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ABSTRACT

Peer review is the cornerstone of scientific publishing, yet it suffers from inconsis-
tencies, reviewer subjectivity, and scalability challenges. We introduce Review-
erToo, a modular framework for studying and deploying AI-assisted peer review
to complement human judgment with systematic and consistent assessments. Re-
viewerToo supports systematic experiments with specialized reviewer personas
and structured evaluation criteria, and can be partially or fully integrated into real
conference workflows. We validate ReviewerToo on a carefully curated dataset
of 1,963 paper submissions from ICLR 2025, where our experiments with the
gpt-oss-120b model achieves 79.3% F1 for the task of categorizing a paper
as accept/reject compared to 83.8% for the average human reviewer. Addition-
ally, ReviewerToo-generated reviews are rated as higher quality than the human
average by an LLM judge, though still trailing the strongest expert contributions.
Our analysis highlights domains where AI reviewers excel (e.g., fact-checking,
literature coverage) and where they struggle (e.g., assessing methodological nov-
elty and theoretical contributions), underscoring the continued need for human
expertise. Based on these findings, we propose guidelines for integrating AI into
peer-review pipelines, showing how AI can enhance consistency, coverage, and
fairness while leaving complex evaluative judgments to domain experts. Our work
provides a foundation for systematic, hybrid peer-review systems that scale with
the growth of scientific publishing.

1 INTRODUCTION

Major machine learning conferences such as ICLR and AAAI now receive (tens of) thousands of
submissions every year, creating enormous pressure on the peer-review process. To cope with this
scale, several venues begin experimenting with large language models (LLMs) as review assis-
tants.1 These early deployments demonstrate both promise and risk: LLMs can generate consistent
and scalable reviews, but they also produce superficial or misleading assessments that may erode
confidence in the process.2 Despite their visibility, such deployments remain one-off interventions
constrained by conference timelines and are difficult to study in a reproducible manner.

A central challenge is that most reported outcomes of AI-assisted peer review remain anecdotal
(even if large-scale), offering little scientific basis for best practices. Without systematic and re-
producible evaluations, the community cannot determine where AI helps, where it harms, or how it
might be responsibly integrated into review pipelines. Progress requires platforms that support con-
trolled, transparent, and repeatable experiments—much like benchmarks have done for other areas
of machine learning.

In this work, we introduce ReviewerToo, a modular framework for studying and deploying AI-
assisted peer review that can complement human judgment with systematic and consistent assess-
ments. ReviewerToo enables researchers to design, test, and compare AI reviewers under standard-
ized conditions, and it is partially or fully adopted in real conference workflows. We take inspira-
tion from recent work on LLM-based social simulations (Anthis et al., 2025), which propose using

1e.g. AAAI 2026 (https://aaai.org/conference/aaai/aaai-26/instructions-for-aaai-26-reviewers/)
2https://www.nature.com/articles/d41586-025-00894-7
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Figure 1: Performance of Different Reviewers on the ICLR-2k dataset.

language models as proxies for human subjects in the study of collective behavior. In this spirit, Re-
viewerToo treats peer review as a socio-technical process shaped by diverse reviewer roles, biases,
and interactions. By instantiating reviewer personas–such as empiricists, theorists, and pedagogical
reviewers–we use LLMs to simulate distinct reviewing philosophies and study how they align with
human decisions.

We validate ReviewerToo on a curated dataset of ICLR 2025 submissions obtained from the Open-
Review platform. This dataset consists of 1,963 papers sampled to balance acceptance and rejection
decisions while preserving diversity across score ranges and decision categories. We refer to this
dataset as the ICLR-2k dataset. This scope enables controlled yet realistic evaluation of AI-assisted
reviewing at scale, yielding both methodological and empirical insights. Our analysis shows that Re-
viewerToo produces reasonable reviews, surfaces systematic biases across personas, and highlights
dimensions where AI reviewers are particularly strong (e.g., fact-checking, literature coverage) or
weak (e.g., assessing methodological novelty and theoretical contributions). These findings provide
an evidence-based perspective on the opportunities and limitations of AI in peer review, moving
beyond anecdote toward systematic study. In sum, this paper makes three contributions:

1. We conceptualize peer review as a socio-technical process and propose ReviewerToo, a
modular framework for evaluating AI-assisted reviewing under controlled and transparent
conditions.

2. We present a large-scale empirical study on the ICLR-2k dataset, analyzing the perfor-
mance and biases of different reviewer personas and their alignment with meta-review out-
comes.

3. We derive a set of guidelines for integrating AI into peer-review pipelines, informed by
both quantitative performance metrics and qualitative analyses of reviewer behavior.

Together, these contributions provide a foundation for systematic and consistent integration of AI
into the peer-review process.

