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Figure 1. Left: Bottom row shows the 3D skeletons of a puma animal in motion. The blue lines represent our model’s predictions, closely
tracking the red ground-truth lines, demonstrating our model’s ability to generate smooth and precise motion over time. The dashed line
highlights the trajectory of a specific joint Ŷt,j , emphasizing the temporal consistency and accuracy of our approach. Right: Quantitative
FA-MPJPE comparison across 13 animal categories, where our method consistently outperforms competing models.

Abstract

We present a spatio-temporal perspective on category-

agnostic 3D lifting of 2D keypoints over a temporal se-

quence. Our approach differs from existing state-of-the-art

methods that are either: (i) object-agnostic, but can only

operate on individual frames, or (ii) can model space-time

dependencies, but are only designed to work with a single

object category. Our approach is grounded in two core prin-

ciples. First, general information about similar objects can

be leveraged to achieve better performance when there is

little object-specific training data. Second, a temporally-

proximate context window is advantageous for achieving

consistency throughout a sequence. These two principles

allow us to outperform current state-of-the-art methods on

per-frame and per-sequence metrics for a variety of animal

categories. Lastly, we release a new synthetic dataset con-

taining 3D skeletons and motion sequences for a variety of

animal categories.

1. Introduction
Reconstructing 3D deforming objects from 2D landmarks
obtained by a single camera is a long-standing challenge
in computer vision. Traditional non-rigid structure-from-
motion (NRSfM) approaches relied on clever but straight-
forward factorisation methods that are sensitive to noise and

occlusions [3, 29]. In some cases, ambiguities can be re-
solved with multiple camera views, but come at the cost
of expensive equipment and limited practicability to natu-
ral scenes. Recent learning-based methods are capable of
robustly recovering 3D object structure from a single cam-
era in the presence of noise and occlusions. Coupled with
an abundance of publicly available 3D human pose data,
human-specific lifting models like MotionBERT [36] have
become increasingly capable. However, their reliance on
human-specific information and vast amounts of training
data make it problematic if they are to be used for other
objects. In particular, animals pose a significant challenge
due to the limited amount of publicly available 3D animal
data.

This has motivated recent developments around object-
agnostic lifting, where a single model is capable of lift-
ing various object categories without category-specific fine-
tuning. Most notably, 3D-LFM [8] achieved state-of-the-
art performance on a combined dataset of various object
categories. The permutation equivariant property of trans-
formers and additional skeletal information were leveraged
to robustly handle category imbalances and within-category
object rig/skeleton variations. However, its inability to uti-
lize temporal information results in poor performance when
applied to a sequence of 2D poses obtained from a video.
We observe frequent jitter and poor recovery of occluded
points, particularly in dynamic sequences.



Our work tackles these challenges by introducing the
first object-agnostic 3D lifting framework that is both data-
efficient and temporally aware. Our approach leverages the
power of transformers with a strategic inductive bias that
focuses attention on temporally proximate frames, enabling
it to effectively capture motion dynamics. Our approach
improves the accuracy of 3D reconstructions across vari-
ous object categories, particularly in challenging scenarios
that contain occlusions, fast movement, limited data, and
previously unseen categories. Furthermore, we address the
lack of publicly available datasets for lifting diverse animal
skeletons and motion sequences by creating a new synthetic
dataset. Our dataset, AnimalSyn3D, includes 4D labels
for 13 animal categories, encompassing 678 animation se-
quences with temporal consistency, designed to enable fur-
ther research in class-agnostic lifting.

The contributions of this paper are:
• We propose a class-agnostic lifting model with a strate-

gic inductive bias directly embedded in the architecture.
We validate the state-of-the-art 3D lifting performance
of our approach across challenging scenarios involving
noise, occlusions, and unseen objects.

• We contribute a new synthetic dataset containing 4D
skeletons for a variety of animals with animated behav-
ior sequences, where temporal consistency is prioritized
through a non-linear refinement procedure.
We empirically validate the effectiveness of our ap-

proach on our synthetic dataset. We achieve state-of-the-
art results with existing metrics and provide an additional
metric for a more complete analysis.

