(P) + L̂n(P) − L̂n(P̂) + L̂n(P̂) − L(P̂) + L(P̂) − L(P ∗).

(53)

Again, the first and the third terms are bounded by

sup
P ∈P

|(L̂n − L)(P)| ≤ δ2
n.

The second term is bounded by α = cδ2
n because P ∈ Pn,αn

. The fourth term is equal to KL(P̂∥P ∗) ≤ c3δ
2
n

by consistency of MLE in KL-divergence. And the proof is done.

D Supporting lemmas

Lemma 1 (A generalization of simulation lemma). Suppose S, A, r, γ, µ0 are all fixed. Here S and A can
be infinite sets, and r : S → R can be any real value function. For two arbitrary transition models P and P̂ ,
and any policy π : S → ∆(A), we have

V π
P − V π

P̂
= γ

1 − γ
E(s,a)∼dπ

P

[
Es′∼P (·|s,a)

[
V π

P̂
(s′)
]

− E
s′∼P̂ (·|s,a)

[
V π

P̂
(s′)
]]
.

If V π

P̂
(s) is bounded, i.e. −C ≤ V π

P̂
(s) ≤ C, ∀s ∈ S, then we further have∣∣∣V π

P − V π

P̂

∣∣∣ ≤ 2C γ

1 − γ
E(s,a)∼dπ

P

[
TV(P (·|s, a), P̂ (·|s, a))

]
.

If V π

P̂
(s) is positive and bounded, i.e. 0 ≤ V π

P̂
(s) ≤ C, ∀s ∈ S, then∣∣∣V π

P − V π

P̂

∣∣∣ ≤ C
γ

1 − γ
E(s,a)∼dπ

P

[
TV(P (·|s, a), P̂ (·|s, a))

]
.

Proof. We first prove the first part of the lemma.

Let dπ
P (·, ·|s0, a0) denote the visitation measure over (s, a) conditioning on (S0 = s0, A0 = a0) under transition

model P , i.e. dπ
P (·, ·|s0, a0) = (1 − γ)

∑∞
t=0 γ

tPπ(St = · , At = · |s0, a0).

Then we have for any (s0, a0),

Qπ
P (s0, a0) = 1

1 − γ
E(s,a)∼dπ

P
(·,·|s0,a0)[r(s, a)]. (54)

29

Published in Transactions on Machine Learning Research (10/2024)

By Bellman equation, for any (s, a),

Qπ
P (s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s′) [Qπ

P (s′, a′)] . (55)

Qπ

P̂
(s, a) = r(s, a) + γE

s′∼P̂ (·|s,a),a′∼π(·|s′)

[
Qπ

P̂
(s′, a′)

]
. (56)

Substitute the r(s, a) in (54) by the r(s, a) in (56):

Qπ
P (s0, a0) = 1

1 − γ
E(s,a)∼dπ

P
(·,·|s0,a0)

[
Qπ

P̂
(s, a) − γE

s′∼P̂ (·|s,a),a′∼π(·|s′)Q
π

P̂
(s′, a′)

]
. (57)

By (54) and (55), we first apply (55) to the Qπ
P (s0, a0) in (54), then apply (54) iteratively:

1
1 − γ

E(s,a)∼dπ
P

(·,·|s0,a0)[r(s, a)]

= Qπ
P (s0, a0)

= r(s0, a0) + γEs∼P (·|s0,a0),a∼π(·|s) [Qπ
P (s, a)]

= r(s0, a0) + γEs∼P (·|s0,a0),a∼π(·|s)

[
1

1 − γ
E(s′,a′)∼dπ

P
(·,·|s,a)[r(s′, a′)]

]
.

Rearrange it as

−r(s0, a0) = γ

1 − γ
Es∼P (·|s0,a0),a∼π(·|s)

[
E(s′,a′)∼dπ

P
(·,·|s,a)[r(s′, a′)]

]
− 1

1 − γ
E(s,a)∼dπ

P
(·,·|s0,a0)[r(s, a)].