2 BACKGROUND

Challenges in Traditional Peer Review Peer review has long faced well-documented challenges,
including reviewer fatigue, bias, and low inter-reviewer agreement (Cortes & Lawrence, 2021;
Adam, 2025). Large-scale experiments at venues such as NeurIPS revealed that acceptance deci-
sions can vary almost randomly (Cortes & Lawrence, 2021) and exhibit low inter-rater reliability.
Combined with the rapid growth of submissions at top conferences (e.g., 11k+ and 25k+ at ICLR
2025 and NeurIPS 2025, respectively) and widespread reports of “reviewer fatigue,” scalability has
become a pressing concern (Adam, 2025).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Paper
Literature
Review
Agent

Reviewer
Agents

Author
Agent

Meta-
reviewer
Agent

Final
Suggestion

= LLM Agent= Human

ReviewerToo

optional feedback
for improvement

Figure 2: The ReviewerToo Framework. A paper passes through literature, reviewer, author, and
meta-reviewer agents. The module design allows both humans and LLMs to participate at each
stage, with optional feedback loops for iterative improvement.

AI and LLMs as Peer-Review Assistants Recent advances in natural language processing (NLP)
and large language models (LLMs) have spurred interest in using AI to assist peer review. Pub-
lishers and researchers have piloted systems for automated review generation, citation verification,
fact-checking, and meta-review synthesis (Hossain et al., 2024). Surveys suggest that a substantial
minority of reviewers are already using AI tools to speed up report writing, with some conferences
estimating that 15–20% of reviews contain AI-assisted content (Latona et al., 2024; Naddaf, 2025).
Empirical studies show mixed results: while LLM-generated reviews can be helpful according to au-
thors, they also risk hallucinations and lack more in-depth judgment (Liang et al., 2024b). Ongoing
work thus emphasizes “AI-in-the-loop” designs, where models act as assistants for specific subtasks
rather than as replacements for expert judgment (Idahl & Ahmadi, 2024; Liang et al., 2024a).

Despite this growing body of research, relatively little attention has been paid to modeling reviewer
diversity itself. In practice, reviewers embody distinct philosophies—some emphasizing theoret-
ical rigor, others empirical robustness, clarity of exposition, or long-term vision. Prior work on
LLM-based social simulation shows that instantiating multiple role-specific agents can capture di-
verse perspectives in human decision processes (Anthis et al., 2025). Inspired by this, we introduce
REVIEWERTOO, a modular framework that explicitly models a plurality of reviewer personas. By
simulating heterogeneous reviewer roles (e.g., “theorist,” “empiricist,” or “pedagogical”), our frame-
work enables analysis not only of predictive accuracy against ground truth but also of the structure
of inter-reviewer disagreement. This pluralistic design contributes both to practical peer-review
augmentation and to the scientific understanding of reviewer dynamics.

3 SYSTEM OVERVIEW

REVIEWERTOO is a modular framework for studying and deploying AI-assisted peer review. It
proceeds in a structured sequence: ingestion of the submitted manuscript, construction of a targeted
literature review, generation of reviews by a diverse panel of reviewer agents, drafting of a consol-
idated rebuttal by an author agent, and finally a metareview that integrates the full record. The full
workflow is shown in Figure 2.

We adopt a single-turn interaction protocol, in which each agent contributes once per stage (with the
option for reviewers to issue one short post-rebuttal response). This choice reflects the conventions
of many academic conferences, where reviewers typically provide a single review, authors submit
one rebuttal, and only limited clarifications follow. While multi-turn deliberation could in principle
be supported, our design prioritizes realism, and tractability, as LLMs have been shown to lose
context in long, multi-turn discussions. We now discuss the different agents in our framework.

The Literature Review Agent. For literature review, we use LitLLM (Agarwal et al., 2025), a
retrieval-and-summarization agent proposed for automated literature review. Given a manuscript,
LitLLM generates search queries and submits them to Semantic Scholar. Retrieved papers are
ranked using a debate-based method introduced in the original work, after which the top-k candi-
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dates are selected. The agent summarizes these papers into a concise literature review that grounds
subsequent reviewer, author, and metareviewer agents.

Reviewer Agents. Each reviewer agent receives the manuscript (converted to Markdown), an op-
tional literature summary, and prompts encoding a specific reviewing persona or evaluation criteria.
Reviewers generate structured assessments along axes commonly used in conference rubrics: a
paper summary, explicit strengths and weaknesses, novelty, soundness, experimental validity, re-
sults/discussion quality, organization/presentation, and impact. For each dimension, reviewers must
ground their judgments in either (i) explicit spans of the manuscript, or (ii) retrieved evidence from
the literature summary. Additionally, the reviewer agent is also grounded in the official ICLR re-
viewer guidelines 3. If no grounding can be located, the agent is rerun with stricter retrieval until
a verifiable justification is produced. At the end of their report, reviewers provide a categorical
recommendation from {Accept (Oral), Accept (Spotlight), Accept (Poster), Reject, Desk Reject}.

