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Abstract—Modern biomedical AI pipelines require robust data
protection across heterogeneous environments, including edge
devices, hospital servers, and cloud resources, each with dis-
tinct performance, trust, and regulatory considerations. While
recent advancements in hardware-backed confidential computing
(e.g., Intel SGX, AMD SEV, ARM TrustZone) offer promising
solutions for data security, their differing threat models prevent
seamless, end-to-end ”capture-to-use” protection. To address this,
we propose a novel, hardware-agnostic security monitor that
extends the attestation and memory-encryption capabilities of
these disparate Trusted Execution Environments (TEEs). This is
complemented by a software-defined secure tunnel that enforces
data-centric policy, provenance, and compliance. Our proof-of-
concept prototype, integrating a TrustZone-enabled Raspberry
Pi with an AMD SEV virtual machine in a cloud environment,
demonstrates a deployable, data-centric enclave architecture that
achieves end-to-end confidentiality, integrity, and compliance
without compromising clinical throughput in biomedical AI
workflows.

Index Terms—privacy preserving workflows, data privacy
security in healthcare, confidential computing

I. INTRODUCTION

Biomedical sensing platforms now generate continuous
streams of high-dimensional data, including radiological im-
ages, electrophysiological waveforms, and ultrasound video.
These data feed an increasingly diverse set of machine-
learning (ML) models that assist in diagnosis, therapy plan-
ning, and long-term population studies. The clinical appeal
of such systems is well established: they offer early detection,
improved prognostication, and potential reductions in clinician
workload. Nevertheless, the infrastructure that underpins many
pipelines is assembled in an ad-hoc manner, constrained
by local expertise, budgets, and privacy regulations such as
HIPAA, GDPR, and regional Institutional Review Board (IRB)
policies. As a result, three systemic limitations persist.

First, collaborative access to multimodal datasets remains
cumbersome; transferring protected health information (PHI)
across institutional boundaries often requires months of legal
review. Second, scalability is uneven: workloads that begin
compute-dominant during training can become I/O-bound dur-
ing large-scale inference or vice-versa, forcing repeated re-
engineering of storage and networking layers. Third, tradi-
tional security controls enlarge both the trusted computing
base (TCB) and the “trusted people base,” exposing attack

surfaces that extend from bedside devices to cloud services
and administrative personnel.

Recent trusted execution environments (TEEs)—ARM
TrustZone, RISC-V Keystone, Intel SGX/TDX, AMD SEV,
and NVIDIA Confidential Computing Architecture—offer
hardware-enforced isolation, memory encryption, and remote
attestation. When deployed along the sensor–edge–cloud con-
tinuum, these primitives can deliver uniform confidentiality
and integrity guarantees while preserving the elasticity of
modern cloud platforms. Moreover, the audit logs generated
by TEEs simplify proof-of-compliance, easing regulatory cer-
tification and incident forensics. Despite these advantages, no
single TEE implementation spans all device classes found in
biomedical settings; data must traverse heterogeneous enclaves
with differing threat models, resource budgets, and latency
profiles. Coordinating keys, attestation formats, and secure
transport across this heterogeneity remains an open engineer-
ing challenge.

To ground the discussion, we analyze a representative acute
respiratory distress syndrome (ARDS) detection workflow.
Mechanical ventilators in the intensive-care unit record high-
frequency pressure and flow waveforms; a previously pub-
lished pilot study [1] of an AI-driven clinical decision support
system employs Raspberry Pi to aggregate and stream these
data to a central server that executes ML models and returns
bedside alerts. Clinicians label events via an iOS application,
creating a continuously growing dataset. This pipeline embod-
ies the heterogeneity described above: resource-constrained
edge devices, a hospital-owned compute cluster, and external
research servers that require de-identified subsets of the data.
On the basis of this analysis, we propose a composable,
data-centric enclave architecture that (i) unifies attestation and
transport across heterogeneous TEEs, (ii) reduces the trusted
hardware and personnel bases, and (iii) imposes negligible
latency overhead on real-time inference. A prototype combin-
ing ARM TrustZone at the edge and AMD SEV in the cloud
demonstrates the practicality of the approach.

