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ABSTRACT

Out-of-Distribution (OOD) detection is critical for deploying vision-language
models in safety-sensitive settings. While recent approaches such as CLIPN rely
solely on margin-based cosine similarity for separating in- and out-of-distribution
samples, this reliance provides limited safeguards against overconfident represen-
tations. We introduce the Evidential Contrapositive Framework (ECF), a prin-
cipled approach that integrates logical negation into vision-language alignment
to explicitly model what a class is not. Unlike prior work that enforces sep-
aration through heuristic margins, ECF specifically introduces (i) exclusion via
contrapositive loss, (ii) decoupling via negative prompt alignment, and (iii) log-
ical consistency via contrapositive similarity regularization. To further enhance
reliability, we couple this framework with evidential uncertainty modeling using
a Dirichlet distribution, enabling simultaneous estimation of aleatoric and epis-
temic uncertainty. This combination yields interpretable uncertainty-aware deci-
sion boundaries and robust rejection of OOD inputs without requiring access to
OOD samples during training. Extensive experiments on large-scale benchmarks
demonstrate that ECF significantly outperforms state-of-the-art zero-shot OOD
methods, both in detection accuracy and in uncertainty calibration, validating the
advantage of principled contrapositive reasoning over margin-based objectives.

1 INTRODUCTION

The ability to distinguish between in-distribution (ID) and out-of-distribution (OOD) inputs is crit-
ical for deploying machine learning models in safety-sensitive applications such as autonomous
driving (Huang et al.| 2020), medical diagnostics (Hong et al., [2024), and biodiversity monitor-
ing (Impio & Raitoharju, |2024). Traditional OOD detection methods assume access to labeled
training data from known classes, but this assumption breaks down in zero-shot settings, where the
model must generalize to unseen classes without direct supervision. Recent advancements in vision-
language models (VLMs), particularly Contrastive Language—Image Pre-trained (CLIP) (Radford
et al.| 2021), have demonstrated strong zero-shot recognition capabilities, prompting their use in
OOD detection tasks. Despite these advances, current zero-shot OOD detection techniques, includ-
ing recent works like CLIPN (Wang et al., 2023), struggle with reliable rejection mechanisms. They
often rely on thresholding similarity scores without explicitly modeling uncertainty or accounting
for logical relationships between classes and prompts. This leads to overconfident predictions on
OOD inputs, compromising both reliability and safety.

‘We propose a novel framework called Learning by Exclusion: Evidential Contrapositive Framework
(ECF) to address these limitations. Inspired by contrapositive reasoning in logic: where the truth of
a statement is inferred through the falsity of its inverse, we design a learning objective that encour-
ages the model to learn class-representative embeddings by explicitly pushing away embeddings
from non-class (negative) prompts. Additionally, we incorporate an evidential uncertainty model-
ing mechanism based on Dirichlet distributions, enabling the model to express both epistemic and
aleatoric uncertainty. This results in a principled rejection-aware training pipeline.

Specifically, ECF introduces three core components: (1) Exclusion-Aware Prompt Engineering,
which generates negative prompts to enforce semantic dissimilarity from non-target classes; (2)
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Figure 1: Toy t-SNE visualization comparing the feature space of (a) CLIPN (Wang et al.| [2023)
and (b) our proposed ECF method. (a) CLIPN-style OOD Detection: OOD samples (especially
hard ones) are often close to in-domain classes; (b) ECF based OOD Detection: OOD samples are
repelled toward a designated “No” region, improving separation; Hard-to-distinguish OOD samples
overlap with ID regions in (a), while in (b), they are repelled toward a distinct “No” logit region.

Negative Prompt Alignment Loss, a novel objective that penalizes similarity between OOD fea-
tures and ID class prototypes; and (3) Contrapositive Similarity Regularization, which ensures the
model explicitly aligns dissimilar features with dissimilar textual prompts. These components are
unified under a rejection-aware learning framework that supports high-confidence abstention on
OOD samples. Fig|l| shows the feature spaces of CLIPN and our proposed evidential contraposi-
tive Framework (ECF). While CLIPN exhibits partial separation between ID and OOD samples via
prompt ensembling and threshold tuning, ECF achieves significantly better separation through con-
trapositive learning and evidential uncertainty modeling, highlighting its superior zero-shot OOD
discrimination capability.

Our framework achieves state-of-the-art performance on zero-shot OOD detection across multiple
benchmark datasets. It not only improves discriminative power but also enables interpretable uncer-
tainty quantification, making it well-suited for real-world open-world scenarios. Our contributions
are summarized as follows:

* We introduce Evidential Contrapositive Framework (ECF), a framework that enables zero-
shot out-of-distribution (OOD) detection by leveraging evidential uncertainty modeling and
contrapositive reasoning, eliminating the need for OOD samples during training.

» ECF incorporates evidential uncertainty estimation into vision-language models, providing
calibrated confidence scores that enhance the model’s ability to distinguish between in-
distribution and out-of-distribution samples.

* We propose a contrapositive learning approach that utilizes logical negation to generate
pseudo-negative samples, strengthening the model’s discriminative capabilities without re-
quiring additional data.

* Our extensive experiments demonstrate that ECF achieves superior performance in zero-
shot OOD detection tasks, outperforming state-of-the-art methods.

2 RELATED WORK

In this section, we review existing literature relevant to our work across the following themes: (i)
Zero-Shot Out-of-Distribution (OOD) Detection, (ii) Prompt-Based Vision-Language Models, (iii)
Uncertainty-Aware Deep Learning, and (iv) Logical and Contrastive Reasoning in Representation
Learning. We then contextualize our proposed approach by contrasting it with CLIPN (Wang et al.,
2023).
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2.1 ZERO-SHOT OOD DETECTION

Zero-shot OOD detection aims to identify anomalous or novel classes without requiring exposure
to OOD examples during training. Earlier works such as ODIN (Liang et al., 2018), Mahalanobis
distance-based scores (Lee et al.,[2018)), and energy-based models (Liu et al., |2020) predominantly
focused on confidence manipulation or statistical modeling of in-distribution features.

