

000 GUARANTEED BOUNDING MESHES EXTRACTION 001 FROM NEURAL IMPLICIT SURFACES 002 003 004 VIA NEURAL NETWORK VERIFICATION 005

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Geometric queries on neural implicit surfaces, such as ray tracing and collision
014 detection, present a significant challenge since they require explicit spatial reasoning
015 over neural networks. This work addresses this challenge by connecting these
016 geometric queries to neural network verification problems. Inspired by the state-
017 of-the-art neural verification tools, we propose a new framework utilizing linear
018 bound propagation-based verifiers to solve these queries in real time, enabling
019 applications such as real-time rendering and physics simulation with soundness
020 guarantees. Instead of naively running neural network verifiers on-the-fly, we first
021 classify a 3D input domain into multiple regions of interest, which can then assist
022 in subsequent verifications. We achieve this objective by constructing explicit
023 bounding volumes and then leveraging linear bounds generated by SOTA neural
024 network verifiers to guide the generation of *sound piecewise linear bounding*
025 *meshes*. In this paper, we propose Guaranteed Inner-and-Outer Meshes (GIOM),
026 which can serve as bounding volumes and merge seamlessly with existing explicit
027 geometry processors to accelerate queries on neural implicit. As tight and *sound*
028 bounding meshes, GIOM enables accelerated neural SDF queries without sacrificing
029 quality. With GIOM, we develop accelerated neural implicit ray casting,
030 collision detection, and constructive solid geometry methods (CSG), achieving up
031 to a 300% speedup in real-time rendering, a 500% speedup in physics simulation,
032 and an optimization-free neural CSG procedure. Experiments show that GIOM
033 significantly outperforms existing methods in the speed-quality trade-off.

034 1 INTRODUCTION

036 Neural implicit surfaces, particularly those represented as signed distance functions (SDFs), provide
037 compact, high-fidelity representations of complex 3D geometry. Their continuous and resolution-
038 independent nature makes them ideal for tasks such as shape modeling, completion, and generative
039 design. However, their implicit formulation, typically as multi-layer perceptrons (MLPs), poses
040 challenges for geometry queries central to computer graphics and simulation, including ray inter-
041 section, collision detection, and boolean operations (e.g., constructive solid geometry). These tasks
042 often require explicit spatial reasoning and, in many cases, formal guarantees on intersection, en-
043 closure, or safe clearance (Sharp and Jacobson, 2022; Liu et al., 2024b; Marschner et al., 2023a),
044 which implicit neural representations inherently struggle to satisfy.

045 To address these challenges, recent works (Liu et al., 2024a;c; Sharp and Jacobson, 2022; Wang
046 et al., 2023b) have focused on extracting bounding volumes from neural SDFs to accelerate down-
047 stream tasks. However, these approaches trade off either soundness or tightness, hindering their
048 utility in safety-critical and performance-intensive settings. Our key insight is that deriving formal
049 guarantees over neural SDFs is closely connected to the field of neural network (NN) verification.
050 In particular, bound verification techniques (Zhang et al., 2018; Gehr et al., 2018; Singh et al., 2018;
051 Weng et al., 2018; Wong and Kolter, 2018a; Dvijotham et al., 2018; Wang et al., 2018) have demon-
052 strated the ability to compute tight, certified bounds on NN outputs in a highly scalable and efficient
053 manner, providing a compelling foundation for deriving tight and certifiable bounds over neural
implicit surfaces. In this work, we propose **Guaranteed Inner-and-Outer Meshes (GIOM)**, a novel
algorithm that synergizes the rigor of neural network verification with the performance demands of