To surface complementary strengths and disagreements, we instantiate a diverse panel of personas.
For brevity, we only mention a subset here, and we refer the reader to Table 5 for a more details:

• Stance-based personas: critical (reject-biased), permissive (accept-biased), and default (neutral).
• Epistemic personas: e.g., theorist (formal emphasis), empiricist (experimental rigor), pedagogi-

cal (clarity and exposition), and pragmatist (practical impact).
• Stylized personas: caricatured reviewer archetypes such as visionary (long-term potential), prob-

abilistic (uncertainty reasoning), and impact-driven (field-level relevance).

Author Agent. The author agent takes the manuscript, the full set of reviewer reports, and the
literature summary as input. It generates a consolidated rebuttal that addresses the most severe crit-
icisms, clarifies potential misunderstandings, and, when appropriate, proposes concrete revisions
such as releasing code or adding ablation studies. The rebuttal must explicitly cite either reviewer
claims or relevant literature, ensuring that clarifications are verifiable rather than speculative. Re-
buttals are stored per review configuration to facilitate analysis.

Metareviewer Agent. The metareviewer integrates all reviewer reports, the author rebuttal, and
any optional post-rebuttal reviewer responses. Its role is to synthesize consensus while controlling
for reviewer disagreement and bias. Concretely, it: (1) summarizes reviewer stances and scores pre-
rebuttal, (2) identifies common strengths and weaknesses, (3) evaluates rebuttal effectiveness, (4)
tracks stance shifts post-rebuttal, and (5) highlights lingering concerns or unresolved disagreements.

To avoid being swayed by overly negative or idiosyncratic reviewers, the metareviewer includes a
fact-checking module. This module verifies reviewer-stated claims against both the manuscript and
the literature summary, discarding unsupported statements. Each fact is also assigned a significance
score, indicating its weight in shaping the final decision. The final metareview thus reflects a com-
bination of consensus synthesis, rebuttal analysis, and fact-weighted evidence assessment. Notably,
the metareviewer agent is also grounded in the official Area Chair guidelines from the ICLR.4 We
include the implementation details of the system in Appendix A.3 and include our prompts in the
supplementary material.

4 EXPERIMENTAL SETUP

4.1 DATASETS

All experiments are conducted on a dataset derived from ICLR 2025 submissions to the OpenReview
platform. From the full pool of 11,672 submissions, we curate a stratified subset of 1,963 papers,
which we refer to as the ICLR-2k dataset. We focus on this subset for all reported results, as it
enables balanced coverage of decision categories and controlled ablation studies. Each submission
is annotated with the official conference decision, which serves as the ground truth for both five-
way and binary evaluations. We consider five categories: Accept (Oral), Accept (Spotlight), Accept
(Poster), Reject, and Desk Reject. Withdrawn papers are merged into the Reject category, while
Desk Reject is preserved separately to test the system’s ability to detect incomplete or rule-violating
submissions. To ensure representativeness, we first rank all ∼12k submissions (213 orals, 380
spotlights, 3115 posters, 7894 rejected, 70 desk rejected) by average reviewer score and then sample

3https://iclr.cc/Conferences/2025/ReviewerGuide
4https://iclr.cc/Conferences/2025/ACGuide
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proportionally across the score distribution. Specifically: (i) For Accepted (Poster), we select 300 of
3,115 submissions, sampling evenly from the top, middle, and bottom thirds of the ranked list; (ii)
For Reject, we include 500 of 5,019 submissions using the same stratification, and add 500 randomly
sampled withdrawn papers; (iii) For Accepted (Oral), Accepted (Spotlight), and Desk Reject, we
include all available cases. This design balances acceptance and rejection while preserving diversity
across decision types and score ranges.

Table 1: Main Results on ICLR-2k Dataset. Best results (per block, per column) are in bold.

Agent 5-way 2-way ELO↑

P↑ R↑ F↑ A↑ P↑ R↑ F↑ A↑ FPR↓

ReviewerToo Agents

Theorist 31.0 24.0 22.6 45.9 72.1 72.1 71.9 71.9 27.9 1463
Pedagogical 27.1 23.0 21.0 51.7 72.9 68.9 68.3 70.3 31.1 1256
Empiricist 32.5 22.5 20.6 50.7 69.7 66.1 65.3 67.6 33.9 1558

Critical 12.5 17.0 11.9 49.6 76.8 50.1 35.0 53.6 49.9 423
Permissive 10.5 16.8 7.5 19.1 73.3 50.3 32.4 46.8 49.7 880
Default 26.7 24.5 21.8 43.3 72.4 71.5 70.5 70.6 28.5 1136

Meta w/ Top-3 28.6 32.1 27.1 49.5 74.2 76.3 73.4 74.8 25.9 1329
Meta w/ Top-3+Base 26.7 26.1 19.5 30.4 74.7 63.6 57.3 61.2 36.4 1154
Meta (all) 32.1 32.4 28.1 52.5 79.3 80.1 79.3 81.8 19.5 1657