Note that the equation above holds for any real function r : S × A → R, so we can replace r(·, ·) by Qπ

P̂
(·, ·)

−Qπ

P̂
(s0, a0) = γ

1 − γ
Es∼P (·|s0,a0),a∼π(·|s)

[
E(s′,a′)∼dπ

P
(·,·|s,a)[Qπ

P̂
(s′, a′)]

]
− 1

1 − γ
E(s,a)∼dπ

P
(·,·|s0,a0)[Qπ

P̂
(s, a)].

(58)

(57)+(58):

Qπ
P (s0, a0) −Qπ

P̂
(s0, a0) = γ

1 − γ
Es∼P (·|s0,a0),a∼π(·|s)

[
E(s′,a′)∼dπ

P
(·,·|s,a)Q

π

P̂
(s′, a′)

]
− γ

1 − γ
E(s,a)∼dπ

P
(·,·|s0,a0)

[
E

s′∼P̂ (·|s,a),a′∼π(·|s′)Q
π

P̂
(s′, a′)

]
.

(59)

Consider the first term on right hand side:

Es∼P (·|s0,a0),a∼π(·|s)E(s′,a′)∼dπ
P

(·,·|s,a)[·] = E(s′,a′)∼d̃π
P

(·,·|s0,a0)[·]

= E(s,a)∼dπ
P

(·,·|s0,a0)Es′∼P (·|s,a),a′∼π(·|s′)[·]

where d̃π
P (s, a|s0, a0) := (1 − γ)

∑∞
t=0 γ

tPπ(St+1 = s,At+1 = a|S0 = s0, A0 = a0).

30

Published in Transactions on Machine Learning Research (10/2024)

So (59) can be rewritten as

Qπ
P (s0, a0) −Qπ

P̂
(s0, a0)

= γ

1 − γ
E(s,a)∼dπ

P
(·,·|s0,a0)

[
Es′∼P (·|s,a),a′∼π(·|s′)Q

π

P̂
(s′, a′) − E

s′∼P̂ (·|s,a),a′∼π(·|s′)Q
π

P̂
(s′, a′)

]
= γ

1 − γ
E(s,a)∼dπ

P
(·,·|s0,a0)

[
Es′∼P (·|s,a)V

π

P̂
(s′) − E

s′∼P̂ (·|s,a)V
π

P̂
(s′)
]
.

Finally, consider V π
P (s0), V π

P̂
(s0) and the initial distribution µ. Recall that dπ

P is the visitation measure
conditioning on the initial distribution µ. So we have

V π
P − V π

P̂
= Es0∼µ

[
V π

P (s0) − V π

P̂
(s0)

]
= Es0∼µ,a0∼π(·|s0)

[
Qπ

P (s0, a0) −Qπ

P̂
(s0, a0)

]
= γ

1 − γ
Es0∼µ,a0∼π(·|s0)E(s,a)∼dπ

P
(·,·|s0,a0)

[
Es′∼P (·|s,a)V

π

P̂
(s′) − E

s′∼P̂ (·|s,a)V
π

P̂
(s′)
]

= γ

1 − γ
E(s,a)∼dπ

P

[
Es′∼P (·|s,a)V

π

P̂
(s′) − E

s′∼P̂ (·|s,a)V
π

P̂
(s′)
]
,

which finishes the first part of the lemma.

Then we prove the second part: first note that

∣∣∣V π
P − V π

P̂

∣∣∣ = γ

1 − γ

∣∣∣E(s,a)∼dπ
P

[
Es′∼P (·|s,a)V

π

P̂
(s′) − E

s′∼P̂ (·|s,a)V
π

P̂
(s′)
]∣∣∣

≤ γ

1 − γ
E(s,a)∼dπ

P

∣∣∣Es′∼P (·|s,a)V
π

P̂
(s′) − E

s′∼P̂ (·|s,a)V
π

P̂
(s′)
∣∣∣ . (60)

Suppose q1, q2 are two arbitrary probability distributions, and C is a constant satisfying −C ≤ f(x) ≤ C.
By property of total variation distance, TV(q1, q2) = 1

2 ∥q1 − q2∥1.

