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ABSTRACT

This paper investigates conservative exploration in reinforcement learning where
the performance of the learning agent is guaranteed to be above a certain thresh-
old throughout the learning process. It focuses on the episodic linear Markov
Decision Process (MDP) setting where the transition kernels and the reward func-
tions are assumed to be linear. With the knowledge of an existing safe baseline
policy, two algorithms based on Least-Squares Value Iteration (LSVI) (Bradtke
& Barto, 1996; Osband et al., 2016), coined StepMix-LSVI and EpsMix-LSVI,
are proposed to balance the exploitation and exploration while ensuring that the
conservative constraint is never violated in each episode with high probability.
Theoretical analysis shows that both algorithms achieve the same regret order as
LSVI-UCB, their constraint-free counterpart from Jin et al. (2020), indicating that
obeying the stringent episode-wise conservative constraint does not compromise
the learning performance of these algorithms. The algorithm design and the the-
oretical analysis are further extended to the setting where the baseline policy is
not given a priori but must be learned from an offline dataset, and it is proved that
similar conservative guarantee and regret can be achieved if the offline dataset
is sufficiently large. Experiment results corroborate the theoretical analysis and
demonstrate the effectiveness of the proposed conservative exploration strategies.

1 INTRODUCTION

One of the major obstacles that prevent state-of-the-art reinforcement learning (RL) algorithms from
being deployed in real-world systems is the lack of performance guarantees throughout the learn-
ing process. In particular, for many practical systems, a reasonable albeit not necessarily optimal
baseline policy is often in place, and RL is later brought in as a (supposedly) superior solution to
replace the baseline. System designers want the potentially better RL policy, but are also wary of the
possible performance degradation incurred by exploration. This dilemma exists in many domains,
including digital marketing, robotics, autonomous driving, healthcare, and networking; see Garcıa
& Fernández (2015); Wu et al. (2016) for a detailed discussion of practical examples. It is desirable
to have the RL algorithm perform nearly as well (or better) as the baseline policy at all times.

To address this challenge, conservative exploration has received increased interest in RL research
over the past few years (Garcelon et al., 2020b; Yang et al., 2021b; Efroni et al., 2020; Zheng &
Ratliff, 2020; Xu et al., 2020; Liu et al., 2021). In the online learning setting, exploration of the
unknown environment is necessary for RL to learn about the underlying Markov Decision Process
(MDP). However, “free” exploration provides no guarantee on the RL performance, particularly in
the early phases where the knowledge of the environment is minimal and the algorithm tends to
explore almost randomly. To solve this problem, the vast majority of the conservative exploration
literature (see Appendix A for a detailed literature review) relies on a key idea of invoking the
baseline policy early on to build a conservative budget, which can be spent in later episodes to take
explorative actions. This intuition, however, critically depends on the definition of the conservative
constraint being the cumulative expected reward over a horizon falling below a certain threshold. If
a more stringent constraint defined on a per episode basis is adopted, this idea becomes infeasible
and it is unclear how conservative exploration can be achieved.

Besides the difficulties of incorporating the conservative constraints, practical RL applications may
involve a large number of states, and linear function approximation (Jin et al., 2020; Yang & Wang,
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Table 1: Comparison of Conservative Exploration Methods with Linear Function Approximation

Algorithm (Reference) Regret Constraint Additional Assumption

LSVI-UCB (Jin et al., 2020) Õ
(√

d3H4N
)

- -

SLUCB-QVI (Amani et al., 2021) Õ( 1
κ′

√
d3H4N) Step Continuous feature space, known κ′

BudgetFirst / LCBCE (Yang et al., 2021b) Õ
(√

d3H4N + d3H4∆0

κ2+κ∆0

)
Cumulative Known / Unknown ∆0

StepMix-LSVI (this work) Õ
(√

d3H4N + d3H4∆0

κ2

)
Episodic -

EpsMix-LSVI (this work) Õ
(√

d3H4N + d3H4∆0

κ2

)
Episodic -

d: dimension; H: horizon; N : number of episodes; ∆0: suboptimality gap for the base policy;
κ: tolerable reward loss from base policy. κ′: minimum gap between the costs of base actions and the constraint.

2020) is a simple yet effective approach to approximate either the value function or the policy.
The introduction of linear function approximation raises a fundamental set of challenges involv-
ing the computational and statistical efficiency, especially given the need to manage the explo-
ration/exploitation tradeoff. Incorporating linear function approximation also makes the conser-
vative exploration problem much more difficult (Amani et al., 2021; Yang et al., 2021b).

In this paper, we focus on conservative exploration in a finite-horizon episodic MDP with linear
function approximation. Unlike most of the prior works, we enforce a more strict conservative con-
straint that the expected reward of the RL policy cannot be much worse than that of a baseline policy
for every episode. When such baseline policy is explicitly given, we propose to integrate various
types of mixture policies into conservative exploration to cope with the more stringent per-episode
constraint. We then extend the study of conservative exploration to the setting where the baseline
policy is not given a priori but must be learned from an offline dataset. Our main contributions are
summarized as follows.

• With a given baseline policy, we propose StepMix-LSVI, a new model-free learning algorithm
based on the Least-Squares Value Iteration (LSVI) principle with a step mixture design embedded
in each episode. StepMix-LSVI is built on a novel two-stage policy design that dynamically
evolves with episodes, where we add an evaluation step to examine different concatenations of
the baseline policy and the optimistic policy in terms of potential constraint violations. This
evaluation relies on a careful integration of the LSVI principle and the lower confidence bound
(LCB) to produce the desired balance of baseline and optimistic policies.

• We then develop EpsMix-LSVI which, instead of relying on step mixture policies as in StepMix-
LSVI, adopts a randomization mechanism and constructs episodic mixture policies in each
episode. Episode-wise randomization is critical in allowing EpsMix-LSVI to be less conserva-
tive than StepMix-LSVI without violating the conservative constraint.

• Regret analyses reveal that without any additional assumption, both algorithms achieve
Õ
(√

d3H4N
)

regret, which is of the same order as LSVI-UCB, their constraint-free counter-
part (Jin et al., 2020), while never violating the conservative constraint during the learning process
with high probability. The conservative constraint turns out to only incur an additive regret term,
as opposed to a multiplicative coefficient in Amani et al. (2021). Furthermore, the additive terms
are comparable to that in Yang et al. (2021b), while our constraint is more stringent. A comparison
of our work and these relevant papers is presented in Table 1.

• When the baseline policy is not given, we study an extension where we first learn an approximately
safe baseline policy from an offline dataset and then use it as an input to the StepMix-LSVI or
EpsMix-LSVI algorithm. We characterize the impact of safety uncertainty due to learning from
an offline dataset on the safety and regret of conservative exploration, and prove that as long as
the dataset is sufficiently large, similar regret and conservative guarantees to the case of explicitly
using a provably safe baseline policy can be achieved. This is further validated in the experiments.

2 PROBLEM FORMULATION

We consider an episodic MDPM = (S,A, H, P, r, x1), where S and A are the sets of states and
actions, respectively, H ∈ Z+ is the length of each episode, P = {Ph}Hh=1 and r = {rh}Hh=1 are
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respectively the state transition probability measures and the reward functions, and x1 is a given
initial state. We assume that S is a measurable space with possibly infinite number of elements and
A is a finite set with cardinality A. Moreover, for each h ∈ [H], Ph(·|x, a) denotes the transition
kernel over the next states if action a is taken for state x at step h ∈ [H], and rh : S ×A → [0, 1] is
the deterministic reward function at step h. Our result can be easily generalized to random reward
functions. We consider the learning problem where S andA are known while P and r are unknown
a priori.

A policy π is a set of mappings {πh : S → ∆(A)}h∈[H], where ∆(A) is the set of all probability
distributions over the action space A. In particular, πh(a|s) denotes the probability of selecting
action a in state s at time step h.

An agent interacts with this episodic MDP as follows. In each episode, the environment begins with
a fixed initial state x1. Then, at each step h ∈ [H], the agent observes the state xh ∈ S, picks an
action ah ∈ A, and receives a reward rh(xh, ah) ∈ [0, 1]. The MDP then evolves into a new state
xh+1 that is drawn from the probability measure Ph(·|xh, ah). The episode terminates after H steps.

For each h ∈ [H], we define the state-value function V π
h : S → R as the expected total reward

received under policy π when starting from an arbitrary state at the h-th step until the end of the
episode. Specifically, ∀x ∈ S, h ∈ [H],

V π
h (x) := Eπ

[ H∑
h′=h

rh′(xh′ , ah′)

∣∣∣∣xh = x

]
, (1)

where we use Eπ[·] to denote the expectation over states and actions that are governed by π and
P . Since the MDP begins with the same initial state x1, to simplify the notation, we use V π to
denote V π

1 (x1) without causing ambiguity. Correspondingly, we define the action-value function
Qπ

h : S × A → R at step h as the expected total reward under policy π after taking action a at state
x in step h, that is:

Qπ
h(x, a) := Eπ

[ H∑
h′=h

rh′(xh′ , ah′)

∣∣∣∣xh = x, ah = a

]
= rh(x, a) + [PhV

π
h+1](x, a),

where [PhV
π
h+1](x, a) := Ex′∼Ph(·|x,a)[V

π
h+1(x

′)]. Since the action space and the episode length
are both finite, there always exists an optimal policy π∗ that gives the optimal value V ∗

h (x) =
supπ V

π
h (x) for all x ∈ S and h ∈ [H].

Linear MDP. We assume the MDP (S,A, H, P, r, x1) is a linear MDP (Jin et al., 2020) with a
(known) feature map ϕ, i.e., for any h ∈ [H], there exist d unknown measures µh = (µ

(1)
h , . . . , µ

(d)
h )

over S and an unknown vector θh ∈ Rd, such that for any (x, a) ∈ S × A, we have Ph(x
′|x, a) =

⟨ϕ(x, a) and µh(x
′)⟩, rh(x, a) = ⟨ϕ(x, a), θh⟩. Without loss of generality, we assume ∥ϕ(x, a)∥ ≤

1 for all (x, a) ∈ S ×A, and max{∥µh(S)∥, ∥θh∥} ≤
√
d for all h ∈ [H].

