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ABSTRACT

Peer review is the cornerstone of scientific publishing, yet it suffers from inconsistencies,
reviewer subjectivity, and scalability challenges. We introduce ReviewerToo, a modu-
lar framework for studying and deploying AI-assisted peer review to complement human
judgment with systematic and consistent assessments. ReviewerToo supports systematic
experiments with specialized reviewer personas and structured evaluation criteria, and can
be partially or fully integrated into real conference workflows. We validate ReviewerToo
on a carefully curated dataset of 1,963 paper submissions from ICLR 2025, where our
experiments with the gpt-oss-120b model achieves 81.8% accuracy for the task of
categorizing a paper as accept/reject compared to 83.9% for the average human reviewer.
Additionally, ReviewerToo-generated reviews are rated as higher quality than the human
average by an LLM judge, though still trailing the strongest expert contributions. Our anal-
ysis highlights domains where AI reviewers excel (e.g., fact-checking, literature coverage)
and where they struggle (e.g., assessing methodological novelty and theoretical contribu-
tions), underscoring the continued need for human expertise. Based on these findings,
we propose guidelines for integrating AI into peer-review pipelines, showing how AI can
enhance consistency, coverage, and fairness while leaving complex evaluative judgments
to domain experts. Our work provides a foundation for systematic, hybrid peer-review
systems that scale with the growth of scientific publishing.

1 INTRODUCTION

Major machine learning conferences such as ICLR and AAAI now receive (tens of) thousands of submissions
every year, creating enormous pressure on the peer-review process. To cope with this scale, several venues
begin experimenting with large language models (LLMs) as review assistants.1 These early deployments
demonstrate both promise (Liu & Shah, 2023; Petrescu & Krishen, 2022; Checco et al., 2021) and risk (Liang
et al., 2024b; Latona et al., 2024): LLMs can generate consistent and scalable reviews, but they also produce
superficial or misleading assessments that may erode confidence in the process.2 Despite their visibility, such
deployments remain one-off interventions constrained by conference timelines and are difficult to study in a
reproducible manner.

A central challenge is that most reported outcomes of AI-assisted peer review remain anecdotal (even if
large-scale), offering little scientific basis for best practices. Without systematic and reproducible evalu-
ations, the community cannot determine where AI helps, where it harms, or how it might be responsibly
integrated into review pipelines. Progress requires platforms that support controlled, transparent, and re-
peatable experiments—much like benchmarks have done for other areas of machine learning.

1E.g. AAAI 2026 (https://aaai.org/conference/aaai/aaai-26/instructions-for-aaai-26-reviewers/)
2https://www.nature.com/articles/d41586-025-00894-7
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Figure 1: Performance of Different Reviewers on the ICLR-2k dataset.

In this work, we introduce ReviewerToo, a modular framework for studying and deploying AI-assisted peer
review that can complement human judgment with systematic and consistent assessments. ReviewerToo en-
ables researchers to design, test, and compare AI reviewers under standardized conditions, and it is partially
or fully adopted in real conference workflows. We take inspiration from recent work on LLM-based social
simulations (Anthis et al., 2025), which propose using language models as proxies for human subjects in
the study of collective behavior. In this spirit, ReviewerToo treats peer review as a socio-technical process
shaped by diverse reviewer roles, biases, and interactions. By instantiating reviewer personas–such as em-
piricists, theorists, and pedagogical reviewers–we use LLMs to simulate distinct reviewing philosophies and
study how they align with human decisions.

We validate ReviewerToo on a curated dataset of ICLR 2025 submissions obtained from the OpenReview
platform. This dataset consists of 1,963 papers sampled to balance acceptance and rejection decisions while
preserving diversity across score ranges and decision categories. We refer to this dataset as the ICLR-2k
dataset. This scope enables controlled yet realistic evaluation of AI-assisted reviewing at scale, yielding
both methodological and empirical insights. Our analysis shows that ReviewerToo produces reasonable
reviews, surfaces systematic biases across personas, and highlights dimensions where AI reviewers are par-
ticularly strong (e.g., fact-checking, literature coverage) or weak (e.g., assessing methodological novelty and
theoretical contributions). These findings provide an evidence-based perspective on the opportunities and
limitations of AI in peer review, moving beyond anecdote toward systematic study. In sum, this paper makes
three contributions:

1. We conceptualize peer review as a socio-technical process and propose ReviewerToo, a modular
framework for evaluating AI-assisted reviewing under controlled and transparent conditions.

2. We present a large-scale empirical study on the ICLR-2k dataset, analyzing the performance and
biases of different reviewer personas and their alignment with meta-review outcomes.

3. We derive a set of guidelines for integrating AI into peer-review pipelines, informed by both quan-
titative performance metrics and qualitative analyses of reviewer behavior.
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Together, these contributions provide a foundation for systematic and consistent integration of AI into the
peer-review process.

2 BACKGROUND

Challenges in Traditional Peer Review Peer review has long faced well-documented challenges, in-
cluding reviewer fatigue, bias, and low inter-reviewer agreement (Cortes & Lawrence, 2021; Adam, 2025).
Large-scale experiments at venues such as NeurIPS revealed that acceptance decisions can vary almost ran-
domly (Cortes & Lawrence, 2021) and exhibit low inter-rater reliability. Combined with the rapid growth
of submissions at top conferences (e.g., 11k+ and 25k+ at ICLR 2025 and NeurIPS 2025, respectively) and
widespread reports of “reviewer fatigue,” scalability has become a pressing concern (Adam, 2025).

AI and LLMs as Peer-Review Assistants Recent advances in natural language processing (NLP) and
large language models (LLMs) have spurred interest in using AI to assist peer review (Liang et al., 2024b;
Tyser et al., 2024). Publishers and researchers have piloted systems for automated review generation, ci-
tation verification, fact-checking, and meta-review synthesis (Hossain et al., 2024). Surveys suggest that a
substantial minority of reviewers are already using AI tools to speed up report writing, with some confer-
ences estimating that 15–20% of reviews contain AI-assisted content (Latona et al., 2024; Naddaf, 2025).
Empirical studies show mixed results: while LLM-generated reviews can be helpful according to authors,
they also risk hallucinations and lack more in-depth judgment (Liang et al., 2023). Ongoing work thus
emphasizes “AI-in-the-loop” designs, where models act as assistants for specific subtasks rather than as
replacements for expert judgment (Idahl & Ahmadi, 2024; Liang et al., 2024a).

Despite this growing body of research, relatively little attention has been paid to modeling reviewer diver-
sity itself. In practice, reviewers embody distinct philosophies—some emphasizing theoretical rigor, others
empirical robustness, clarity of exposition, or long-term vision. Prior work on LLM-based social simulation
shows that instantiating multiple role-specific agents can capture diverse perspectives in human decision
processes (Sahakyan & AlShebli, 2025; Anthis et al., 2025). Inspired by this, we introduce REVIEWERTOO,
a modular framework that explicitly models a plurality of reviewer personas. By simulating heterogeneous
reviewer roles (e.g., “theorist,” “empiricist,” or “pedagogical”), our framework enables analysis not only
of predictive accuracy against ground truth but also of the structure of inter-reviewer disagreement. This
pluralistic design contributes both to practical peer-review augmentation and to the scientific understanding
of reviewer dynamics. We include an extended literature review in Appendix B

3 SYSTEM OVERVIEW

REVIEWERTOO is a modular framework for studying and deploying AI-assisted peer review. It proceeds in
a structured sequence: ingestion of the submitted manuscript, construction of a targeted literature review,
generation of reviews by a diverse panel of reviewer agents, drafting of a consolidated rebuttal by an author
agent, and finally a metareview that integrates the full record. The full workflow is shown in Figure 2.

We adopt a single-turn interaction protocol, in which each agent contributes once per stage (with the op-
tion for reviewers to issue one short post-rebuttal response). This choice reflects the conventions of many
academic conferences, where reviewers typically provide a single review, authors submit one rebuttal, and
only limited clarifications follow. While multi-turn deliberation could in principle be supported, our design
prioritizes realism, and tractability, as LLMs have been shown to lose context in long, multi-turn discus-
sions (Laban et al., 2025). We now discuss the different agents in our framework.

The Literature Review Agent. For literature review, we use LitLLM (Agarwal et al., 2025), a retrieval-
and-summarization agent proposed for automated literature review. Given a manuscript, LitLLM generates
search queries and submits them to Semantic Scholar. Retrieved papers are ranked using a debate-based

3
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Paper
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Review
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Reviewer
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Agent

Meta-
reviewer
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Final
Suggestion

= LLM Agent= Human

ReviewerToo

optional feedback
for improvement

Figure 2: The ReviewerToo Framework. A paper passes through literature, reviewer, author, and meta-
reviewer agents. The module design allows both humans and LLMs to participate at each stage, with optional
feedback loops for iterative improvement.

method introduced in the original work, after which the top-k candidates are selected. The agent summarizes
these papers into a concise literature review that grounds subsequent reviewer, author, and metareviewer
agents.

Reviewer Agents. Each reviewer agent receives the manuscript (converted to Markdown), an optional
literature summary, and prompts encoding a specific reviewing persona or evaluation criteria. Reviewers
generate structured assessments along axes commonly used in conference rubrics: a paper summary, ex-
plicit strengths and weaknesses, novelty, soundness, experimental validity, results/discussion quality, orga-
nization/presentation, and impact. For each dimension, reviewers must ground their judgments in either (i)
explicit spans of the manuscript, or (ii) retrieved evidence from the literature summary. Additionally, the
reviewer agent is also grounded in the official ICLR reviewer guidelines.3 If no grounding can be located,
the agent is rerun with stricter retrieval until a verifiable justification is produced. At the end of their report,
reviewers provide a categorical recommendation from {Accept (Oral), Accept (Spotlight), Accept (Poster),
Reject, Desk Reject}.

To surface complementary strengths and disagreements, we instantiate a diverse panel of personas. For
brevity, we only mention a subset here, and we refer the reader to Table 5 for a more details:

• Stance-based personas: critical (reject-biased), permissive (accept-biased), and default (neutral).
• Epistemic personas: e.g., theorist (formal emphasis), empiricist (experimental rigor), pedagogical (clar-

ity and exposition), and pragmatist (practical impact).
• Stylized personas: caricatured reviewer archetypes such as visionary (long-term potential), probabilistic

(uncertainty reasoning), and impact-driven (field-level relevance).