Most of the zero-shot approaches leverage vision-language models like CLIP (Radford et al., [2021)
to compare image embeddings with natural language descriptions of known classes. To improve
CLIP’s OOD capabilities, methods such as CLIPN (Wang et al., 2023) have been proposed. CLIPN
fine-tunes CLIP using synthetic negatives and introduces rejection calibration via prompt ensem-
bling and adaptive thresholds. Recent works have explored leveraging vision—-language models
(VLMs) for OOD detection Ming et al.| (2022); [Jiang et al.| (2024); |[Zhang & Zhang| (2024). For
instance, MCM [Ming et al.| (2022) computes Mahalanobis distances in the CLIP embedding space
and derives a handcrafted confidence score, but does not incorporate contrastive objectives or un-
certainty modeling. NegLabel [Jiang et al. (2024) employs negative prompts as pseudo-labels to
improve discrimination, yet all negatives are treated uniformly and the framework lacks a principled
mechanism for modeling epistemic or aleatoric uncertainty, which can limit robustness. AdaNeg
Zhang & Zhang| (2024) extends this idea by adaptively selecting negative prompts, but it still does
not enforce explicit contrapositive alignment or disentangled evidence estimation. In contrast, our
approach introduces an evidential contrapositive framework that combines logical reasoning with
uncertainty-aware modeling, enabling structured exclusion, decoupling, and consistency that go be-
yond margin-based or purely negative-sampling strategies.

2.2 PROMPT-BASED VISION-LANGUAGE MODELS

Vision-language models, particularly those leveraging prompt-based mechanisms, have become cen-
tral to modern representation learning due to their scalability and flexibility in zero-shot tasks. Mod-
els such as CLIP (Radford et al.l 2021) train a dual encoder architecture to align textual prompts
with visual features via contrastive learning. By transforming class labels into textual prompts (e.g.,
“a photo of a cat”), these models project both modalities into a shared embedding space. Zero-shot
classification is then achieved by comparing the image embedding with the prompt embeddings of
all candidate classes. Subsequent works have extended this paradigm to address OOD detection.
CLIP-Adapt (Gudibande et al., [2023)) and Tip-Adapter (Zhang et al.| 2022) refine CLIP’s zero-shot
capabilities by adapting prompt embeddings or employing retrieval-based mechanisms. These meth-
ods, while improving classification, often lack mechanisms to reject unknown or spurious inputs,
resulting in poor OOD detection performance.

Recent approaches such as CLIPN (Wang et al., 2023) introduce negative prompts and an auxil-
iary “None of the Above” class to enable rejection, offering one path toward OOD-aware vision-
language systems. However, CLIPN relies on learned class centroids and post-hoc calibration,
limiting generalizability to unseen OOD distributions. In contrast, our proposed Evidential Con-
trapositive Framework (ECF) integrates logical contrapositive reasoning with evidential uncertainty
modeling to perform zero-shot OOD detection by learning representations that are explicitly aware
of counterfactual prompts and uncertainty. This fundamental distinction allows ECF to generalize
better across domains and classes without reliance on synthetic negatives or additional calibrations.

2.3 UNCERTAINTY-AWARE DEEP LEARNING

Uncertainty estimation is crucial for detecting OOD inputs. It is broadly categorized into two types:
epistemic uncertainty, which captures model uncertainty due to limited data, and aleatoric uncer-
tainty, which accounts for noise inherent in the data (Kendall & Gal, 2017).

Bayesian Neural Networks (BNNs) (Blundell et al.,2015) and Monte Carlo Dropout (Gal & Ghahra-
mani, 2016)) are early methods for modeling epistemic uncertainty by approximating the posterior
distribution over model parameters. However, these methods are often computationally expensive
and require multiple stochastic forward passes at test time. More recent approaches use determinis-
tic alternatives such as deep ensembles (Lakshminarayanan et al., 2017)) or evidential deep learning
(EDL) (Sensoy et al.,[2018)), which models class probabilities as a Dirichlet distribution, enabling a
principled estimate of both aleatoric and epistemic uncertainty without Monte Carlo sampling. EDL
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has shown success in tasks requiring sample rejection or selective classification (Malinin & Gales,
2018)). In the context of Out-of-Distribution (OOD) detection, uncertainty-aware methods offer an
elegant mechanism for distinguishing known versus novel samples. Methods such as DUQ (van
Amersfoort et al., [2020) and Prior Networks (Malinin & Gales| [2018)) leverage uncertainty scores
for robust OOD detection. Nevertheless, many existing approaches require extensive hyperparame-
ter tuning or ensemble training.

Our proposed method, Evidential Contrapositive Framework (ECF), extends EDL to the zero-shot
OOD setting by coupling uncertainty estimation with contrapositive reasoning. This enables re-
jection of semantically incongruent prompts based on high epistemic uncertainty, achieving both
robustness and interpretability in zero-shot vision-language tasks.

2.4 CONTRASTIVE LEARNING

Contrastive learning has shown impressive performance in unsupervised and self-supervised feature
representation learning (Chen et al., 2020; |He et al.l 2020; [Khosla et al., 2020). These methods
typically rely on minimizing the distance between positive pairs while pushing apart negative pairs
in the feature space. Supervised variants like SupCon (Khosla et al., [2020) demonstrate how label
information can be used to enhance contrastive objectives. More recent vision-language pretraining
methods like CLIP (Radford et al., [2021)) leverage contrastive learning across modalities.

Early works explored integrating symbolic knowledge into deep models (Rocktischel et al.,|2015),
while recent approaches focus on learning under logical exclusions and implications to improve out-
of-distribution generalization. Our work builds on this foundation by introducing exclusion-driven
contrapositive reasoning, which formalizes the idea that "what something is not” is as informative as
“what it is.” This reasoning framework is embedded into the learning objective, enforcing alignment
of features with class-negated prompts for improved rejection of OOD inputs.

3 PROPOSED METHOD: EVIDENTIAL CONTRAPOSITIVE FRAMEWORK
(ECF)

We introduce the Evidential Contrapositive Framework (ECF), a principled approach that com-
bines contrapositive logical reasoning with evidential uncertainty modeling for zero-shot out-of-
distribution (OOD) detection. Unlike prior works such as CLIPN, which primarily enforce margin-
based separation, our framework explicitly disentangles the role of exclusion, decoupling, and logi-
cal consistency in the embedding space.