This paper makes two key contributions. First, we identify
limitations of current off-the-shelf Trusted Execution Envi-
ronments (TEEs) in establishing end-to-end data pipelines for
healthcare applications. We then propose software techniques
to overcome these limitations and align threat models. Second,



we demonstrate how to create software-defined secure data
tunnels that augment existing TEEs. These tunnels ensure
data-centric policy, compliance, and provenance guarantees,
which are crucial for data privacy in biomedical research and
healthcare.

The remainder of the paper is organized as follows. Section
II reviews common biomedical data modalities and details the
ARDS detection pipeline. Section III evaluates the security
vulnerabilities present in current workflows. Section IV in-
troduces the enclave-based design, and Section V describes
a software-defined secure data tunnel that provides end-to-
end provenance and policy enforcement. Section VI discusses
related work, and Section VII concludes.

II. BACKGROUND

Clinical practice routinely generates data in three broad
modalities—images, waveforms, and video—each with well-
studied machine-learning (ML) applications. Radiological and
microscopic images underpin models for Alzheimer’s staging,
lung and breast cancer detection, COVID-19 diagnosis, and
vasculature segmentation [2]–[7]. Electrophysiological time
series such as EEG and ECG support arrhythmia predic-
tion, schizophrenia screening, and emotion recognition [8]–
[13]. Continuous video, captured by ultrasound or endoscopic
cameras, enables automated assessment of fetal cardiac struc-
ture [14] and progression of aortic stenosis [15].

While these tasks differ clinically, their computational
pipelines share a common skeleton: a sensor acquires raw
data, an edge device performs lightweight processing, a central
server stores and analyses the data, and peripheral nodes
conduct additional experiments or anonymization. The same
outline scales from small pilot studies to national biobanks;
differences arise mainly in throughput, latency tolerance, and
regulatory constraints.

A. Motivating Workflow: ARDS Detection

To ground the discussion, we adopt the acute respiratory
distress syndrome (ARDS) detection pipeline described by
Rehm et al. [1], [16]. Mechanical ventilators in an intensive-
care unit record high-frequency pressure and flow waveforms.
A Raspberry Pi running Linux aggregates the signals, executes
minimal preprocessing, and streams the data over a secure
wireless link to a hospital server. Clinicians label each time
series via an iOS application, pairing waveform segments with
electronic health record (EHR) metadata to create a supervised
training set for ML models. Although modern mechanical
ventilators deployed in major hospitals may support seamless
logging and streaming of data without support from a separate
embedded device, the most advanced technology is often
unobtainable for resource constrained clinics around the globe.
Thus, the pipeline from this pilot study still remains relevant
to AI-driven healthcare delivery across disease domains.

In this workflow, the waveforms themselves are sensitive:
patient identifiers can be linked, via timestamps, to the hospi-
tal’s EPIC EHR system. Consequently, researchers external to
the hospital must not receive raw data. A hospital-employed

data engineer anonymizes and filters the server’s dataset, ex-
porting de-identified subsets to a relational database (RDBMS)
hosted on a separate server. Researchers issue SQL queries
for exploratory statistics, then copy the resulting tables to
local workstations or lab-scale clusters for compute-intensive
training runs.

Fig. 1. ARDS Detection Pipeline. Ventilator waveforms travel from edge
device to hospital server, are anonymized, and are later accessed by external
researchers for model development.

Figure 1 illustrates the full data path. Every arrow represents
a potential disclosure or tampering point; every storage node
must satisfy encryption-at-rest requirements; and every user
group—clinicians, data engineers, and researchers—adds to
the trusted personnel base.

B. Large-Volume Video Workflows

Some health-AI studies accumulate far larger datasets than
the ARDS example. Wu et al. [17] analyze 1707 three-minute
parent–infant interaction videos (≈ 200 GB) to predict early
autism risk. Even this “modest” corpus was judged insufficient
for deep neural networks, indicating that future deployments
will involve terabyte-scale video repositories. Because PHI
cannot leave hospital premises without extensive legal review,
researchers typically ship gradients or model updates to cloud
nodes (federated learning) while retaining raw video on-site.
Thus, although topologies vary, the security and privacy re-
quirements closely mirror those of the ARDS pipeline: strong
isolation at the edge, encrypted transport, auditability, and
controlled external access.

These examples motivate the design goals pursued in the
remainder of this paper: end-to-end confidentiality, interop-
erability across heterogeneous devices, and minimal perfor-
mance overhead.