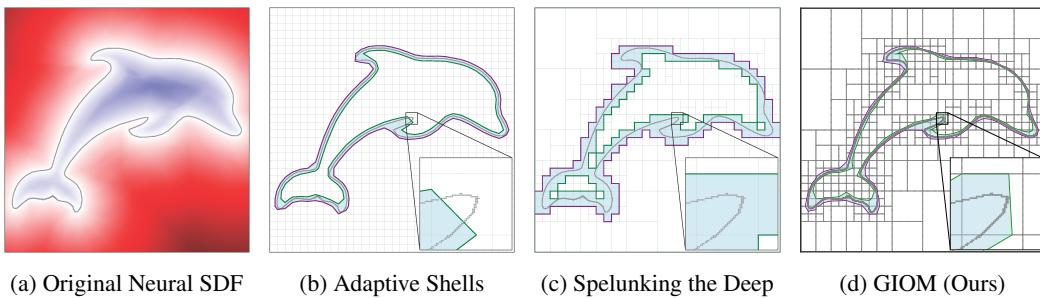


Figure 1: **Comparison of bounding-shell methods for Neural SDFs at equal granularity.** **Adaptive Shells** (Wang et al., 2023b) use *SDF dilation and erosion with marching squares* to produce relatively tight shells but lack correctness guarantees (see intersecting isosurfaces in Fig. 1b); **Spelunking the Deep** (Sharp and Jacobson, 2022) employs a *KD-tree with affine arithmetic*, yielding loose, non-smooth bounds (Fig. 1c); our **Guaranteed Inner-and-Outer Meshes** (GIOM) method exploits CROWN (Zhang et al., 2018), one state-of-the-art network verification technique to deliver tight, smooth bounds with provable correctness (Fig. 1d).

real-time graphics applications. Our work utilizes CROWN Zhang et al. (2018), a representative verification method with linear bound propagation, and organizes the input domain into a spatial hierarchical grid to progressively and adaptively refining voxel enclosures. The 3D planes derived from linear bound coefficients allow us to subsequently slice voxels and extract volumetric meshes that tightly encloses the surface. Unlike prior voxel-based methods Sharp and Jacobson (2022) only addressed soundness (the inner bounding volume lies within and the outer bounding volume contains the surface), GIOM produces geometry-aware shells that are directly compatible with spatial acceleration structures. More importantly, GIOM offers adjustable tightness-efficiency trade-offs while ensuring soundness, enabling the same core algorithm to support multiple downstream tasks ranging from fast ray tracing to certified collision detection.

We validate GIOM across three tasks. For real-time rendering, GIOM achieves frame rates $3\times$ faster than Wang et al. (2023b) and yields 13 dB peak signal-to-noise-ratio (PSNR) over 0-level marching cubes, eliminating common artifacts. In collision detection, we provide tighter bounding volumes and more efficient queries, outperforming heuristic-based alternatives. For constructive solid geometry (CSG) operations, our shell-based framework supports robust boolean operations without the large approximation errors introduced by traditional min/max operations or the excessive overhead spent on training a new neural implicit Marschner et al. (2023a). In summary, our main contributions are:

- We connect *rigorous bounding techniques* from NN verification with the *soundness and performance demands* of visual computing with neural implicits. By formalizing this connection in Section 3.1, we enable cross-domain insights for reliable, high-performance queries on neural implicit surfaces.
- We introduce GIOM, the first method to leverage sound linear bounds on neural networks to construct tight, scalable bounding meshes tailored for 3D graphics applications. We also show GIOM enables three challenging downstream tasks, rendering, collision detection, and CSG, each of which benefits from tightness, generality, efficiency, and formal guarantees.
- We demonstrate that GIOM provides a $3\times$ speed-up and a 5 dB PSNR improvement in rendering, a $5\times$ speed-up in collision detection without loss of authenticity, and a $10\times$ reduction in CSG distance field reconstruction error with minimal overhead.

2 RELATED WORK

Neural Implicit Representations. Neural implicit representations model geometry as continuous functions parameterized by NNs. SDF-based methods (Park et al., 2019; Sitzmann et al., 2020; Wang et al., 2021a; Takikawa et al., 2021) define surfaces as zero level sets, while occupancy-based approaches (Mescheder et al., 2019; Tang et al., 2021) classify points as interior or exterior. Other works employ explicit primitives (Chen et al., 2020; Deng et al., 2020; Tretschk et al., 2021; Esposito et al., 2025), volumetric fields Mildenhall et al. (2020); Zhang et al. (2020); Wang et al. (2023a), and hybrid approaches Martel et al. (2021); Guédon and Lepetit (2024) for view synthesis.

108 sis. Neural SDFs offer compact and expressive geometry representations and are widely used in
 109 applications such as scene reconstruction Wang et al. (2021a; 2023a); Zhang et al. (2024; 2020);
 110 Müller et al. (2022); Fridovich-Keil and Yu et al. (2022), 3D modeling Chen and Zhang (2019); Li
 111 et al. (2022); Novello et al. (2023); Yang et al. (2021), and collision detection Koschier et al. (2017);
 112 Macklin et al. (2020). However, they are costly to query, challenging to edit, and inefficient for ray
 113 tracing or certified collision avoidance. To mitigate this, some acceleration techniques have been
 114 proposed. NGLOD (Takikawa et al., 2021) sparsely voxelizes space and uses compact MLPs; NeRF
 115 variants (Reiser et al., 2023; Müller et al., 2022; Martin-Brualla et al., 2021; Barron et al., 2021;
 116 Fridovich-Keil and Yu et al., 2022) exploit multi-resolution hash grids; da Silva et al. (2022) lever-
 117 ages nested neural SDFs; Adaptive Shells (Wang et al., 2023b) restricts sampling to narrow bands
 118 via dilation and erosion with marching cubes (Lorensen and Cline, 1987). For collision detection,
 119 affine arithmetic (De Figueiredo and Stolfi, 2004) has been applied (Sharp and Jacobson, 2022; Liu
 120 et al., 2024b) but struggles with the non-convex nature of neural networks. CSG-nSDF (Marschner
 121 et al., 2023a) trains neural SDFs to encode constructive solid geometry.