2. Related Works
2.1. 3D Pose Estimation
Obtaining the 3D pose of an object from a single monocular
camera generally follows one of two paths. The first directly
predicts the 3D pose from RGB images [2, 23, 26, 27], often
struggling to generalize to distribution shifts such as light-
ing and background information. Alternatively, two-stage
methods divide the task between two specialized models
[4, 5, 12, 21]: a pose detector first extracts a 2D pose which
is then lifted into 3D by a separate model. Our work aligns
with a two-stage approach, particularly focusing on improv-
ing the robustness and generalization of the 3D lifting stage.

2.2. Object-Specific Lifting
Traditional NRSfM algorithms have been effective in mod-
eling simple and targeted objects, such as human bodies and
hands [6, 10]. These methods largely rely on the avail-
ability of 2D keypoints and specific 3D supervision for
the object in question. However, recent deep learning ap-
proaches have demonstrated superior performance in han-
dling the complexity of various object rigs [14, 18, 25, 30].

Despite these advancements, they still require the 2D key-
points to have consistent semantic correspondence across
all instances of the object, where a specific landmark, such
as an elbow, must have the same semantic meaning across
different poses.

This limitation persists even in state-of-the-art deep lift-
ing models like MotionBERT [36] and others [4, 5], which
are tailored specifically for the human body. The spe-
cialized nature of these models and their dependence on
large datasets make them unsuitable for objects with limited
available data, such as animals. Existing animal-specific
lifting models suffer from similar issues, often being re-
stricted to a single animal category and demonstrating poor
generalization due to data scarcity [11, 16, 22].

2.3. Object-Agnostic Lifting

The paradigm of object-agnostic lifting has recently been
pioneered by 3D-LFM [8], which can handle a wide range
of object categories by leveraging large-scale data to en-
hance performance for underrepresented or unseen objects.
However, unlike object-specific models such as Motion-
bert [36], 3D-LFM does not incorporate temporal informa-
tion, which is important for accurate 3D reconstruction of
sequences. Our framework builds upon this insight, inte-
grating the strengths of both object-agnostic lifting and tem-
poral modeling.

2.4. Animal Datasets

To effectively benchmark category-agnostic lifting over
videos of animals, a diverse set of animal categories with
accurately labeled 3D skeletons is required. Recent animal
datasets have made strides in this area but are often lim-
ited to single atemporal images [31, 33], with few publicly
available datasets offering 3D poses of animals in video se-
quences [7, 19]. Moreover, methods to collect data for a
broad set of animals are typically impractical, expensive, or
yield noisy results.

Inspired by the tracking community, we turn to synthetic
data [9, 15, 35]. Existing synthetic datasets are restricted
to a single animal, such as pigs [1] or ants [28], and gen-
erally contain only simplistic motion sequences. The De-
formableThings4D [20] dataset offers more complex and
diverse motion sequences animated by artists, but it was
created for dense mesh recovery and does not include 3D
skeletons. We build upon these models and animations to
create a new dataset specifically designed for the task of
class-agnostic 3D lifting.

3. Method

In this section we explain our data collection pipeline and
class-agnostic lifting model.
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Figure 2. Overview of our data pipeline and 3D lifting model. The left side of the figure demonstrates (a) the process of calculating
skeleton joints from animal mesh vertices, and (b) the projection of the those joints into 2D keypoints. The right side of the figure illustrates
our lifting model at a high-level. The sequence of 2D input and temporal index is projected and passed through our motion encoder and
space encoder layers. The spatio-temporal latent features are decoded into canonical 3D structures. The canonical structures are then
aligned to the ground truth (GT) via procrustes-alignment for calculating the loss.