Majority (Top-3) 30.5 28.5 25.9 52.0 73.1 70.0 69.8 71.2 30.0 –
Majority (all) 30.7 30.0 27.9 49.2 75.1 75.2 75.1 75.1 24.8 –
Average (all) 32.5 26.4 22.7 42.2 68.6 65.0 60.3 64.8 35.0 –

Supervised Baselines

XGBoost (Bert) 12.9 20.0 14.4 20.0 59.0 55.8 44.3 55.8 3.8 –
XGBoost (tfidf) 17.4 21.4 17.4 21.4 70.4 63.7 58.2 63.7 4.9 –
Bert FT 25.7 26.4 22.5 22.4 84.2 29.1 43.24 65.43 4.51 –

Human (avg) 15.2 12.4 13.7 37.6 85.2 84.1 83.8 83.9 15.9 540
Human (top-1%) 31.5 30.4 29.7 56.4 93.7 91.9 90.4 92.4 8.5 1316

4.2 BASELINES

Table 2: Ablation Results for confer-
ence instructions (CI), LitLLM, and re-
buttal (RB).

Agent (Configuration) F1 Score↑ ELO↑

Theorist (ϕ) 67.4 1371
+CI 69.9 1422
+CI+LitLLM 71.9 1463
+CI+RB 63.8 1299
+CI+LitLLM+RB 63.6 1195

Pedagogical (ϕ) 75.5 1345
+CI 70.5 1256
+CI+LitLLM 68.2 1216
+CI+RB 61.9 1103
+CI+LitLLM+RB 63.0 1122

Empiricist (ϕ) 69.1 1502
+CI 64.8 1427
+CI+LitLLM 70.7 1558
+CI+RB 59.7 1316
+CI+LitLLM+RB 60.4 1332

We evaluate REVIEWERTOO on multiple baselines rang-
ing from trivial heuristics to human-derived signals. Our
baselines fall into four groups: (1) Supervised Baselines.
We include three supervised baselines where we train
an XGBoost classifier with TF-IDF features (XGBoost
(tfidf)), and XGBoost classifier with frozen BERT em-
beddings as features (XGBoost (bert)), and BERT clas-
sifier finetuned on the dataset (Bert FT). (2) Single-agent
reviewers. To isolate the contribution of structured proto-
cols, we ablate on the different conditioning variables: (a)
ϕ: represents a reviewer agent without any conditioning
on conference instructions, or literature review, or rebut-
tal. It only takes as input the manuscript and responds
according to its base personality imbued in the system
prompt. (b) CI: adds ICLR reviewers guidelines for
the reviewer agents and area chair guidelines for metare-
viewer agent in addition to the persona-specific instruc-
tions. (c) RB: extends conference conditioning with an
author rebuttal and one round of reviewer response. (d) LitLLM: further incorporates external re-
trieval and summarization (LitLLM). This sequence reflects a controlled ablation from bare-bones to
fully contextualized reviewing. (3) Reviewer ensembles. We test whether diversity and aggregation
improve fidelity. (a) Majority vote: across all reviewer personas. (b) Extremal ensembles: com-
bining permissive and critical personas to probe systematic bias. (c) Metareviewer aggregation:
synthesizing all reviews and rebuttals into a calibrated consensus.
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Together, these baselines span uninformed heuristics, isolated reviewer agents, structured multi-
agent protocols, ensembles, and human artifacts. This progression allows us to evaluate two com-
plementary questions: (1) how effective LLMs are as reviewers in absolute terms, and (2) which
design choices most narrow the gap to human decision-making.

4.3 EVALUATION METRICS AND RESULTS

We assess REVIEWERTOO along multiple axes that capture predictive accuracy, reviewer agreement,
review quality, and rebuttal helpfulness. We evaluate alignment with real conference decisions by
measuring both the 5-way classification performance (Oral, Spotlight, Poster, Reject, Desk Reject)
and the binary Accept/Reject task; we report macro-averaged Precision, Recall, and F1, with macro
averaging across classes c. We also report overall Accuracy, and False Positive Rate (for binary
task). We quantify consistency among reviewers and with the metareviewer. For two reviewers i, j,
we compute Cohen’s κ
Review quality. We assess the quality of review text through LLM-based judgments. We con-
duct large-scale pairwise comparisons where a held-out LLM acts as the judge. For each paper,
two reviews are shown side by side and evaluated along five axes: (1) Depth of engagement with
the paper’s methodology and arguments; (2) Actionability, i.e., whether weaknesses are paired with
concrete suggestions and is the feedback constructive; (3) Summary, i.e. whether the agent identi-
fied strengths and weakness of the paper in a balanced manner; (4) Clarity, reflecting readability,
structure and professionalism; and (5) Helpfulness of the review to the author. The judge assigns
a win, loss, or draw outcome to each review. From the full set of pairwise outcomes we compute
an ELO rating per system using the standard logistic update. We include the complete protocol in
Appendix A.2.