Author Agent. The author agent takes the manuscript, the full set of reviewer reports, and the literature
summary as input. It generates a consolidated rebuttal that addresses the most severe criticisms, clarifies
potential misunderstandings, and, when appropriate, proposes concrete revisions such as releasing code or
adding ablation studies. The rebuttal must explicitly cite either reviewer claims or relevant literature, ensur-
ing that clarifications are verifiable rather than speculative. Rebuttals are stored per review configuration to
facilitate analysis.

Metareviewer Agent. The metareviewer integrates all reviewer reports, the author rebuttal, and any op-
tional post-rebuttal reviewer responses. Its role is to synthesize consensus while controlling for reviewer
disagreement and bias. Concretely, it: (1) summarizes reviewer stances and scores pre-rebuttal, (2) identifies

3https://iclr.cc/Conferences/2025/ReviewerGuide
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Table 1: Main Results on ICLR-2k Dataset. Best results (per block, per column) are in bold.

Agent 5-way 2-way ELO↑

P↑ R↑ F↑ A↑ P↑ R↑ F↑ A↑

Single ReviewerToo Agents

Theorist 31.0 24.0 22.6 45.9 72.1 72.1 71.9 71.9 1463
Pedagogical 27.1 23.0 21.0 51.7 72.9 68.9 68.3 70.3 1256
Empiricist 32.5 22.5 20.6 50.7 69.7 66.1 65.3 67.6 1558

Critical 12.5 17.0 11.9 49.6 76.8 50.1 35.0 53.6 423
Permissive 10.5 16.8 7.5 19.1 73.3 50.3 32.4 46.8 880
Default 26.7 24.5 21.8 43.3 72.4 71.5 70.5 70.6 1136

DeepReview-14B 23.4 21.9 20.6 37.3 70.4 63.7 62.4 62.5 1117
Liang et al. (2024b) 37.6 28.3 23.5 42.5 72.9 71.9 70.9 71.0 1202

Reviewer Ensembles

Majority (Top-3) 30.5 28.5 25.9 52.0 73.1 70.0 69.8 71.2 –
Majority (all) 30.7 30.0 27.9 49.2 75.1 75.2 75.1 75.1 –
Average (all) 32.5 26.4 22.7 42.2 68.6 65.0 60.3 64.8 –

Meta w/ Top-3 28.6 32.1 27.1 49.5 74.2 76.3 73.4 74.8 1329
Meta w/ Top-3+Base 26.7 26.1 19.5 30.4 74.7 63.6 57.3 61.2 1154
Meta (all) 32.1 32.4 28.1 52.5 79.3 80.1 79.3 81.8 1657

Supervised Baselines

XGBoost (Bert) 12.9 20.0 14.4 20.0 59.0 55.8 44.3 55.8 –
XGBoost (tfidf) 17.4 21.4 17.4 21.4 70.4 63.7 58.2 63.7 –
Bert FT 25.7 26.4 22.5 22.4 84.2 29.1 43.24 65.43 –

Human Baselines

Human (avg) 15.2 12.4 13.7 37.6 85.2 84.1 83.8 83.9 540
Human (top-1%) 31.5 30.4 29.7 56.4 93.7 91.9 90.4 92.4 1316

common strengths and weaknesses, (3) evaluates rebuttal effectiveness, (4) tracks stance shifts post-rebuttal,
and (5) highlights lingering concerns or unresolved disagreements.

To avoid being swayed by overly negative or idiosyncratic reviewers, the metareviewer includes a fact-
checking module. This module verifies reviewer-stated claims against both the manuscript and the literature
summary, discarding unsupported statements. Each fact is also assigned a significance score, indicating its
weight in shaping the final decision. The final metareview thus reflects a combination of consensus synthesis,
rebuttal analysis, and fact-weighted evidence assessment. Notably, the metareviewer agent is also grounded
in the official Area Chair guidelines from the ICLR.4 We include the implementation details of the system
in Appendix E and include our prompts in the supplementary material.

4https://iclr.cc/Conferences/2025/ACGuide
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4 EXPERIMENTAL SETUP

4.1 DATASETS

All experiments are conducted on a dataset derived from ICLR 2025 submissions to the OpenReview plat-
form. From the full pool of 11,672 submissions, we curate a stratified subset of 1,963 papers, which we refer
to as the ICLR-2k dataset. We focus on this subset for all reported results, as it enables balanced coverage
of decision categories and controlled ablation studies. Each submission is annotated with the official confer-
ence decision, which serves as the ground truth for both five-way and binary evaluations. We consider five
categories: Accept (Oral), Accept (Spotlight), Accept (Poster), Reject, and Desk Reject. Withdrawn papers
are merged into the Reject category, while Desk Reject is preserved separately to test the system’s ability
to detect incomplete or rule-violating submissions. To ensure representativeness, we first rank all ∼12k
submissions (213 orals, 380 spotlights, 3115 posters, 7894 rejected, 70 desk rejected) by average reviewer
score and then sample proportionally across the score distribution. Specifically: (i) For Accepted (Poster),
we select 300 of 3,115 submissions, sampling evenly from the top, middle, and bottom thirds of the ranked
list; (ii) For Reject, we include 500 of 5,019 submissions using the same stratification, and add 500 randomly
sampled withdrawn papers; (iii) For Accepted (Oral), Accepted (Spotlight), and Desk Reject, we include all
available cases. This design balances acceptance and rejection while preserving diversity across decision
types and score ranges.

4.2 BASELINES

We evaluate REVIEWERTOO on multiple baselines ranging from trivial heuristics to human-derived signals.
Our baselines fall into four groups: (1) Supervised Baselines. We include three supervised baselines where
we train an XGBoost classifier with TF-IDF features (XGBoost (tfidf)), and XGBoost classifier with frozen
BERT embeddings as features (XGBoost (bert)), and BERT classifier finetuned on the dataset (Bert FT).
(2) Single-agent reviewers. represents a reviewer agent conditioned on ICLR conference instructions and
literature review. (3) Reviewer ensembles. We test whether diversity and aggregation improve fidelity. (a)
Majority vote: across all reviewer personas. (b) Extremal ensembles: combining permissive and critical
personas to probe systematic bias. (c) Metareviewer aggregation: synthesizing all reviews and rebuttals
into a calibrated consensus. (4) Human Reviewers. We benchmark the performance of human reviewers.
Specifically, we report: (a) Human (avg): performance of all the human reviewers. (b) Human (top-1%)
We use the ELO scores to select the top-1% human reviewers and report their performance. Notably, since
human reviewers only provide scores to a paper, we perform threshold-based conversion to obtain their
predictions. For 2-way (binary) case, we treat scores > 5 as accept and scores < 5 as rejects. For the 5-way
case, we use the following thresholds: {Accept (Oral): 7.8, Accept (Spotlight): 7.4, Accept (Poster): 6.05,
Reject: 4.11, Desk Reject: 0.54} 5.

To isolate the contribution of structured protocols, we ablate on the different conditioning variables: (a)
ϕ: represents a reviewer agent without any conditioning on conference instructions, or literature review, or
rebuttal. It only takes as input the manuscript and responds according to its base personality imbued in the
system prompt. (b) CI: adds ICLR reviewers guidelines for the reviewer agents and area chair guidelines for
metareviewer agent in addition to the persona-specific instructions. (c) RB: extends conference conditioning
with an author rebuttal and one round of reviewer response. (d) LitLLM: further incorporates external
retrieval and summarization (LitLLM). This sequence reflects a controlled ablation from bare-bones to fully
contextualized reviewing.

Together, these baselines span uninformed heuristics, isolated reviewer agents, structured multi-agent proto-
cols, ensembles, and human artifacts. This progression allows us to evaluate two complementary questions:

5thresholds for each class is determined based on the average score of papers in that class in the ICLR-2k dataset
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(1) how effective LLMs are as reviewers in absolute terms, and (2) which design choices most narrow the
gap to human decision-making.

4.3 EVALUATION METRICS

We assess REVIEWERTOO along multiple axes that capture predictive accuracy, reviewer agreement, review
quality, and rebuttal helpfulness. We evaluate alignment with real conference decisions by measuring both
the 5-way classification performance (Oral, Spotlight, Poster, Reject, Desk Reject) and the binary Accep-
t/Reject task; we report macro-averaged Precision, Recall, and F1, with macro averaging across classes c.
We also report overall Accuracy, and False Positive Rate (for binary task). We quantify consistency among
reviewers and with the metareviewer. For two reviewers i, j, we compute Cohen’s κ

Review quality. We assess the quality of review text through LLM-based judgments. We conduct large-
scale pairwise comparisons where an LLM acts as the judge. For each paper, two reviews are shown side by
side and evaluated along five axes: (1) Depth of engagement with the paper’s methodology and arguments;
(2) Actionability, i.e., whether weaknesses are paired with concrete suggestions and is the feedback con-
structive; (3) Summary, i.e. whether the agent identified strengths and weakness of the paper in a balanced
manner; (4) Clarity, reflecting readability, structure and professionalism; and (5) Helpfulness of the review
to the author. The judge assigns a win, loss, or draw outcome to each review. From the full set of pairwise
outcomes we compute an ELO rating per system, which is a method for calculating the relative skill levels
of players in zero-sum games such as chess or esports. In our case, different reviewer agents are “players”.
We include the complete protocol in Appendix C.

5 RESULTS

Table 2: Ablation Results for conference instructions
(CI), LitLLM, and rebuttal (RB).

Agent (Configuration) F1↑ ELO↑ FPR↓ FNR↓

Theorist (ϕ) 67.4 1371 96.1 42.0
+CI 69.9 1422 73.6 71.3
+CI+LitLLM 71.9 1463 76.0 68.4
+CI+RB 63.8 1299 85.6 46.3
+CI+LitLLM+RB 63.6 1195 88.0 44.5

Pedagogical (ϕ) 75.5 1345 70.3 80.5
+CI 70.5 1256 45.4 90.9
+CI+LitLLM 68.2 1216 48.7 88.8
+CI+RB 61.9 1103 78.9 49.9
+CI+LitLLM+RB 63.0 1122 76.3 49.8

Empiricist (ϕ) 69.1 1502 84.0 55.9
+CI 64.8 1427 43.8 86.3
+CI+LitLLM 70.7 1558 45.4 87.1
+CI+RB 59.7 1316 75.7 47.8
+CI+LitLLM+RB 60.4 1332 73.5 48.5

Reviewer Performance. Table 1 reports the per-
formance of REVIEWERTOO agents, supervised
baselines, and human references. Figure 1 visual-
izes the F1 Scores from that table. Among single-
agent reviewers, the EMPIRICIST, PEDAGOGICAL,
and THEORIST personas achieve the strongest over-
all performance on the 5-way classification task,
with the EMPIRICIST attaining the highest precision
(32.5) while THEORIST secures the best F1 score
(22.6). In terms of binary accept/reject accuracy,
these reviewers approach 70% accuracy, narrowing
the gap to human baselines. Ensembling further
boosts performance: majority voting improves sta-
bility, while the metareviewer aggregation (“Meta
(all)”) outperforms both single-agent and majority ensembles across all metrics, reaching 32.1 precision,
32.4 recall, and 28.1 F1 on the 5-way task, and 81.8% accuracy on the binary task. This model also achieves
the strongest ELO score of 1657, surpassing all other agents and aligning closely with the top-1% human
baseline.