Conservative Constraint. While there could be various forms of constraints imposed on the RL
algorithms, in this work, we focus on a baseline policy-based constraint (Garcelon et al., 2020b;
Yang et al., 2021b). In many applications, it is common to have a known and reliable baseline policy
that is potentially suboptimal but satisfactory to some degree. Therefore, for applications of RL
algorithms, it is important that they are guaranteed to perform not much worse than the existing
baseline throughout the learning process. Denote the baseline policy as πb and the corresponding
expected total reward obtained under πb in an episode as V πb

. Then, throughout the learning, we
require that the expected total reward for each episode n is at least γ with high probability, where
κ := V πb−γ > 0 characterizes how much risk the algorithm can take during the learning process. A
policy π that achieves expected total reward at least γ is considered to be “safe”, and we emphasize
that our proposed algorithms do not require the knowledge of V πb

. Let πn be the policy adopted by
the agent during episode n ∈ [N ]. Mathematically, we formulate the conservative constraint as

P
[
V πn

≥ γ,∀n ∈ [N ]
]
≥ 1− δ, where δ ∈ (0, 1). (2)

Comparison with Previous Conservative Constraints. The conservative constraint in Equation (2)
is more restrictive compared with Garcelon et al. (2020b); Yang et al. (2021b), where the constraint
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is imposed on the cumulative expected reward over all experienced episodes instead of on each
episode. We note that this stringent constraint has a profound impact on the algorithm design. While
the previous cumulative conservative constraint enables the idea of saving the conservative budget
early on and spending it later to play explorative actions, it cannot guarantee that in each episode,
the expected total reward is above a certain threshold. Our constraint in Equation (2), in contrast,
requires the expected total reward to be above a threshold in each episode. Hence, the idea of saving
budget from early episodes for exploration in future episodes cannot be adopted, and it requires a
more sophisticated algorithm design to control the budget spending within each episode and ensure
the safety of all executed policies. A comprehensive review of the related works and how our work
is different from them are deferred to Appendix A due to the space limitation.

In addition, the per-episode conservative constraint in our paper is more practical than the cumulative
reward-based constraints. This is because each episode in the episodic MDP setting corresponds to
the learning agent interacting with the environment from the beginning to the end, e.g., a robot walks
from a starting point to the end point. Guaranteeing the performance in every episode has physical
meanings, e.g., making sure that the robot does not suffer any damage while learning how to walk.
This cannot be captured by the long-term constraint that spans many episodes.

Learning Objective. Under the given episodic MDP setting, the agent aims to learn the optimal
policy by interacting with the environment during a set of episodes, subject to the conservative
constraint. The difference between V πn

and V ∗ serves as the expected regret or the suboptimality
of the agent in the n-th episode. Thus, after playing for N episodes, the total expected regret is

Reg(N) := NV ∗ −
N∑

n=1

V πn

. (3)

Our objective is to minimize Reg(N) while satisfying Equation (2) for any given δ ∈ (0, 1).

3 THE STEPMIX-LSVI ALGORITHM

In this section, we present a new model-free learning algorithm based on Least-Squares Value Iter-
ation (Bradtke & Barto, 1996; Osband et al., 2016), coined StepMix-LSVI. A major component of
StepMix-LSVI is to design a step mixture policy (Baram et al., 2021) in each episode. Before we
present the StepMix-LSVI algorithm, we first introduce the definition of step mixture policies.
Definition 1 (Step Mixture Policy). The step mixture policy of two Markov policies π1 and π2 with
a parameter ρ, denoted by ρπ1+(1−ρ)π2, is a Markov policy such that the probability of choosing
an action ah given a state xh under the step mixture policy is ρπ1

h(ah|xh) + (1− ρ)π2
h(ah|xh).

3.1 ALGORITHM DESIGN

We elaborate the design of StepMix-LSVI, which is presented in Algorithm 1. The StepMix-LSVI
algorithm proceeds in episodes. At the beginning of each episode n, it first constructs an informa-
tion matrix Λn

h for each step h. This information matrix, together with the historical data, will be
utilized in the LSVI-UCB subroutine to obtain an optimistic policy π̄n. The LSVI-UCB subroutine,
shown in Algorithm 2 in Appendix C.1, is directly adopted from Jin et al. (2020). The essential
idea of LSVI-UCB is to parameterize Q∗

h(x, a) by the linear form w⊤
h ϕ(x, a), where wh can be

approximated by solving a least-square problem. An upper confidence bound (UCB) is then added
to the estimated Q∗

h(x, a) to balance exploration and exploitation during learning. When the con-
servative constraint is not imposed, LSVI-UCB is known to converge to the optimal policy with a
regret in the order of O(

√
d3H4N). However, LSVI-UCB cannot guarantee that the total expected

reward obtained in each episode is always above the desired threshold γ. In other words, the nec-
essary exploration may temporarily hurt the total reward in certain episodes and lead to undesirable
performance degradation.

To overcome this disadvantage of LSVI-UCB and avoid constraint violation during learning,
StepMix-LSVI relies on a novel two-stage construction to produce the mixture policy πn for episode
n. Notably, this two-stage construction dynamically evolves with episodes. In the first stage, we
construct a set of candidate policies by concatenating the baseline policy πb with the optimistic
policy π̄n. The purpose of this set of candidate policies is to evaluate potential violations of the
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constraint, which directly affects the mixture probability in Definition 1. Specifically, we let the first
h0 ∈ [0, H] steps of the candidate policy be the same as the baseline policy πb, and the last H − h0

steps be the same as the optimistic policy π̄n. We denote each of those H +1 policies as π̃n,h0 , and
then estimate the performance of those policies by invoking the LCB-V subroutine (see Algorithm 3
in Appendix C.2).

Algorithm 1 The StepMix-LSVI Algorithm
Input: λ, β, γ, πb

D0 ← ∅
for episode n = 1, 2, . . . , N do

// 1st stage: policy evaluation
Λn

h ←
∑n−1

τ=1 ϕ(x
τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λI
π̄n ← LSVI-UCB(Dn−1,Λ

n
h); h0 ← 0

while h0 ≤ H do
π̃n,h0 ← (πb

1, . . . , π
b
h0
, π̄n

h0+1, . . . , π̄
n
H)

V π̃n,h0 ← LCB-V(π̃n,h0 ,Dn−1,Λ
n
h, β)

if V π̃n,h0 ≥ γ then
Break;

end if
h0 ← h0 + 1

end while
hn ← h0

// 2nd stage: policy construction
if hn ∈ [1 : H] then

ρn =
V π̃n,hn − γ

V π̃n,hn − V π̃n,hn−1
(4)

πn = ρnπ̃
n,hn−1 + (1− ρn)π̃

n,hn (5)

else if hn = 0 then
πn = π̄n

else
πn = πb

end if
Play πn and collect {(xn

h, a
n
h, rh(x

τ
h, a

τ
h))}Hh=1

Dn ← Dn−1 ∪ {(xn
h, a

n
h, rh(x

τ
h, a

τ
h))}Hh=1

end for

The LCB-V subroutine also utilizes the LSVI
principle to estimate the action-value function
Qπ̃n,h0

h (·, ·) under policy π̃n,h0 . Compared
with LSVI-UCB, there are two major differ-
ences: First, instead of constructing an upper
confidence bound for the action-value function,
we obtain a lower confidence bound (LCB)
by subtracting the bonus term β∥ϕ(·, ·)∥(Λn

h)
−1 ,

where we use ∥x∥V to denote
√
x⊤V x. We ex-

pect that the true action-value function is above
its LCB with high probability, similarly for the
state-value function. Second, since LCB-V is a
policy evaluation subroutine, it does not apply
the max operator to the action-value function
for the greedy action selection. Rather, in or-
der to evaluate the state-value function, it needs
to take expectation of the action-value func-
tion. These differences would also complicate
the corresponding analysis.

Once the LCB of the expected total reward
V π̃n,h0 is returned, the learner will compare it
with the threshold γ. If it is above the threshold,
it indicates that with high probability the con-
catenated policy π̃n,h0 will satisfy the conser-
vative constraint. Then, the learner would stop
evaluating the remaining concatenated policies.
Let hn be the smallest h0 such that V π̃n,h0 ≥ γ.
If none of the candidate policies achieves the
threshold, we let hn = H + 1.

Then, in the second stage, depending on the value of hn, the learner constructs and executes the
policy πn for episode n as follows:

• If hn = 0, LSVI-UCB is considered safe, and the learner executes π̄n.
• If hn ∈ [1 : H], it indicates that π̃n,hn is safe but π̃n,hn−1 may be not. More importantly, they

only differ in one step hn. Then, the learner would construct a mixture of π̃n,hn and π̃n,hn−1

according to Equation (4) and Equation (5), such that the expected total reward obtained under the
mixture policy is guaranteed to be above the threshold.

• If hn = H + 1, it indicates that the LCB of V πb

is below the threshold, which occurs when the
estimation is highly uncertain. The learner will then resort to πb for conservative exploration.

Therefore, at each episode n, StepMix-LSVI finds a safe policy πn chosen from either πb, π̄n, or a
step mixture policy in Equation (5) . Once the policy πn is executed and a trajectory is collected,
the learner moves on to the next episode.

3.2 THEORETICAL ANALYSIS

The performance of StepMix-LSVI is formally stated in the following theorem.

Theorem 1. There exist absolute constants c′, cβ , c1 and c2 such that, for any δ ∈ (0, 1), if we
choose λ = c′d log(dNH/δ) and β = cβdH

√
ι in Algorithm 1 with ι = 2 log(4dHN/δ), then with

probability at least 1 − δ, StepMix-LSVI (Algorithm 1) simultaneously (i) satisfies the conservative
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constraint in Equation (2), and (ii) achieves a total regret that is at most

c1
√
d3H4Nι2 +

c2d
3H4∆0ι

2

κ2
, (6)

where ∆0 := V ∗ − V πb

is the suboptimality gap of the baseline policy and κ := V πb − γ is the
tolerable value loss from the baseline policy.

Remark 1. Theorem 1 indicates that StepMix-LSVI achieves a regret in the order of Õ(
√
d3H4N),

the same as LSVI-UCB in Jin et al. (2020), while ensuring zero constraint violation with high
probability. The conservative exploration only leads to an additive constant term in the learning
regret bound in Equation (6). Besides, when γ = 0, the algorithm reduces to standard LSVI-UCB,
and the additive constant term becomes zero.

The proof of Theorem 1 is provided in Appendix E where important lemmas can be found in Ap-
pendix D. We outline the major steps of the proof as follows.

First, we note that the mixture policy πn is stochastic in general, as opposed to the deterministic
greedy policy under LSVI-UCB. To cope with the policy randomness and temporal dependency, we
develop a new uniform concentration lemma for value functions under policy π̃n,h0 for any h0 ∈
[0 : H + 1], as elaborated in Lemma 7. Thus, the uniform concentration can be established for any
mixture of π̃n,h0 and π̃n,h0−1. Such uniform concentration ensures that with high probability, the
true value functions are bounded by the constructed UCB and LCB in Algorithm 1 (see Lemma 9).
Thus, when the LCB of a policy is above the threshold γ, it ensures its safety with high probability.
Moreover, the gap between them is controlled by the total expected bonus within an episode, i.e.∑H

h=1 Eπn

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
, where πn is the actual policy executed in episode n, chosen from

πb, π̄n, and π̃n,hn (see Lemma 10). The next step is thus to bound the total expected bonus under
πn. However, the various forms policies πn may choose from make our analysis significantly harder
than the original analysis in Jin et al. (2020). We highlight several major challenges in the following.