5 RESULTS

Reviewer Performance. Table 1 reports the performance of REVIEWERTOO agents, supervised
baselines, and human references. Among single-agent reviewers, the EMPIRICIST, PEDAGOGICAL,
and THEORIST personas achieve the strongest overall performance on the 5-way classification task,
with the EMPIRICIST attaining the highest precision (32.5) while THEORIST secures the best F1
score (22.6). In terms of binary accept/reject accuracy, these reviewers approach 70% accuracy,
narrowing the gap to human baselines. Ensembling further boosts performance: majority voting
improves stability, while the metareviewer aggregation (“Meta (all)”) outperforms both single-agent
and majority ensembles across all metrics, reaching 32.1 precision, 32.4 recall, and 28.1 F1 on the
5-way task, and 81.8% accuracy on the binary task. This model also achieves the strongest ELO
score of 1657, surpassing all other agents and aligning closely with the top-1% human baseline.

Error Analysis via Confusion Matrices. Figures 4–3 present normalized confusion matrices for
each agent. We observe consistent difficulty in distinguishing between “oral” and “spotlight” ac-
cept decisions across nearly all personas, indicating sensitivity to fine-grained acceptance tiers. The
PERMISSIVE persona over-predicts acceptance decisions, while the CRITICAL persona strongly fa-
vors rejection. By contrast, the EMPIRICIST and PEDAGOGICAL show more balanced error profiles,
though they still over-predict rejections relative to ground truth. These error modes highlight both
biases induced by personas and systematic challenges in conference calibration.

Reviewer Agreement. We quantify inter-reviewer consistency using Cohen’s κ (Figure 5). Agree-
ment levels vary substantially across personas: MAJORITY and DEFAULT show moderate alignment
(κ ≈ 0.5), while PERMISSIVE and CRITICAL show near-zero or even negative agreement with
other reviewers, underscoring their extremal tendencies. Human reviewers exhibit low to moderate
agreement with LLM reviewers (κ ≈ 0.1–0.2), consistent with known levels of disagreement in real
peer review. Ensembles such as MAJORITY and META yield higher agreement with ground truth,
validating aggregation as a stabilizing mechanism.

Review Quality and ELO. Beyond predictive accuracy, we assess review quality through LLM-
based pairwise judgments, aggregated with ELO ratings. The META (ALL) agent again dominates,
achieving the highest ELO of 1657. Among single-agent reviewers, the EMPIRICIST leads with
1558, while the PEDAGOGICAL and THEORIST trail but still outperform most supervised base-
lines. Interestingly, human reviewers exhibit a striking disparity: the average human ELO is very
low (540), yet the top 1% of human reviewers achieve an ELO of 1316, comparable to the best
single-agent reviewers. At the same time, both average and top-1% humans maintain strong binary

6
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Figure 3: Confusion Matrices for binary Classification Task
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F1 performance (83.8 and 90.4, respectively). This suggests that while humans are highly effec-
tive at holistic judgments of paper quality, the textual reviews they produce are often less helpful
by the criteria used in our LLM-as-judge framework–particularly with respect to actionability and
usefulness to authors. These findings reinforce the potential of structured protocols, diversity, and
meta-reviewing to not only improve decision alignment but also to generate more constructive re-
view text.

Comparison with Supervised Baselines. Supervised baselines such as XGBoost and BERT fine-
tuning achieve modest predictive performance, with binary F1 scores ranging from 43.2 to 65.3. In
contrast, REVIEWERTOO agents not only match or exceed these baselines in decision accuracy but
also generate substantive reviews that achieve competitive or superior ELO ratings. Unlike humans,
who remain strong on both axes–achieving high binary F1 performance while also producing text
that can be judged for quality–supervised models cannot bridge the gap between decision fidelity and
helpful feedback. This underscores the unique advantage of structured reviewer agents in combining
predictive alignment with author-facing utility.

Ablation Studies. Table 2 examines the impact of conditioning variables. Removing conference
instructions or rebuttal rounds systematically reduces both F1 and ELO, indicating their critical role
in reviewer fidelity. For example, the EMPIRICIST with full conditioning (+CI+LitLLM) achieves
the highest ELO (1558), whereas ablations removing rebuttals or literature grounding drop perfor-
mance sharply (e.g., ELO ≤ 1332). Interestingly, PEDAGOGICAL shows the highest raw F1 score
(75.5) in its base persona, though its ELO is lower, suggesting less consistent quality under com-
parative evaluation. Overall, ablations confirm the complementary value of structured conference
context, literature retrieval. We also see that the F1 score for all the reviewer agents drops post
rebuttal. This is potentially interesting as this might be indicating towards sycophantic behaviours
of LLMs because from their point of view, the rebuttals are coming from real humans.

Summary. Taken together, these results demonstrate that REVIEWERTOO can reasonably approx-
imate human-level decision making, especially when aggregating diverse reviewers through metare-
view protocols. Single-agent personas exhibit distinctive biases, but structured ensembles yield
both higher predictive accuracy and higher judged review quality. Agreement analysis highlights
persistent reviewer variance, mirroring human peer review. Finally, ablation studies confirm that
conference conditioning, rebuttals, and literature access are each essential to closing the gap with
human reviewers.