122 **Certified Bound Extraction and Mesh Enclosures.** Standard surface extraction methods such as
 123 marching cubes generate triangle meshes for the zero level set, but few address the challenge of com-
 124 puting certified inner and outer meshes that provably bound the isosurface. Differentiable variants
 125 of marching cubes (Liao et al., 2018; Remelli et al., 2020) learns explicit meshes, but only for the
 126 zero level set and without bounding guarantees. In special cases like ReLU networks, the level set is
 127 polyhedral and could, *in theory*, be triangulated exactly. However, this is computationally expensive
 128 and does not extend to more expressive architectures (Lei and Jia, 2020). Other approaches, such
 129 as Wang et al. (2023b), approximate inner and outer shells via dilation and erosion combined with
 130 marching cubes, but these are primarily intended to accelerate sampling and offer no guarantees,
 131 often resulting in unsound or visually incorrect renderings (see Figure 1, 5). Although errors may be
 132 reduced by increasing marching cubes resolution, adjusting dilation/erosion parameters, or moving
 133 bounding-mesh vertices along SDF normals, these heuristics introduce trade-offs in memory con-
 134 sumption, bounding-mesh tightness, and risks of self-intersection in thin or complex regions. More
 135 importantly, none of them can provide a theoretical guarantee that the implicit surface lies strictly
 136 between the bounding meshes.

137 **Bound Computation.** Bound propagation is a core technique in NN verification, enabling formal
 138 guarantees for tasks related to safety and robustness analysis (Li et al., 2025b; Yang et al., 2024;
 139 Serry et al., 2025; Li et al., 2025a; Chen et al., 2024). Among these methods, Interval Bound
 140 Propagation (IBP) (Gowal et al., 2019; Moore et al., 2009) has been adopted for tasks regarding
 141 certified querying and collision detection (Sharp and Jacobson, 2022; Liu et al., 2024b) due to its
 142 fast manner of forward-propagating bounds throughout the layer of a network. However, IBP tends
 143 to produce conservative bounds and ignores the structure of the input-output relationship, offer-
 144 ing limited geometric insight. In contrast, *linear* bound propagation techniques (Wong and Kolter,
 145 2018a;b; Dvijotham et al., 2018; Zhang et al., 2018; Raghunathan et al., 2018; Gehr et al., 2018;
 146 Singh et al., 2018; 2019; Wang et al., 2018) which compute bounds via affine relaxations of nonlin-
 147 ear operators offer much tighter enclosures and preserve geometric structure. While more rigorous
 148 NN verifiers (Wang et al., 2021b; Zhang et al., 2022; Cheng et al., 2017; Lomuscio and Maganti,
 149 2017; Dutta et al., 2018; Fischetti and Jo, 2017; Tjeng et al., 2019; Xiao et al., 2018; Scheibler et al.,
 150 2015) can offer stronger guarantees, their high computational complexity severely limits scalability.

3 METHODOLOGY

153 **Overview.** We introduce the **Guaranteed Inner-and-Outer Meshes (GIOM)** algorithm, which
 154 constructs tight, explicit geometric envelopes that bridge the expressive power of neural implicit
 155 representations with the efficiency of traditional geometry processors. We also propose **Guar-
 156 anteed Zero-Level (GIOM-Z)**, a method for approximating the isosurface with theoretical guar-
 157antees. Our **key insight** is to integrate scalable NN verification techniques with voxelized spatial
 158 hierarchies to efficiently and soundly bound regions of interest. In Section 3.1, we show how bound
 159 propagation methods such as CROWN can reformulate geometric queries as NN verification prob-
 160 lems. Section 3.2 introduces our bounding shell construction for tight enclosures, and Section 3.3
 161 demonstrates the framework’s utility in real-time rendering, physics simulation, and constructive
 162 solid geometry.