3.1 MOTIVATION AND BACKGROUND

Zero-shot OOD detection aims to identify samples from unseen classes during testing, often using
vision-language models (VLMs) like CLIP. However, these models lack a principled way to reject
unseen samples due to their focus on semantic alignment without explicit reasoning for exclusion.
Inspired by contrapositive logic, we hypothesize that equipping models with the ability to reason
about what a sample is not can enhance exclusion-based recognition. Furthermore, incorporating
evidential uncertainty allows the model to abstain from overconfident predictions, a key requirement
for trustworthy OOD detection.

We formalize the problem as follows: Let € X be an input image, and Y = {y1,...,yx } be the
set of seen class labels. During training, the model observes (z, y) pairs from ID classes, and at test
time, it must detect whether " belongs to any unseen OOD class y’ ¢ Y. Our framework addresses
two limitations in prior works:

» Semantic ambiguity: CLIP-style models conflate semantically similar ID and OOD sam-
ples.

* Overconfidence: Deterministic similarity scoring does not reflect predictive uncertainty.
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3.2 OVERVIEW OF EVIDENTIAL CONTRAPOSITIVE FRAMEWORK (ECF)

An overview of the framework is shown in Figure |2} The ECF framework consists of three core
components: (1) Exclusion-aware contrastive learning using contrapositive reasoning, (2) Uncer-
tainty modeling via evidential deep learning, and (3) Zero-shot inference with rejection based on
epistemic uncertainty. The details of the algorithm can be found in[Appendix A.T]
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Figure 2: Block diagram of the proposed ECF framework for zero shot out-of-distribution detection.

3.3 CONTRAPOSITIVE REASONING FOR EXCLUSION-AWARE LEARNING

We adopt a logical contrapositive principle: ”if image x does not belong to class y, then the prompt
py should not match x.” For each image x;, we define a set of negative class prompts {p; | j # v},
and train the model to minimize similarity with these negative prompts.

Given image embeddings f(z) and prompt embeddings g(p, ), we define the contrapositive loss:

Leontra = ]E(:vLyL) Z HlaX(O, T+ Sim(f('ri)a g(pj)) - Sim(f(xi)ag(pyi))) )
JF#Yi

(D

where sim(+, -) denotes cosine similarity and 7 is a margin.

Unlike CLIP, which passively aligns images to textual prompts without modeling explicit rejection,
and CLIPN, which introduces a learned “none-of-the-above” token as a global OOD prototype, our
approach adopts a logical reasoning-based paradigm grounded in contrapositive logic. Specifically,
instead of synthesizing an OOD anchor or relying on a binary ID-vs-OOD objective, we define
exclusion by directly leveraging the negative class prompts derived from the existing label space.
This facilitates fine-grained reasoning: for a sample from class y;, we explicitly enforce dissimilarity
to all other class prompts {p; | j # v, }, thus constructing a distributed and structured notion of “not
belonging” across the entire class manifold. This leads to more robust and semantically informed
rejection capabilities in zero-shot OOD settings, particularly when OOD samples are semantically
close to ID classes.

3.4 NEGATIVE PROMPT ALIGNMENT LOsSS (NPAL)

While contrapositive reasoning promotes separation from incorrect class prompts through a margin-
based formulation, it may not sufficiently suppress subtle similarities between image features and
semantically close negative prompts. To enforce stricter disalignment, we propose the Negative
Prompt Alignment Loss (NPAL) as an auxiliary term that directly minimizes the similarity between
an input image and all negative class prompts.

Formally, let f(x;) be the visual embedding of an image z; and g(p,) be the text embedding of a
prompt p; corresponding to class j # y;. The NPAL loss is given by:

LnpaL = E(z, ) Z sim(f (), 9(pj))| >

J#Yi

2
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where sim(-, -) denotes cosine similarity. This term penalizes any residual alignment with non-
matching class prompts.

The NPAL serves two purposes: (i) it reinforces the contrastive signal from Lo by explicitly
discouraging unwanted prompt associations, and (ii) it contributes to more calibrated confidence
scores by regularizing the logits used for evidential uncertainty estimation. This ensures that classes
semantically related to y;—which may have high softmax probabilities in vanilla CLIP—are treated
with adequate caution in downstream zero-shot OOD detection.

3.5 CONTRAPOSITIVE SIMILARITY REGULARIZATION (CSR)

CSR is designed to further regularize the embedding space geometry, ensuring that embeddings
for image-prompt pairs corresponding to incorrect classes remain distant and unambiguous. Unlike
NPAL, which penalizes similarity directly, CSR minimizes the squared cosine similarity to reduce
overconfidence in negative associations and enforce angular separation in the feature space.

We define the CSR term as:

) @) o) \’
Lesk = Eqz, ) Z <|f( )HHQ(PJ)) . v

J#Yi

This term ensures that the embedding distributions remain disentangled for negative prompts, con-
tributing to stable training and sharper OOD boundaries.

3.6 EVIDENTIAL UNCERTAINTY MODELING

To enable uncertainty-aware decision-making in zero-shot OOD detection, we integrate evidential
deep learning into our contrastive framework. Instead of producing deterministic class probabilities
via softmax, we predict parameters of a Dirichlet distribution that encodes both the mean prediction
and the associated uncertainty.

Letz = [z1,...,2Kk]| be the similarity scores between the image embedding f(z) and prompt em-
beddings g(py) for all classes k € {1,..., K}. We apply a ReLU transformation followed by a shift
to obtain non-negative evidence:

e = max(0,z) + e, 4
where € is a small constant to ensure numerical stability. The evidence vector e = [eq, ..., ex]
is then used to parameterize a Dirichlet distribution Dir(cx), where a, = ex + 1. The predicted
probability for class k becomes:

K
~ Qg .