III. VULNERABILITIES IN HEALTH AI WORKFLOWS

Every stage of the ARDS detection pipeline exposes security
weaknesses. At the edge, the Raspberry Pi attached to the
ventilator is physically reachable by patients, visitors, and
clinical staff; an adversary with brief access can replace the
micro-SD card, attach a rogue storage device, or reboot the
unit into a compromised image. Wireless telemetry between



the Pi and the hospital server is sent without end-to-end
encryption, permitting passive interception or active manip-
ulation in transit.

On the hospital server, raw waveforms and patient identifiers
share the same software stack as the annotation interface and
the inference service. The absence of memory encryption,
process isolation, and hardened hypervisor protections means
that a single system compromise reveals the complete dataset.
Data engineers with shell access can inadvertently copy sen-
sitive records to an RDBMS intended only for de-identified
tables; once present on that auxiliary server, the data is less
rigorously monitored and may propagate to external research
machines. Those downstream PCs and lab servers operate
outside hospital governance, often without full-disk encryption
or consistent patch management.

The mobile application used by clinicians inherits the priv-
ileges of the server it contacts; a vulnerability in the app
or on the iOS device can therefore relay forged labels or
extract protected health information (PHI). In aggregate the
workflow depends on a broad trusted computing base—edge
devices, server OS and hypervisor, mobile OS, personal
workstations—and an equally broad trusted personnel base
encompassing clinicians, data engineers, researchers, and even
visitors.

The autism-risk video pipeline shares these weaknesses but
introduces an additional threat: large, centralized video repos-
itories are attractive targets for data-poisoning and model-
poisoning attacks. Without fine-grained logging and attes-
tation, malicious content can be injected unnoticed during
upload or training, degrading diagnostic accuracy.

A. Security Requirements of Health AI Workflows

Drawing on the ARDS and autism-risk pipelines, we derive
five requirements for a trustworthy biomedical-AI infrastruc-
ture:

• Interoperability. Pipelines span heterogeneous
hardware—from low-power microcontrollers to cloud
GPUs—under differing institutional policies. A viable
TEE must bridge these environments without ad-hoc
gateways or format conversions.

• Memory encryption and isolated execution. Each
component, including resource-constrained edge devices,
needs the option to encrypt at least sensitive memory
regions and to confine code handling PHI within an
isolated address space.

• Mutual attestation and integrity verification. Hard-
ware, firmware, and software must be measured at boot
and re-verified before every data exchange; senders and
receivers must establish their integrity reciprocally to
prevent spoofing.

• Data-handling compliance. The infrastructure must tag
data with sensitivity and policy metadata, enforce policy
during transfer, and generate immutable audit logs to
satisfy HIPAA, GDPR, and IRB requirements.

• Compatibility with complementary privacy technolo-
gies. The TEE should interoperate with secure multi-

party computation, differential privacy, and homomorphic
encryption, allowing each workflow to combine mecha-
nisms according to latency and accuracy constraints.

IV. USING EXISTING CONFIDENTIAL COMPUTE
TECHNOLOGIES

Sensitive data traverse every stage of the ARDS pipeline
bedside acquisition, hospital aggregation, cloud inference,
and external research analysis. Deploying commodity trusted-
execution environments (TEEs) at each storage or compute
node offers isolation, memory encryption, and remote attesta-
tion without redesigning the hardware stack.

Fig. 2. Proposed ARDS Detection Pipeline

Raspberry Pi. The Pi buffers ventilator waveforms and
streams them to the hospital network. With ARM TrustZone
enabled, the acquisition thread, cryptographic keys, and trans-
mit buffer execute in the Secure World; drivers, Wi-Fi, and user
shell remain in the Normal World. Secure-boot verification and
region-based memory protection ensure that PHI never appears
in plaintext outside the Secure World. Streaming at 20 kHz
incurs 2 % latency relative to an unsecured image well within
clinical limits.

Central server. Raw data storage, clinician annotation, and
real-time inference run on an AMD EPYC VM protected by
Secure Encrypted Virtualization Encrypted State (SEV-ES).
Page-level memory encryption and register-state protection
prevent a malicious hypervisor from inspecting data or model
parameters. The Pi initiates data transfer only after verifying
the VM attestation report, guaranteeing delivery to a trusted
enclave.

Research RDBMS and compute nodes. Researchers re-
ceive de-identified tables. If policy permits, the database is
deployed in a second SEV-ES VM; otherwise it remains on-
premises inside an Intel SGX enclave. Result sets are returned
over attested TLS channels, so raw identifiers never leave the
enclave boundary.