3.1. Dataset
We find a noticeable gap in available public datasets con-
taining diverse 3D animal skeletons with realistic motion
sequences. We aim to fill this gap by creating a new
synthetic dataset, AnimalSyn3D, that builds on the mesh
vertices and animation sequences provided by the De-
formableThings4D [20] dataset. We provide 3D skele-
ton labels for 13 animal categories, totalling 678 anima-
tion sequences with temporal correspondence across 48,384
frames. We provide statistics and examples of our dataset
in the Tab. 7. We detail our data collection pipeline in fol-
lowing sections.

3.1.1 Animal joints

Given the vertices of a skin-tight mesh of an animal and an
associated sequence of movement, our aim is to find the 3D
locations of the anatomically-accurate skeleton joints of the
animal. We define the locations of K vertices and N joints
in 3D space throughout a sequence of T frames as V →
RT→K→3 and J → RT→N→3, respectively. Note that the
number of mesh vertices, joints, and frames may vary across
animals and sequences. We take inspiration from motion
capture, where markers are attached to an object and used to
estimate joint positions via triangulation. We strategically
select a subset of M vertices St,j =

{
St,j,1, ...,St,j,M

}
↑

Vt to be virtual markers, such that the mean of the markers
will provide the location of a joint j in frame t:

Jt,j =
1

m

m∑

i=1

St,j,i. (1)

The selection of vertices for a subset St,j is guided by
a visual inspection of Jt,j and the trajectory similarity of
the chosen vertices. The bones of the animal are defined
as an adjacency matrix AN→N containing the connections
between joints. We decide the number of joints, their ap-

proximate locations, and their connections by reviewing the
anatomical structure of the target animal.

3.1.2 Non-linear optimisation

The noise that is inherently present in our human anno-
tation process occasionally results in the length of animal
bones to change over time. We adopt an additional inverse-
kinematics optimization procedure to refine the position of
joints so that the bone lengths are consistent across time.
We formulate the problem as solving for the pose angles
ω → RT→N→3 of forward kinematics for each joint j in
frame t:

Ĵt,j = f(ωt,j) = f(ωt,p) ·
[
R(ωt,j) Lj,p

0 1

]
, (2)

where p is the parent of joint j in the kinematic chain,
R transforms ωt,j into a valid R → SO(3) rotation ma-
trix using Rodrigues’ rotation formula, and Lj,p is the bone
length between joints j and p in the first frame. Forcing the
L translation vector to be from a single frame forces bone
lengths to be the same for every frame.

We use gradient descent with the Adam [17] optimizer
to optimise the objective function

minimize
ω

T∑

t=1

N∑

j=1

∥∥∥Ĵt,j ↓ Jt,j

∥∥∥
2
+ εLS , (3)

where LS is an additional smoothness regulariser:

LS =
∥∥∥Ĵt,j ↓ Ĵt↑1,j

∥∥∥
2
. (4)

The inverse-kinematics optimization provides a new set
of joints Ĵt,j that ensures consistent bone lengths through-
out any complex sequence of movement.



3.1.3 Perspective projection

We define an initial camera pose to satisfy two conditions.
The mean location of the animal throughout the sequence
is at the center of the camera view, and all joints are within
view for the entirety of the sequence. We randomly rotate
the camera around the y-axis and project the points to the
2D camera plane. For our purpose we do this only once for
each animation sequence, however this process can be used
to obtain many different views of the animal throughout the
sequence.

3.2. Lifting model
Given an input sequence of 2D skeletons X → RT→J→2,
where T is the number of frames in the video and J is the
number of joints, our goal is to reconstruct the 3D skeletons
Ŷ → RT→J→3 of the object.