162 3.1 GEOMETRIC QUERIES AS NN VERIFICATION PROBLEMS.
163

164 Geometric queries such as those related to ray-tracing, collision detection, or constructive solid
165 geometry (CSG) operations, can be naturally framed as NN verification problems. Given a 3D SDF
166 $f(x) : \mathbb{R}^3 \rightarrow \mathbb{R}$, we have $f(x) < 0$ for points inside the isosurface, $f(x) = 0$ on the surface, and
167 $f(x) > 0$ outside. While an exact SDF also requires that $|f(x)|$ equals the shortest distance from
168 x to the surface, we do not make such assumption in this work. Let $F(x)$ denote the verification
169 property of interest. For example, in collision detection, it is useful to know if a region of space lies
170 entirely outside an object. This can be formulated as:

$$171 \quad \forall x \in \mathcal{C}, F(x) > 0 \quad \text{where } F(x) := f(x) \quad (1)$$

172 Here, $\mathcal{C} \subset \mathbb{R}^3$ is a region in space (e.g., an axis-aligned bounding box (AABB) defined by corners x_-
173 and x_+), and $f(x)$ is the neural SDF evaluated at point x . Verifying this property confirms that \mathcal{C} lies
174 strictly outside the object and is thus provably *collision-free*. Conversely, verifying $F(x) < 0$ over
175 \mathcal{C} ensures that the region lies entirely inside the object. If neither condition holds, i.e. $f(x)$ changes
176 sign within the region, then the region must intersect the surface, providing useful cues for contact
177 determination and surface reconstruction. In principle, such properties can be verified by solving
178 global optimization problems that compute $\min_{x \in \mathcal{C}} F(x)$ and $\max_{x \in \mathcal{C}} F(x)$. However, due to the
179 non-convex, nonlinear nature of neural networks, this problem is NP-complete (Katz et al., 2017).
180 Modern NN verification circumvents this by employing scalable techniques like bound propagation,
181 which provide sound interval bounds $f(x) \in [\underline{f}(x), \bar{f}(x)]$ over a region \mathcal{C} , enabling global geometric
182 reasoning, such as containment, exclusion, or intersection, with **formal guarantees**.

183 A particularly effective and representative method of linear bound propagation is CROWN (Zhang
184 et al., 2018), which efficiently computes tight output bounds by backward-propagating affine relax-
185 ations through each layer of the network, yielding:

$$186 \quad \forall x \in \mathcal{C}, \underline{\mathbf{A}}x + \underline{\mathbf{b}} \leq f(x) \leq \bar{\mathbf{A}}x + \bar{\mathbf{b}} \quad (2)$$

187 where $\underline{\mathbf{A}}, \underline{\mathbf{b}}, \bar{\mathbf{A}}, \bar{\mathbf{b}}$ define lower and upper bounding hyperplanes that can be computed in polynomial
188 time (see Appendix B.1 for details). Optimizing these affine forms over the domain $\mathcal{C} = [x_-, x_+]$
189 yields tight bounds:

$$190 \quad y_-^{\mathcal{C}} = \min\{\underline{\mathbf{A}}x + \underline{\mathbf{b}} \mid x \in \mathcal{C}\}, y_+^{\mathcal{C}} = \max\{\bar{\mathbf{A}}x + \bar{\mathbf{b}} \mid x \in \mathcal{C}\} \quad (3)$$

191 This provides a sound over-approximation of the true range of $f(x)$ across the entire region, enabling
192 principled, efficient, and certifiable reasoning about geometry from neural SDFs. In the remainder of
193 this work, we show how CROWN facilitates scalable and verifiable solutions to Neural SDF queries.

194 3.2 SHELL EXTRACTION VIA GUARANTEED BOUNDING MESHES
195

196 **Motivation.** The goal of *sound* shell extraction is to compute the tightest possible bounding
197 meshes, \mathcal{M}_- and \mathcal{M}_+ , such that the isosurface \mathcal{S} of a signed distance function (SDF) f lies strictly
198 between them, providing formal guarantees of containment and exclusion that are critical for safety,
199 robustness, and downstream geometric processing. While one might attempt to heuristically "patch"
200 such meshes (e.g., by increasing resolution, adjusting dilation/erosion, or shifting vertices along
201 SDF normals; see Sec. 2), these modifications still cannot provide formal soundness guarantees. In
202 contrast, our bounding meshes are sound by construction. Throughout the rest of this section, we
203 demonstrate that it is possible to extract *sound* inner and outer shells for general neural network ar-
204 chitectures. Moreover, we show that this can be achieved *efficiently* using linear bound propagation
205 techniques originally developed for verification tasks as described by (1).