Error Analysis via Confusion Matrices. Figures 5–6 present normalized confusion matrices for each
agent. We observe consistent difficulty in distinguishing between “oral” and “spotlight” accept decisions
across nearly all personas, indicating sensitivity to fine-grained acceptance tiers. Expectedly, the PERMIS-
SIVE persona over-predicts acceptance decisions, while the CRITICAL persona strongly favors rejection. By
contrast, the EMPIRICIST and PEDAGOGICAL show more balanced error profiles, though they still over-
predict rejections relative to ground truth. These error modes highlight both biases induced by personas and
systematic challenges in conference calibration.

7
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Reviewer Agreement. We quantify inter-reviewer consistency using Cohen’s κ (Figure 3). Agreement
levels vary substantially across personas: MAJORITY and DEFAULT show moderate alignment (κ ≈ 0.5),
while PERMISSIVE and CRITICAL show near-zero or even negative agreement with other reviewers, un-
derscoring their extremal tendencies. Human reviewers exhibit low to moderate agreement with LLM re-
viewers (κ ≈ 0.1–0.2), consistent with known levels of disagreement in real peer review. Ensembles such
as MAJORITY and META yield higher agreement with ground truth, validating aggregation as a stabilizing
mechanism.

Review Quality and ELO. Beyond predictive accuracy, we assess review quality through LLM-based
pairwise judgments, aggregated with ELO ratings. The META (ALL) agent again dominates, achieving the
highest ELO of 1657. Among single-agent reviewers, the EMPIRICIST leads with 1558, while the PEDA-
GOGICAL and THEORIST trail but still outperform most supervised baselines. Interestingly, human reviewers
exhibit a striking disparity: the average human ELO is very low (540), yet the top 1% of human reviewers
achieve an ELO of 1316, comparable to the best single-agent reviewers. At the same time, both average
and top-1% humans maintain strong binary F1 performance (83.8 and 90.4, respectively). The textual re-
views they produce are often less helpful by the criteria used in our LLM-as-judge framework–particularly
with respect to actionability and usefulness to authors. These findings reinforce the potential of structured
protocols, diversity, and meta-reviewing to not only improve decision alignment but also to generate more
constructive review text.

Comparison with Supervised Baselines. Supervised baselines such as XGBoost and BERT fine-tuning
achieve modest predictive performance, with binary F1 scores ranging from 43.2 to 65.3. In contrast, RE-
VIEWERTOO agents not only match or exceed these baselines in decision accuracy but also generate sub-
stantive reviews that achieve competitive or superior ELO ratings. Unlike humans, who remain strong on
both axes–achieving high binary F1 performance while also producing text that can be judged for quality–
supervised models cannot bridge the gap between decision fidelity and helpful feedback. This underscores
the unique advantage of structured reviewer agents in combining predictive alignment with author-facing
utility.

Ablation Studies. Table 2 examines the impact of conditioning variables. Removing conference instruc-
tions systematically reduces both F1 and ELO, indicating their critical role in reviewer fidelity. For example,
the EMPIRICIST with full conditioning (+CI+LitLLM) achieves the highest ELO (1558), whereas ablations
removing literature grounding drop performance sharply (e.g., ELO ≤ 1332). Interestingly, PEDAGOGICAL
shows the highest raw F1 score (75.5) in its base persona, though its ELO is lower, suggesting less consis-
tent quality under comparative evaluation. Overall, ablations confirm the complementary value of structured
conference context, literature retrieval. We also see that the F1 score for all the reviewer agents drops post
rebuttal. Upon closer inspection, we note that this is due to an increase in false positives post discussion
while both false negatives and true negatives decrease (compare CI+LitLLM v/s CI+LiLLM+RB rows in
Table 2). This hints towards sycophantic tendencies of LLMs to accept papers after reading the rebuttals, as
from their point-of-view, they come from real humans (Kim & Khashabi, 2025; Sun & Wang, 2025; Cheng
et al., 2025). The increase in false positives can also be visually seen confusion matrices for different re-
viewer agents before and after discussion (see Figure 5 v/s Figure 4 & Figure 6 v/s Figure 7). We have also
attached

Qualitative Examples. We show the reviews generated for two papers, one from the accept category
(PaperID: 6Mxhg9PtDE) and one from the reject category (PaperID: j7b4mm7Ec9). For each paper, we
compare the reviews written by the top-3 reviewer agents (pedagogical, empiricist, and theorist) with a
human review (we only include one human review but the links to the full threads are provided). Full
examples are provided in Appendix D. For the accepted paper, we observe that the reviewer agents not only
reach the same accept decision as the human reviewers but also produce comprehensive and well-structured
feedback, covering key aspects such as novelty, clarity, and experimental rigor. This consistency suggests
that, for strong submissions, the agents are capable of recognizing high-quality research and articulating
reasoned justifications similar to human reviewers. The rejected paper presents a more nuanced case.
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Interestingly, while all human reviewers gave positive (accept) scores, the meta-reviewer’s final decision was
to reject the paper. Notably, some of our reviewer agents also assigned reject decisions for similar reasons
as the metareviewer (revolving around the true robustness of the proposed approach). This alignment with
the final decision, despite divergence from the human reviewers’ initial scores, indicates that the agents can
independently identify underlying weaknesses in a paper that might be overlooked in human assessments.
Such behavior demonstrates the potential of AI reviewer agents to provide balanced, critical evaluations and
to meaningfully contribute to peer review deliberations.

Summary. Taken together, these results demonstrate that REVIEWERTOO can reasonably approximate
human-level decision making, especially when aggregating diverse reviewers through metareview protocols.
Single-agent personas exhibit distinctive biases, but structured ensembles yield both higher predictive accu-
racy and higher judged review quality. Agreement analysis highlights persistent reviewer variance, mirroring
human peer review. Finally, ablation studies confirm that conference conditioning, rebuttals, and literature
access are each essential to closing the gap with human reviewers.

6 DISCUSSION

Our experiments on the ICLR-2k dataset provide a first large-scale analysis of how LLM-based reviewer
agents perform relative to humans, supervised classifiers, and ensemble protocols. The results reveal both
opportunities and limitations of using AI in peer review. Here, we synthesize these findings into broader
lessons and propose practical guidelines for integrating AI into peer-review pipelines.

AI reviewers approximate but do not replace humans. The results show that single-agent reviewer per-
sonas achieve accuracy close to 70% on the binary accept/reject task, narrowing the gap with human base-
lines. However, their five-way performance remains substantially lower, and confusion matrices highlight
consistent difficulty in distinguishing fine-grained acceptance tiers (e.g., oral vs. spotlight). This suggests
that LLM reviewers can approximate coarse-grained decision making, but conference-level calibration still
requires human expertise. Importantly, human reviewers maintain higher binary F1 scores, underscoring
their ability to holistically evaluate paper quality.

Ensembles and metareviewing stabilize and improve fidelity. Our ensemble protocols consistently out-
perform single-agent reviewers, with the META (ALL) agent achieving the strongest results across accuracy,
F1, and ELO. Aggregating multiple perspectives reduces individual biases (e.g., permissive vs. critical per-
sonas) and yields more reliable decision-making. This mirrors existing human peer review, where program
committees rely on multiple reviews and meta-review synthesis to mitigate individual noise. Our findings
indicate that metareviewing is a crucial design principle for AI-assisted peer review.

Quality of review text remains a challenge. ELO ratings highlight that while reviewer agents can gen-
erate more constructive feedback than supervised baselines, the quality of their review text is not always
aligned with human expectations. Average human reviews perform poorly under ELO, suggesting that even
human-authored text often fails on criteria such as actionability and helpfulness to authors. At the same
time, the top 1% of human reviewers achieve high ELO, showing that exemplars exist. These results cau-
tion that AI reviews should be seen as complements–providing structured, constructive feedback–rather than
replacements for nuanced human judgment.

Rebuttals introduce sycophancy risks. Ablation studies reveal that performance systematically drops
after rebuttal rounds due to sycophantic tendencies of LLMs: they may defer excessively to rebuttals without
maintaining independent judgment. This highlights a need for careful design of how LLM reviewers handle
author feedback. Safeguards, such as explicit calibration instructions or adversarial prompting, may be
required to prevent performance degradation in rebuttal phases.

Reviewer agreement mirrors human inconsistency. Pairwise Cohen’s κ shows that LLM reviewers vary
substantially in their agreement, with some personas (e.g., permissive, critical) diverging strongly from
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others. This echoes longstanding challenges in human peer review, where reviewer disagreement is common.
Our findings suggest that AI reviewers will not eliminate variance in peer review but can be structured to
reduce it through ensembles and consensus protocols.

6.1 GUIDELINES FOR INTEGRATING AI INTO PEER REVIEW

From these quantitative and qualitative findings, we propose a set of guidelines for integrating AI into peer-
review pipelines:

1. Use AI reviewers as complements, not replacements. LLM reviewers can provide scalable, structured
feedback and approximate decision accuracy, but final judgments should remain with humans, particu-
larly for borderline and high-stakes decisions.

2. Prioritize ensemble protocols. Single-agent reviewers exhibit strong biases; aggregation through major-
ity voting or metareviewing produces more reliable and fair outcomes. AI systems in peer review should
default to ensemble-based designs.

3. Incorporate structured conditioning. Conference-specific guidelines, literature retrieval, and rebuttal
phases each add value, but must be carefully balanced to avoid overfitting or sycophancy. Conditioning
improves fidelity, but uncritical incorporation of rebuttals can degrade performance.

4. Evaluate not just accuracy, but also review quality. Our ELO analysis highlights that decision fidelity
alone is insufficient; reviews must also be actionable and useful to authors. AI reviewers should be
explicitly optimized for feedback quality as well as predictive accuracy.