First, when πn is a step mixture policy, we do not have a direct estimation on the corresponding
value function. Thanks to the one-step-difference of π̃n,hn and π̃n,hn−1, the true value function
under the step mixture policy πn is a linear combination of V π̃n,hn and V π̃n,hn−1

(see Lemma 1).
The linearity also holds for the LCB, which ensures the safety of the πn for each episode n. Besides,
the difference between the LCB and V πn

is controlled by
∑H

h=1 Eπn

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
, similar

to that between the UCB and true value function under the optimistic policy π̄n (see Lemma 11).

Another challenge is due to the randomness of the step mixture policy. Since the actions taken un-
der the same step mixture policy may be different, the information matrix Λn

h may have different
realizations. To cope with such randomness, we relate the information matrix with its expecta-
tion, i.e., Λ̄n

h := λI +
∑n−1

τ=1 Eπτ

[
ϕ(xh, ah)ϕ(xh, ah)

⊤], and show that the elliptical potential
∥ϕ(xh, ah)∥(Λn

h)
−1 is upper bounded by ∥ϕ(xh, ah)∥(Λ̄n

h)
−1 up to a constant factor (see Lemma 5).

In order to bound the regret, we first relate the step mixture policy with the baseline policy. Intu-
itively, since π̄n is an optimistic policy, switching from πb to π̄n after step hn increases the value
function in general. Thus, V πn

, after padding the bonus terms, should be larger than V πb

. Combin-
ing with the gap between LCB and its true value, we have the following corollary.
Corollary 1 (Informal). Denote V πn

as the LCB of V πn

. With probability at least 1− δ, we have

V πb ≤ V πn

+ 4β
∑H

h′=1 Eπn

[
∥ϕ(xh′ , ah′)∥(Λn

h)
−1

]
. (7)

We also note that the LCB of V πn

when πn is a step mixture policy is exactly equal to the threshold
γ. Therefore,

V πb − γ ≤ 4β
∑H

h′=1 Eπn

[
∥ϕ(xh′ , ah′)∥(Λn

h)
−1

]
. (8)

LetN be the subset of episodes when a step mixture policy is adopted. Summing Equation (8) over
N , we have the right hand side bounded by Õ(

√
|N |) due to a revised elliptical potential lemma

(see Lemma 4). However, the left hand side equals κ|N |, which implies N is a finite set. Similar
argument applies to πb. Therefore, StepMix-LSVI always plays π̄n except for a finite number of
episodes, which results in adding only a constant term to the original regret Õ(

√
d3H4N).

6



Under review as a conference paper at ICLR 2023

4 THE EPSMIX-LSVI ALGORITHM

In this section, we propose an algorithm named EpsMix-LSVI to learn the optimal policy subject
to the conservative constraint. Different from StepMix-LSVI in Algorithm 1, EpsMix-LSVI does
not construct step mixture policies during the learning process. Rather, it adopts a randomization
mechanism at the beginning of each episode, and designs episodic mixture policies (Wiering &
Van Hasselt, 2008; Baram et al., 2021) defined as follows.

Definition 2 (Episodic Mixture Policy). Given two policies π1 and π2 with a parameter ρ ∈ (0, 1),
the episodic mixture policy, denoted by ρπ1 ⊕ (1− ρ)π2, randomly picks π1 with probability ρ and
π2 with probability 1− ρ at the beginning of an episode and plays it for the entire episode.

4.1 ALGORITHM DESIGN

The EpsMix-LSVI algorithm is presented in Algorithm 4 in Appendix C.3, and it proceeds as fol-
lows. Similar to StepMix-LSVI, at the beginning of each episode n, it first constructs an optimistic
policy based on the LSVI-UCB subroutine, denoted as π̄n. It then evaluates the LCB of the expected
total rewards under both π̄n and πb, denoted as V π̄n

and V πb

, respectively. If both V π̄n

and V πb

are
above the threshold γ, it indicates that the optimistic policy π̄n satisfies the conservative constraint
with high probability. The learner thus executes π̄n in the following episode n. Otherwise, if V πb

is
above the threshold while V π̄n

is not, it constructs an episodic mixture policy ρnπ̄
n⊕ (1−ρn)π

b as
in Equation (10) and Equation (11) of Algorithm 4, where ρn is determined based on V π̄n

, V πb

and
the threshold γ. It can be shown that the episodic policy satisfies the conservative constraint with
high probability while balancing the exploration-exploitation tradeoff.

4.2 THEORETICAL ANALYSIS

The performance of the EpsMix-LSVI Algorithm is characterized in the following theorem.

Theorem 2. There exist absolute constants c′, cβ , c3 and c4 such that, for any δ ∈ (0, 1), if we
choose λ = c′d log(dNH/δ) and β = cβdH

√
ι in Algorithm 4 with ι = 2 log(4dHN/δ), then with

probability at least 1 − δ, EpsMix-LSVI (Algorithm 4) simultaneously achieves (i) the conservative
guarantee in Equation (2), and (ii) a total regret that is at most

c3
√
d3H4Nι2 +

c4d
3H4∆0ι

2

κ2
. (9)

Remark 2. Theorem 2 indicates that EpsMix-LSVI achieves a regret in the order of O(
√
d3H4N)

while ensuring that the conservative constraint is satisfied with high probability. It can be observed
that Equation (9) has the same form as Equation (6) except for the constants (c3 and c4 replacing
c1 and c2 respectively), suggesting that both StepMix-LSVI and EpsMix-LSVI have very similar
regret performances and constraint guarantees. At the same time, we note that EpsMix-LSVI is less
conservative than StepMix-LSVI in the sense that, the expected total return under a selected policy
in an episode may be below the threshold when V π̄n < γ. However, when taking the randomness in
the policy mixture procedure into consideration, we can still guarantee that the expected total return
under an episodic mixture policy is above the threshold with probability at least 1− δ.

The proof of Theorem 2 is deferred to Appendix F. A sketch of the proof is as follows: First, we
establish a uniform concentration of the value functions under πn in each episode, following similar
approaches as in the proof of Theorem 1. We then show that the total number of episodes where
the algorithm executes πb or the episodic mixture policy is bounded, conditional on the uniform
concentration of the value functions. This ensures that the performance degradation compared with
LSVI-UCB (Jin et al., 2020) is bounded. Besides, the uniform concentration also ensures that the
conservative constraint is satisfied in each episode.

5 FROM BASELINE POLICY TO OFFLINE DATASET

Both EpsMix-LSVI and StepMix-LSVI critically depend on the baseline policy πb to achieve the
desired conservative guarantee. In reality, however, a baseline policy that provably satisfies the
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conservative constraint may not be explicitly given to the algorithm. Instead, the learning agent may
have access to an offline dataset that is collected from the target environment, and the goal is to
design a conservative exploration algorithm that satisfies Equation (2) only using the offline dataset.

A natural approach to solve this problem is to first learn a baseline policy from the dataset, and then
use it as an input to EpsMix-LSVI or StepMix-LSVI. The challenge, however, is that instead of
having full confidence in the conservative guarantee of πb, we must deal with the safety uncertainty
of the learned baseline policy, that is introduced by using the offline dataset as well as the offline
learning algorithm that produces the baseline policy. Fortunately, Theorem 3 states that for StepMix-
LSVI, the uncertainty of learning a safe baseline policy from the offline dateset does not affect the
conservative constraint violation or the regret order if the offline dataset is sufficiently large.

Theorem 3. Let πoff be the output of the PEVI algorithm (Jin et al., 2021) (see Algorithm 5 in
Appendix G) with N1 = Θ̃(d

3H4

κ2 )1 offline trajectories and parameters chosen properly. If we
replace the baseline policy πb used in Algorithm 1 by πoff, then there exist two constants c1, c2 such
that with probability at least 1− 2δ, we can simultaneously (i) satisfy the conservative constraint in
Equation (2), and (ii) achieve a total regret that is at most

c1
√
d3H4Nι2 +

4c2d
3H4(∆0 + κ/2)ι2

κ2
.

A similar result for EpsMix-LSVI can be established, and is given as Theorem 8 in Appendix G.
We see that N1 scales inversely proportional to κ2, suggesting that a good baseline policy would
require small amount of data and vice versa. Besides, the additive term increases compared with
Theorem 1. In general, a large N1 serves two purposes: First, it reduces the safety uncertainty due
to offline learning, such that the impact on the safety constraint violation is negligible compared with
that caused by the (online) StepMix policy. Second, it ensures that the regret bound is dominated
by the number of online episodes N . We also note that although both Theorem 3 and Theorem 8
depend on using PEVI as the offline learning algorithm, the conclusion can be extended to general
offline algorithms as long as they can produce an approximately safe policy from the pre-collected
data with high probability; see Appendix G for more discussion.

6 EXPERIMENTAL RESULTS

Synthetic Environment. We generate a synthetic environment to evaluate the proposed algorithms.
We set the number of states |S| to be 10, the number of actions |A| for each state to be 100, and the
dimension of the feature d to be 5. The feature vector ϕ(·, ·) for each state-action pair is generated
independently and uniformly at random from the d-dimension simplex. We also generate a d× |S|
matrix µ where each row is a probability measure randomly drawn from a |S|-dimensional simplex.
Let {µ(s)}s be the columns of µ. Besides, we also randomly draw θh uniformly from [0, 1]d. Such
procedure guarantees that the synthetic environment is a linear MDP with rewards lying in [0, 1].

Baseline Policy. We adopt the Boltzmann policy (Thrun, 1992) as the baseline in our al-
gorithms. Under the Boltzmann policy, actions are taken randomly according to πh(a|s) =

exp{kQh(s,a)}∑
a∈A exp{kQh(s,a)} , where a larger k leads to a more deterministic policy and higher expected value.

Results. We first evaluate the proposed StepMix-LSVI, EpsMix-LSVI, and compare with LSVI-
UCB. We set λ = 1, γ = 0.7V πb

. For each algorithm, we run 10 trials and plot the average results.