3.2.1 Keypoint features

The attention mechanism of transformers is inherently per-
mutation equivariant, such that inputs can be randomly per-
muted and the corresponding outputs will remain the same.
We leverage this property to handle objects with different
joint configurations. We utilise the masking mechanism
of [8] to overcome the technical challenge of training with
different numbers of joints. Inputs are zero-padded up to
the maximum number of joints in a mini-batch and a mask
M → {0, 1}J is used to ignore padded joints. Each element
in M is defined as:

Mi =

{
1 if joint i is present
0 otherwise

(5)

We encode the 2D skeletons into D-dimensional features
F → RT→J→D using Random Fourier Features (RFF) [34].
We additionally encode each 2D joint (x, y) with its tempo-
ral location t in the sequence. We thus compute the feature
of an input p = [x, y, t]T as:

ϑ(p) =

√
2

D

[
sin(W · p+ b); cos(W · p+ b)

]
, (6)

where W → RD

2 →3 is sampled from a normal distribu-
tion N (0, I) and b → RD

2 is sampled from a uniform distri-
bution U(0, 1

2ε ). We choose analytical RFF for its success
in low-data and out-of-distribution (OOD) scenarios [8, 34].
We find that encoding the temporal position is beneficial for
the motion encoder in capturing temporal dependencies.

3.2.2 Motion encoder

The motion encoder leverages multi-head self-attention
(MHSA) to embed temporal context into the keypoint fea-
tures. Although we choose MHSA for its ability to use

information from all frames, its lack of an inductive bias
makes it unsuitable for tasks with limited data. We argue
that it is not necessary to consider all frames in a sequence
because most of the useful information can be found in
nearby frames. We explicitly impose this inductive bias into
the MHSA blocks by applying a binary mask to the inter-
mediate attention maps. We define the mask Z → RT→T for
a joint at time t as:

Zt,i =

{
1 for t↓ ϖ ↔ i ↔ t+ ϖ

0 otherwise
(7)

where ϖ is a hyper-parameter controlling the number of
frames before and after t that can contribute information
during attention.

Given a set of spatial features F → RT→J→D as input
to our motion encoder, we matrix transpose to get FM →
RJ→T→D. We first apply linear projections to obtain queries
Q, keys K, and values V for each head h:

Q(h) = FW(h)
Q

,K(h) = FW(h)
K

,V(h) = FW(h)
V

, (8)

where Q(h),K(h),V(h) → RN,T,
D

H for a total of H
heads. We apply our temporal mask Z before the non-linear
softmax operation in each head:

headh = softmax(
Q(h)(K(h))T

ϱ
↗ Z) ·V(h), (9)

where ϱ is a scaling factor. Finally, each head is concate-
nated and projected:

FM = MHSAϑ(FM ) = [head1; ...;headh]WP. (10)

We follow the standard procedure of applying a residual
connection and layer normalisation before obtaining the fi-
nal output of one windowed-MHSA layer. We stack P of
these layers with residual connections to create our motion
encoder.

3.2.3 Space encoder

The space encoder uses the features from our motion en-
coder to model the relationships among joints in a single
frame. We found the hybrid graph-based approach of [8] to
perform favorably for our task. Given the transposed mo-
tion features FM → RT→J→D, a single space-layer has two
simultaneous processing streams, one for capturing the lo-
cal connectivity between joints Glocal, and another for cap-
turing global connectivity Gglobal. These two streams are
concatenated and projected to provide an output of spatial
features containing a combination of both streams:

FS = MLP([Glocal(FM ,A);Gglobal(FM )]). (11)



The local graph-attention Glocal utilises an adjacency ma-
trix of the joint connections A → RJ→J to model the object
connectivity. A layer normalisation and skip connection is
applied to produce the final output of a layer. As with our
motion encoder, we stack O layers with residual connec-
tions between them.

3.2.4 Decoder and Procrustes-based loss

Lastly, given the latent spatial features FS , we use an MLP
to decode the predicted 3D structures of the object in a
canonical 3D space

Ŷcanon = MLP(FS). (12)

We align each canonical prediction Ŷcanon → RT→J→3

with the ground truth Y via a Procrustes alignment method
which solves for the optimal rotation R̃t individually for
each frame t as:

minimize
Rt↓SO(3)

∥∥∥Yt ↓ Ŷcanon
t

Rt

∥∥∥
2
. (13)

In practice, we use Singular Value Decomposition (SVD)
to solve this optimisation problem. To ensure that R̃t be-
longs to the special orthogonal group SO(3), we enforce
det(R̃t)= +1. This step is crucial for mitigating reflection
ambiguity in our predictions.