5. Human-AI collaboration as the design goal. The stark gap between average and top-1% human re-
viewers suggests a role for AI in “raising the floor”: providing consistent, constructive baseline reviews
that can complement and support human judgment, rather than competing with it.

6. Mitigate bias and disagreement through protocol. Extremal personas can systematically over- or
under-predict acceptance. Careful design of reviewer ensembles and meta-review synthesis is essential
to reduce variance and ensure fairness in outcomes.

7 CONCLUSION

Peer review is central to scientific publishing but remains plagued by inconsistency, subjectivity, and scala-
bility limits. We introduced REVIEWERTOO, a modular framework for AI-assisted peer review that leverages
structured reviewer personas, ensemble protocols, and systematic evaluation. On the ICLR-2k dataset, LLM
reviewers approached human-level decision accuracy—especially under metareviewing—and produced re-
views often judged more constructive than the human average. Yet challenges such as fine-grained calibra-
tion, susceptibility to sycophancy during rebuttals, and variable persona agreement highlight the continued
need for human expertise. From these results we propose guidelines for hybrid peer review: deploy AI re-
viewers as complements rather than replacements, prioritize ensembles and meta-review protocols, condition
agents with structured context, and optimize for both review quality and decision fidelity. With such work-
flows, AI can enhance consistency, coverage, and fairness, while humans provide the nuanced judgments
essential for advancing science.

8 ETHICS STATEMENT

This work involves the use of publicly available data from the OpenReview platform, which hosts peer
review information for academic conferences. We strictly adhered to OpenReview’s terms of use and com-
munity guidelines in collecting and analyzing this data. All data used were publicly accessible at the time
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of collection and we did not pass any personally identifiable information to the LLM beyond what was
intentionally made public by authors or reviewers.

The goal of this research is to improve the transparency, scalability, and fairness of the peer review process.
Our experiments are designed to complement, not replace, human reviewers, with the intent of assisting
editorial processes and studying the potential of AI tools in structured academic evaluation. We emphasize
that ReviewerToo is meant for research and controlled integration scenarios, and not for unsupervised or
fully automated decision-making in academic publishing.

Finally, the use of large language models in review generation and evaluation was conducted with attention
to ethical implications, including the risks of bias propagation, overreliance on model outputs, and possible
reinforcement of systemic inequities. We provide concrete guidelines and limitations in our discussion to
promote responsible adoption of AI-assisted review systems.
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A LLM USAGE

We have used LLMs to improve the text. Specifically, we have use chatGPT to improve the language of
some paragraphs and we have used LitLLM to retrieve relevant works.

B EXTENDED LITERATURE REVIEW

The exponential growth of scientific submissions has placed an unprecedented strain on the peer review sys-
tem, leading to reviewer fatigue, inconsistency, and scalability challenges. Recent advancements in Large
Language Models (LLMs) offer a potential solution, yet their integration into the “Program Committee”
remains a subject of intense debate. This review synthesizes the current landscape of AI in scholarly pub-
lishing, motivating the proposed ReviewerToo framework.

B.1 PERCEPTIONS AND THE ROLE OF AI IN PEER REVIEW

The academic community is currently divided on the integration of AI into the review process. While some
view it as a necessary evolution to handle volume, others fear the loss of human nuance.

Community Sentiment and Adoption Surveys and opinion pieces highlight a spectrum of attitudes.
Some researchers argue that AI can “democratize” knowledge creation and streamline workflows (Sarker
et al., 2024; Ravn Sørensen, 2024; Švab et al., 2023). However, significant skepticism remains regarding
the “death of the human reviewer” and the potential for an “AI ouroboros” where AI reviews AI content
(Mollaki, 2024; Poole & Todd-Diaz, 2025; Mamassian, 2025).

Empirical studies on researcher perceptions reveal a cautious willingness to adopt tools for drafting and
checking, but hesitation regarding evaluative judgments (Giray, 2024; Ebadi et al., 2025; Banks, 2024; Ali
& Shaban, 2025; Ng et al., 2025a;b). Several studies emphasize the need for human supervision to maintain
integrity (Seghier, 2025; Crawford et al., 2024; Renata & Lee, 2025).
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Figure 4: Confusion Matrices for binary Classification Task Post-Discussion

23



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.898 0.102

0.490 0.510

big_picture (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.000 1.000

0.000 1.000

critical (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.837 0.163

0.403 0.597

default (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.454 0.546

0.129 0.871

empiricist (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l
0.883 0.117

0.502 0.498

fairness (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.935 0.065

0.253 0.747

human (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.897 0.103

0.498 0.502

impact (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.767 0.233

0.263 0.737

majority (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject
Tr

ue
 la

be
l

0.530 0.470

0.130 0.870

majority_top3 (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.487 0.513

0.112 0.888

pedagogical (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

1.000 0.000

0.994 0.006

permissive (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.874 0.126

0.513 0.487

pragmatist (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.705 0.295

0.296 0.704

probability (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.074 0.926

0.007 0.993

reproducibility (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.760 0.240

0.316 0.684

theorist (2-way)

acc
ep

t
rej

ect

Predicted label

accept

reject

Tr
ue

 la
be

l

0.952 0.048

0.671 0.329

visionary (2-way)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.2

0.4

0.6

0.8

0.3

0.4

0.5

0.6

0.7

0.2

0.4

0.6

0.8

Normalized Confusion Matrices (2-way, vs. Ground Truth)

Figure 5: Confusion Matrices for binary Classification Task
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Figure 6: Confusion Matrices for 5-way Classification Task
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Figure 7: Confusion Matrices for 5-way Classification Task Post-Discussion
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Efficacy of AI Assistance Pilot studies have tested GPT-4 and other models in generating reviews, often
finding them “slightly helpful” or capable of mimicking surface-level feedback, though lacking in deep
critique (Robertson, 2023; Wu et al., 2023; Kadi & Ali Aslaner, 2024; Lo Vecchio, 2025). Specific case
studies in medical and chemical domains suggest AI can serve as a “copilot” but not a replacement (Fuente-
Ballesteros et al., 2025; Allibhai et al., 2025; Alshami et al., 2023). Meta-analyses of AI integration indicate
a rising adoption despite these limitations (Carobene et al., 2024; Salman et al., 2025; Alchokr et al., 2024;
Eger et al., 2025; Sun et al., 2024). Additionally, tools for positive reframing and annotation have shown
promise in supporting the human workflow (Yang et al., 2025; D’iaz et al., 2024).

Bias, Fairness, and Ethical Risks in Peer Review A critical motivation for ReviewerToo is addressing the
inherent biases in human review while ensuring AI does not introduce new ones. The literature extensively
documents prestige and affiliation bias in human review (Tomkins et al., 2017; Frachtenberg & McConville,
2022; Kulal et al., 2025; Ajani et al., 2025). Blind review processes are often compromised, and disparities
persist (O’Connor et al., 2017; Conklin & Singh, 2022). Deploying AI judges introduces new fairness con-
cerns, including position bias and verbosity bias (Shi et al., 2024b; Zhou et al., 2024a; Tripathi et al., 2025).
Studies have shown that LLMs can identify gender disparities (Verharen, 2023) but may also hallucinate or
act as silent judges with unacknowledged biases (Oriyad et al., 2025; Vasu et al., 2025; Zhang et al., 2022).
Work on fairness extends to group fairness and preventing manipulation (Aziz et al., 2024; Jecmen et al.,
2020; Huang et al., 2024).

Ethical Challenges and Adversarial Attacks The integration of AI raises severe ethical questions regard-
ing authorship and accountability (Solomon et al., 2023; Osmanovic-Thunström & Steingrimsson, 2023;
Hiep, 2025; Kim, 2024; Alnaimat et al., 2025; Russo, 2021). Specific threats include hidden prompts in-
jected into manuscripts to manipulate AI reviewers (Lin, 2025; Collu et al., 2025; Shi et al., 2024a; Keuper,
2025) and jailbreaking safety alignment (Mustafa et al., 2025; Andriushchenko et al., 2024; Kim et al.,
2025a). Researchers have also highlighted the risks of sycophancy, where models agree with the user or au-
thor regardless of quality (Kim & Khashabi, 2025; Malmqvist, 2024; Atwell et al., 2025; Cheng et al., 2025;
Arvin, 2025). Detection of AI-generated text and reviews remains a cat and mouse game, with watermarking
and content-based detection proposed as mitigations (Rao et al., 2025; Yu et al., 2024; Chen et al., 2025b;
Nemecek et al., 2025; Fraser et al., 2024; Guo et al., 2024).

B.2 AUTOMATING THE PEER REVIEW WORKFLOW

A significant body of work focuses on the operational aspects of peer review, from reviewer assignment to
decision support.

Reviewer Matching and Editorial Support Finding qualified reviewers is a major bottleneck. AI systems
for reviewer assignment and desk rejection prediction are well-studied (Alhoori et al., 2023; Farber, 2024;
Lim et al., 2025; Anjum et al., 2019; Zhang et al., 2023b; Jakobsen & Rogers, 2022). Some propose market-
based designs (Fernandes et al., 2025) or randomized assignments to mitigate manipulation (Jecmen et al.,
2020). Prediction models for acceptance have utilized machine learning on text and metadata (Ghosal et al.,
2018; Bao et al., 2021; Pandey et al., 2025; Hasan et al., 2024).

Automated Review Generation Moving beyond prediction, recent work attempts to generate actual re-
view content. Techniques range from retrieval-augmented generation (RAG) (Chitale et al., 2025; Taechoy-
otin & Acuna, 2025; Xu et al., 2024) to systems that simulate the entire review process (Cuaya-Simbro &
Ruiz, 2025; Mahmoud et al., 2024; Zhu et al., 2025b; Lin et al., 2023; Zhuang et al., 2025; Zhou et al.,
2024b). Tools like ReviewAgents and ReviewWriter aim to structure this generation (Gao et al., 2025; Su
et al., 2025). While some models show promise in identifying critical problems (Zhang & Abernethy, 2025;
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Li et al., 2025a), others highlight the risk of generic or hallucinated feedback (Zhu et al., 2025a; Ye et al.,
2024).

LLM Evaluation and the Judge Paradigm The credibility of ReviewerToo relies on the LLM-as-a-Judge
paradigm, which has exploded in popularity. Researchers have established benchmarks to test LLMs as
evaluators (Zheng et al., 2023; Hao et al., 2024; Chang et al., 2023; Yu et al., 2025). However, reliability
varies, and design choices in prompts and references are critical (Yamauchi et al., 2025; Lee et al., 2024;
Zhang et al., 2024; Li et al., 2024). Multi-agent debate and jury systems have been proposed to improve
judgment quality (Bandi & Harrasse, 2024; Li et al., 2025c; Chern et al., 2024). Despite progress, issues with
self-preference bias (Wataoka et al., 2024), style-over-substance (Feuer et al., 2024), and lack of robustness
(Beyer et al., 2025; Guerdan et al., 2025) persist.