In Figure 1, we track the total reward obtained in each episode with different confidence bound coef-
ficient β and baseline parameters. We also track the total number of episodes during which the total
reward is below the threshold γ. We emphasize that this is different from violating the conservative
constraint, as our constraint in Equation (2) is defined in terms of the expected total reward rather
than the actual return. We have the following observations: First, StepMix-LSVI and EpsMix-LSVI
converge to the optimal policy with zero or very few violations. Between them, EpsMix-LSVI
appears to be more aggressive, leading to faster convergence and a few more violations. Mean-
while, LSVI-UCB also converges to the optimal policy, but with a much slower rate and much
more violations. Second, the performance of baseline affects the performances of StepMix-LSVI
and EpsMix-LSVI significantly. A better baseline policy leads to faster convergence. Third, the

1We hide the logarithm factor for simplicity.
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(a) k = 20, β = 1 (b) k = 40, β = 1 (c) k = 20, β = 2 (d) k = 40, β = 2

Figure 1: Total reward of each episode under StepMix-LSVI, EpsMix-LSVI, and LSVI-UCB with different β
and baseline parameter k. Numbers of violations are stated in the legend.

confidence bound coefficient β also affects the performances of our algorithms, especially StepMix-
LSVI, dramatically. With large β, StepMix-LSVI tends to stay with the baseline policy for more
episodes, i.e., being more conservative. This is due to the fact that our conservative exploration
strategy becomes too pessimistic with large β.

(a) Regret with β = 1 (b) k = 20, β = 1 (c) k = 20, β = 2, 30 of-
fline trajectories

(d) violations vs. number
of offline trajectories

Figure 2: Online: (a) regret, (b) compare with StepNoMix. Offline: (c) large N1, (d) varying N1.

We compare the regret performances in Figure 2(a). All algorithms achieve sub-linear regret, and
the regret under StepMix-LSVI and EpsMix-LSVI are much lower than that under LSVI-UCB. In
general, a better baseline policy leads to lower regret under our algorithms, which is consistent with
the theory. In Figure 2(b), we compare with an additional algorithm termed StepNoMix, a modified
version of StepMix-LSVI. Instead of constructing a step mixture policy, StepNoMix will execute
the first concatenated policy whose LCB is above the threshold. Compared with StepMix-LSVI,
StepNoMix stays at the baseline for more episodes, indicating that it is less effective in exploring
unknown dimensions.

Finally, we report the performance of learning from an offline dataset. When the number of offline
trajectories is sufficiently large, Figure 2(c) shows that learning a baseline policy from the offline
dataset and using it as an input to StepMix-LSVI and EpsMix-LSVI do not affect their performances
– we observe similar reward behaviors and similar violations (i.e., numbers of episodes when the
reward is below γ) as in Figure 1(c). When there are not sufficient trajectories in the offline dataset,
however, we see varying degrees of violations in Figure 2(d). More results from the offline dataset
experiments can be found in Appendix G.3.

7 CONCLUSIONS

We have investigated conservative exploration in episodic MDPs with linear function approximation.
Different than majority of the existing literature, we considered a stringent conservative constraint
that the expected total reward of the learning policy be not much worse than that of a baseline policy
in every episode. This constraint has motivated us to incorporate mixture policies in conservative
exploration. We proposed two LSVI-based algorithms, one with step mixture policies and the other
with episodic mixture policies and randomization. Both algorithms were proved to achieve the same
regret order as the constraint-free LSVI-UCB algorithm, while never violating the conservative con-
straint in the learning process. We also investigated a practical case where the baseline policy is
not explicitly given to the algorithm, but must be learned from an offline dataset. We showed that
as long as the dataset is sufficiently large, the offline learning step does not affect the conservative
constraint or the regret of our proposed algorithms. Experimental results in a synthetic environ-
ment corroborated the theoretical analysis and shed some interesting light on the behavior of our
algorithms.
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A RELATED WORKS

Constrained RL with Baseline Policies. Conservative exploration studied in this paper can be
viewed as a specific case of the Constrained Markov Decision Process (CMDP) (Altman, 1999),
which has been investigated in both offline and online settings. In the offline setting, a given baseline
policy produces a set of trajectories for the agent to learn a policy that is guaranteed to perform at
least as good as the baseline with high probability without actually interacting with the MDP (Bottou
et al., 2013; Thomas et al., 2015b;a; Swaminathan & Joachims, 2015; Petrik et al., 2016; Laroche
et al., 2019; Simão & Spaan, 2019). It can also be extended to the semi-batch setting (Pirotta
et al., 2013). In the online setting, which is the focus of our paper, the agent has to trade off
exploration and exploitation while interacting with the MDP. Several algorithms have been proposed
in the literature (Garcelon et al., 2020b; Yang et al., 2021b). Garcelon et al. (2020b) introduces
a conservative upper-confidence bound for reinforcement learning (CUCRL2) algorithm for both
finite horizon and average reward problems with O(

√
T ) regret. Conservation exploration for low-

rank MDPs is studied in Yang et al. (2021b) where a generic BudgetFirst algorithm instantiated with
LSVI-UCB of Jin et al. (2020) is shown to match the regret upper bound of the non-conservative
counterpart. We note, as discussed in Section 1, that our constraint is more stringent than these
papers. Correspondingly, the algorithms and the regret analysis are also different from the prior
works.

Policy Optimization. This is another research direction in RL that utilizes baseline policies (Schul-
man et al., 2015). However, the focus and assumptions of these papers are very different from this
work. For example, Zhong et al. (2021); Luo et al. (2021) focus on the non-stationary and adversary
environments, respectively. While policy optimization can achieve sublinear regret under certain
MDP models (Shani et al., 2020), it usually lacks performance guarantees during the learning pro-
cess, which is in stark contrast to our results.

Other Forms of Constraints. Beside the constraint imposed by a baseline policy, which is generally
“aligned” with the learning goal, CMDP also studies the case where the algorithm must satisfy a set
of constraints that potentially are not aligned with the reward (Efroni et al., 2020; Turchetta et al.,
2020; Zheng & Ratliff, 2020; Qiu et al., 2020; Ding et al., 2020; Kalagarla et al., 2020; Liu et al.,
2021; Wei et al., 2022; Ghosh et al., 2022). The constraint considered in the aforementioned papers
is w.r.t. the cumulative expected cost over a horizon falling below a certain threshold, which is
different than ours. In addition, constraints such as minimizing the variance (Tamar et al., 2012)
or generally, maximizing some utility function of state-action pairs (Ding et al., 2021), have been
investigated. A recent work (Amani et al., 2021) also studies conservative exploration with linear
function approximation, and the constraint is defined using an (unknown) linear cost function of
each state and action pair. Lastly, Yang et al. (2021a) studies constrained reinforcement learning
with a baseline policy that may not satisfy the given set of constraints.

Linear Function Approximation. Jin et al. (2020) presents a Least-Squares Value Iteration (LSVI)-
based algorithm and shows that it achieves Õ(

√
d3H3T ) regret, where d is the ambient dimen-

sion of feature space, H is the length of each episode, and T is the total number of steps. Im-
portantly, such regret is independent of the number of states and actions. Yang & Wang (2020)
proposes an online RL algorithm, namely the MatrixRL, that leverages ideas from linear ban-
dit to learn a low-dimensional representation of the probability transition model while carefully
balancing the exploitation-exploration tradeoff. It shows that MatrixRL achieves a regret bound
O
(
H2d log T

√
T
)
. Wang et al. (2021) proposes the USVI-UCB algorithm under a weaker op-

timistic closure assumption, which achieves an Õ(
√
d3H3T ) regret. This result is improved to

Õ(d
√
H3T ) in Zanette et al. (2020), which proposes another weaker assumption called low inher-

ent Bellman error. Instance-dependent logarithmic regret bounds are established for linear MDPs
in He et al. (2021). In addition, there is another related line of works focusing on linear mixture
MDPs (Ayoub et al., 2020; Cai et al., 2020; Zhou et al., 2021). We note that those algorithms do not
consider any conservative constraints into their formulation.

Safe Bandits. Bandits problem is a standard RL problem while it interacts with a stationary envi-
ronment, which reduces the difficulties of learning. Several constraints are considered in the bandits
setting. The first is that the cumulative expected reward of an agent should exceed a certain thresh-
old. This setting is originally studied in Wu et al. (2016), which adopts an UCB type of exploration
and check whether the policy satisfies the conservative constraint. Kazerouni et al. (2016); Garcelon
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et al. (2020a); Pacchiano et al. (2021) then extend the conservative setting to contextual linear ban-
dits. The second constraint is much stronger, as it requires that each arm played by the learning agent
be safe given the baseline or the threshold. Amani et al. (2019) and Khezeli & Bitar (2020) both
use an LCB type of algorithm to ensure the arms selected by the algorithms are safe under linear
bandits setting. Du et al. (2021) considers conservative exploration with a sample-path constraint on
the actual observed rewards rather than in expectation.

B NOTATIONS

We summarize the notations frequently used in the appendix as follows. Each policy π contains H
step-wise policies, i.e. π := {π1, . . . , πH}. As standard in the literature, we use xh ∼ (P, π) to
denote a state sampled by executing policy π under the transition kernel P for h − 1 steps. We use
the notation E(xh,ah)∼(P,π) [·] to denote the expectation over states xh ∼ (P, π) and actions ah ∼ π.
We use the short hand Eπ [g(xh, ah)] to denote the expectation of g(xh, ah) where xh follows the
distribution induced by the transition dynamics P and policies π1, . . . , πh−1, and ah follows the
distribution πh.

C ALGORITHMS

C.1 LSVI-UCB SUBROUTINE

We present the LSVI-UCB subroutine in the following algorithm.

Algorithm 2 LSVI-UCB Subroutine (Jin et al., 2020)
Input: Dn−1,Λ

n
h

for step h = H, . . . , 1 do
w̄n

h ← (Λn
h)

−1
n−1∑
τ=1

ϕτ
(
rτh +max

a
Q̄n

h+1(x
τ
h+1, a)

)
Q̄n

h(·, ·)← min
{
(w̄n

h)
⊤ϕ(·, ·) + β∥ϕ(·, ·)∥(Λn

h)
−1 , H

}
π̄n
h(·)← argmax

a
Q̄n

h(·, a)end for
Output: π̄n

C.2 LCB-V SUBROUTINE

We present the LCB-V subroutine as follows.

Algorithm 3 The LCB-V Subroutine
Input: π,Dn,Λ

n
h , β

for step h = H, . . . , 1 do

wπ
h ← (Λn

h)
−1

k−1∑
τ=1

ϕτ (rτh + Ea∼πh [Q
π
h+1(x

τ
h+1, a)]

)
Qπ

h(·, ·)← max
{
(wπ

h)
⊤ϕ(·, ·)− β∥ϕ(·, ·)∥(Λn

h
)−1 , 0

}
end for
Output: V π

1 (x1) = Ea∼π1 [Q
π
1 (x1, a)]

C.3 EPSMIX-LSVI ALGORITHM

We present the EpsMix-LSVI algorithm in Algorithm 4.
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Algorithm 4 The EpsMix-LSVI Algorithm
Input: λ, β, πb

D0 ← ∅
for episode n = 1, 2, . . . , N do

Λn
h ←

∑n−1
τ=1 ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

T + λI
π̄n ← LSVI-UCB(Dn−1,Λ

n
h)

V π̄n

← LCB-V(π̄n,Dn−1,Λ
n
h, β)

V πb

← LCB-V(πb,Dn−1,Λ
n
h, β)

if V πb

> γ then
if V π̄n

≥ γ then
πn ← π̄n

else

ρn =
V πb

− γ

V πb − V π̄n
(10)

πn ← ρnπ̄
n ⊕ (1− ρn)π

b (11)

end if
else

πn ← πb

end if
Play πn and collect {(xn

h, a
n
h, rh(x

τ
h, a

τ
h))}Hh=1

Dn ← Dn−1 ∪ {(xn
h, a

n
h, rh(x

τ
h, a

τ
h))}Hh=1

end for

D KEY LEMMAS

We first characterize some useful properties of the policies adopted in Algorithm 1 in the following
two lemmas.