The resulting R̃t is used to align our canonical predic-
tions with the ground truth. We additionally scale the pre-
dictions relative to the ground truth using a scaling factor
s → RT :

Ŷt = st · (Ŷcanon
t

R̃t) (14)

3.2.5 Loss function

With our predictions now aligned with the ground truth, we
can compute our loss. We compute the Mean Squared Error
(MSE) of the 3D points along with an additional velocity
error Lvel:

Ltotal =
T∑

t=1

J∑

j=1

∥∥∥Yt,j ↓ Ŷt,j

∥∥∥
2
+ εLvel, (15)

Lvel =
T∑

t=2

J∑

j=1

∥∥∥(Yt,j ↓Yt↑1,j)↓ (Ŷt,j ↓ Ŷt↑1,j)
∥∥∥
2
.

(16)
We use the scalar ε to weight the velocity loss.

4. Experiments
We evaluate our method on various animal categories to as-
sess its performance and generalisation properties. Com-
parative analyses are with recent state-of-the-art video (Mo-
tionBERT [36]) and single-frame (3D-LFM [8]) lifting
models on various animal categories and motion sequences.

Datasets We use the AnimalSyn3D dataset as described
in Sec. 3.1. The 2D keypoints provided by off-the-shelf
pose detectors [32] are inherently noisy due to factors such
as lighting conditions and image quality. To simulate these
conditions, we synthetically perturb the 2D keypoints with
an additive Gaussian noise, which corresponds to a 3-
pixel error on average. We present results for non-noisy
data (Tab. 8) and also provide comparisons on 3D human
pose estimation in the supplementary material (Tab. 11), al-
though human-specific lifting is not the focus of our work.
We normalise 2D keypoints and 3D labels to [↓1, 1], af-
ter scaling the 3D labels following existing works on 3D
human pose estimation [36]. We split the data for training
by randomly selecting 80% of the animation sequences for
each animal, with the remaining animations withheld for
testing.

Evaluation protocols Previous video lifting methods [5,
12, 21, 36] evaluate the non-rigid structure and motion of
their approach by calculating the mean per-joint position
error (MPJPE) directly with the ground truth in the cam-

era space. However, our model and 3D-LFM make pre-
dictions in a canonical space that requires the alignment of
each frame to the ground truth. As such, we instead use the
standard per-frame Procrustes-aligned MPJPE metric and
refer to it as the frame-aligned MPJPE (FA-MPJPE) for
brevity. Additionally, we compose a metric to measure the
relative motion error in a video sequence.

Sequence-Aligned MPJPE We formulate the sequence-
aligned MPJPE (SA-MPJPE) as solving for a single ro-
tation matrix R → SO(3) to align the 3D predictions Ŷ
and ground truth Y for all T frames in a sequence. This
is in contrast to the SA-MPJPE that aligns each individual
frame in a sequence by solving for T rotation matrices. Af-
ter alignment, we compute the MSE to produce the final
error value. Let us specify Ŷ,Y → RT→J→3, for J joints,
to define our metric as

minimize
R

T∑

t=1

∥∥∥Yt ↓ ŶtR
∥∥∥
2
. (17)

Compared to Eq. (13), we are instead solving for a sin-
gle, global R. Our metric thus captures any error in the mo-
tion that occurs between subsequent frames of a sequence.