= —, with total strength S = . 5
Pe =3 g ; Qg )]

The uncertainty associated with this prediction is captured in two forms: (i) Aleatoric uncertainty,
representing inherent data noise, is given by the expected entropy of class probabilities:

Sz(l_*) ©)

(ii) Epistemic uncertainty, capturing the model’s lack of knowledge, is defined as the entropy of the
expected probability vector:

— 3 s (%),

During training, we minimize a loss based on the expected mean squared error between the true
one-hot label vector y and the predictive distribution:

K

) Dir (1 — Dig
Levia = Ez, 4, [Z (yix — pik)Q + g

®)
= S+1
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Additionally, to regularize uncertainty on incorrect predictions, we include a KL divergence between
the predicted Dirichlet and a flat Dirichlet prior:

L1es = Dy, [Dir(cx) || Dir(1)] )

This evidential modeling enhances the rejection mechanism by quantifying how certain the model
is about its class prediction. High epistemic uncertainty indicates lack of sufficient evidence for any
class, which is critical for robust zero-shot OOD detection. The uncertainty analysis can be found

in [Appendix A.2]
3.7 FULL OBJECTIVE AND OPTIMIZATION

Our final training objective integrates contrapositive reasoning, alignment penalties, and evidential
uncertainty estimation into a unified loss. The total loss function is defined as:

Lecr = Leonwra + A LNPAL + A2Lesr + A3Levia + AgLreg, (10)

where:

* Lecontra enforces contrapositive dissimilarity with incorrect class prompts;

* LxpaL minimizes residual alignment with negative prompts;

* Lcsr regularizes angular separation among negative classes;

* Leyiq s the negative log-likelihood loss under the Dirichlet prior:
K

2 1-—
Loia = Eisy) lz <(yk - %) + m> : )

where S =" i @k and yy, is the ground-truth one-hot label;

* L is the KL divergence regularization encouraging the Dirichlet distribution to remain
close to a flat prior when evidence is insufficient:

Ls = KL [Dir(c) || Dir(1)]. (12)

The weighting hyperparameters A, A2, A3, and A4 control the relative influence of each term, and
are tuned via cross-validation. This joint optimization allows the model to (i) learn discriminative
embeddings through logical exclusion, (ii) suppress spurious semantic correlations, and (iii) quantify
predictive uncertainty in a calibrated manner for downstream zero-shot OOD detection.

3.8 INFERENCE STRATEGY AND OOD REJECTION

During inference, we compute the image-prompt similarity scores and extract uncertainty from the
predicted Dirichlet distribution. An image x is rejected as OOD if it shows low similarity to all class
prompts or exhibits high epistemic uncertainty:

Reject(r) =T |maxsim(f(z),g(py)) <6 vV H[E(p)] > 7| . (13)

Y

This dual-threshold strategy ensures reliable zero-shot OOD rejection by combining geometric dis-
similarity and epistemic uncertainty.

4 EXPERIMENTAL RESULTS

We evaluate the performance of our proposed Evidential Contrapositive Framework (ECF) on the
challenging task of zero-shot Out-of-Distribution (OOD) detection, where no OOD data is seen
during training. This section provides the comparison of ECF with state-of-the-art methods.
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Table 1: Comparison of OOD detection performance (AUROCT, FPR]) with ImageNet1K as ID.

Method iNaturalist SUN Places365 Textures Average

MCM Ming et al.|(2022) 94.59/3220 92.25/38.80 90.31/46.20 86.12/58.50 90.82/43.93
NegLabel|Jiang et al.|(2024) 99.49/191 9549/20.53 91.64/35.59 90.22/43.56 94.21/25.40
CSP Ming et al.|(2022) 99.60/1.54 96.66/13.66 9290/29.32 93.86/25.52 95.76/17.51
AdaNeg|Zhang & Zhang|(2024) 99.71/0.59  97.44/9.50 94.55/34.34 94.93/31.27 96.66/18.92
ECF (Ours) 99.56/1.02  97.92/8.98 96.12/32.84 96.08/30.28 97.42/18.28

Table 2: Comparison of methods on Near-/Far-OOD benchmarks and ID classification. Metrics
include FPRO9S5 |, AUROC 1, and ID accuracy (ACC 7).

Method Near-OOD (FPR95 ) Far-OOD (FPR95 |) Near-OOD (AUROC 1) Far-OOD (AUROC 1) ID (ACC 1)
MCM Ming et al.|(2022) 79.02 68.54 60.11 84.77 66.28
NegLabelJiang et al.|(2024) 69.45 23.73 75.18 94.85 66.82
AdaNeg|Zhang & Zhang|(2024) 67.51 17.31 76.70 96.43 67.13
ECF (Ours) 65.34 14.59 78.26 97.88 69.75

4.1 DATASETS AND SETUP

We conduct experiments with CIFAR-10, CIFAR-100, and ImageNet-1K as the ID datasets. For
OOD detection, we follow the standard evaluation protocol and use five natural image datasets:
SVHN (Netzer et al.,[2011)), LSUN (crop) (Yu et al.,2015), iISUN (Xu et al.| 2015)), Textures (Cimpoi
et al.,[2014)), and Places365 (Zhou et al.,2017). Models are trained using only the ID dataset classes.
We adopt CLIP (ViT-B/16) as our backbone, freezing its visual and textual encoders. Prompts are
structured as “a photo of a {class}”. Embeddings are projected to 512 dimensions. The evidential
classifier is trained using Adam with a learning rate of 1 x 10~%, batch size 256, and early stopping
on AUROC. Loss weights are set as A\; = 0.5, Ao = 0.3, A3 = 1.0, Ay, = 0.001, and contrastive
margin 7 = 0.2. A systematic study of the loss weight hyperparameters can be found at
We report AUROC and FPR@95%TPR averaged over three runs for reliable OOD detection
performance. Lower FPR95 and higher AUROC indicate better performance. Experiments are con-
ducted uisng RTX3090 GPUs. Further details of the experimental setup can be found in
A3]

4.2 COMPARISON WITH ZERO-SHOT OOD DETECTION METHODS

During training, only ID class prompts are provided for CIFAR-10, CIFAR-100, and ImageNet-1K
during training. No samples or labels from OOD datasets are seen by the model. During inference,

the model must distinguish whether a test sample belongs to any ID class or should be rejected as
OOD.

Table [T shows the performance of all methods when trained on ImageNet-1K and tested on the five
OOD datasets. The proposed ECF achieves superior results in both FPR and AUROC across most
OOD settings, highlighting its effectiveness in rejection under dense label distributions and high
inter-class similarity. It is observed that our proposed ECF consistently outperforms prior OOD
detection methods across all five OOD datasets on ImageNet-1K. In particular, ECF achieves the
highest AUROC and lowest FPR, highlighting its robust exclusion-aware reasoning and uncertainty
calibration for zero-shot OOD detection. Table [2] provides the performance of ECF on OpenOOD
benchmark with ImageNet-1k as ID. The experimental results on CIFAR-100 and CIFAR-10 can be

found at
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4.3 UNCERTAINTY ANALYSIS

To validate the effectiveness of our evidential modeling, we analyze the distribution of epistemic
uncertainty across ID and OOD samples (Analysis available at [Appendix B.2). As expected, ID
samples exhibit consistently low uncertainty, while OOD datasets such as SVHN, iSUN, and LSUN
show significantly higher uncertainty levels. This clear separation confirms that our ECF framework
reliably captures epistemic uncertainty, enabling robust OOD detection without explicit supervision.