Lemma 1 (Linearity of step mixture policy). If two policies π1 and π2 only differ in one step h,
then for any ρ ∈ [0, 1], we have

V
ρπ1+(1−ρ)π2

h0
(xh0) = ρV π1

h0
(xh0) + (1− ρ)V π2

h0
(xh0),∀h0 ∈ [H]

.

Proof. It suffices to prove the case when h0 ≤ h since policies π1 and π2 are the same after step h.

Let π3 = ρπ1 + (1 − ρ)π2. Suppose πi = (πi
1, ..., π

i
H), i ∈ {1, 2, 3}. We have π1

h′ = π2
h′ = π3

h′

for any h′ ̸= h, and denote πi
h′ by πh′ when h′ ̸= h. Therefore, for any h0 ≤ h′ ≤ h, the

distribution over S induced by πi
h0
, . . . , πi

h′−1 and state xh0
are the same across i ∈ {1, 2, 3}. In

addition, Qπi

h (xh, ah) are all the same for any i ∈ {1, 2, 3}. In such cases, we omit the index i, i.e.
Pπi

h′ := Pπ
h′ and Qπi

h (xh, ah) = Qπ
h(xh, ah). Then, we can express the value function as follows

V πi

h0
(x) =

h−1∑
h′=h0

Eπ[rh′(xh′ , ah′)] + Eπi
h
[Qπ

h(xh, ah)] .

Since it is linear in terms of πh, the proof is complete.

Lemma 2. Given an MDP and any policy π, define π′ = (π1, . . . , πh, π
∗
h+1, . . . , π

∗
H), i.e., the policy

over the last H − h steps are replaced by the optimal policy π∗. Then, we must have V π ≤ V π′
.
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Proof. Recall that we use xh+1 ∼ (P, π) to denote a state sampled by executing the policy π under
the transition kernel P for h steps. Then, the difference between the two values is

V π − V π′

= Exh+1∼(P,π),ah+1∼πh+1
[Qπ

h+1(xh+1, ah+1)]− Exh+1∼(P,π),ah+1∼π∗
h+1

[Q∗
h+1(xh+1, ah+1)]

= Exh+1∼(P,π)

[∑
a

πh(a|xh+1)Q
π
h+1(xh+1, a)−

∑
a

π∗
h(a|xh+1)Q

∗
h+1(xh+1, a)

]
(a)

≤ Exh+1∼(P,π)

[∑
a

πh(a|xh+1)Q
∗
h+1(xh+1, a)−

∑
a

π∗
h(a|xh+1)Q

∗
h+1(xh+1, a)

]
(b)
= Exh+1∼(P,π)

[∑
a

πh(a|xh+1)Q
∗
h+1(xh+1, a)−max

a
Q∗

h+1(xh+1, a)

]
≤ 0

where (a) follows from the property that Qπ∗

h (x, a) = Q∗
h(x, a) ≥ Qπ

h(x, a) for any π, and (b)
follows from the fact that the optimal policy at step h is the greedy policy w.r.t. the optimal action-
value function Q∗

h(xh, ah) (Jin et al., 2020).

The following lemma states a standard inequality in the regret analysis for linear models in rein-
forcement learning and bandits problems. Refer to Lemma G.2 in Agarwal et al. (2020) and Lemma
10 in Uehara et al. (2021).
Lemma 3 (Elliptical potential lemma). Consider a sequence of d× d positive semidefinite matrices
X1, . . . , XN with tr(Xn) ≤ 1 for all n ∈ [N ]. Define M0 = λ0I and Mn = Mn−1 +Xn. Then,

N∑
n=1

tr(XnM
−1
n−1) ≤ 2 ln det(MN )− 2 ln det(M0) ≤ 2d ln

(
1 +

N

dλ0

)
.

If we focus on any subset of the set {XnM
−1
n−1}Nn=1, we have the following revised elliptical poten-

tial lemma.
Lemma 4 (Revised elliptical potential lemma (He et al., 2021)). Consider the setup of lemma 3.
Then ∀N := {n1, . . . , n|N |} ⊂ [N ],∑

n∈N
tr(XnM

−1
n−1) ≤ 2 ln det

(∑
n∈N

Xn +M0

)
− 2 ln det(M0) ≤ 2d ln

(
1 +
|N |
dλ0

)
.

Proof. Define M̃0 = λ0I, M̃i = M̃i−1 +Xni
for i ≥ 1. We have∑

n∈N
tr(XnM

−1
n−1) =

|N |∑
i=1

tr(Xni
M−1

ni−1
)

(a)

≤
|N |∑
i=1

tr(Xni
M̃−1

i−1)

(b)

≤ 2 ln det

(∑
n∈N

Xn +M0

)
− 2 ln det(M0)

(c)

≤ 2d ln

(
1 +
|N |
dλ0

)
.

where (a) is due to Mni−1 ⪰ M̃i−1, (b) and (c) follow from Lemma 3.

Different from LSVI-UCB where the learner always greedily selects the action associated with the
highest UCB of Q∗

h(x, a) in each step, under the StepMix-LSVI algorithm, the adopted policy may
not be deterministic. As a result, the information matrix Λn

h may have different realizations. To cope
with such randomness, we adapt the concentration inequality of covariance matrix in Zanette et al.
(2021) to our setting as follows.
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Lemma 5 (Adapted from Lemma 39 in Zanette et al. (2021)). Define Λ̄n
h = λI +∑n−1

τ=1 Eπτ

[
ϕ(xh, ah)ϕ(xh, ah)

⊤]. If λ = Cλd log(2N/δ) for some absolute constant Cλ, then
with probability at least 1− δ

2 , we have

∥ϕ(x, a)∥(Λn
h)

−1 ≤
√
3 ∥ϕ(x, a)∥(Λ̄n

h)
−1 ,∀ϕ(x, a), h ∈ [H], n ∈ [N ].

Combining Lemma 5 and Lemma 4, we are able to upper bound the summation of the bonus terms,
which is key to prove that Algorithm 1 only stays on πb or any step mixture policies for a finite
number of episodes.

Lemma 6 (Sublinearity of the summation of bonus terms). For any subset N ∈ [N ], the following
inequality holds with probability at least 1− δ/2:∑

n∈N
Eπn

[
∥ϕ(xn

h, a
n
h)∥(Λn

h)
−1

]
≤
√
6d|N |ι,

where ι = log(4dNH/δ).

Proof. By Lemma 5, we have∑
n∈N

Eπn

[
∥ϕ(xn

h, a
n
h)∥(Λn

h)
−1

]
≤
√
3
∑
n∈N

Eπn

[
∥ϕ(xn

h, a
n
h)∥(Λ̄n

h)
−1

]
.

Note that

Eπn

[
∥ϕ(xn

h, a
n
h)∥

2
(Λ̄n

h)
−1

]
= tr

(
Eπn

[
ϕ(xn

h, a
n
h)ϕ(x

n
h, a

n
h)

⊤] (Λ̄n
h

)−1
)
.

Using the definition of Λ̄n
h and Lemma 4, we can complete the proof using Cauchy’s inequality.∑
n∈N

Eπn

[
∥ϕ(xn

h, a
n
h)∥(Λn

h)
−1

]
≤
√
3
∑
n∈N

Eπn

[
∥ϕ(xn

h, a
n
h)∥(Λ̄n

h)
−1

]
≤
√
3

√
|N |

∑
n∈N

Eπn

[
∥ϕ(xn

h, a
n
h)∥

2
(Λ̄n

h)
−1

]
≤
√

6d|N |ι.

Next, we present our main concentration lemma, which is critical for achieving a sublinear learning
regret while ensuring that the conservative constraint is satisfied. Compared with Lemma D.4 in Jin
et al. (2020), we establish the uniform concentration for value functions under policy π̄n, which is
essentially the policy obtained under LSVI-UCB, as well as policy π̃n,h0 .

Lemma 7 (Uniform concentration). If β = cβdH
√
ι and ι = 2 log(4dNH/δ), there exists an

absolute constant C which is independent of cβ such that the we can define events

E1 :=

∀n, h :

∥∥∥∥∥
n−1∑
τ=1

ϕτ
[
V̄ π̄n

h+1(x
τ
h+1)− PhV̄

π̄n

h+1(x
τ
h, a

τ
h)
]∥∥∥∥∥

(Λn
h)

−1

≤ CdH
√
χ

 ,

E2(h0) :=

∀n, h :

∥∥∥∥∥
n−1∑
τ=1

ϕτ
[
V π̃n,h0

h+1 (xτ
h+1)− PhV

π̃n,h0

h+1 (xτ
h, a

τ
h)
]∥∥∥∥∥

(Λn
h)

−1

≤ CdH
√
χ

 ,

∀h0 ∈ [0 : H + 1], where χ = 2 log(4(cβ + 1)dNH/δ). Let E := E1 ∩
(
∩H+1
h0=0E2(h0)

)
. Then,

under Algorithm 1, P[E ] ≥ 1− δ
2 .
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Proof. First, by following the argument in the proof of Lemma D.4 in Jin et al. (2020), we can show
that event E1 happens with probability at least 1− δ

2(H+3) .

For event E2, it suffices to change the definition of function class in Lemma D.6 in Jin et al. (2020),
and show that the ϵ-covering number of this function class has the same upper bound. Specifically,
define

V =

{
V (·) = max

{
Ea∼π̃n,h0

[
w⊤ϕ(·, a)− ∥ϕ(·, a)∥A

]
, 0
} ∣∣∣∣∥w∥ ≤ L,A = β2Λ−1

}
, (12)

where β ∈ [0, B], and the minimum eigenvalue of Λ is no less than λ.