A. Attestation Framework

Mutual attestation is mandatory before any sensor data move
between components. Each TEE generates a signed evidence
bundle containing its measurement hash and public key. The
sender verifies the receiver’s bundle; the receiver repeats the
process before accepting the connection. We employ the Enarx



TABLE I
ARDS DETECTION MODELING ON VMS WITH AND WITHOUT SEV.

Run ID Regular (s) SEV (s)
1 92.82 95.49
2 93.31 96.32
3 92.68 91.46
4 93.76 93.35
5 93.53 94.51
6 93.46 95.85
7 91.13 92.63
8 91.33 93.86
9 93.63 94.05
10 92.80 94.34

runtime to normalize these procedures across TrustZone, SEV,
and SGX, reducing bespoke code and simplifying future
expansions of the pipeline.

B. Impact of Replacing the Auxiliary RDBMS with SEV

SEV eliminates the need for an intermediate de-
identification server and the associated data-engineer role.
Researchers analyze data inside the enclave via pre-approved
SQL or Python queries whose outputs are automatically
scrubbed of identifiers, shrinking both the trusted computing
base and the trusted personnel base.

C. Performance Evaluation

Two Google Cloud VMs one baseline and one SEV-enabled
were provisioned with identical resources (2 vCPUs, 8 GB
RAM, Ubuntu 20.04). Ten ARDS-model training runs were
executed on each VM; Table I lists per-run execution times
and means.

The mean increase is 3 %confirming that SEV fulfills
latency constraints for bedside alerting.

D. Limitations of the Proposed Pipeline Due to Interoperabil-
ity

Non-uniform guarantees. TrustZone provides world-level
isolation but no full-memory encryption, whereas SEV en-
crypts guest memory and CPU state. Consequently, security
assurances differ between edge and server tiers.

Hypervisor trust. SEV assumes an untrusted hypervisor,
whereas TrustZone relies on the Non-Secure World OS for
certain services. A compromised OS could still launch shared-
resource attacks on the Secure World.

Attestation asymmetry. SEV ships with built-in remote
attestation; TrustZone requires a custom framework (e.g., OP-
TEE) to export similar evidence.

E. Techniques to Mitigate Interoperability

Where TrustZone or other hardware TEEs are unavailable,
we encrypt waveforms immediately after capture, containerize
edge applications, and perform periodic kernel-hash verifica-
tion. Although these measures do not equal hardware isolation,
they limit exposure until the data reach the SEV enclave.
Strict coding standards (constant-time algorithms, minimal
attack surface) and noisy execution traces further reduce side-
channel risk. Some embedded devices lack stable TrustZone

builds. In that case we retain the SEV-protected server, replace
hardware isolation on the Pi with software encryption and
signature-based attestation, and omit Enarx, which requires
two hardware TEEs. The revised data path is shown in Figure
3.

Fig. 3. Proposed ARDS Detection Pipeline Without TrustZone

F. Threat Model

Table II summarizes common attacks on the minimally
protected pipeline (software-only Pi, SEV server) and indi-
cates whether each threat is mitigated, partially mitigated, or
unaddressed.

Vulnerabilities due to physical access of devices that could
be susceptible to hands-on tampering, malicious insiders, and
side-channels are not addressed in this work.

V. SOFTWARE DEFINED SECURE DATA TUNNEL

Based on these requirements, we outline a hardware-
agnostic TEE model suitable for most health-AI pipelines.
A thin, high-privilege security monitor executes at the top
privilege level on every node. The monitor:

1) orchestrates world or VM switches between secure and
non-secure contexts;

2) configures an optional memory-encryption engine, en-
abling region-level or full-image encryption with ¡ 3 %
latency overhead;

3) enforces access control, denying reads or writes to
protected regions unless the current context belongs to
a registered sensitive application; and

4) provides a uniform attestation API that packages hard-
ware measurements and public keys for remote verifica-
tion.

Lower-privilege software, including the host OS, lies outside
the trusted computing base (TCB) and communicates with the
monitor through a narrow driver interface that requires only
minor kernel changes.