By Hölder inequality

|Ex∼q1f(x) − Ex∼q2f(x)| =
∣∣∣∣∫ f(x)(q1(x) − q2(x))dx

∣∣∣∣
= ∥f(q1 − q2)∥1 ≤ ∥f∥∞∥q1 − q2∥1 ≤ 2CTV(q1, q2).

(61)

Apply (61) to the right hand side of (60):

∣∣∣V π
P − V π

P̂

∣∣∣ ≤ 2C γ

1 − γ
E(s,a)∼dπ

P

[
TV(P (·|s, a), P̂ (·|s, a))

]
,

which concludes the second part.

Third part: Consider the special case that 0 ≤ f(x) ≤ C, then we can improve the upper bound in (61)

31

Published in Transactions on Machine Learning Research (10/2024)

|Ex∼q1f(x) − Ex∼q2f(x)|

=
∣∣∣∣∫ f(x)(q1(x) − q2(x))dx

∣∣∣∣
=
∣∣∣∣∫ f(x)(q1(x) − q2(x))1{q1(x) > q2(x)}dx−

∫
f(x)(q2(x) − q1(x))1{q1(x) ≤ q2(x)}dx

∣∣∣∣ .
Note that on the right hand side, the two terms inside the absolute value sign are both non-negative, so

|Ex∼q1f(x) − Ex∼q2f(x)|

≤ max
{∫

f(x)(q1(x) − q2(x))1{q1(x) > q2(x)}dx,
∫
f(x)(q2(x) − q1(x))1{q1(x) ≤ q2(x)}dx

}
≤ C max

{∫
(q1(x) − q2(x))1{q1(x) > q2(x)}dx,

∫
(q2(x) − q1(x))1{q1(x) ≤ q2(x)}dx

}
= CTV(q1, q2),

where the last step is an equivalent definition of total variation distance (for two probability distributions).

So the factor 2 on the right hand side in (61) can be improved to 1 in this case.

Lemma 2. If f is strongly convex with modulus µ and differentiable, i.e.,

f(y) ≥ f(x) + ∇f(x)T (y − x) + µ

2 ∥y − x∥2, (62)

suppose g is a convex differentiable function, then f + g is a strongly convex function with modulus µ.

Proof. Since g is a convex function, we have

g(y) ≥ g(x) + ∇g(x)T (y − x). (63)

Then
f(y) + g(y) ≥ f(x) + g(x) + (∇f(x)T + ∇g(x)T)(y − x) + µ

2 ∥y − x∥2, (64)

Theorem 3. Theorem 14.20 of (Wainwright, 2019, chap. 14) (Uniform law for Lipschitz cost functions)
Given a uniformly 1bounded function class F that is star-shaped around the population minimizer f∗, let
δ2

n ≥ c
n be any solution to the inequality

Rn (δ; F∗) ≤ δ2.

(a) Suppose that the cost function is L-Lipschitz in its first argument. Then we have

sup
f∈F

|Pn (Lf − Lf) − P (Lf − Lf)|
∥f − f∗∥2 + δn

≤ 10Lδn

with probability greater than 1 − c1e
−c2nδ2

n .
(b) Suppose that the cost function is L-Lipschitz and γ-strongly convex. Then for any function f̂ ∈ F such
that Pn

(
L

f̂
− Lf

)
≤ 0, we have ∥∥∥f̂ − f∗

∥∥∥
2

≤
(

20L
γ

+ 1
)
δn

and
P
(

L
f̂

− Lf

)
≤ 10L

(
20L
γ

+ 2
)
δ2

n,

where both inequalities hold with the same probability as in part (a).

32

Published in Transactions on Machine Learning Research (10/2024)

Lemma 3. Corollary 14.22 of (Wainwright, 2019). Given a class of densities satisfying the previous condi-
tions, let δn be any solution to the critical inequality (14.58) such that δ2

n ≥
(
1 + b

v

) 1
n . Then the nonpara-

metric density estimate f̂ satisfies the Hellinger bound

H2
(
f̂∥f∗

)
≤ c0δ

2
n

with probability greater than 1 − c1e
−c2

v
b+n nδ2

n .
Lemma 4. Lemma B.2 of Ghosal & Van der Vaart (2017). For every b > 0, there exists a constant ϵb > 0
such that for all probability densities p and densities q with 0 < d2

H(p, q) < ϵbP (p/q)b,

K(p; q) ≲ d2
H(p, q)

(
1 + 1

b
log− dH(p, q) + 1

b
log+ P

(
p

q

)b
)

+ 1 −Q(X),

V2(p; q) ≲ d2
H(p, q)

(
1 + 1

b
log− dH(p, q) + 1

b
log+ P

(
p

q

)b
)2

.