4.4 ABLATION STUDY

To understand the contributions of various components in our ECF framework, we conduct an
ablation study on the ImageNet-1K dataset with SUN, Places365, and Textures as representative
OOD test sets. We evaluate three major components: (i) Contrapositive Learning (CPL), which
uses exclusion-based prompts to model non-class membership during training. (ii) Evidential Un-
certainty Modeling (EUM) utilizes Dirichlet-based evidence accumulation for capturing predictive
uncertainty. (iii) Joint Supervised and Contrapositive Optimization (ECF) uses the combination of
supervised and contrapositive losses to train the model. Table[3|reports the FPR and AUROC metrics
for different variants of the model, showing the relative gains from each component.

Table 3: Ablation study on ImageNet-1K with three OOD datasets. Metrics: FPR| / AUROC?T

Variant SUN Places365 Textures

(a) Supervised Baseline (no CPL, no EUM) 11.12/93.93 36.75/93.82 34.19/93.12

(b) + CPL (w/o EUM) 10.14/95.12 35.97/94.04 32.57/94.02
(c) + EUM (w/o CPL) 9.31/96.97 34.14/95.78 31.18/94.84
(d) Full ECF (CPL + EUM) 8.98/97.92 32.84/96.12 30.28/96.08

It is observed from Table [3 that contrapositive learning alone (variant b) provides substantial im-
provements over the supervised baseline by enabling the model to reason about non-membership,
reducing false positives significantly. Evidential modeling (variant c) captures predictive uncertainty
effectively. Our proposed ECF model (variant d) achieves the best performance by synergistically
combining both exclusion reasoning and uncertainty quantification. The ablation study on CIFAR-

100 can be found at|Appendix B.4

5 CONCLUSION AND FUTURE WORK

In this work, we proposed Evidential Contrapositive Framework (ECF), a novel framework for zero-
shot out-of-distribution (OOD) detection that integrates contrapositive reasoning with evidential un-
certainty modeling. Unlike prior works that rely on binary discrimination or synthetic OOD tokens,
our method grounds rejection in logical exclusion by training on negative prompts derived from
known class semantics. This allows ECF to generalize robustly in zero-shot settings without explicit
OOD supervision. Through comprehensive experiments on CIFAR-10, CIFAR-100, and ImageNet-
1K with five challenging OOD benchmarks, ECF consistently outperforms prior methods across
AUROC and FPR metrics. Our ablation studies demonstrate that both the contrapositive and un-
certainty components are essential for optimal performance. Furthermore, our uncertainty analysis
reveals well-separated epistemic distributions between ID and OOD samples, validating the model’s
calibrated behavior.

Limitations and future work Our ECF relies on textual descriptions to generate pseudo-negative
samples. In scenarios where textual information is ambiguous or lacks specificity, the effectiveness
of contrapositive learning may be compromised. Future work includes exploring synthetic negative
prompts or learned counterfactuals to enhance exclusion-based reasoning.
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A APPENDIX

A.1 ALGORITHM FOR EVIDENTIAL CONTRAPOSITIVE FRAMEWORK (ECF)

Algorithm 1 Evidential Contrapositive Framework (ECF)

Require: Pretrained vision-language encoders f(x), g(py)
1: ID training set Dip = {(x;, yi)}
2: Negative label pool Cpeg
3: Margin 7; hyperparameters A, A2, A3, A4

Ensure: Trained model for zero-shot OOD detection

4: Initialize model parameters 6
5: for each minibatch (x;, y;) in Dip do
6: // Embed inputs

7: v; < f(x;) > Image embedding
8: i« g(py,) > Prompt embedding for ground truth label
9: Sample negatives j # y; from Cyee: pj < 9(;)
10: Contrapositive Reasoning for Exclusion-Aware Learning:
Lecontra = E(m“y,) Z max(O, T+ Sim(’uzﬁ g(pj)) - Sim(vi,p;r))
JF#Yi
11: // Auxiliary loss terms
122 LnapL < |Jvi — g(py)]|3 > Negative alignment penalty
13: Lesr < 1 —cos(v;, g(py)) > Contrapositive similarity regularization
14: si « sim(v;,p), s; < sim(vi, g(p;))
15 Compute evidence: e; «+ ReLU(s;" — s;)
16: Dirichlet parameters: «; < e; + 1

17: Levia < Expected risk under Dir(«;)
18: Lx1. + KL(Dir(«;)||Dir(1))

19: // Total loss
Lrcr = Leontra + M LNaPL + A2Lcsr + A3 Levia + AaLkL

20: Update 0« 6— UveﬁECF
21: end for
22: return Trained model 6

ALGORITHM EXPLANATION: EVIDENTIAL CONTRAPOSITIVE FRAMEWORK
(ECF)

The Evidential Contrapositive Framework (ECF) addresses zero-shot out-of-distribution (OOD) de-
tection by combining contrapositive reasoning with evidential uncertainty modeling. The algorithm
operates as follows:

1. Input Preparation: Each training example is represented as an image-label pair (z;, y;),
where p,, denotes the class-specific text prompt. A set of negative class prompts {p; };-y,
is derived for exclusion-aware learning.

2. Embedding Computation:

» Compute image embeddings f(z;) using a vision encoder.

* Compute text embeddings g(p, ) for both true and negative prompts using a language
encoder.

12



Under review as a conference paper at ICLR 2026

3. Contrapositive Reasoning: Enforce distance-based separation between true and negative
prompts using the contrapositive loss:

Econtra = E(gcl,y,;) Z maX(07 T+ Sim(f(xi)7g(pj)) - Slm(f(xz)vg(pyl))) ’ (14)
J7Yi
where sim(+, -) is cosine similarity and 7 is a margin.
4. Evidential Uncertainty Modeling:

» Convert similarity scores to class-wise evidence values ej and compute Dirichlet pa-
rameters ap = e + 1.