Attestation, logging, and policy compliance. A dedicated
compliance server validates attestation reports, signs session
keys, and records every data ingress/egress event (timestamp,
sender hash, receiver hash, dataset tag). The framework for
these operations is built around design principles for attestation
and policy compliance from existing literature [18], [19]. If
provisioning a standalone server is impractical, the role can be



TABLE II
DEGREE OF PROTECTION AVAILABLE IN MODIFIED PIPELINE AGAINST COMMON VULNERABILITIES

Attack Description Protection Provided

Data Interception Attackers intercept data in transit
between the Raspberry Pi and GCP
VM.

Strong Protection: Use of TLS/SSL
and application-level encryption
ensures data confidentiality.

Memory Dump on GCP VM Attackers exploit a vulnerability,
accessing memory contents.

Strong Protection: SEV provides
memory encryption, protecting
sensitive data from being read in
memory dumps. In Raspberry Pi,
we are implementing encryption
as soon as data is generated.

Container Escape A malicious process escapes its
container, gaining broader access
to the host.

Limited Protection: While
containerization provides isolation,
strict configurations can reduce
the risk, but not fully guarantee
against escape.

Integrity Verification Failure The integrity verification script
fails to detect a compromised ker-
nel or application.

Limited Protection: Integrity
checks implemented on Raspberry
Pi will help, but an advanced
attack may bypass them. SEV has
its own mechanisms for this

Insider Threat Authorized users intentionally or
unintentionally expose sensitive
data.

Limited Protection: Role-based ac-
cess controls and auditing can mit-
igate risks.

co-located on an existing compute node or distributed across
several nodes for fault tolerance. Decentralized attestation
removes a single point of failure and provides redundancy
when clinical workloads must remain online. Policy rules are
stored in a permissions metadata table data structure, which
is set by the enclave manager when the application is created.
Since this process is handled within the enclave before the OS
can intervene, it does not expand the TCB.

Data-centric enclave workflow. Each storage or compute
node hosts a data-centric enclave. Data move between enclaves
only after mutual attestation succeeds and the compliance
server issues a signed JSON manifest that contains prove-
nance, policy tags (raw, de-identified, aggregate), and integrity
hashes. The receiver’s monitor validates the manifest before
processing begins, guaranteeing that privacy constraints travel
with the data.

This design supports heterogeneous workflows: a central,
on-premises video repository (e.g., Wu et al. [17]) can expose
only approved features, while federated-learning jobs can
embed task-level attestation graphs for provenance and au-
ditability as proposed by Guo et al. [20]. Granular logging and
tagging enable differential policy enforcement—and optional
encryption adds a second defense layer—providing continuous
protection across diverse clinical AI pipelines.

Components in a workflow that cannot be incorporated into
this design will require implementation of a combination of
software approximations of security guarantees provided by
TEEs and frameworks for privacy preserving technologies.
Cloud providers offer substantial engineering support for de-
velopment and deployment of privacy preserving technologies
such as homomorphic encryption, secure multiparty computa-
tion and differential privacy. This existing support, combined
with the cloud-based design and the uniform attestation and

Fig. 4. High-Level Design Schematic of Software Defined Secure Data Tunnel
System

policy enforcement protocols, means that setting up the nec-
essary nodes for integrating popular privacy preservation tech-
niques and cross-institutional model training would not require
significant engineering effort or any design modifications for
the secure tunnel.

Based on our high-level design for a software defined secure
data tunnel, we developed a simple prototype to demonstrate
that the attestation framework would incur insignificant over-
head. We first simulated a scenario where data is transferred
from one AMD SEV virtual machine to another, both hosted
on Google Cloud Platform. We calculated the time required
to attest the identity of the sender and the receiver servers,
as well as to check for potential policy violation due to
presence of any of the 18 HIPAA identifiers in the data with
the help of a dedicated attestation server. We performed the



TABLE III
AVERAGE DURATION FOR COMPLETING THE ATTESTATION PROCESS

BEFORE DATA TRANSFER BETWEEN AMD-SEV SERVERS

Number of Columns Average Attestation Time (secs)
10 0.0019

100 0.0021
1000 0.0023

TABLE IV
AVERAGE DURATION FOR CHECKING THE NATURE OF THE OBJECT TO BE

TRANSFERRED FROM ONE AMD-SEV SERVER TO ANOTHER FOR
FEDERATED LEARNING-LIKE APPLICATIONS

Type of Object Transferred Average Validation Time (µs)
Model Updates 2.6

Raw Data 2.2
Unrecognized Object 4.3

attestation process for transferred datasets containing 10, 100
and 1000 columns (the number of rows does not matter since
the attestation process only requires the metadata), and we
report the average attestation time across 5 trials for each
different dataset in Table III. The attestation time includes
time required to transfer the metadata to the attestation server,
perform policy checks and sender and receiver validation, and
send back attestation certificates to sender and receiver servers.