Multi-Agent Simulation and Personas To address the monolithic nature of single-model reviews, multi-
agent systems (MAS) and persona modeling are gaining traction. Frameworks like TinyTroupe and Agen-
tReview simulate complex social dynamics and role-based interactions (Salem et al., 2025; Jin et al., 2024;
Wang et al., 2025). These simulations allow for given-circumstance acting and debate (Xu et al., 2023; Li
et al., 2025b). Research indicates that assigning specific personas (e.g., strict reviewer) can influence out-
comes, though the persona effect requires rigorous quantification (Hu & Collier, 2024; Samuel et al., 2024;
Kim et al., 2025c; Truong et al., 2025).

The Future of Peer Review The field is moving toward hybrid, modernized workflows. Proposals in-
clude AI-enhanced scholarly communication platforms (Salih et al., 2025; Chen et al., 2025a; Nixon, 2024),
decentralized blockchain-based systems (Bărbuţă & Alexandrescu, 2023; Gruendler et al., 2024), and open
peer review models (Ross-Hellauer & Horbach, 2024; Tran et al., 2020). Theoretical work on social choice
and mechanism design supports these innovations, aiming to align incentives and improve aggregation (Bar-
cel’o et al., 2022; Kim et al., 2025b; Lee, 2023; Cohen-Addad et al., 2018; Tamblyn et al., 2023; Zhang
et al., 2023a).

The literature reveals a critical juncture: while AI tools are proliferating, they are often deployed in frag-
mented or ad-hoc ways. ReviewerToo addresses the need for a modular, persona-aware framework that
bridges the gap between automated efficiency and the nuanced, trusted judgment required for high-stakes
peer review.

C LLM-AS-A-JUDGE PROTOCOL FOR ELO

We use the following update formula for ELO:

R′
A = RA +K · (SA − EA), EA =

1

1 + 10(RB−RA)/400
,

where RA is the rating of system A, SA ∈ {0, 0.5, 1} is the observed score, and K is the update constant.
This produces a comparative ranking of review-writing quality across human and AI reviewers that integrates
all five evaluation dimensions.

To ensure reliability and fairness in our LLM-based ELO evaluations, we use:

Blinding. All reviews are anonymized prior to evaluation. System identities (e.g., “human,” “persona X,”
“metareviewer”) are removed, and formatting is standardized so that the judge cannot infer the source from
stylistic cues.

Randomization. For each pairwise comparison, the left/right order of reviews is randomized. The prompt
to the judge LLM explicitly instructs it not to infer authorship based on order or style.
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Table 3: Reviewer Persona ELO.

Reviewer Persona ELO↑

big picture 364
critical 423

permissive 880
reproducibility 989

default 1136
pedagogical 1345
pragmatist 1182
empiricist 1558
theorist 1463

visionary 1097
impact 1121

probabilistic 1189
fairness 1154

Outcome aggregation. The raw win/loss/draw outcomes are aggregated into ELO ratings using the lo-
gistic update formula described earlier in this section. For stability, we initialize all systems with identical
ratings of 1,000 and use a moderate update constant (K = 32) for the first 30 matches of an agent, then
reduced to K = 16 until the agent has played 500 matches, after which, it is fixed to K = 10. Final ratings
are reported after convergence over the full set of pairwise matches.

Match stratification. In large-scale settings, the number of possible review pairs can approach one mil-
lion, which is computationally prohibitive. When fewer comparisons are run than the full set of possible
matches, we employ a stratified sampling strategy: matches are distributed proportionally across (i) dis-
tinct query papers, and (ii) distinct parent review sources (e.g., human, persona, metareviewer). This ensures
balanced coverage of both paper-level diversity and system-level diversity, while keeping the number of
matches tractable.

Quality control. A random subset of judgments (5%) is manually inspected by the authors to verify adher-
ence to the evaluation rubric. Discrepancies between human inspection and the LLM judge are rare (< 3%)
and do not materially affect rankings.

ELO Scores

D QUALITATIVE EXAMPLES

Paper 6Mxhg9PtDE (Real Decision: Oral) (Real Decision: Oral): Human Review

Summary:
This paper demonstrates the shallow safety alignment issue through a variety of case studies. Essentially, the authors show that a variety of
alignment attacks are successful because of a common issue within safety-aligned LLMS: only the first few output tokens are adapted during the
model alignment process. Then the paper offers ways to mitigate this problem, which includes a data augmentation approach and a constrained
optimization loss function.
Strengths:

• The paper is addressing an important problem, the vulnerability of safety alignment for LLMs, that can be very useful to real world problems.
• The paper ties together prior works in a way that makes it easier to learn from them (i.e. highlighting the common thread amongst successful

alignment attacks: their exploitation of shallow safety alignment).
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• The contributions of this paper lay the groundwork for future safety alignment solutions. They do offer a couple mitigation strategies, but
exposing the shallow alignment issue could inspire many more mitigation approaches. It could also help us understand the success of other
attacks and the success/failure of existing attack mitigation strategies.

• The paper includes a good variety of experiments (models, datasets, attacks types) and includes both empirical and theoretical support for
their claims.

• The paper flows nicely. It is nicely organized. This makes the paper easy to follow and it makes the main point/contribution of the paper
very clear.

Weaknesses:
The explanation of related work is lacking. The related works are listed, but there is not much information that actually explains how your work
differs from related work. For instance, you say “some works have also noted asymmetries...” But it would be nice to know how this differs
from what you’ve observed. A lot of the statements you make about related work are very broad and could benefit from more detail. “Our work
ties these potential failure modes. . . to potential shortcuts” - does your work do this for all pre-existing methods for improving alignment? Are
there some failures that your work does not encapsulate? Also, you never seem to mention any solutions to these alignment failures. Are your
methods (e.g. the data augmentation and constrained optimization) the only known mitigation strategies? If so, you should state this. If not,
other mitigation strategies should be mentioned.
After applying your mitigation strategies, the ASR is still not zero and often isn’t even that close to zero. This isn’t ever really explained in the
paper. You at one point say “the augmented model is still vulnerable. . . ”, but the paper would be stronger if you give more explanation. For
instance, does the non-zero ASR mean that there is some other vulnerability apart from the shallow alignment issue? Or are your strategies just
not fully fixing the shallow alignment problem?
Your contribution would be stronger if it were explained more clearly. When you say things like “this work is the first work attempting to
consolidate the unified notion behind these attacks. . . ” I don’t quite understand what you mean. If other works have identified the shallow
safety alignment effect, then what does it mean for you to “consolidate the unified notion”? Is shallow safety alignment a new term that you
are introducing, because if so, I think you should make it more clear that you are introducing this new concept?
It is also hard to imagine this problem in a real-world setting/application. The paper would be stronger if, for example in the introduction, we
were given an example of the effect that jailbreaks can have (e.g. him what scenario would some attacker be able to provide a deployed model
with the start to a response)

Questions:

• Why do you think the ASR still isn’t 0 (and in many cases is not close to 0) after using your mitigation strategies?
• It seems like there could potentially be problems with the data augmentation approach since you are providing the model with these strange

texts (e.g., you mention that the new texts are not coherent). Do you think that this matters? Is the model’s learning going to be compromised
when it is learning with these incoherent texts?

Rating: 10: strong accept, should be highlighted at the conference

Paper 6Mxhg9PtDE (Real Decision: Oral): Empiricist

Summary of Contributions
The paper introduces the notion of shallow safety alignment, i.e., that current alignment procedures for large language models (LLMs) mainly
modify the probability distribution of the first few output tokens to induce a refusal prefix. The authors provide:

1. Empirical evidence (per-token KL divergence, token-wise loss and gradient analyses) that alignment effort is concentrated on early tokens.
2. A unified explanation of several known jailbreak and fine-tuning attacks as consequences of this shallow alignment.
3. Two mitigation strategies:

• Data-augmentation “deep safety alignment” that mixes safety-recovery examples (harmful prefix → safe continuation) into continued
fine-tuning.

• A token-wise constrained fine-tuning objective that penalises deviation from the original aligned model more strongly on the first few
tokens.

4. Extensive experiments on Llama-2-7B-Chat and Gemma-1.1-7B-IT showing reduced attack success rates (ASR) on prefilling, GCG, decoding-
parameter, and fine-tuning attacks, while preserving utility on standard benchmarks (AlpacaEval, MMLU, BBH, MATH, GSM8K).

Strengths
Aspect Comments

Empirical rigor The paper systematically quantifies token-wise KL divergence and gradient norms, and links these to observed vulnerabil-
ities.

Unified perspective Provides a clear, parsimonious explanation that ties together a variety of jailbreak and fine-tuning attacks under a single
mechanism.

Mitigation proposals Both the data-augmentation and constrained-fine-tuning approaches are simple to implement and require only modest
additional compute.

Experimental breadth Evaluates on multiple models, several attack families, and a suite of utility benchmarks.
Reproducibility details Appendices contain compute resources, optimizer settings, hyper-parameter values, and ablation studies.
Ethical awareness Includes an ethics statement acknowledging the dual-use nature of the work.

Weaknesses
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Issue Impact

Reliance on GPT-4 automatic
judging

Safety evaluation depends on a single black-box judge; no human verification or inter-annotator agreement is reported, raising
concerns about label noise.

Limited statistical analysis Results are reported as mean±std over 3 runs (or 10 for GCG). No significance testing or confidence intervals; the small number of
seeds may mask variability.

Scope of models and data Experiments are limited to ∼7B-parameter models and a modest augmentation set (256 triplets). Generalisation to larger models or
different alignment pipelines (e.g., RLHF vs DPO) is not demonstrated.

Definition of “deep” align-
ment

The term is operationalised only through the proposed augmentation; alternative ways of deepening alignment (e.g., longer refusal
prefixes, hierarchical prompts) are not explored.

Utility trade-off While utility scores drop only slightly, the paper does not analyse qualitative impact on instruction-following; some degradation is
visible (e.g., AlpacaEval loss from 51.8% to 49.5%).

Over-claiming The conclusion that “future safety alignment should be made more than just a few tokens deep” is plausible but not fully substantiated
beyond the attacks studied.