 Predict class probabilities as py = % where S = Zk Qay,.
5. Loss Functions for Uncertainty Modeling:

» Evidence Loss: 01— pr)
. Pr(l — Pk
Levia = —pp)? ) 15
d ;((yk Pr)” + Sl ) (15)
* KL Regularization L) : Encourages uncertainty under ambiguous inputs.
e NAPL Loss LnapL: Penalizes alignment with negative prompts.

* Contrapositive Similarity Regularization Lcsg: Refines embedding space align-
ment.

6. Total Training Objective:
Liotat = Leontra + A1LNAPL + A2Lesr + A3Levid + AaLkL, (16)

where A1, A2, A3, A4 are loss weights controlling the importance of each component.

7. Inference Strategy: During testing, ECF computes class probabilities and derives both
epistemic and aleatoric uncertainty. OOD rejection is performed using a threshold over
the predicted uncertainty.

13
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A.2 UNCERTAINTY ANALYSIS STEPS IN ECF
The Evidential Contrapositive Framework (ECF) integrates uncertainty modeling into the training

and evaluation pipeline to improve zero-shot out-of-distribution (OOD) detection. The steps below
outline how both epistemic and aleatoric uncertainties are estimated and used in the ECF model.

STEP 1: EVIDENCE PARAMETERIZATION:
Given an input z, the model predicts evidence scores e, > 0 for each class k, which are used to

construct the Dirichlet distribution parameters o, = e + 1. The Dirichlet distribution over K
classes models a distribution over categorical probabilities.

STEP 2: CLASS PROBABILITY ESTIMATION:
Class probabilities py, are computed as:

K
D = < where S = ;ak.

These probabilities are used for both prediction and loss computation.
STEP 3: UNCERTAINTY QUANTIFICATION:

We decompose total uncertainty into:

¢ Aleatoric Uncertainty (data-dependent):

o i Pr(1 = Br)
alea S+1

* Epistemic Uncertainty (model-dependent):

uepistemic =

@l =

STEP 4: EVIDENTIAL LOSS:

To model uncertainty in learning, the evidential loss is defined as:

ZK pr(1 — pr)
~ k — Pk
Levid = <(yk _pk)2 + IS +1 ) 5
k=1

which combines the prediction error with aleatoric uncertainty regularization.

STEP 5: KL DIVERGENCE REGULARIZATION:

To discourage overconfident predictions, we impose a KL divergence between the predicted Dirich-
let distribution and a uniform prior:

Lxr = Dy [Dir(a) || Dir(1)],

encouraging high-entropy distributions when evidence is scarce.

STEP 6: UNCERTAINTY VISUALIZATION:

Finally, we visualize the distribution of uncertainties using violin plots (Appendix B.2)for both ID
and OOD samples. These plots show that epistemic uncertainty is higher for OOD data, demonstrat-
ing the model’s ability to differentiate based on uncertainty.
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A.3 EXPERIMENTAL SETUP

To ensure the reproducibility and rigor of our evaluation, we detail the complete experimental
setup employed in our proposed Evidential Contrapositive Framework (ECF) for zero-shot out-of-
distribution (OOD) detection.

TRAINING OF ECF:

Experiments were conducted on a server with an NVIDIA RTX3090 GPUs (24GB VRAM), 256
GB RAM, and a 64-core Intel Xeon CPU. The implementation uses PyTorch 2.0 with CUDA 11.7
and Python 3.9. All runs leverage mixed-precision (FP16) training for speed and efficiency. We use
CLIP-ViT/B-32 as the backbone image-text encoder. The backbone weights remain frozen during
training to ensure zero-shot generalization and efficient optimization of the ECF-specific modules.
We optimize our model using the Adam optimizer with a learning rate of 1 x 10~%, weight decay
of 0.01, and a batch size of 256. Each model is trained for 20 epochs. We employ an early stopping
criterion based on the validation AUROC.

PRETRAINING DATASET AND PROMPT DESIGN:

Our experiments utilize frozen CLIP (ViT-B/16) pretrained on LAION-400M, consistent with
CLIPN. However, our text prompt design differs in two key ways:

e We design a complementary set of semantically negated prompts (e.g., “a photo not of a
[class]”) for OOD contrast, which are not present in CLIPN or other baselines.

* Our prompt augmentation includes counterfactual and attribute-perturbed variants to ex-
plicitly construct an exclusion boundary in the embedding space, which facilitates contra-
positive learning. These prompt strategies are crucial for our evidence modeling, where
uncertainty is tied to the confidence of textual alignment under both ID and OOD hypothe-
ses. In the ECL (Evidential Contrapositive Learning) framework, Contrapositive Prompts
and Negated Class Prompts are related but not exactly the same. Here is a clear distinction:
For example, for CIFAR-10, a positive class prompt is: “a photo of a [class name]” Nega-
tive Prompt in CLIPN is : “a photo of no [class name]” and its contrapositive counterpart
is: “This is not a photo of a [class name].”

NEGATIVE LABEL MINING:

We derive negative label candidates from a large-scale vocabulary corpus. Semantic dissimilarity
with respect to in-distribution classes is computed in CLIP’s embedding space to form exclusion-
aware negatives used in the contrapositive loss.

BASELINE IMPLEMENTATIONS:

We compare ECF with several state-of-the-art zero-shot OOD detection methods: CLIP-ZS, MSP-
CLIP, Energy-CLIP, ODIN-CLIP, ZOE, CLIPN, and TAG. All methods use the same frozen CLIP-
ViT/B-16 backbone and standardized prompt templates unless otherwise stated in their original im-
plementation.

TRAINING TIME AND MODEL SIZE:

Compared to other methods, ECF has marginally higher training time due to uncertainty modeling
and exclusion-aware components. On average, ECF takes ~3.5 hours for ImageNet-1K and ~1.5
hours for CIFAR-10 & CIFAR-100 on RTX 3090 GPUs. The additional parameters introduced by
evidential and contrapositive modules increase the model size by only ~2M parameters.
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MEMORY USAGE AND COMPUTATIONAL COST

Despite the multi-component loss, memory consumption during training remains efficient due to
frozen CLIP features. The peak GPU usage for ECF remains under 16GB (FP16) for a batch size of
64. This makes ECF scalable and feasible for resource-constrained setups.