Furthermore, for every pair of probability densities p and q and any 0 < ϵ < 0.4,

K(p; q) ≤ d2
H(p, q)

(
1 + 2 log− ϵ

)
+ 2P

[(
log p

q

)
I{q/p ≤ ϵ}

]
,

V2(p; q) ≤ d2
H(p, q)

(
12 + 2 log2

− ϵ
)

+ 8P
[(

log p
q

)2
I{q/p ≤ ϵ}

]
.

Consequently, for every pair of probability densities p and q,

K(p; q) ≲ d2
H(p, q)

(
1 + log

∥∥∥∥pq
∥∥∥∥

∞

)
≤ 2d2

H(p, q)
∥∥∥∥pq
∥∥∥∥

∞
,

V2(p; q) ≲ d2
H(p, q)

(
1 + log

∥∥∥∥pq
∥∥∥∥

∞

)2
≤ 2d2

H(p, q)
∥∥∥∥pq
∥∥∥∥

∞
.

E Supporting algorithms

Monte Carlo algorithms 4, 5 for evaluating Q̃ω,t(s,Ai) at t for each i = 1, ...,m and Q̃ω,t(s, a) are provided.

F Additional results and details for the numerical studies

F.1 Synthetic dataset: an illustration

Environment and behavioral policy details For each episode that starts with an initial state s0 ∼
U(−2, 2), at time n a particle undergoes a random walk and transits according to a mixture of Gaussian
dynamics: sn+1 − sn =: ∆s ∼ ψaN (µ1,a, 0.1) + (1 −ψa)N (µ2,a, 0.1), where the discrete action a ∈ {−1, 0, 1}
corresponds to Left, Stay, and Right, respectively. We choose the random walk steps µ1,−1 = −2, µ2,−1 = 0,
µ1,0 = µ1,1 = 0, µ2,0 = µ2,1 = 2 as known parameters, and ψ−1 = ψ0 = 0.6, ψ1 = 0.4 as the ground truth
unknown model parameters that we estimate with expectation maximization (EM). We generate a partially
covered offline dataset collected by a biased (to the left) behavioral policy β, and define a goal-reaching
reward function, respectively given by:

β(a|s) =

0.05 a = 1,
0.05 a = 0,
0.9 a = −1,

r(s′) =

−2 −3 ≤ s′ ≤ 0,
−1.8 3 > s′ > 0,
0 s′ < −3,
0 s′ ≥ 3,

33

Published in Transactions on Machine Learning Research (10/2024)

Algorithm 4 A Monte Carlo algorithm for evaluating Q̃ω,t(s,Ai) at t
Input: The parametric function ft−1,i(s; β̂t−1,i).
Initialization: Let s0 = s, a0 = Ai, h = 0, and q = r(s0, Ai)
while TRUE do

Generate U ∼ unif[0, 1].
if U < 1 − γ then

Break.
else

Sample sh ∼ Pt(· | sh−1, ah−1).
Solve

πt(sh) = arg max
p′∈∆(A)

{
m∑

i=1
ft−1,i(s; β̂t−1,i)p′

i − 1
ηt
ω(p′)

}
(65)

Generate ah ∼ πt(sh).
q = q + r(sh, ah).
h = h+ 1.

end if
end while
Let Q̂πt

Pt
(s,Ai) := q.