Consider the distance function dist(V, V ′) = supx |V (x)−V ′(x)|. Since max(·, 0) is a contraction
operator and Ea∼π̃n,h0 is a linear operator, we have

dist(V, V ′) ≤ sup
x,a

∣∣w⊤ϕ(x, a)− ∥ϕ(x, a)∥A − w′⊤ϕ(x, a) + ∥ϕ(x, a)∥A′
∣∣

≤ ∥w − w′∥+
√
∥A−A′∥F ,

which is the same upper bound as in Jin et al. (2020).

We note that each candidate policy π̃n,h0 is a concatenation of the baseline policy πb and the deter-
ministic greedy policy in LSVI-UCB π̄n. πb is independent of the trajectories. As for π̄n, given both
w and A, it is also independent of the trajectories, as shown in Jin et al. (2020). Therefore, different
from the mixture policy πn, π̃n,h0 does not depend on the previous stochastic transition noise given
both w and A, and the corresponding V defined in Equation (12) is thus independent of history as
well. Therefore, we can apply the uniform concentration inequality to the ϵ-covering space similar
to that in Jin et al. (2020), and conclude that the covering number of the function class V has the
same upper bound. Thus, event E2(h0) happens with probability at least 1− δ

2(H+3) .

Finally, applying the union bound over all events E1 and {E2(h0)}h0
, E happens with probability

1− δ
2 .

The following two lemmas are a direct extension from Lemma B.4 in Jin et al. (2020). We provide
the analysis of different parts for completeness.
Lemma 8. When the good event E happens, there exists an absolute constant cβ such that the
following inequalities hold for any fixed policy π:∣∣∣⟨ϕ(x, a), wn,h0

h ⟩ −Qπ
h(x, a)− Ph(V

π̃n,h0

h+1 − V π
h+1)(x, a)

∣∣∣ ≤ β ∥ϕ(x, a)∥(Λn
h)

−1 , (13)∣∣∣⟨ϕ(x, a), w̄n
h⟩ −Qπ

h(x, a)− Ph(V̄
πn

h+1 − V π
h+1)(x, a)

∣∣∣ ≤ β ∥ϕ(x, a)∥(Λn
h)

−1 . (14)

Proof. Recall that β = cβdH
√
ι. It suffices to choose cβ such that 4C

√
χ ≤ cβ

√
ι. This gives us

4C
√

ι+ 2 log(cβ + 1) ≤ cβ
√
ι.

Thus, there exists an absolute constant cβ such that the inequalities hold.

Lemma 9 (LCB and UCB guarantees). Under Algorithm 1, we have

Qπ̃n,h0

h (x, a) ≤ Qπ̃n,h0

h (x, a),∀h0, h,

Q̄π̄n

h (x, a) ≥ Q∗
h(x, a),∀h.

Proof. We prove the results by induction. For the base case h = H , Qπ̃n,h0

H (x, a) ≤ Qπ̃n,h0

H (x, a)

holds since the value function or Q-function vanishes at step H + 1. Suppose Qπ̃n,h0

h′ (x, a) ≤
Qπ̃n,h0

h′ (x, a) holds for h′ ≥ h+ 1. By Equation (13), we have

⟨ϕ(x, a), wn,h0

h ⟩ −Qπ̃n,h0

h (x, a) ≤ Ph(V
π̃n,h0

h+1 − V π̃n,h0

h+1 )(x, a) + β ∥ϕ(x, a)∥(Λn
h)

−1 .

Then, by induction and the definition of V -functions, the first term of RHS is negative, which com-
pletes the proof of the first part. The second part directly follows Lemma B.5 in Jin et al. (2020).
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Due to the stochastic nature of the step mixture policy adopted in Algorithm 1, the recursive formula
in the original analysis in Jin et al. (2020) does not work here. To handle this, we keep tracking the
expectations of the differences between the LCB/UCB and the corresponding true value functions
instead of the empirical values.
Lemma 10 (Bound the difference between LCB/UCB and the true value functions). Let
δn,h0

h = Exh∼π̃n,h0

[
V π̃n,h0

h (xh)− V π̃n,h0

h (xh)
]
, Similarly, for the UCB, we let δ̄nh =

Eπ̄n

[
V̄ π̄n

h (xh)− V π̄n

h (xh)
]
. Then, conditioned on the good event E , we have

δn,h0

h ≤ δn,h0

h+1 + 2βEπ̃n,h0

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
,

δ̄nh ≤ δ̄nh+1 + 2βEπ̄n

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
.

Proof. First, based on Equation (13), we have

Qπ
h(x, a)− ⟨ϕ(x, a), w

n,h0

h ⟩+ Ph(V
π̃n,h0

h+1 − V π
h+1)(x, a) ≤ β ∥ϕ(x, a)∥(Λn

h)
−1

. Then, according to the definition of δn,h0

h , we have

Exh∼π̃n,h0

[
V π̃n,h0

h (xh)− V π̃n,h0

h (xh)
]

= E(xh,ah)∼π̃n,h0

[
Qπ̃n,h0

(xh, ah)−Qπ̃n,h0
(xh, ah)

]
≤ E(xh,ah)∼π̃n,h0

[
−Ph

(
V π̃n,h0

h+1 − V π̃n,h0

h+1

)
(xh, ah) + 2β ∥ϕ(xh, ah)∥(Λn

h)
−1

]
= E(xh,ah)∼π̃n,h0

[
Ph

(
V π̃n,h0

h+1 − V π̃n,h0

h+1

)
(xh, ah)

]
+ 2βEπ̃n,h0

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
= δn,h0

h+1 + 2βE(xh,ah)∼π̃n,h0

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
.

The UCB part follows a similar argument. By Equation (14) and the definition of δ̄nh , we have

Eπ̄n

[
V̄ π̄n

h (xh)− V π̄n

h (xh)
]

= Eπ̄n

[
Q̄π̄n

(xn
h, ah)−Qπ̄n

(xh, ah)
]

≤ Eπ̄n

[
Ph

(
V̄ π̄n

h+1 − V π̄n

h+1

)
(xh, ah) + 2β ∥ϕ(xh, ah)∥(Λn

h)
−1

]
= Eπ̄n

[
Ph

(
V̄ π̄n,h0

h+1 − V π̄n

h+1

)
(xh, ah)

]
+ 2βEπ̄n

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
= δ̄nh+1 + 2βEπ̄n

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
.

Since the policy executed by StepMix-LSVI is πn, it is necessary to characterize the performance of
πn by examining its value function. As mentioned in Section 3.2, we define the LCB of Qπn

h (x, a),
denoted by Qπn

(x, a), as ρnQπ̃n,hn−1

h (x, a) + (1− ρn)Q
π̃n,hn

h (x, a). Similarly, we define LCB of

V πn

h (x) as V πn

h (x) = ρnV
π̃n,hn−1

h (x) + (1 − ρn)V
π̃n,hn

h (x). We remark that this is actually the
output of the LCB-V subrountine (Algorithm 3) if the input is πn, although we do not utilize this
property in our analysis. Instead, we show that the following recursive formula also holds for πn.
Lemma 11. Define δnh = Eπn

[
V πn

h (xh)− V πn

h (xh)
]
. Then, under Algorithm 1, we have

δnh ≤ δnh+1 + 2βEπn

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
.

Proof. By Equation (13), for any fixed policy π, we have

Qπ
h(x, a)−Qπ̃n,h0

h (x, a) ≤ Ph(V
π
h+1 − V π̃n,h0

h+1 )(x, a) + 2β ∥ϕ(x, a)∥(Λn
h)

−1 . (15)
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Then, we replace h0 in Equation (15) by hn − 1 and hn, multiply coefficients ρn and (1 − ρn) on
these two inequalities, respectively, and add them together. We have

Qπ
h(x, a)−Qπn

h (x, a) ≤ Ph(V
π
h+1 − V πn

h+1)(x, a) + 2β ∥ϕ(x, a)∥(Λn
h)

−1 .

Finally, according the definition of δnh , we have

Eπn

[
V πn

h (xh)− V πn

h (xh)
]

= Eπn

[
Qπn

(xh, ah)−Qπn

(xh, ah)
]

≤ Eπn

[
−Ph

(
V πn

h+1 − V πn

h+1

)
(xh, ah) + 2β ∥ϕ(xh, ah)∥(Λn

h)
−1

]
= Eπn

[
Ph

(
V π̃n

h+1 − V πn

h+1

)
(xh, ah)

]
+ 2βEπn

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
= δnh+1 + 2βEπn

[
∥ϕ(xh, ah)∥(Λn

h)
−1

]
.

Lemma 12. Define πb,h,∗ = (πb
1, ..., π

b
h, π

∗
h+1, ..., π

∗
H). The difference between LCB V πn

and the
true value function V πb,hn,∗

is bounded as follows:

V πb,hn,∗
≤ V πn

+ 4β

H∑
h′=1

Eπn

[
∥ϕ(xh′ , ah′)∥(Λn

h)
−1

]
.

Proof. Note that for any h0 ∈ {0, 1, . . . ,H + 1}, the difference between πb,h0,∗ and π̃n,h0 is the
last H − h0 steps, where π∗

h′ is replaced by π̄n
h′ . Therefore, we compare the two value functions

V πb,h0,∗

1 and V π̃n,h0

1 as follows:

V πb,h0,∗
= V π̃n,h0

1 − Eπb

[
V π̄n

h0+1(xh0+1)− V ∗
h0+1(xh0+1)

]
≤ V π̃n,h0 − Eπb

[
V π̄n

h0+1(xh0+1)− V̄ π̄n

h0+1(xh0+1)
]

≤ V π̃n,h0
+ Eπ̃n,h0

[
H∑

h′=h0+1

2βEπ̄n

[
∥ϕ(xh′ , ah′)∥(Λn

h′ )
−1

]]
. (16)

Substituting h0 in Equation (16) with hn and hn − 1, respectively, we have,

V πb,hn,∗
≤ V π̃n,hn

1 + Eπ̃n,hn

[
H∑

h′=hn+1

2β
[
∥ϕ(xh′ , ah′)∥(Λn

h′ )
−1

]]
(17)

V πb,hn−1,∗
≤ V π̃n,hn−1

1 + Eπ̃n,hn−1

[
H∑

h′=hn

2β
[
∥ϕ(xh′ , ah′)∥(Λn

h′ )
−1

]]
. (18)

Multiplying Equation (17) and Equation (18) by ρn and 1−ρn respectively and adding them together,
and noting that V πb,hn,∗

1 ≤ V πb,hn−1,∗

1 , we have

V πb,hn,∗

1 ≤ V πn

1 + 2Eπn

[
H∑

h=hn

β
[
∥ϕ(xh, ah)∥(Λn

h)
−1

]]
,

≤ V πn

1 + 4Eπn

[
H∑

h=hn

β
[
∥ϕ(xh, ah)∥(Λn

h)
−1

]]
.
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E PROOF OF THEOREM 1

Lemma 13. The total expected reward received in episode n under policy πn is always above γ
under the good event E .