Method Bear Buck Bunny Chicken Deer Dog Elk Fox Moose Puma Rabbit Raccoon Tiger Avg
MotionBERT 94.5 208.1 16.7 108.2 200.7 50.1 267.4 40.6 189.2 254.4 30.7 77.4 211.8 134.6
3D-LFM 47.6 158.2 23.2 92.3 156.8 53.9 147.8 22.2 274.7 163.4 37.8 70.0 165.4 108.7
Ours 29.2 128.4 17.1 60.8 57.3 32.8 103.1 14.2 97.9 93.2 19.0 44.5 90.8 60.6
MotionBERT 90.7 198.1 16.0 99.0 195.5 45.8 246.8 39.9 170.9 235.0 28.6 74.9 203.2 126.5
3D-LFM 27.9 108.3 12.2 86.3 75.0 33.3 103.0 16.2 119.7 119.3 21.2 57.6 107.7 68.3
Ours 26.7 107.3 11.2 54.2 50.9 27.9 86.1 12.4 81.6 85.9 15.4 42.8 79.8 52.5
MotionBERT 3.2 11.0 1.1 3.9 6.9 2.6 10.4 1.3 17.8 9.8 2.1 4.0 9.8 6.5
3D-LFM 7.6 29.0 3.4 8.4 26.3 8.4 26.5 3.8 43.4 27.3 6.7 12.3 30.4 18.0
Ours 2.5 12.1 1.3 3.4 5.9 2.9 9.3 1.2 12.5 8.9 2.0 3.6 9.1 5.7

Table 1. Quantitative comparison of 2D to 3D lifting with 13 animals. We report, in millimeters, the Sequence-Aligned MPJPE (top),
Frame-Aligned MPJPE (middle), and Sequence-Aligned MPVE (bottom), see Sec. 4 for details of these evaluation metrics. Our approach
(Ours) outperforms existing state-of-the-arts with significant gap across multiple animal categories.

Method MC FA-MPJPE→ SA-MPJPE→ SA-MPVE→

MotionBERT - 176.0 199.9 9.78
↭ 126.5 134.6 6.5

3D-LFM - 89.2 126.4 20.5
↭ 68.3 108.7 18.0

Ours - 105.4 128.4 11.0
↭ 52.5 60.6 5.7

Table 2. Quantitative comparison between multi-category
(MC) and single-category training. We use a ↭for models
trained with multi-category training. Each method benefits from
multi-category training. See supplementary material for a break-
down of per-animal results.

Lastly, we are able to report the commonly used mean
per-joint velocity error (MPVE) after performing the global
sequence alignment. For clarity in our comparisons, we re-
fer to this as SA-MPVE.

Implementation details Here we provide important im-
plementation details of our method and refer the reader to
the supplementary material for further details. We construct
batches of 32 sequences with 48 frames per sequence. We
train on a total of 871 video sequences and evaluate on a
separate set of 199 unseen sequences across all 13 animal
categories. Inputs are zero-padded up to the maximum of
29 joints that occur in dataset. A layer size of P = 4 is
chosen for the motion encoder and O = 12 for the space
encoder. The hidden-dimension size D is 256. Experiments
were conducted on a single NVIDIA A100 GPU.

MotionBERT uses human-specific semantic knowledge,
making it unsuited for object-agnostic lifting. To provide
a fair comparison, we do not modify the proposed archi-
tecture and instead apply two alternative alterations. We
first set the number of learned positional embeddings to the
maximum amount of joints seen in the dataset, allowing it

to handle all animal rigs. We also randomly permute the 2D
inputs during training and testing to simulate a real object-
agnostic scenario. This is required so that the positional
embeddings are not learning dataset-specific skeleton se-
mantics. We ensure that joints being permuted retain their
temporal correspondence over a sequence.

4.1. Object-agnostic lifting

Tab. 1 demonstrates the effectiveness of our method com-
pared to MotionBERT and 3D-LFM. We outperform both
methods across all three metrics and nearly every animal.
Notably, our approach achieves 45% lower SA-MPJPE and
70% lower SA-MPVE compared to 3D-LFM, demonstrat-
ing that our predicted 3D motion has more accurate and
smoother movement, while also preserving high-fidelity ob-
ject structure (FA-MPJPE). This substantial performance
gap highlights the critical role of the motion encoder in
capturing the temporal relationship of joints. While Mo-
tionBERT is a spatio-temporal approach, it has no inductive
bias to assist with handling scarce data and multi-category
training. Fig. 3 qualitatively demonstrates the predictions
of our method compared to 3D-LFM.