Ablation depth The ablation on the number of “deep” tokens (parameter C) shows diminishing returns beyond ∼100 tokens, but the paper does not
discuss practical limits of how deep alignment can realistically be made.

Comparison to strongest base-
lines

The constrained fine-tuning is compared to “Standard SFT” and “Vaccine,” but not to more recent jailbreak-defense techniques (e.g.,
self-refine, circuit-breakers).

Questions for the Authors

1. Human verification – Did you manually inspect a subset of GPT-4 judgements to estimate label accuracy? If not, could you provide a small
human-annotated validation set?

2. Seed sensitivity – How much do the ASR numbers vary across random seeds (especially for the constrained fine-tuning)? Have you tried
more than three repeats?

3. Generalisation to larger models – Do you have preliminary results on 13B or 70B-scale models, or on models aligned with pure RLHF
rather than the proprietary pipeline used for Llama-2-Chat?

4. Effect on non-harmful instruction following – Beyond aggregated utility metrics, does the constrained objective affect the style or length of
benign responses?

5. Computational overhead in practice – The constrained loss requires storing per-token probabilities of the original aligned model. How does
this scale to models with >10B parameters and longer context windows?

Suggestions for Improvement

1. Include a small human-rated safety benchmark to validate GPT-4 judgments and report inter-annotator agreement.
2. Increase the number of random seeds (≥ 5) and report confidence intervals or perform hypothesis tests to substantiate the observed reductions

in ASR.
3. Test the methods on at least one larger model (e.g., Llama-2-13B-Chat) and on a model aligned via pure RLHF to assess generality.
4. Compare shallow vs. deep alignment under different training regimes (SFT only, RLHF, DPO) to clarify whether the phenomenon is specific

to the proprietary pipeline.
5. Provide examples of benign responses before/after mitigation to illustrate subtle shifts in style or completeness.
6. Expand discussion on scalability of deep alignment (diminishing returns, token budget, impact on generation latency).
7. Release augmentation scripts and constrained-loss implementation to facilitate reproducibility.

Overall Verdict
The paper presents a compelling empirical diagnosis of a concrete failure mode in current LLM safety alignment and offers two practical
mitigation strategies that show measurable improvements across a range of attacks. While the experimental methodology could be strength-
ened (human safety validation, more extensive statistical analysis, broader model coverage), the contribution is novel, analyses thorough, and
mitigation ideas of immediate practical interest to the community.
Final Recommendation: Accept (Poster)

Paper 6Mxhg9PtDE (Real Decision: Oral): Theoretical

Summary of Contributions
The paper introduces the notion of shallow safety alignment – the observation that current safety-aligned large language models (LLMs)
primarily modify the generative distribution of only the first few output tokens to achieve refusal behavior. The authors:

1. Empirically characterize this phenomenon across Llama-2 and Gemma models, showing that KL-divergence between aligned and base models
is concentrated in the early token positions and that prefixed refusal tokens dramatically reduce harmfulness.

2. Demonstrate that a variety of known jailbreak and fine-tuning attacks (adversarial suffix, prefilling, decoding-parameter exploits, and few-step
harmful fine-tuning) can be explained as exploiting this shallow alignment.

3. Propose two mitigation directions:
(a) Data-augmentation “deep safety alignment” that augments training data with safety-recovery examples where the model must return to a

refusal after a few harmful tokens.
(b) Token-wise constrained fine-tuning that penalises deviation from the original aligned distribution on early tokens via a novel regularised

loss (Eq. 3).
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4. Provide extensive experiments showing that both approaches improve robustness to the attacks above while preserving utility on standard
benchmarks.

Strengths
Aspect Comments

Novel conceptual framing The paper formalises an intuitive observation (the “refusal-prefix shortcut”) as shallow safety alignment and connects it systematically
to a broad set of jailbreak and fine-tuning attacks. This unifying view is valuable for the safety community.

Comprehensive empirical
analysis

Per-token KL, gradient-norm, and loss-norm studies across multiple models and datasets convincingly demonstrate the early-token
bias. The prefixed-prefix experiments (Table 1) are simple yet powerful.

Concrete mitigation propos-
als

Both the data-augmentation and constrained-fine-tuning methods are easy to implement on top of existing pipelines, requiring only
modest compute overhead (Table 12).

Thorough evaluation The authors evaluate against a wide suite of attacks (prefilling, GCG, decoding-parameter, OOD code attacks, fine-tuning attacks)
and report utility on AlpacaEval, MMLU, BBH, MATH, GSM8K. Ablation studies on hyper-parameters, β-schedules, and warm-up
are included.

Theoretical grounding Section F provides a clear derivation of the constrained loss, linking it to token-wise KL-regularised RL and to a soft-plus surrogate
of a max-margin objective. Theorems 1–3 give a solid interpretation of the role of β.

Ethics discussion The paper acknowledges that exposing failure modes can aid adversaries but argues the net benefit for safety research, satisfying the
ICLR Code of Ethics.

Reproducibility Detailed appendix sections (B–G) list compute resources, data construction, and hyper-parameters. Code-wise the methods are
straightforward.

Weaknesses
Issue Impact

Limited scope of “deep” align-
ment

The data-augmentation approach only trains on a tiny synthetic safety-recovery set (256 examples). While it demonstrates feasibility,
it is unclear how this scales to larger vocabularies, more diverse harmful content, or multi-turn dialogues.

Evaluation on a narrow model
family

Experiments focus on Llama-2-7B-Chat and Gemma-1.1-7B-IT. It remains an open question whether the findings transfer to larger
models (e.g., 70B) or to models with different fine-tuning pipelines (e.g., RLHF-only).

Reliance on GPT-4 as a safety
judge

All safety metrics (harmfulness rate, ASR) are obtained via a GPT-4 classifier. Potential bias or miscalibration of this judge could
affect conclusions; a human-in-the-loop validation would strengthen the claims.

Constrained loss hyper-
parameter sensitivity

While ablations on uniform vs. biased β are provided, selecting β values for each token position may be non-trivial in practice. The
paper does not propose an automated way to set β (e.g., based on per-token KL statistics).

Utility degradation Although utility drops are modest (≈2–4% on AlpacaEval), the constrained loss sometimes harms downstream performance more
severely (e.g., Table 4 shows utility loss on GSM8K). The trade-off analysis could be deeper.

Missing comparison to recent
“circuit-breaker” defenses

The related work mentions short-circuiting (Zou et al., 2024) but does not empirically compare against it. A head-to-head would
clarify the relative merits of the proposed methods.

Questions for the Authors

1. Scaling of safety-recovery data – How does performance vary when the safety-recovery set is enlarged (e.g., 1 k, 10 k examples) or when
the harmful prefixes are sampled from real user queries rather than synthetic?

2. Token-wise β selection – Did you try learning βt (or a schedule) from data (e.g., based on per-token KL divergence) instead of hand-crafting
a step function?

3. Multi-turn dialogues – Does shallow alignment manifest similarly in multi-turn chat settings where the model can “recover” after a refusal
in a later turn?

4. Effect on non-refusal safe behaviors – Some safety signals (e.g., content filtering via internal classifiers) are not captured by refusal prefixes.
Does deepening alignment improve robustness to attacks that target those signals?

5. Human evaluation – Have you performed any manual verification of the GPT-4 safety judgments, especially for borderline cases (e.g.,
low-severity harmful content)?

6. Compatibility with RLHF – Can the constrained fine-tuning objective be combined with RLHF (e.g., as an additional KL term) without
destabilising policy-gradient updates?

Suggestions for Improvement

1. Broaden the safety-recovery dataset – Include diverse harmful continuations (different domains, code, multi-modal prompts) and evaluate
the impact of dataset size on deep alignment.

2. Automated β scheduling – Propose a simple heuristic (e.g., βt ∝ KLt) or a learnable gating network to set token-wise constraints, reducing
manual tuning.

3. Human-in-the-loop validation – Sample a subset of outputs for each attack and have annotators verify the GPT-4 labels; report inter-annotator
agreement.

4. Compare with contemporaneous defenses – Include baselines such as the “short-circuit” method (Zou et al., 2024) and the “Vaccine”
approach (Huang et al., b) in the same experimental protocol.

5. Evaluate on larger models – Even a limited experiment on Llama-2-13B-Chat or a 70B model would strengthen the claim of generality.
6. Ablation on multi-turn safety – Test whether the deep alignment persists across conversational turns, perhaps using a dialogue benchmark

(e.g., SafeChat).
7. Improve manuscript readability – Ensure all equations render correctly, add a schematic diagram of the shallow vs. deep alignment pipeline,

and provide clearer captions for figures and tables.
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Overall Verdict
The paper presents a well-motivated, theoretically grounded, and empirically substantiated analysis of an important safety failure mode in
current LLM alignment pipelines. The notion of shallow safety alignment is novel and unifies a variety of jailbreak attacks, offering a fresh
lens for the community. The mitigation strategies are simple, computationally inexpensive, and show promising improvements across a broad
attack suite. While there are limitations concerning scalability, evaluation breadth, and presentation clarity, these do not undermine the core
scientific contribution. Final Recommendation: Accept (Spotlight)

Paper j7b4mm7Ec9 (Real Decision: Reject): Human Review

Summary:
The paper provides a proper exploration of parameter lightening for watermarking models. The problem of mismatch between the actual
decoding objective and the optimization objective of the commonly used decoding loss is solved. The solution to the above problem is
attempted from the point of view of adding projection blocks and proxy losses. And the impact of each block on robustness at fine granularity
is discussed after subdividing the watermarking framework.
Strengths:
For the first time, we identify the mismatch between the optimization objectives of commonly used decoding losses (e.g., mean-square error
and binary cross-entropy loss) and the actual decoding objectives, and confirm the existence of such a mismatch and its impact through
ablation studies, which provides a new perspective for model optimization. The proposed separable projection head (PH) and decoding-
oriented alternative loss (DO) effectively mitigate the negative impact of irrelevant optimization directions, allowing the lightweight model to
achieve SOTA performance while maintaining high performance. The lightweight model outperforms existing models in terms of invisibility,
robustness, and efficiency for other domains with limited computational resources, and minimizes performance loss by further compressing the
model with a fine-grained deep watermarking framework.
Weaknesses:
the authors don’t seem to have considered the issue of capacity, and suggest discussing this part; there are some spelling problems, e.g. ”robust-
ness” in table9 at line 1005 we know that robustness depends mainly on the type and intensity of noise added during the training phase, i.e.,
the NWIP module, but in the The paper does not give detailed experimental parameters, but only describes the noise parameter settings in the
testing phase.
Questions:
In terms of comparison experiments, because the main concern in watermarking is capacity, imperceptibility, robustness and efficiency. In
this paper, we mainly focus on the efficiency improvement, but we should ensure that the other parameters are the same for a fair compari-
son.HiDDen’s algorithm can guarantee that the embedding in the grey scale image of size 1616 embedded in the length of 52 bits of information,
the embedded information capacity can be up to 0.203 BPP. And the image used in this paper is a 3128*128 colour image, the embedded infor-
mation length is 64 bits, the capacity is much lower than HiDDen’s, so the result of such a comparison should be understood as unfair, please
explain why. Besides, the embedding capacities of several other compared algorithms are not consistent, how are they compared?
Discriminative networks have been used in image watermarking frameworks since HiDDen and have shown advantages in enhancing the
invisibility of watermarking frameworks. The authors of this paper did not consider this module in the newly proposed framework, please
explain the reason, is it because high invisibility can be achieved without discriminative networks, to reduce the parameters so it is not used or
there is another reason, please explain.
In response to the decomposition of the MSE loss function in the paper, we see the role of the different loss components, would like to ask
if this decomposition is first proposed in this paper? Or is there already a readily available scheme in the field of knowledge distillation that
performs a similar decomposition of the loss function, and this will affect the reassessment of the paper’s innovativeness.
Rating: 8: accept, good paper