Proof. First, we note that πn is a linear combination of two policies π̃n,hn and π̃n,hn−1, which only
differ in one step hn. According to Lemma 1, we have

V πn

= ρnV
π̃n,hn−1

+ (1− ρn)V
π̃n,hn

≥ V π̃n,hn − γ

V π̃n,hn − V π̃n,hn−1 V
π̃n,hn−1

+
γ − V π̃n,hn−1

V π̃n,hn − V π̃n,hn−1 V
π̃n,hn

= γ.

Note that the inequality holds with probability at least 1− δ, which is due to Lemma 9.

The next two lemmas show that the algorithm would always use the policy π̄n except for a finite
number of episodes.
Lemma 14. Conditioned on the good event E , the number of episodes in which hn ∈ {1, 2, . . . ,H+
1} is finite.

Proof. It suffices to show the conclusion holds for each hn = h ∈ [1 : H +1]. We first consider the
case when hn = H + 1. Let NH+1 = {n : πn = πb}. Recall that hn = H + 1 implies πn = πb.
With the condition πn = πb, we must have V πb ≤ γ = V πb − κ. Therefore,

|NH+1|κ ≤
∑

n∈NH+1

V πb − V πb

(a)

≤
∑

n∈NH+1

H∑
h=1

2βEπb∥ϕk∥(Λn
h)

−1

(b)

≤ 2cβdH
2
√
ι
√
6d|NH+1|ι

= 2cβ
√

6d3H4|NH+1|ι2,

where (a) is due to Lemma 10, and (b) follows from Lemma 6. Thus, |NH+1| ≤
24c2βd

3H4ι2

κ2 .

Then, for any h ∈ {1, 2, . . . ,H}, let Nh = {n : hn = h}. We have that when hn = h, ρn < 1

according to Algorithm 1. The equality V πn

= γ = V πb − κ holds. Then, we have

|Nh|κ =
∑

n∈Nh

(
V πb

− V πn
)

(a)

≤
∑

n∈Nh

V πb − V πb,h,∗
+ 4β

∑
h′≥h

Eπn

[
∥ϕ(xh′ , ah′)∥(Λn

h′ )
−1

]
(b)

≤ 4β
∑

n∈Nh

∑
h≥1

Eπn

[
∥ϕn

h∥(Λn
h)

−1

]
,

where (a) is due to Lemma 12 and (b) is due to Lemma 2.

Finally, taking the summation over all h, we have
H+1∑
h=1

|Nh|κ ≤ 4β
∑

n∈∪h≥1Nh

∑
h≥1

Eπn

[
∥ϕn

h∥(Λn
h)

−1

]
(19)

(a)

≤ 4cβ

√√√√√6d3H4

∑
h≥1

|Nh|

 ι2 (20)
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where (a) follows from Lemma 6. Hence,
∑

h≥1 |Nh| is upper bounded by
96c2βd

3H4ι2

κ2 .

Finally we are ready to prove Theorem 1. We restate it as follows.
Theorem 4. There exist absolute constants c′, cβ , c1 and c2 such that, for any δ ∈ (0, 1), if we
choose λ = c′d log(dNH/δ) and β = cβdH

√
ι in Algorithm 1 with ι = 2 log(4dHN/δ), then with

probability at least 1 − δ, StepMix-LSVI (Algorithm 1) (i) satisfies the conservative guarantee in
Equation (2), and (ii) achieves a total regret that is at most

c1
√
d3H4Nι2 +

c2d
3H5∆0ι

2

κ2
,

where ∆0 = V ∗ − V πb

is the suboptimality gap of the baseline policy and κ = V πb − γ is the
tolerable value loss from the baseline policy.

Proof. Conditioned on the good event E , recall that cβ is chosen based on Lemma 8. The first part
is a direct result from Lemma 13. For the second part, recall that N0 = {n : hn = 0} = {n : πn =
π̄n}. By Lemma 14 and Lemma 9, we have

RN =
∑

n∈[N ]

(V ∗ − V πn

)

=
∑
n∈N0

(V ∗ − V π̄n

) +
∑
n/∈N0

(V ∗ − V πb

) +
∑
n/∈N0

(V πb

− V πn

)

(a)

≤
∑
n∈N0

(V̄ π̄n

− V π̄n

) +

H+1∑
h=1

|Nh|∆0 +
∑
n/∈N0

∑
h∈[H]

Eπn

[
2β∥ϕn∥(Λn

h)
−1

]
(b)

≤
∑

n∈[N ]

∑
h∈[H]

Eπn

[
2β∥ϕn∥(Λn

h)
−1

]
+

96c2βd
3H4∆0ι

2

κ2

(c)

≤ 2cβ
√
6d3H4Nι2 +

96c2βd
3H4∆0ι

2

κ2
,

where (a) is due to Lemma 12 and Lemma 2, (b) follows from Lemma 10 and Lemma 14, and (c) is
due to Lemma 6. By choosing c1 = 2

√
6cβ , c2 = 96c2β , we have

Reg(N) ≤ c1
√
d3H4N +

c2d
3H4∆0ι

2

κ2
,

which completes the proof.

F PROOF OF THEOREM 2

We follow a similar approach as the proof of Theorem 1. First, we define the good event under
Algorithm 4 as E1 ∩ E2(0) ∩ E2(H + 1), where the definitions of E1 and E2(h0) can be found in
Lemma 7.
Lemma 15. Conditioned on the good event E , all policies {πn} executed under Algorithm 4 are
safe.

Proof. It suffices to check whether πn is safe when πn ̸= πb. There are two cases. The first case is

when V n < γ, and the algorithm randomly picks between π̄n and πb. Note that ρn = V πb
−γ

V πb−V n
< 1.

By Lemma 9, we have,

V πn

≥ V πn

= ρnV
n + (1− ρn)V

πb

= γ.

Thus, in expectation, the episodic mixture policy is safe.

The second case is when πn = π̄n, which occurs when V πn ≥ γ. We again apply Lemma 9 to have

V πn

= V πn

≥ γ.

Therefore πn is always safe conditioned on the good event E .
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Lemma 16. Let Nρ = {n : πn is an episodic mixture policy}, and Nb = {n : πn = πb}. Condi-
tioned on the good event E , |Nb| and |Nρ| are both finite.

Proof. First, when πn = πb, we have

|Nb|κ ≤
∑
n∈Nb

V πb

− V πb

(a)

≤
∑

n∈NH+1

H∑
h=1

2βEπb∥ϕ(xh, ah)∥(Λn
h)

−1

(b)

≤ 2cβ
√

6d3H4|Nb|ι2,

where (a) is due to Lemma 10 and (b) follows from Lemma 4. Thus, |Nb| ≤
24c2βd

3H4ι2

κ2 .

Similarly, when n ∈ Nρ, ρnV π̄n

+ (1 − ρn)V
πb

= γ holds for all n ∈ Nρ. We again apply
Lemma 10 and Lemma 4 to have the following inequalities:

|Nρ|κ ≤
∑
n∈Nρ

V πb

− γ

=
∑
n∈Nρ

V πb

− ρnV
π̄n

− (1− ρn)V
πb

≤
∑
n∈Nρ

ρnV
πb

− ρnV
π̄n

+ 2β(1− ρn)

H∑
h=1

Eπb

[
∥ϕ(xh, ah)∥(Λk

h)
−1

]

≤ 2β
∑
n∈Nρ

H∑
h=1

(
ρnEπ̄n

[
∥ϕ(xh, ah)∥(Λk

h)
−1

]
+ (1− ρn)Eπb

[
∥ϕ(xh, ah)∥(Λk

h)
−1

])

= 2β
∑
n∈Nρ

H∑
h=1

Eπn

[
∥ϕ(xh, ah)∥(Λk

h)
−1

]
≤ 2cβ

√
6d3H4|Nρ|ι2.

Therefore, |Nρ| ≤
24c2βd

3H4ι2

κ2 .

We are ready to prove Theorem 2, which is restated as follows.

Theorem 5. There exist absolute constants c′, cβ , c3 and c4 such that, for any δ ∈ (0, 1), if we
choose λ = c′d log(dNH/δ) and β = cβdH

√
ι in Algorithm 1 with ι = 2 log(4dHN/δ), then

with probability at least 1 − δ, EpsMix-LSVI (Algorithm 4) (i) satisfies the conservative guarantee
in Equation (2), and (ii) achieves a total regret that is at most

c3
√
d3H4Nι2 +

c4d
3H4∆0ι

2

κ2
,

where ∆0 = V ∗ − V πb

is the suboptimality gap of the baseline policy and κ = V πb − γ is the
tolerable value loss from the baseline policy.

Proof. Define the set N0 = {n : πn = πb}. Recall the definition of Nb and Nρ, and we have
[N ] = N0 ∪ Nb ∪ Nρ. Then, conditioned on the good event E , with probability at least 1 − δ, we
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have

Reg(N) =

N∑
n=1

V ∗ − V πn

=
∑
n∈N0

(
V ∗ − V πn

)
+
∑
n∈Nρ

(
V ∗ − V πn

)
+
∑
n∈Nb

(
V ∗ − V πn

)
(a)

≤
∑
n∈N0

(
V ∗ − V π̄n

)
+
∑
n∈Nρ

ρn

(
V ∗ − V π̄n

)
+

∑
n∈Nb∪Nρ

(
V ∗ − V πb

)
=

∑
n∈N0∪Nρ

(
V ∗ − V π̄n

)
+ (|Nb|+ |Nρ|)∆0

(b)

≤
∑

n∈N0∪Nρ

Eπn

[
2β∥ϕ(xh, ah)∥(Λn

h)
−1

]
+

48c2βd
3H4∆0ι

2

κ2

(c)

≤ 2cβ
√
6d3H4Nι2) +

48c2βd
3H4∆0ι

2

κ2
,

where (a) is because V πn

= ρnV
π̄n

+ (1 − ρn)V
πb

when n ∈ Nρ, (b) is due to Lemma 9 and
Lemma 10, and (c) follows from Lemma 4 and Lemma 16. Finally, by choosing c3 = 2

√
6cβ and

c4 = 48c2β , we complete the proof.

G ALGORITHM AND THEORETICAL ANALYSIS WITH OFFLINE DATASETS

G.1 THE PESSIMISTIC VALUE ITERATION (PEVI) SUBROUTINE

The PEVI subroutine in Jin et al. (2021) is given below for completeness. We set the parameters as
follows. Let N1 be the solution to the following equation:

N1 =

⌈
19200d3H4 log(4dHN1/δ)

κ2

⌉
.

Then, we set λ1 = Cλd log(2N1/δ), ι1 = log(4dHN1/δ), and β1 = 20dH
√
ι1, where Cλ is

specified in Lemma 5.