We also simulated another scenario in health AI/ML work-
flows, where operations such as federated learning result in
transfer of model updates from one server to another, but raw
data is not to be transferred. For instance, the video data
for autism risk detection in the workflow described earlier
resides at a central repository. Sensitive raw data may not leave
the server, but the data might be used for training federated
learning schemes for autism risk detection, in which case,
data artifacts such as model updates are expected to leave
the server, but not the raw video data. Our design supports
implementation of policies for such cases, where it needs to
be ensured that no raw data leaves the server, and that only
a specific type of artifacts are allowed to be transmitted. We
perform the attestation process to confirm that raw data is
not transferred, only model updates are transferred, and report
the overhead incurred for validating that the object being
transferred only contains model updates. We report average
times required across 5 trials each in case data transfer is
attempted, model updates transfer is attempted, and also if
some arbitrary unrecognized object transfer is attempted in
Table IV.

VI. RELATED WORK

Confidential computing in healthcare has attracted growing
attention. Wu et al. [17] demonstrate the practical challenges
of hosting terabyte-scale video datasets on-premises, moti-
vating enclave-based analytics at the edge. Pinto et al. [21]
and Costan & Devadas [22] survey ARM TrustZone and
Intel SGX, respectively, outlining their suitability for clini-
cal workloads. Several studies integrate SGX with HIPAA-
compliant pipelines for genomic privacy [23] and ICU wave-
forms [24]. Homomorphic-encryption frameworks enable se-

cure model inference but incur order-of-magnitude latency
penalties [25]. Secure multiparty computation has been used
for cross-institutional cohort analysis [26], yet depends on
synchronous, high-bandwidth links uncommon in hospital
networks. Differential-privacy defenses mitigate membership
inference but trade accuracy for strong bounds [27]. Recent
work on enclave-based federated learning adds task-level attes-
tation graphs for provenance auditing [20]. Sherlock, a third-
party secure enclave solution, managed by the San Diego Su-
percomputer Center, provides academic institutions in the U.S.
with an opportunity to enter a partnership and obtain a cloud
environment rated for compliance with various regulations
with managed solutions and platforms for implementation of
various security measures [28]. However, such services are
typically expensive, and thus often unattainable. Our architec-
ture unifies these strands, combining hardware TEEs with data-
centric attestation to deliver end-to-end confidentiality without
prohibitive overhead.

VII. CONCLUSION

We analyzed two representative biomedical-AI pipelines
and showed that traditional, ad-hoc security controls broaden
both the trusted computing and personnel bases. By deploying
commodity TEEs—TrustZone at the edge and SEV/SGX in
the cloud and overlaying a software-defined secure tunnel,
we reduced the attack surface while adding 3% latency. A
thin, hardware-agnostic security monitor plus a dedicated (or
distributed) compliance server provides uniform attestation,
encryption, and audit logging across heterogeneous devices.
Benchmarks confirm that confidential computing now meets
bedside timing constraints, eliminating the need for interme-
diate de-identification servers. Remaining gaps lie in physical
tamper resistance and side-channel leakage, which we leave
to future work. The proposed data-centric enclave architecture
therefore offers a practical path to end-to-end privacy and
integrity in next-generation health-AI workflows.

Our design facilitates seamless multi-institution collabo-
ration since it is primarily cloud-based. The standardized
metadata table data structure for policy implementation across
institutions also makes it easy to scale the attestation and
policy implementation framework, and reduces credentialing
burden. Institutions are not required to build local infrastruc-
ture and can utilize the operational support and flexibility
offered by cloud providers that assist development of health-
AI applications [29]–[31]. However, some further work is
required in order to transform our solution into a production-
ready system. we must design an adapter, potentially around
a RISC-V based TEE such as Keystone, that interfaces with
the output driver of medical devices and sensors and encrypts
the data. Additionally, one or more dedicated storage nodes
would be set up, which could be supported by AMD SEV.
With these additional engineering efforts, it would be possible
to deploy a production-ready version of the software defined
secure data tunnel.
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