Let Q̃ω,t(s,Ai) := Q̂πt

Pt
(s,Ai) + 1

ηt
∇ω (πt(s))i

Algorithm 5 A Monte Carlo algorithm for evaluating Q̃ω,t(s, a) for the continuous-action settings
Input: The parametric function ft−1(s, a; β̂t−1).
Initialization: Let s0 = s, a0 = a, h = 0, and q = r(s0, a0)
while TRUE do

Generate U ∼ unif[0, 1].
if U < 1 − γ then

Break.
else

Sample sh ∼ Pt(· | sh−1, ah−1).
Solve

πt(sh) = arg max
a′∈A

{
ft−1(s, a′; β̂t−1) − 1

ηt
ω(a′)

}
(66)

Generate ah ∼ πt(sh).
q = q + r(sh, ah).
h = h+ 1.

end if
end while
Let Q̂πt

Pt
(s, a) := q.

Let Q̃ω,t(s, a) := Q̂πt

Pt
(s, a) + 1

ηt
∇ω (πt(s))i

for all s ∈ R. Thus, the particle is encouraged to reach either the positive or negative terminal state with
the shortest path possible, with a slight favor towards the positive end if the particle starts off near 0. The
offline dataset contains 50 episodes, which are sufficient for an accurate estimation of ψ−1 but may lead
to misestimation of ψ0 and ψ1. Indeed, for our particular dataset, while the MLE ψ̂−1 is accurate, ψ̂0 is
underestimated and ψ̂1 is overestimated, which could make over-exploitation of the MLE a problem.

Implementation details We implement MoMA strictly following Algorithm 2. We choose D(·, ·) to be
KL divergence, reducing the policy improvement steps to natural policy gradient (NPG) as mentioned in

34

Published in Transactions on Machine Learning Research (10/2024)

Section 3.2. We parameterize by ft,i(s, βt,i) = β⊤
t,ie(s,Ai),∀i = 1, ...,m where the features e(s,Ai) are chosen

to be exponential functions.

Contribution from pessimism: accompanying figure The accompanying figure referenced in the
study of Contribution from Pessimism in Section 6.1 is given in Figure 2.

0 10 20 30 40
Epoch

0.4

0.6

0.8
0

Model Parameter value vs Epoch

Figure 2: The estimated model parameter ψ̂0 modified by the pessimism updates. As a result, MoMA policy
shifts away from the faulty action Stay.

Hyperparameters and compute information The hyperparameters of MoMA used in the random walk
experiment are summarized in table 3. The entire run (training and evaluation) of MoMA on a standard
CPU takes less than one hour.

Table 3: Hyperparameters for the random walk experiment
Hyperparameter Value
actor steps 150
model steps 150
η 0.1
κ1 0.1
λ 3.0
MC number 300
γ 0.4
iterations 40

F.2 The advantage of nonparametric policy class

We provide an illustrative example to empirically validate the importance of the nonparametric policy class,
demonstrating scenarios where the limitations of parametric policies are evident.

Consider an MDP with states S = {1, 2, 3, 4, 5} and an action space A = {0, 1}. The transition dynamics
are defined as follows:

P (s′ = 2 | s = 1, a = 0) = 0.8, P (s′ = 1 | s = 1, a = 0) = 0.2,
P (s′ = 3 | s = 1, a = 1) = 0.9, P (s′ = 1 | s = 1, a = 1) = 0.1,
P (s′ = k | s = k, a) = 1 for all k = 2, 3, 4, 5 and a = 0, 1.

35

Published in Transactions on Machine Learning Research (10/2024)

The reward function is set as follows:

r(s = 1, a = 1) = 10,
r(s = 1, a = 0) = 5,
r(s = 2, a = 1) = 10,
r(s = 2, a = 0) = 1,
r(s, a) = sin(s) + cos(a) for all s = 3, 4, 5 and a = 0, 1.

The discount factor γ is set to 0.9. Under these settings, the optimal policy is π∗(s = 1) = 1, π∗(s = 2) = 1,
and π∗(s) = 0 for all s = 3, 4, 5.

We aim to compare the results of the proposed nonparametric policy class and the log-linear policy class,
defined as:

π(a = 0 | s) = 1
1 + e−θ0+θ1s

,

π(a = 1 | s) = 1 − π(a = 0 | s).