Our method builds on top of CLIPN with a modular and lightweight extension. Specifically, the
evidential head replaces the linear classifier in CLIPN, introducing only a few additional fully con-
nected layers for estimating Dirichlet parameters. The core CLIP backbone remains frozen through-
out training, as in CLIPN, ensuring comparable computational load. During inference, the additional
computation involves a soft evidence-based entropy and uncertainty estimation, which is negligible
compared to the cost of CLIP’s vision encoder.

* Quantitative comparison (Empirical): On ImageNet-1K: Training Time Overhead: <
10% increase over CLIPN per epoch (due to uncertainty computation and loss terms). In-
ference Latency: (approx.) 5 ms/sample for CLIPN vs. (approx.) 6 ms/sample for ECF
(measured on RTX3090 GPU). FLOPs: Marginal increase (< 3%) over CLIPN, primarily
due to additional forward passes through the evidential classifier head.

* No prompt tuning or backbone updates: Our approach does not perform prompt tuning
or fine-tune CLIP’s backbone, thereby avoiding expensive gradient updates during training.
This aligns with CLIPN’s training efficiency.

* Scalable to larger datasets: The computational profile is scalable to ImageNet-level
datasets since the model only introduces shallow extensions over CLIPN, and all OOD
detection losses are batch-parallelizable. Evidential Contrapositive Learning (ECL) main-
tains practical efficiency with minimal additional compute, while significantly enhancing
uncertainty modeling and OOD detection reliability.

B APPENDIX

B.1 HYPERPARAMETER ANALYSIS

We have conducted a sensitivity analysis on the weighting coefficients \;, Aa, A3, and A4, which
correspond to the auxiliary losses in our full ECF objective: the negative alignment penalty (NAPL),
contrapositive similarity regularization (CSR), evidential loss, and KL regularization, respectively.
The evaluation is performed using ImageNet-1K as the in-distribution (ID) dataset and SVHN as the
out-of-distribution (OOD) dataset, with AUROC and FPR as the evaluation metrics. Detailed plots
of AUROC vs. each ) are shown in Figure [3| Based on the evaluation, we have set the loss weights
as A; = 0.5, A2 = 0.3, A3 = 1.0, A\, = 0.001.

We observe the following.

* A1 (NAPL): The moderate values of A\; improve discriminability between ID and OOD
samples by penalizing false alignments with negative prompts. Excessively large values
suppress learning from hard negatives.

* )2 (CSR): The )5 encourages orthogonality between ID and negative prompt embeddings
and observed its optimal performance at 0.3.

* )3 (Evidential Loss): The A3 is essential for modeling calibrated uncertainty. Higher
values yield improved OOD rejection with minimal impact on ID performance.

* )4 (KL Regularization): This helps in preventing overconfident predictions, particularly
on OOD samples. However, large values may lead to underconfident behavior and reduced
separability.

The ECF framework exhibits robustness across a reasonable range of hyperparameter values, and

achieves optimal trade-offs in OOD detection performance when the loss terms are properly bal-
anced.
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Sensitivity of AUROC to Loss Weights in ECL Framework
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Figure 3: Sensitivity of AUROC to Loss Weights in ECF Framework.

B.2 UNCERTAINTY ANALYSIS

We presented violin plots of epistemic and aleatoric uncertainty distributions across ID and OOD
samples (see Figures 4] and [5). These plots clearly show a substantial separation between the two
distributions, supporting our choice of fixed thresholds. Notably, thresholds are determined globally
and class-agnostically, using disjoint validation data without overlap with either ID or test-time
classes—thus respecting zero-shot assumptions. These plots validate that our thresholds are not
arbitrarily tuned but are driven by distinct uncertainty patterns inherent to OOD vs. ID behavior.

Epistemic uncertainty for ID data mostly lies in the range [1.2, 1.65], and for OOD it lies in [1.85,
3.25]. Aleatoric uncertainty for ID data lies in [0.18, 0.4], and for OOD in [0.2, 0.55]. Then, we
have chosen: § = 1.75 and v = 0.19 These lie in the low-overlap regions between ID and OOD
distributions and can be considered class-agnostic and globally valid thresholds.

Figure [4| shows violin plots of uncertainty scores for ImageNet-1K (ID) and five OOD datasets.
As expected, ID samples exhibit consistently low uncertainty, while OOD datasets such as SVHN,
iSUN, and LSUN show significantly higher uncertainty levels. This clear separation confirms that
our ECF framework reliably captures epistemic uncertainty, enabling robust OOD detection without
explicit supervision.

The distribution of aleatoric uncertainty for ID and various OOD datasets is shown as the violin
plot in Figure [5] Notably, the distributions of aleatoric uncertainty scores for ID and OOD samples
largely overlap, with only marginal shifts across datasets. This suggests that aleatoric uncertainty
alone is insufficient for robust OOD discrimination. The scores indicate inherent data noise and
ambiguity, which may not change drastically under distributional shift, thus highlighting the greater
utility of epistemic uncertainty in our ECF framework for zero-shot OOD detection.

B.3 ADDITIONAL EXPERIMENTAL RESULTS

Table @] shows the performance of all methods when trained on CIFAR-100 and tested on the five
OOD datasets. We compare our ECF with the following baselines: CLIP-ZS |Radford et al.| (2021),
MSP-CLIP Hendrycks & Gimpel| (2016)), Energy-CLIP |Liu et al.| (2020), G_ODIN-CLIP Hsu et al.
(2020), ZOC [Esmaeilpour et al.[(2022), CLIPN Wang et al.| (2023), TAG Liu & Zach| (2024). ECF
achieves superior results in both FPR and AUROC across most OOD settings, highlighting its ef-
fectiveness in rejection under dense label distributions and high inter-class similarity. As shown in
Table[5} our ECF framework also outperforms existing baselines when trained on CIFAR-10. Due to
the smaller number of classes in CIFAR-10, some methods show lower average FPR; however, ECF
still provides the best AUROC across all OOD datasets. The results in Tables [] and [5| demonstrate
that our proposed ECF consistently outperforms prior OOD detection methods across all five OOD
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datasets on both CIFAR-100 and CIFAR-10. Notably, ECF achieves the highest AUROC and low-
est FPR, highlighting its robust exclusion-aware reasoning and uncertainty calibration for zero-shot
OOD detection.