6 DISCUSSION

Our experiments on the ICLR-2k dataset provide a first large-scale analysis of how LLM-based
reviewer agents perform relative to humans, supervised classifiers, and ensemble protocols. The
results reveal both opportunities and limitations of using AI in peer review. Here, we synthesize
these findings into broader lessons and propose practical guidelines for integrating AI into peer-
review pipelines.

AI reviewers approximate but do not replace humans. The results show that single-agent re-
viewer personas achieve accuracy close to 70% on the binary accept/reject task, narrowing the gap
with human baselines. However, their five-way performance remains substantially lower, and con-
fusion matrices highlight consistent difficulty in distinguishing fine-grained acceptance tiers (e.g.,
oral vs. spotlight). This suggests that LLM reviewers can approximate coarse-grained decision mak-
ing, but conference-level calibration still requires human expertise. Importantly, human reviewers
maintain higher binary F1 scores, underscoring their ability to holistically evaluate paper quality.

Ensembles and metareviewing stabilize and improve fidelity. Our ensemble protocols consis-
tently outperform single-agent reviewers, with the META (ALL) agent achieving the strongest results
across accuracy, F1, and ELO. Aggregating multiple perspectives reduces individual biases (e.g.,
permissive vs. critical personas) and yields more reliable decision-making. This mirrors existing
human peer review, where program committees rely on multiple reviews and meta-review synthesis
to mitigate individual noise. Our findings indicate that metareviewing is a crucial design principle
for AI-assisted peer review.

Quality of review text remains a challenge. ELO ratings highlight that while reviewer agents
can generate more constructive feedback than supervised baselines, the quality of their review text
is not always aligned with human expectations. Average human reviews perform poorly under ELO,
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suggesting that even human-authored text often fails on criteria such as actionability and helpfulness
to authors. At the same time, the top 1% of human reviewers achieve high ELO, showing that
exemplars exist. These results caution that AI reviews should be seen as complements–providing
structured, constructive feedback–rather than replacements for nuanced human judgment.

Rebuttals introduce sycophancy risks. Ablation studies reveal that performance systematically
drops after rebuttal rounds, potentially due to sycophantic tendencies of LLMs: they may defer ex-
cessively to rebuttals without maintaining independent judgment. This highlights a need for careful
design of how LLM reviewers handle author feedback. Safeguards, such as explicit calibration in-
structions or adversarial prompting, may be required to prevent performance degradation in rebuttal
phases.

Reviewer agreement mirrors human inconsistency. Pairwise Cohen’s κ shows that LLM re-
viewers vary substantially in their agreement, with some personas (e.g., permissive, critical) diverg-
ing strongly from others. This echoes longstanding challenges in human peer review, where reviewer
disagreement is common. Our findings suggest that AI reviewers will not eliminate variance in peer
review but can be structured to reduce it through ensembles and consensus protocols.

6.1 GUIDELINES FOR INTEGRATING AI INTO PEER REVIEW

From these quantitative and qualitative findings, we propose a set of guidelines for integrating AI
into peer-review pipelines:

1. Use AI reviewers as complements, not replacements. LLM reviewers can provide scalable,
structured feedback and approximate decision accuracy, but final judgments should remain with
humans, particularly for borderline and high-stakes decisions.

2. Prioritize ensemble protocols. Single-agent reviewers exhibit strong biases; aggregation
through majority voting or metareviewing produces more reliable and fair outcomes. AI sys-
tems in peer review should default to ensemble-based designs.

3. Incorporate structured conditioning. Conference-specific guidelines, literature retrieval, and
rebuttal phases each add value, but must be carefully balanced to avoid overfitting or sycophancy.
Conditioning improves fidelity, but uncritical incorporation of rebuttals can degrade performance.

4. Evaluate not just accuracy, but also review quality. Our ELO analysis highlights that decision
fidelity alone is insufficient; reviews must also be actionable and useful to authors. AI reviewers
should be explicitly optimized for feedback quality as well as predictive accuracy.

5. Human-AI collaboration as the design goal. The stark gap between average and top-1% human
reviewers suggests a role for AI in “raising the floor”: providing consistent, constructive baseline
reviews that can complement and support human judgment, rather than competing with it.

6. Mitigate bias and disagreement through protocol. Extremal personas can systematically over-
or under-predict acceptance. Careful design of reviewer ensembles and meta-review synthesis is
essential to reduce variance and ensure fairness in outcomes.