Based on these settings, we applied both a parametric policy gradient method and the proposed nonpara-
metric method. The results indicate that the optimal parametric policy yields a sub-optimal policy with a
value of 23.50, whereas the proposed nonparametric method successfully identifies the optimal policy with
a value of 27.08. This demonstrates the superiority of the nonparametric policy method over a pre-specified
policy class.

F.3 Continuous action D4RL benchmark experiments

Hyperparameters and compute information The hyperparameters of MoMA used in the D4RL ex-
periments are summarized in Table 4. We train and evaluate MoMA as well as baseline algorithms on one
A100 GPU for all D4RL experiments, and summarize the wall-clock times in Table 5.

Table 4: Hyperparameters for the D4RL experiments
Hyperparameter Value
η 3E-4
κ1 3E-4
λ 5E-5
γ 0.99

Table 5: D4RL benchmark wall-clock times, rounded to hours.
MoMA MOPO IQL CQL

Hopper, medium 6.9 2.5 4.0 6.1
Hopper, medium-replay 8.1 3.2 2.4 5.5
Hopper, medium-expert 6.9 2.5 2.3 5.5
HalfCheetah,medium 8.7 4.4 5.6 8.1
HalfCheetah, medium-replay 8.7 4.4 3.2 8.1
HalfCheetah, medium-expert 9.0 4.5 4.3 8.3
Walker2D medium 10.3 2.7 2.8 6.4
Walker2D, medium-replay 8.6 4.4 2.3 5.9
Walker2D, medium-expert 8.9 3.2 3.4 6.0

Alternative evaluation metrics As a supplement to the standard mean of evaluation scores reported
in Table 2, we further consider the evaluation scheme proposed by Agarwal et al. (2021). Their method
addresses the need for more reliable performance evaluation in deep reinforcement learning, particularly in

36

Published in Transactions on Machine Learning Research (10/2024)

scenarios with limited seeds. It emphasizes the use of distributional metrics, which are less sensitive to
outliers, providing a clearer and more robust picture of algorithm performance across different runs.

Specifically, for our MoMA, model-based baseline MOPO, and model-free baseline CQL, we plot the aggre-
gate metrics including interquartile mean (IQM), mean, and optimality gap together with 95% bootstrap
confidence intervals (CIs) for each one of the 9 tasks in Figure 3. IQM has better statistical efficiency than
median, while optimality gap is a robust alternative to mean. Higher IQM and mean scores are better, and
lower optimality gap score is better. We further supplement the aggregate metrics with performance profiles
based on score distributions (Agarwal et al., 2021), defined as the fraction of runs above a certain score
threshold, and higher curve is better. We plot the performance profiles and bootstrap 95% confidence bands
in Figure 4. For the HalfCheetah environment, MoMA consistently outperforms the two baselines across the
three data settings measured by all three metrics, and exhibit uniformly higher performance profiles. For the
medium-expert data setting, MoMA achieves the best or competitive results across the three environments.

Figure 3: Aggregate metrics on D4RL tasks with 95% bootstrap CIs.

37

Published in Transactions on Machine Learning Research (10/2024)

Figure 4: Performance profiles based on score distributions, pointwise 95% confidence bands.

38

	Introduction
	Preliminaries
	Model-based mirror ascent for offline RL
	Policy evaluation: conservative estimate of Q
	Policy improvement: mirror ascent

	A practical algorithm
	Primal-dual (PD) for solving the constrained optimization problem
	Function approximation in MA
	An example
	Efficient policy update
	Extension to continuous action space

	Theoretical analysis
	Numerical studies
	Synthetic dataset: an illustration
	Continuous action D4RL benchmark experiments

	Comparisons with existing works
	The policy evaluation step
	The policy improvement step

	Conclusion
	Notations and definitions
	Additional theoretical results
	Technical proofs
	Proofs of Theorem 1
	Proofs for Theorem 2
	Proofs of estimation error
	Proofs of mle

	Supporting lemmas
	Supporting algorithms
	Additional results and details for the numerical studies
	Synthetic dataset: an illustration
	The advantage of nonparametric policy class
	Continuous action D4RL benchmark experiments