Table 4: Comparison of OOD detection performance (AUROCT, FPR|) with CIFAR-100 as ID.

Method SVHN Textures LSUN iSUN Places365 Avg
CLIP-ZS 85.3/43.1 80.6/48.2 81.7/47.6 79.9/494 824/46.5 82.0/46.9
MSP-CLIP 86.0/41.8 81.4/46.7 823/45.1 80.7/48.0 83.2/452 82.77/453

Energy-CLIP 87.2/40.1 829/452 83.8/439 82.1/46.1 84.4/43.7 84.1/43.8
G_ODIN-CLIP 88.6/37.9 83.7/43.0 849/41.2 83.0/43.8 855/425 85.1/41.7

Z0C 89.2/364 83.4/41.5 85.1/39.8 83.7/419 855/40.1 854/39.9
CLIPN 90.1/345 84.0/39.3 86.2/37.6 84.5/39.5 87.1/373 86.4/37.6
TAG 91.7/329 86.0/37.9 88.6/36.1 86.5/38.1 889/359 87.8/36.1

ECF (Ours) 93.8/28.3 88.9/29.7 91.3/24.0 90.2/254 91.8/23.2 91.2/26.1

Table 5: Comparison of OOD detection performance (AUROCT, FPR]) with CIFAR-10 as ID
dataset.

Method SVHN Textures LSUN iSUN Places365 Avg
CLIP-ZS 89.1/35.6 859/39.1 86.4/37.8 84.5/38.6 88.0/36.5 86.8/37.5
MSP-CLIP 90.0/34.3 87.1/37.2 87.6/357 856/37.1 889/354 87.8/359

Energy-CLIP 91.0/32.1 88.4/355 89.0/334 86.8/34.8 90.2/33.3 89.1/33.8
G_ODIN-CLIP 92.0/30.2 89.3/34.0 90.1/31.6 88.0/32.5 91.4/31.2 90.2/31.9

Z0C 91.5/29.3 87.6/33.0 89.0/304 873/31.7 89.2/30.1 889/30.9
CLIPN 92.2/27.1 89.3/30.6 90.2/284 885/29.6 91.0/28.1 90.2/28.8
TAG 93.7/26.0 913/289 91.9/269 89.8/28.6 92.1/279 91.2/27.1

ECF (Ours) 95.3/20.2 93.7/21.4 94.0/23.0 92.9/23.8 94.2/249 94.0/22.6

Tables [6| demonstrates that our proposed ECF consistently outperforms prior OOD detection meth-
ods also on Near- and Far-OOD benchmarks considering ImageNet-1K as ID.

B.4 ADDITIONAL ABLATION STUDY

Table[7]reports the FPR and AUROC metrics for different variants of the model showing the relative
gains from each component.

Figure[6|shows the dual-axis bar plot visualizing the ablation analysis of the uncertainty components
in the ECF. Left axis (blue bars) shows AUROC (%) performance across different configurations.
Right axis (red bars) shows the corresponding FPR (%) @95% TPR. It clearly demonstrates perfor-
mance degradation when either KL divergence or evidential loss—or both—are removed, affirming
the necessity of modeling both epistemic and aleatoric uncertainties in our ECF framework.
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AUROC (%)

Table 6: Performance on Near- and Far-OOD benchmarks (FPR95 | / AUROC 1).

Near/Far-OOD Dataset

FPR95 | AUROC 1t

Near-OOD SSB-hard 72.18 77.20
NINCO 58.50 79.32
Mean 65.34 78.26
Far-OOD iNaturalist 0.98 99.59
Textures 17.13 97.84
Openlmage-O 25.65 96.22
Mean 14.59 97.88

Table 7: Ablation study on CIFAR-100 with three OOD datasets. Metrics: FPR| / AUROCY
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Variant SVHN LSUN iSUN

(a) Supervised Baseline (no CPL, no EUM) 44.2/90.3 41.7/91.1 42.9/90.8
(b) + CPL (w/o EUM) 33.4/93.2 30.7/93.0 27.7/92.9
(c) + EUM (w/o CPL) 29.6/94.1 263/93.8 31.9/934
(d) Full ECF (CPL + EUM) 20.2/953 23.0/94.0 23.8/94.4
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Figure 6: Ablation Analysis of Uncertainty Components in ECF for SVHN data
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B.5 STRENGTH OF ECF:
Table [8] highlights the uniqueness of the proposed Evidential Contrapositive Framework (ECF)

against several state-of-the-art zero-shot OOD detection methods across a range of key attributes.

Table 8: Comparison of ECF with existing zero-shot OOD detection methods across multiple key
attributes.

Method Zero-Shot Capability ~ Uncertainty Estimation ~ Negative Labels Prompt ion  Contrapositi ing  Evidential ing  OOD-Aware Training
ECF (Ours) v v (Epistemic + Aleatoric) v 's v v v

CLIP-ZS v

MSP-CLIP v v/(Max Softmax)

Energy-CLIP v v (Energy Score)

G-ODIN-CLIP v v/(Grad. Perturbation) V/(Partial)

zZoc v

CLIPN v v (Abstention Score) v v

TAG v v V (Partial)

Following describes the ECF’s uniqueness:

* First to combine contrapositive reasoning with evidential deep learning for zero-shot OOD.
» Utilizes explicit negative labels during training for exclusion-aware generalization.

* Models both epistemic and aleatoric uncertainty, enabling calibrated decisions under dis-
tributional shift.

* Incorporates textual prompt augmentation for better generalization across unseen classes.

B.6 LIMITATIONS OF ECF:

While our proposed Evidential Contrapositive Framework (ECF) achieves superior performance in
zero-shot OOD detection, following are the limitations of ECF:

* Prompt Dependency: ECF’s performance is sensitive to the quality and structure of tex-
tual prompts. Poorly constructed prompts may misalign with visual features, reducing the
effectiveness of contrastive and contrapositive supervision.

* Negative Label Semantics: The approach relies on explicit negative labels derived from
semantic distances. However, close semantic proximity between some negative and in-
distribution labels may cause confusion, leading to reduced exclusion precision.

* Uncertainty Modeling Overhead: The inclusion of evidential deep learning for capturing
epistemic and aleatoric uncertainty introduces additional computational cost and complex-
ity compared to simpler OOD detection methods.
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