Single- vs multi-category We evaluate performance on
single-category training and compare it to their performance
on multi-category training. For single-category, we train
each approach from scratch using data specific to a single
animal category. This process is repeated for all 13 ani-
mals, and the mean error is reported in Tab. 2. All meth-
ods show significant improvement when performing multi-
category training as opposed to single-category, achieving
at least a 25% reduction in FA-MPJPE, with our approach
achieving a 50% reduction. This improvement highlights
the advantage of unified learning across a vast spectrum of
object categories, particularly in scenarios where the train-
ing data is small and unbalanced.



(a) 3D-LFM (b) Ours

Figure 3. Quantitative comparison on a Deer sequence from
two different views: Our method provides significantly more ac-
curate 3D predictions. In this visualization, blue represents the
predicted 3D points whereas the orange denotes the ground truth.

Robustness to occlusion To evaluate the robustness of
3D-LFM and our approach to occlusion scenarios, we
trained both models by randomly masking 10% of all 2D
keypoints within a frame and tasking the models with re-
covering the 3D locations of the missing joints. As shown in
Fig. 6, our method demonstrates superior robustness while
3D-LFM struggles. Even in an extreme case of 60% oc-
clusion we continue to see legible predictions from our
method; see Fig. 8 in the supplementary material for a qual-
itative result.

4.2. OOD generalization
Unseen objects We perform a 13-fold analysis, where
each fold involves holding out one animal category from the
original dataset during training. For example, the bunny cat-
egory is excluded from the training data and used to evaluate
the generalization capability of each method. As shown in
Fig. 4 (left), our approach demonstrates superior OOD gen-
eralization when handling unseen animal categories by out-
performing existing methods by a significant margin. We
present a qualitative reconstruction for a bunny instance in
Fig. 5 and refer the reader to Tab. 9 in the supplementary
material for tabulated results.

Rig transfer When lifting an unseen animal in the wild,
we may encounter an animal with a more complex struc-
ture than seen during training. We showcase our ability to
generalize to an unseen animal with an unseen number of
joints. While MotionBERT is limited to rigs with the same
or fewer joints as those seen during training, our method can
handle any number of joints. We train on animal rigs with
27 or fewer joints and test on two unseen animals with 29
joints (deer and moose). As shown in Fig. 4 (right), while
both 3D-LFM and our approach are impacted by the diffi-
culty of the task, our approach outperforms 3D-LFM by at

Figure 4. OOD generalization. OOD to unseen data (left): We
perform a 13-fold evaluation to assess each method’s ability to
handle unseen animal categories. OOD to an unseen category and

rig (right): Note that MotionBert is constrained to rigs with the
same or fewer joints as those seen during training and hence can-
not handle unseen rigs with more joints. Our method can handle
generalization to both unseen category and unseen rig more effec-
tively.

(a) 3D-LFM (b) Ours

Figure 5. OOD generalization on an unseen Bunny category
from two different views: Our method provides significantly
more accurate 3D predictions compared to 3D-LFM. In this vi-
sualization, blue represents the predicted 3D points whereas the
orange denotes the ground truth.

(a) 3D-LFM (b) Ours

Figure 6. A comparison of robustness when 10% of a tiger is
occluded. We include the average frame-aligned MPJPE across
all animals for each method. Two views of the object are shown.

least 40% in all metrics. We show the tabulated results in
the supplementary material (Tab. 10).

4.3. Ablations
In this section we ablate the important building blocks of
our approach. We first highlight the importance of our
spatio-temporal approach as opposed to a spatial-only ap-
proach. Then, we demonstrate the improvement gained
from our temporal-proximity inductive bias. We go on to



Model FA-MPJPE→ SA-MPJPE→ SA-MPVE→

Space 67.8 99.9 13.1
Time 57.9 66.5 5.6

Table 3. Ablation of time vs. space.