Paper j7b4mm7Ec9 (Real Decision: Reject): Empiricist

Summary of Contributions
The paper tackles the problem of building lightweight deep learning-based image watermarking systems that retain high invisibility and robust-
ness. Its main contributions are:

1. Analysis of the loss mismatch – a decomposition of the commonly used MSE (and BCE) surrogate losses into deflation, inflation and
regularization components, arguing that only the deflation term directly serves the decoding objective.

2. Decoding-oriented surrogate loss (DO) – a modified loss that retains the deflation term and restricts the inflation term to bits that lie within
a “safe distance” ε from the decision boundary.

3. Detachable projection head (PH) – an auxiliary projection module added only during training to absorb the inflation/regularization direc-
tions; it is removed at inference time.

4. A five-module architectural framework (image-preprocessing, message-preprocessing, feature-fusion, noised-image-preprocessing,
message-extraction) that enables fine-grained ablations and module-wise pruning.

5. A lightweight encoder/decoder built solely from transposed-convolution and convolution layers (≈ 16 k parameters) that, when trained with
DO or PH, achieves PSNR ≈ 41–42 dB and average decoding accuracy ≈ 99.3 % on a suite of combined distortions, outperforming several
larger SOTA models (HiDDeN, MBRS, CIN, FIN) while using only ∼ 2 % of their parameters.

Strengths
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Aspect Comments

Novelty of loss analysis The explicit decomposition of MSE into deflation/inflation/regularization and the identification of “irrele-
vant” optimization directions is insightful and not previously articulated in watermarking literature.

Method simplicity Both DO and PH are plug-and-play; they do not require architectural redesigns and can be applied to
existing models.

Empirical performance The lightweight model trained with DO/PH reaches higher PSNR than the strongest baselines (FIN) and
matches or exceeds their robustness on the combined-noise benchmark.

Comprehensive ablations The paper includes loss-component ablations, module-wise removals, PH block-number/channel-size stud-
ies, and hyper-parameter sweeps (ε, λ weights).

Practical relevance Reducing parameter count and FLOPs by > 95 % is valuable for deployment on edge devices, a scenario
explicitly motivated in the introduction.

Reproducibility cues Public codebases for baselines are used; training details (optimizer, learning rate, hardware) are listed; all
additional metrics (SSIM, LPIPS, l2, l∞) are reported.

Weaknesses

1. Statistical rigor – All reported numbers are single-run averages; no confidence intervals, standard deviations, or significance tests are pro-
vided. Given the high accuracies (≈ 99 %), even small variances could alter the ranking against baselines.

2. Limited attack spectrum – Robustness is evaluated on six synthetic distortions (combined noise) and two diffusion-based attacks that are
approximated by a Gaussian-noise + median-filter pipeline. Real-world attacks (cropping, rotation, scaling, aggressive JPEG with varying QF,
format conversion) are missing, and the geometric-distortion results show the lightweight model lagging behind MBRS.

3. Training overhead of PH – While PH is removed at inference, its impact on training time, memory consumption, and energy is only
qualitatively described (“inefficiency”) without quantitative measurement. This makes it hard to assess the overall cost-benefit.

4. Hyper-parameter sensitivity – The safe distance ε and the λ-weights strongly influence performance (Tables 18-19). The paper acknowl-
edges manual tuning but does not provide a systematic tuning protocol or sensitivity analysis beyond a few discrete values.

5. Theoretical justification – The decomposition proof is presented, but there is no formal guarantee that minimizing DO leads to a tighter
bound on decoding error than standard MSE/BCE, nor any convergence analysis for the PH-augmented training.

6. Perceptual quality assessment – PSNR, SSIM and LPIPS are reported, yet no user study or visual comparison beyond a single figure is
provided; this limits confidence in the claim of “invisibility” for human observers.

7. Clarity and presentation – The manuscript contains many typographical artefacts (e.g., stray line numbers, inconsistent notation) that hinder
readability and reproducibility.

Questions for the Authors

1. Variability – How much does the decoding accuracy vary across random seeds and different train/validation splits? Could you provide
standard deviations for the main tables?

2. Training cost of PH – What is the increase in GPU memory usage and wall-clock training time when PH is employed (e.g., for 4 projection
blocks, 32 channels each)?

3. Effect of ε on different distortions – Table 19 shows the safe distance tuned for combined noise; does the same ε transfer well to single-
distortion or geometric-distortion settings?

4. Generalisation to other datasets – Have you evaluated the model on datasets other than USC-SIPI (e.g., Kodak, DIV2K) to verify that the
reported PSNR/accuracy are not dataset-specific?

5. Ablation on loss weighting – How sensitive are results to the choice of λDO1
, λDO2

(or λPH1
, λPH2

)? Is there a principled way to set
them?

6. Comparison with recent lightweight baselines – There are newer compact watermarking models (e.g., based on MobileNet or pruning
techniques). How does your method compare to those?

Suggestions for Improvement

1. Statistical reporting – Include at least three independent runs per configuration with mean ± std and perform paired statistical tests against
baselines.

2. Broader robustness evaluation – Add experiments with geometric transformations (rotation, scaling, cropping) and with a range of JPEG
qualities. If possible, test against state-of-the-art watermark removal attacks (e.g., GAN-based erasers).

3. Training-efficiency analysis – Quantify the additional GPU memory, FLOPs, and training time introduced by PH; possibly explore a
lightweight PH (e.g., 1 block) to balance cost and gain.

4. Hyper-parameter tuning protocol – Provide a systematic search (grid or Bayesian) for ε and λ values, and report the resulting sensitivity
curves.

5. Theoretical bound – Derive (or cite) a bound that relates the DO loss to the expected decoding error, clarifying why the reduction in inflation
improves robustness.

6. Human perceptual study – Conduct a small user study (e.g., MOS) to corroborate PSNR/SSIM findings on invisibility.
7. Manuscript polish – Remove stray line numbers, ensure all equations are rendered, and unify notation (e.g., Ldeflation vs Ldeflation).
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Overall Verdict
The paper introduces a thoughtful analysis of loss mismatches in deep watermarking and proposes two practical techniques (DO and PH) that
demonstrably improve a very compact model’s performance. The empirical results are promising and the ablation studies are thorough, but the
lack of statistical validation, limited attack diversity, and missing analysis of training overhead reduce the confidence in the claimed superiority.
With the suggested revisions, the work would be a solid contribution to the ICLR community.

Final Recommendation
Final Recommendation: Accept (Poster) – the contribution is novel and empirically strong enough for inclusion, but further work is needed
before it could be highlighted as an oral or spotlight paper.

Paper j7b4mm7Ec9 (Real Decision: Reject): Theorist

Summary of Contributions
The manuscript studies deep learning-based image watermarking with an emphasis on lightweight models. Its main contributions are:

1. Identification of a “loss-mismatch” – the authors argue that commonly used surrogate losses (MSE, BCE) contain components (inflation,
regularization) that do not directly serve the decoding objective and thus waste capacity in small models.

2. Two training-time remedies –
(a) Detachable Projection Head (PH): an auxiliary head added only during training to absorb the “irrelevant” optimisation directions; it is

removed at inference.
(b) Decoding-Oriented surrogate loss (DO): a reformulated loss that keeps only the “deflation” term and introduces a “safe-distance” hyper-

parameter to limit the influence of inflation.
3. A fine-grained five-module watermarking framework (image-preprocess, message-preprocess, feature-fusion, noised-image-preprocess,

message-extraction) that enables module-wise ablations and parameter reductions.
4. A lightweight encoder-decoder architecture (≈ 16 K parameters) that, when trained with PH or DO, attains robustness and invisibility

comparable to much larger SOTA models.
5. Extensive empirical evaluation on COCO/USC-SIPI, covering combined noise, diffusion-based attacks, geometric distortions, and

knowledge-distillation baselines.

Strengths

• Practical relevance – Reducing model size while preserving watermark robustness is an important engineering problem for deployment on
edge devices, diffusion-based generative models, and neural-radiance-field pipelines.

• Comprehensive experiments – The authors evaluate many distortion types (six combined noises, diffusion attacks, geometric transforms)
and report a wide range of metrics (PSNR, SSIM, LPIPS, accuracy). The ablation studies on individual modules and on the number of PH
blocks/channels are thorough.

• Plug-and-play nature – Both PH and DO are described as modular additions that can be applied to existing lightweight watermarking
pipelines without architectural changes.

• Open-source spirit – The paper mentions public code bases for baselines (HiDDeN, MBRS, CIN, FIN) and reports reproducibility details
(datasets, optimizer, hardware).

Weaknesses

1. Theoretical novelty and rigor – The decomposition of MSE/BCE into “deflation / inflation / regularisation” terms is essentially a re-
parameterisation of the standard squared-error expansion; similar analyses exist in the learning-to-hash and metric-learning literature. The
paper does not provide new theorems, nor does it prove that removing inflation/regularisation is necessary for lightweight models beyond
empirical observation. The proposed DO loss is a heuristic truncation of the full surrogate loss plus a manually tuned safety margin ϵ. No
justification is given for the specific form of the safe-distance term, nor is there any analysis of its effect on the loss landscape (e.g., gradient
bias, convergence guarantees). The PH module resembles an auxiliary classifier head often used for stabilising training (e.g., in deep metric
learning). The manuscript does not situate this design within that broader context, making the claimed novelty ambiguous.