Algorithm 5 Pessimistic Value Iteration (PEVI) (Jin et al., 2021)
Input: Doff

N1
, λ1, β1

Λoff
h ← λ1I+

∑N1
τ=1 ϕ(x

τ,off
h , aτ,off

h )ϕ(xτ,off
h , aτ,off

h )⊤

V off
H+1 ← 0

for step h = H, . . . , 1 do

woff
h ← (Λoff

h )−1
N1∑
τ=1

ϕτ
(
rτ,off
h + V off

h+1(x
τ,off
h+1)]

)
Qoff

h (·, ·)← max
{
(woff

h )⊤ϕ(·, ·)− β1∥ϕ(·, ·)∥(Λoff
h

)−1 , 0
}

πoff
h (·)← argmax

a
Qoff

h+1(·, a)

V off
h (·)← Qoff

h (·, πoff
h (·))

end for
Output: πoff
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G.2 THEORETICAL ANALYSIS

We first show that πoff can serve as a conservative baseline policy with high probability. To this end,
we introduce the following operators.

BhV
off
h+1(xh, ah) = Exh+1∼P [r(xh, ah) + V off

h+1(xh+1)|xh, ah],

B̂hV
off
h+1(xh, ah) = ϕh(xh, ah)(Λ

off
h )−1

[
N1∑
τ=1

ϕh(x
τ
h, a

τ
h)
(
rτh + V off

h+1(x
τ
h+1)

)]
,

where the matrix Λoff
h and the estimated value function V off

h+1 are defined in Algorithm 5.

Following Jin et al. (2021), we present a useful lemma that establishes an upper bound of the differ-
ence of two operators defined above.

Lemma 17 (Adapted from Lemma 5.2 in Jin et al. (2021)). Assume the offline dataset is collected
under safe baseline policy πb in a linear MDP M. Let β1 = 20dH

√
ι1 be the parameter for

Algorithm 5, where ι1 = log(4dHN1/δ). Define

Eoff = {|(BhV
off
h+1)(x, a)− (B̂hV

off
h+1)(x, a)| ≤ Γh(x, a),∀(x, a) ∈ S ×A, h ∈ [H]},

where Γh(x, a) = β1 · (ϕ(x, a)⊤(Λoff
h )−1ϕ(x, a))1/2. Then, P[Eoff] ≥ 1− δ/2.

Now we are ready to prove that πoff is a conservative policy with probability at least 1− δ.

Lemma 18. Let πb be the behavior policy used to collect the offline dataset that satisfies V πb

=

γ + κ. If πoff is the output of Algorithm 5, then, we have P[V πoff ≥ γ + κ/2] ≥ 1− δ.

Proof. By Lemma 5.1 in Jin et al. (2021), based on the event Eoff, we have

0 ≤ (BhV
off
h+1)(x, a)−Qoff

h (x, a) ≤ 2β1∥ϕ(x, a)⊤∥(Λoff
h )−1 . (21)

In addition, note that

V πoff

h (x)− V off
h (x) = Eπoff

[
Bh(V

πoff

h+1 − V off
h+1)(x, a) + (BhV

off
h+1)(s, a)−Qoff

h (x, a)
]
.

Using the facts that V πoff

H+1 = V off
H+1 = 0 and Equation (21), by induction, we conclude that V off is a

lower bound of V πoff
, i.e., V πoff ≥ V off. Then, based on the event Eoff, we can bound the difference

of V πb

and V πoff
as follows.

V πb

− V πoff (a)

≤ V πb

− V off

(b)
=

H∑
h=1

Eπb [⟨Qoff
h (xh, ·), (πb − πoff)(·|xh)⟩] +

H∑
h=1

Eπb [(BhV
off
h )(xh, ah)−Qoff

h (xh, ah)]

(c)

≤ 2β1Eπb

[
H∑

h=1

∥ϕ(xh, ah)∥(Λoff
h )−1

]
,

where (a) follows from the LCB property of V off, (b) follows from Lemma A.1 in Jin et al. (2021),
and (c) is due to that πoff is a greedy policy and Equation (21).

By introducing the expected covariance matrix

Λ̄off
h = E[Λoff

h ] = λ1I+N1Eπb [ϕ(xτ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤],

we can further bound Eπb

[∑H
h=1 ∥ϕ(xh, ah)∥(Λoff

h )−1

]
as follows.
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Eπb

[
H∑

h=1

∥ϕ(xh, ah)∥(Λoff
h )−1

]
(a)

≤
√
3Eπb

[
H∑

h=1

∥ϕ(xh, ah)∥(Λ̄off
h )−1

]
(b)

≤
√
3

H∑
h=1

√
Eπb∥ϕ(xh, ah)∥2(Λ̄off

h )−1

=
√
3

H∑
h=1

√
Tr
(
Eπb [ϕ(xh, ah)ϕ(xh, ah)⊤](Λ̄

off
h )−1)

)
≤
√
3H

√
d

N1
,

where (a) is due to Lemma 5 and (b) follows from Jensen’s inequality. Note that our choice of N1

ensures that N1 ≥ 48β2
1H

2d
κ2 . Finally ,we have

V πb

− V πoff
≤ 2
√
3β1H

√
d

N1
≤ κ

2
.

Combining the facts that V πb

= γ + κ, P[Eoff] ≥ 1 − δ/2, and Lemma 5, we have
P
[
V πoff ≥ γ + κ/2

]
≥ 1− δ.

The next theorem generalizes our main result to the case when the baseline policy is only guaranteed
to be conservative with high probability. We note that this theorem allows for more general offline
algorithms and even imitation learning, including Yin et al. (2022) and Rajaraman et al. (2021),
being adopted to learn a baseline policy from the offline dataset.
Theorem 6. Given δ, δ0 ∈ (0, 1), if there exists an algorithm which outputs a baseline policy π̄b

such that with probability at least 1 − δ0, V πb ≥ γ + κ0, then, with an overall probability at least
1− δ − δ0, using this π̄b instead of πb, StepMix or EpsMix algorithm can simultaneously (i) satisfy
the conservative constraint in Equation (2), and (ii) achieve regrets at most

c1
√
d3H4Nι2 +

c2d
3H4(V ∗ − γ − κ0)ι

2

κ2
0

,or , c3
√
d3H4Nι2 +

c4d
3H4(V ∗ − γ − κ0)ι

2

κ2
0

with the same parameters as in Theorem 1 and Theorem 2.

Proof. We prove the result for StepMix, and note that the analysis for EpsMix follows the same
idea.

Let Regretstep(N) be the regret achieved by StepMix after N episodes. Define good events E0 =

{V π̄b ≥ γ + κ0}, and

Estep =

{
Regretstep(N) ≤ c1

√
d3H4Nι2 +

c2d
3H4(V ∗ − γ − κ0)ι

2

κ2
0

with zero constraint violation
}
.

Then, we have P[E0] ≥ 1− δ0, and P[Estep|E0] ≥ 1− δ, which is due to Theorem 1. Therefore,

P[Estep] ≥ P[Estep|E0]P[E0] ≥ (1− δ)(1− δ0) ≥ 1− δ − δ0, (22)

which completes the proof.

Combining Lemma 18 and Theorem 6 immediately proves Theorem 3, which is restated as follows.
Theorem 7. If we replace the baseline policy πb used in Algorithm 1 by πoff, which is the output
of Algorithm 5, then with probability 1 − 2δ, we can simultaneously (i) satisfy the conservative
constraint in Equation (2), and (ii) achieve a total regret that is at most

c1
√
d3H4Nι2 +

4c2d
3H4(∆0 + κ/2)ι2

κ2
,

where c1 and c2 are absolute constants that are the same as in Theorem 1, and ι = 2 log(4dHN/δ).
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Finally, we present the complete theorem for EpsMix-LSVI with an offline dataset in Theorem 8.
The proof is the same as that for Theorem 3, i.e., combining Lemma 18 and Theorem 6.
Theorem 8 (EpsMix with an offline dataset). If we replace the baseline policy πb used in Algo-
rithm 4 by πoff, which is the output of Algorithm 5, then with probability 1− 2δ, we can simultane-
ously (i) satisfy the conservative constraint in Equation (2), and (ii) achieve a total regret that is at
most

c3
√
d3H4Nι2 +

4c4d
3H4(∆0 + κ/2)ι2

κ2
,

where c3 and c4 are absolute constants that are the same as in Theorem 2, and ι = 2 log(4dHN/δ).

G.3 ADDITIONAL EXPERIMENTS WITH OFFLINE DATASETS

To compare with the case of knowing the safe policy πb in Figure 1, we adopt the same experiment
settings but using 30 offline trajectories, and the results are shown in Figure 3.

(a) k = 20, β = 1 (b) k = 40, β = 1 (c) k = 20, β = 2 (d) k = 40, β = 2

Figure 3: Total reward of each episode under StepMix-LSVI, EpsMix-LSVI, and LSVI-UCB with different β
and baseline parameter k with 30 offline trajectories. Numbers of violations are stated in the legend.

We see from the results that with sufficient offline trajectories, our algorithms can be safe and con-
verge to the optimal policy. We also see that, with 30 offline trajectories, the learned policies actu-
ally have better performance than the original baseline policy. Additionally, the StepMix-LSVI and
EpsMix-LSVI algorithms have a faster convergence to the optimal policy. This is because offline
learning from the dataset may produce a better baseline policy (than the behavior policy), that may
improve the learning performance.

H ADDITIONAL DISCUSSIONS

In both StepMix-LSVI and EpsMix-LSVI, a mixture policy may be adopted in some of the episodes.
We note that such a random mixture mechanism is critical for the zero constraint violation guarantee.

To see this, we consider a special MDP where the state transition for any give state-action pair is
deterministic. Besides, we also assume that the given baseline is a deterministic policy such that at
each step h, πb

h maps the current state to an action deterministically. Then, starting from the same
initial state, the trajectory under πb will always be the same. As a result, the learner is unable to get
enough information outside the direction spanned by ϕ(xh, ah), where (xh, ah) is the fixed state-
action pair at the h-th step under πb. Therefore, if the algorithm does not allow any random mixture
mechanism in the design, the learner can only do one of the following: 1) continue with πb, which
will lead to a linearly growing regret if πb is not optimal; 2) pick another policy without mixing with
πb, which can potentially violate the conservative constraint. Such deterministic policy, therefore,
may fail to simultaneously achieve sublinear regret and zero constraint violation.

Besides, we also note that the LSVI-UCB subroutine we adopt to obtain a candidate optimistic pol-
icy can be replaced by any other RL algorithms that are able to identify the optimal policy with
sublinear regret in linear MDPs. Our analysis can be slightly modified to show that the correspond-
ing regrets under StepMix-LSVI and EpsMix-LSVI remain the same order as that under the adopted
RL algorithm, with additional constant terms.
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