ω FA-MPJPE → SA-MPJPE → SA-MPVE →

2 53.9±1.12 65.5±0.96 7.0±0.02

4 54.4±1.13 64.9±2.78 6.4±0.01

8 52.7±0.19 61.4±0.40 5.8±0.00

16 57.1±0.93 65.6±1.70 5.7±0.02

- 57.9±0.33 66.5±0.88 5.6±0.01

Table 4. Ablation of our inductive bias. We use ↑ to denote no
constraint being applied. We report the averages over 5 indepen-
dent runs.

compare strategies for encoding the position of a joint in
time. Lastly, we ablate the importance of our procrustes-
based training.

Time vs. space We evaluate the significance of informa-
tion sharing across time facilitated by our proposed motion
encoder. To isolate the impact of time, we create a space-
only variant of our model by replacing the motion encoder
with additional space blocks such that the number of pa-
rameters remains similar. As shown in Tab. 3, modelling
temporal dependencies is crucial for enhancing 2D-3D lift-
ing performance, particularly in terms of per-sequence re-
construction accuracy (SA-MPJPE) and smoothness (SA-
MPVE).

Constrained temporal attention We observe that apply-
ing our inductive bias to restrict information sharing en-
hances the optimization of our model. We conduct our ab-
lation by progressively increasing the window size ϖ. We
apply ϖ according to Eq. (7). Tab. 4 shows the impact of dif-
ferent ϖ on performance, averaged over five statistical runs.
Overall, we observe a trade-off between the accuracy of the
3D structure and the accuracy of 3D motion. In our case,
we identify ϖ = 8 as optimal, which we used for all of our
other experiments.

Analytical temporal embedding Here we ablate our use
of analytical RFF to encode temporal information. In
Tab. 5, we show that it is beneficial to use an analytical
embedding over a learned embedding. Analytical RFF pro-
vides a significant performance increase over a learned em-
bedding, in our case it seems to result from a scarcity of
data.

Temporal Embedding FA-MPJPE→ SA-MPJPE→ SA-MPVE→

- 55.5±2.29 64.8±3.04 5.9±0.03

Learned 54.0±1.13 64.1±1.24 6.1±0.02

Analytical 52.7±0.25 61.4±0.27 5.8±0.01

Table 5. Ablation of temporal embedding strategies. We report
the averages over 5 independent runs.

Model Procrustes FA-MPJPE→ SA-MPJPE→ SA-MPVE→

3D-LFM - 83.2 97.3 25.0
3D-LFM ↭ 68.3 108.7 18.0

Ours - 62.2 74.9 7.7
Ours ↭ 52.7 61.4 5.6

Table 6. Procrustes vs. non-Procrustes training. Our spatio-
temporal 2D-3D lifting approach with Procrustean alignment sur-
passes 3D-LFM.

Procrustes-based training Similar to 3D-LFM, we find
it useful to train our model with a Procrustes-based loss,
as shown in Tab. 6. Allowing the model to focus solely
on learning object structure significantly enhances the pre-
dicted 3D structure and benefits overall 3D motion accu-
racy. Interestingly, we observe that we are able to perform
well without the Procrustes-based loss, even outperforming
3D-LFM across all metrics. This offers an interesting in-
sight into future work involving our method for practical
applications that require implicitly predicted camera rota-
tion.

5. Conclusion
In this work, we introduced an object-agnostic 3D lifting
model that leverages a temporal inductive bias for tempo-
ral sequences. Our approach sets a new benchmark in lift-
ing performance for object categories with limited available
data. The model’s ability to generalize across unseen object
categories and rigs shows its versatility and robustness, even
in challenging scenarios involving noise and occlusions. In
addition to these contributions, we have introduced a new
synthetic dataset, AnimalSyn3D, designed to stimulate fur-
ther research in class-agnostic 3D lifting models. This work
aims to pave the way for more generalized and efficient 3D
reconstruction methods that can be applied across diverse
real-world applications.
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