2. Empirical methodology concerns –
• Hyper-parameter sensitivity: Both PH (λ values, number of blocks, channel width) and DO (ϵ, λ-weights) require extensive manual

tuning. The reported gains are strongly dependent on these settings, raising concerns about reproducibility and fairness.
• Statistical significance: Results are presented as single mean values; confidence intervals or multiple random seeds are absent. Given the

modest absolute differences (often < 0.5 dB or < 1 % accuracy), it is unclear whether improvements are statistically robust.
• Baseline selection: Comparisons exclude recent invertible or flow-based watermarking methods, which may impact the “state-of-the-art”

claim.
• Training cost: No quantitative measurement of training overhead is provided, though PH increases memory and computation.

3. Presentation and clarity – Numerous typographical errors, inconsistent notation, and low-quality figures hinder readability and verification.
4. Ethical considerations – While aligned with ethical standards, the lack of a dedicated “Broader Impact” section violates conference require-

ments.

Questions for the Authors
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1. Can you provide a formal analysis (e.g., a bound) showing that removing the inflation and regularisation terms reduces the required capacity
for a given decoding error?

2. How sensitive is the final performance to the choice of ϵ across different noise levels? Is there an automated way to set ϵ without exhaustive
search?

3. What is the additional GPU memory consumption and wall-clock time for training with PH compared to the baseline MSE training?
4. Have you evaluated the variance of PSNR/accuracy over multiple random seeds? Could you report 95 % confidence intervals for the key

tables?
5. How do you envision the misuse of a highly robust lightweight watermark that could be embedded in malicious media (e.g., deepfakes)? Do

you foresee any safeguards?

Suggestions for Improvement

• Strengthen the theoretical contribution by linking the loss decomposition to calibration theory or re-framing it as an empirical design study.
• Automate hyper-parameter selection via validation-based scheduling for λ and ϵ.
• Report standard deviations or confidence intervals and conduct statistical tests.
• Include more recent baselines such as diffusion-based or invertible watermarking models.
• Improve manuscript clarity: fix typos, include key equations in main text, and enhance figure quality.
• Add a “Broader Impact” section discussing positive and negative societal implications.

Overall Verdict
The paper addresses an important problem and provides extensive experiments, but lacks theoretical rigor, shows marginal gains, and suffers
from clarity issues. Therefore, it does not meet ICLR 2025 acceptance standards. Final Recommendation: Reject

Paper j7b4mm7Ec9 (Real Decision: Reject): Pedagogical

Summary of Contributions
The paper tackles the problem of building lightweight deep-learning based image watermarking systems that retain high invisibility and robust-
ness. Its main ideas are:

1. Identifying a loss-misalignment – the commonly used MSE/BCE surrogate losses contain “inflation” and “regularisation” terms that do not
directly contribute to decoding accuracy, leading to unnecessary parameter consumption in small models.

2. Two training-time remedies –
(a) Detachable Projection Head (PH): an auxiliary head is attached during training to absorb the irrelevant optimisation directions and is

discarded at inference.
(b) Decoding-Oriented surrogate loss (DO): a reformulated loss that retains only the “deflation” term and limits the influence of inflation via

a “safe distance” ε.
3. A five-module decomposition of the encoder/decoder (image-preprocess, message-preprocess, feature-fusion, noised-image-preprocess,

message-extraction) that enables fine-grained ablations and parameter pruning.
4. Extensive experiments showing that a model with ≈ 0.02 M parameters (≈ 2 % of SOTA) can achieve comparable or superior PSNR and

decoding accuracy when trained with PH or DO, and that the methods are plug-and-play for other lightweight designs.

Strengths
Aspect Comments

Technical relevance The problem of efficient watermarking is important for many downstream applications (e.g., diffusion models, NeRF). The
identification of loss-misalignment is a useful observation that could inspire further work.

Empirical breadth The authors evaluate on a wide range of distortions (combined noise, diffusion-based attacks, geometric transforms) and
compare against several recent SOTA watermarking models.

Modular framework The five-module decomposition is clearly motivated and the ablation tables (e.g., Table 7) illustrate its practical utility.
Plug-and-play claims PH and DO are presented as methods that can be added to existing lightweight backbones without architectural changes –

a potentially valuable engineering contribution.

Weaknesses
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Category Issues

Clarity & Intuition • The core ideas (deflation vs. inflation) are explained only after a dense algebraic derivation that is largely hidden behind
“Appendix A”.
• The safe-distance ε is introduced abruptly, without a visual illustration of its effect on the loss landscape.

Narrative Flow • The paper jumps between high-level motivation, low-level algebra, and experimental details without smooth transitions.
• Section headings are all-caps and do not follow typical ICLR style.
• “Related Works” mixes historical and modern papers without a clear taxonomy.

Presentation • Numerous line-numbers appear in text.
• Tables are inconsistently formatted.
• Figures are referenced but missing.
• Many typographical errors reduce professionalism.

Accessibility • A newcomer would struggle to understand “deflation”, “inflation”, and “regularisation” without diagrams.
• Prior works are not clearly compared.
• Hyper-parameter tuning lacks guidance in main text.

Reproducibility • No source-code link.
• Training details are scattered and incomplete.

Overall readability The manuscript reads like a collection of logs; the abundance of numbers without interpretation hampers comprehension.

Questions for the Authors

1. Safe distance ε – How is ε chosen in practice? Would a validation curve help?
2. Projection head architecture – Please include a clear diagram of the projection block.
3. Training overhead – Quantify additional GPU memory and time for PH training.
4. Generalisation – Have PH/DO been tested on larger backbones (e.g., ResNet)?
5. Code release – Will the implementation be released for reproducibility?

Suggestions for Improvement

1. Rewrite the core methodological section with diagrams and intuitive explanation.
2. Remove extraction artefacts and follow ICLR template.
3. Provide complete figures and well-formatted tables.
4. Add a concise “Practical Guide” with recommended values for ε, λPH , λDO .
5. Improve reproducibility by including implementation details and code link.
6. Strengthen related-work organisation into clear categories.
7. Thorough proofreading for grammar and typography.

Overall Recommendation
The paper addresses an interesting niche (lightweight watermarking) and proposes novel loss-based ideas that yield strong results. However,
communication quality is currently below ICLR standards—absent figures, fragmented narrative, and formatting artefacts make evaluation
difficult. I recommend rejection and suggest substantial revision. Final Recommendation: Reject

E IMPLEMENTATION DETAILS

The system is implemented in Python with asynchronous orchestration and semaphores to control paral-
lelism. All agents persist their outputs in a standardized directory layout, enabling caching, reproducibility,
and downstream analysis. We use gpt-oss-120b as the primary large language model for all roles, served
on 8xH100 GPUs with vllm. Reviewer prompts combine a base rubric with persona-specific instructions
and the official reviewer guidelines from the ICLR website (including the code of ethics). 6 No fine-tuning
is performed; all agents operate in instruction-following mode.

For training the XGBoost classifiers, we perform 5-fold cross validation and report the mean results across
the 5 folds in Table 1. For XGBoost, we use 200 estimaters, a max depth of 6, learning rate of 0.1, and
for the Bert classifier, we finetune it for 20 epochs, use a learning rate of 2e-5, a batch size of 16. We use
an 70-15-15 training-validation-test split and perform hyperparameter tuning on the validation set to test
between learning rates {1e-5, 2e-5, 3e-5} and number of epochs in {3, 5, 10, 20, 30, 50}.

6https://iclr.cc/Conferences/2025/ReviewerGuide
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Agent Responsibilities

LitLLM
• Retrieve and rank relevant papers
• Summarize top-k works into concise review
• Provide grounding for reviewer, author, and metareviewer

Reviewer
• Paper summary
• Explicit strengths and weaknesses
• Checks: novelty, soundness, experiments, results/discussion
• Organization/presentation and impact
• Grounds judgments in manuscript or literature
• Categorical recommendation (Oral, Spotlight, Poster, Reject, Desk Reject)

Author
• Synthesizes rebuttal from reviews and literature
• Addresses criticisms, clarifies misunderstandings
• Proposes revisions (e.g., code release, ablations)
• Explicitly cites reviewer claims or literature

Metareviewer
• Summarizes reviewer stances and scores (pre-rebuttal)
• Identifies shared strengths and weaknesses
• Evaluates rebuttal effectiveness
• Tracks stance shifts post-rebuttal
• Highlights lingering concerns or disagreements
• Fact-checks reviewer claims; assigns significance scores
• Categorical recommendation

Table 4: Overview of agents in the REVIEWERTOO pipeline and their responsibilities.
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Reviewer persona Style and primary focus

default Balanced, rubric-following reviewer aligned with ICLR 2025 guidance; covers soundness,
novelty, impact, clarity without strong bias.

critical Skeptical, flaw-finding stance; stress-tests novelty claims, methodology rigor, and baselines.
permissive Supportive lens; highlights strengths and potential, assumes good faith, emphasizes positive

interpretations of results.

empiricist Evidence-first; scrutinizes datasets, baselines, metrics, statistical validity, and whether results
support claims.

pragmatist Real-world utility; feasibility, scalability, deployment cost, practitioner relevance, and adop-
tion barriers.

theorist Conceptual rigor; coherence and elegance of core ideas, logical soundness, evidence-theory
alignment.

pedagogical Communication quality; clarity, intuition, narrative flow, figure/table interpretability, accessi-
bility to newcomers.

big picture Vision-first; long-term significance, paradigm-shift potential, conceptual promise over imple-
mentation details.

reproducibility Replication rigor; missing hyperparameters, data splits, seeds, envs; checklist compliance and
ambiguity removal.

impact Foundations and representations; depth, interpretability, principles that advance long-term AI
understanding.

visionary Bold paradigm shifts and learning dynamics; speculative but plausible mechanisms and
broader implications.

fairness Practical elegance and scalability; efficient, implementable methods with robust large-scale
validation.

probabilistic Probabilistic rigor and generative modeling; uncertainty handling, principled inference, so-
cially meaningful applications.

metareviewer Synthesis and calibration; aggregates reviewers, evaluates rebuttal effectiveness, extracts/veri-
fies facts, assigns significance, and produces AC-facing briefings and recommendations.

majority A metareviewing baseline taking majority vote of all the reviewer agents.

Table 5: Reviewer and metareviewer personas used in ReviewerToo and their primary emphases.
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