7 CONCLUSION

Peer review is central to scientific publishing but remains plagued by inconsistency, subjectivity,
and scalability limits. We introduced REVIEWERTOO, a modular framework for AI-assisted peer
review that leverages structured reviewer personas, ensemble protocols, and systematic evaluation.
On the ICLR-2k dataset, LLM reviewers approached human-level decision accuracy—especially
under metareviewing—and produced reviews often judged more constructive than the human av-
erage. Yet challenges such as fine-grained calibration, susceptibility to sycophancy during rebut-
tals, and variable persona agreement highlight the continued need for human expertise. From these
results we propose guidelines for hybrid peer review: deploy AI reviewers as complements rather
than replacements, prioritize ensembles and meta-review protocols, condition agents with structured
context, and optimize for both review quality and decision fidelity. With such workflows, AI can
enhance consistency, coverage, and fairness, while humans provide the nuanced judgments essential
for advancing science.
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A APPENDIX

A.1 LLM USAGE

We have used LLMs to improve the text. Specifically, we have use chatGPT to improve the language
of some paragraphs and we have used LitLLM to retrieve relevant works.

A.2 LLM-AS-A-JUDGE PROTOCOL FOR ELO

We use the following update formula for ELO:

R′
A = RA +K · (SA − EA), EA =

1

1 + 10(RB−RA)/400
,

where RA is the rating of system A, SA ∈ {0, 0.5, 1} is the observed score, and K is the update
constant. This produces a comparative ranking of review-writing quality across human and AI
reviewers that integrates all five evaluation dimensions.

To ensure reliability and fairness in our LLM-based ELO evaluations, we use:
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Figure 4: Confusion Matrices for 5-way Classification Task
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0.004 1.000 0.004 0.012 0.004 -0.002 0.004 0.006 0.007 0.008 0.001 0.005 0.004 -0.003 0.003 0.001

0.353 0.004 1.000 0.234 0.318 0.112 0.333 0.541 0.263 0.215 -0.007 0.333 0.320 0.027 0.331 0.244

0.148 0.012 0.234 1.000 0.177 0.088 0.149 0.364 0.743 0.272 -0.003 0.169 0.293 0.075 0.279 0.070

0.357 0.004 0.318 0.177 1.000 0.100 0.385 0.487 0.204 0.150 -0.004 0.358 0.245 0.015 0.304 0.295

0.103 -0.002 0.112 0.088 0.100 1.000 0.106 0.125 0.106 0.103 -0.001 0.086 0.115 0.018 0.117 0.076

0.380 0.004 0.333 0.149 0.385 0.106 1.000 0.511 0.177 0.153 0.001 0.341 0.268 0.014 0.299 0.304

0.474 0.006 0.541 0.364 0.487 0.125 0.511 1.000 0.467 0.363 0.001 0.439 0.511 0.049 0.544 0.313

0.177 0.007 0.263 0.743 0.204 0.106 0.177 0.467 1.000 0.555 -0.002 0.202 0.331 0.082 0.487 0.086

0.159 0.008 0.215 0.272 0.150 0.103 0.153 0.363 0.555 1.000 -0.002 0.151 0.280 0.079 0.262 0.064

-0.004 0.001 -0.007 -0.003 -0.004 -0.001 0.001 0.001 -0.002 -0.002 1.000 -0.005 -0.003 -0.001 -0.001 0.001

0.351 0.005 0.333 0.169 0.358 0.086 0.341 0.439 0.202 0.151 -0.005 1.000 0.285 0.014 0.298 0.272

0.267 0.004 0.320 0.293 0.245 0.115 0.268 0.511 0.331 0.280 -0.003 0.285 1.000 0.048 0.337 0.151

0.017 -0.003 0.027 0.075 0.015 0.018 0.014 0.049 0.082 0.079 -0.001 0.014 0.048 1.000 0.045 0.008

0.326 0.003 0.331 0.279 0.304 0.117 0.299 0.544 0.487 0.262 -0.001 0.298 0.337 0.045 1.000 0.191

0.302 0.001 0.244 0.070 0.295 0.076 0.304 0.313 0.086 0.064 0.001 0.272 0.151 0.008 0.191 1.000
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Figure 5: Pairwise Cohen’s κ for different types of reviewers
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Table 3: Reviewer Persona ELO.

Reviewer Persona ELO↑

big picture 364
critical 423

permissive 880
reproducibility 989

default 1136
pedagogical 1345
pragmatist 1182
empiricist 1558
theorist 1463

visionary 1097
impact 1121

probabilistic 1189
fairness 1154

Blinding. All reviews are anonymized prior to evaluation. System identities (e.g., “human,” “per-
sona X,” “metareviewer”) are removed, and formatting is standardized so that the judge cannot infer
the source from stylistic cues.

Randomization. For each pairwise comparison, the left/right order of reviews is randomized. The
prompt to the judge LLM explicitly instructs it not to infer authorship based on order or style.

Outcome aggregation. The raw win/loss/draw outcomes are aggregated into ELO ratings using
the logistic update formula described earlier in this section. For stability, we initialize all systems
with identical ratings of 1,000 and use a moderate update constant (K = 32) for the first 30 matches
of an agent, then reduced to K = 16 until the agent has played 500 matches, after which, it is fixed
to K = 10. Final ratings are reported after convergence over the full set of pairwise matches.

Match stratification. In large-scale settings, the number of possible review pairs can approach
one million, which is computationally prohibitive. When fewer comparisons are run than the full set
of possible matches, we employ a stratified sampling strategy: matches are distributed proportion-
ally across (i) distinct query papers, and (ii) distinct parent review sources (e.g., human, persona,
metareviewer). This ensures balanced coverage of both paper-level diversity and system-level diver-
sity, while keeping the number of matches tractable.

Quality control. A random subset of judgments (5%) is manually inspected by the authors to
verify adherence to the evaluation rubric. Discrepancies between human inspection and the LLM
judge are rare (< 3%) and do not materially affect rankings.

ELO Scores

A.3 IMPLEMENTATION DETAILS

The system is implemented in Python with asynchronous orchestration and semaphores to control
parallelism. All agents persist their outputs in a standardized directory layout, enabling caching,
reproducibility, and downstream analysis. We use gpt-oss-120b as the primary large language
model for all roles, served on 8xH100 GPUs with vllm. Reviewer prompts combine a base rubric
with persona-specific instructions and the official reviewer guidelines from the ICLR website (in-
cluding the code of ethics). 5 No fine-tuning is performed; all agents operate in instruction-following
mode. We attach our code in the supplementary material.

For training the XGBoost classifiers, we perform 5-fold cross validation and report the mean results
across the 5 folds in Table 1. For XGBoost, we use 200 estimaters, a max depth of 6, learning rate
of 0.1, and for the Bert classifier, we finetune it for 20 epochs, use a learning rate of 2e-5, a batch
size of 16. We use an 70-15-15 training-validation-test split and perform hyperparameter tuning on

5https://iclr.cc/Conferences/2025/ReviewerGuide
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Agent Responsibilities

LitLLM
• Retrieve and rank relevant papers
• Summarize top-k works into concise review
• Provide grounding for reviewer, author, and metareviewer

Reviewer
• Paper summary
• Explicit strengths and weaknesses
• Checks: novelty, soundness, experiments, results/discussion
• Organization/presentation and impact
• Grounds judgments in manuscript or literature
• Categorical recommendation (Oral, Spotlight, Poster, Reject, Desk Reject)

Author
• Synthesizes rebuttal from reviews and literature
• Addresses criticisms, clarifies misunderstandings
• Proposes revisions (e.g., code release, ablations)
• Explicitly cites reviewer claims or literature

Metareviewer
• Summarizes reviewer stances and scores (pre-rebuttal)
• Identifies shared strengths and weaknesses
• Evaluates rebuttal effectiveness
• Tracks stance shifts post-rebuttal
• Highlights lingering concerns or disagreements
• Fact-checks reviewer claims; assigns significance scores
• Categorical recommendation

Table 4: Overview of agents in the REVIEWERTOO pipeline and their responsibilities. Note: Feed-
back on the format/structure of this table?

the validation set to test between learning rates {1e-5, 2e-5, 3e-5} and number of epochs in {3, 5,
10, 20, 30, 50}.
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Reviewer persona Style and primary focus

default Balanced, rubric-following reviewer aligned with ICLR 2025 guidance; covers
soundness, novelty, impact, clarity without strong bias.

critical Skeptical, flaw-finding stance; stress-tests novelty claims, methodology rigor, base-
lines, and overclaiming.

permissive Supportive lens; highlights strengths and potential, assumes good faith, emphasizes
positive interpretations of results.

empiricist Evidence-first; scrutinizes datasets, baselines, metrics, statistical validity, and
whether results support claims.

pragmatist Real-world utility; feasibility, scalability, deployment cost, practitioner relevance,
and adoption barriers.

theorist Conceptual rigor; coherence and elegance of core ideas, logical soundness, evidence-
theory alignment.

pedagogical Communication quality; clarity, intuition, narrative flow, figure/table interpretability,
accessibility to newcomers.

big picture Vision-first; long-term significance, paradigm-shift potential, conceptual promise
over implementation details.

reproducibility Replication rigor; missing hyperparameters, data splits, seeds, envs; checklist com-
pliance and ambiguity removal.

impact Foundations and representations; depth, interpretability, principles that advance long-
term AI understanding.

visionary Bold paradigm shifts and learning dynamics; speculative but plausible mechanisms
and broader implications.

fairness Practical elegance and scalability; efficient, implementable methods with robust
large-scale validation.

probabilistic Probabilistic rigor and generative modeling; uncertainty handling, principled infer-
ence, socially meaningful applications.

metareviewer Synthesis and calibration; aggregates reviewers, evaluates rebuttal effectiveness, ex-
tracts/verifies facts, assigns significance, and produces AC-facing briefings and rec-
ommendations.

majority A metareviewing baseline taking majority vote of all the reviewer agents.

Table 5: Reviewer and metareviewer personas used in ReviewerToo and their primary emphases.
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