206 **Voxel Classification and Trimming.** Generating a high-fidelity, explicit volume that tightly en-
207 closes or is enclosed within an implicit surface is challenging, but we can start with a basic building
208 block: computing for each *voxel* two polyhedral volumes $\mathcal{V}_-^{\mathcal{C}}$ and $\mathcal{V}_+^{\mathcal{C}}$ such that

$$209 \quad \mathcal{V}_-^{\mathcal{C}} \subseteq \{x \in \mathcal{C} \mid f(x) \leq 0\} \subseteq \mathcal{V}_+^{\mathcal{C}}, \quad (4)$$

210 i.e., $\mathcal{V}_-^{\mathcal{C}}$ is strictly inside the implicit surface within \mathcal{C} , while $\mathcal{V}_+^{\mathcal{C}}$ is guaranteed to contain it. We
211 obtain these volumes using a simple, two-step procedure that only relies on the linear bounds and
212 over-approximation given in (3).

213 **(1) Classification.** Use the concretized scalar bounds $y_-^{\mathcal{C}}$ and $y_+^{\mathcal{C}}$ to classify the voxel:

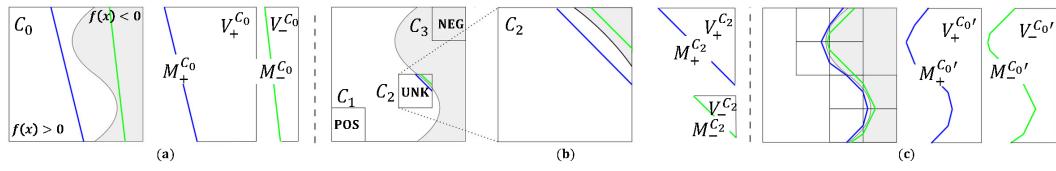


Figure 2: **BaB refinement via voxel trimming.** (a) the bounding meshes $\mathcal{M}_\pm^{C_0}$ (blue and green) of an SDF, the boundary of which cuts through an UNK voxel \mathcal{C} , experiences BaB refinement. (b) UNK subdomains like \mathcal{C}_2 are trimmed by bounding meshes. (c) The union of UNK voxels produce tighter bounding volumes $\mathcal{V}_\pm^{C_0'}$ and meshes $\mathcal{M}_\pm^{C_0'}$ than before BaB and voxel trimming.

- If $y_-^C > 0$, then $f(x) > 0$ for all $x \in \mathcal{C}$. Mark \mathcal{C} as POS and set $\mathcal{V}_-^C = \mathcal{V}_+^C = \emptyset$.
- If $y_+^C < 0$, then $f(x) < 0$ for all $x \in \mathcal{C}$. Mark \mathcal{C} as NEG and set $\mathcal{V}_-^C = \mathcal{V}_+^C = \mathcal{C}$.
- Otherwise mark \mathcal{C} as UNK (potentially intersecting).

(2) Voxel trimming for UNK voxels. For an UNK voxel we can fall back to the trivial choice $\mathcal{V}_+^C = \mathcal{C}$, $\mathcal{V}_-^C = \emptyset$, but this is often overly coarse. Instead, we propose to reuse the affine linear bounds to trim \mathcal{C} into tighter polyhedral enclosures:

$$\mathcal{V}_+^C := \{x \in \mathcal{C} \mid \underline{A}x + \underline{b} \leq 0\}, \quad \mathcal{V}_-^C := \{x \in \mathcal{C} \mid \bar{A}x + \bar{b} \leq 0\} \quad (5)$$

By construction these sets are conservative: \mathcal{V}_-^C is guaranteed to lie inside the true negative region and \mathcal{V}_+^C to contain the surface portion inside \mathcal{C} . The trimmed volume $\mathcal{V}_+^C \setminus \mathcal{V}_-^C$ is a convex polytope that conservatively contains any isosurface segment crossing \mathcal{C} .

Branch-and-Bound for Voxel Verification. Given a collection of bounding volumes, $\mathcal{B} = \{\mathcal{B}_0 \dots \mathcal{B}_n\}$, we define the inner and outer bounding volumes of the true implicit volume, \mathcal{V} , as:

$$\mathcal{V}_- = \bigcup_i \mathcal{V}_-^{\mathcal{B}_i}, \quad \mathcal{V}_+ = \bigcup_i \mathcal{V}_+^{\mathcal{B}_i} \quad (6)$$

To construct these approximations efficiently, we apply a branch-and-bound (BaB) process starting from an initial Axis-Aligned Bounding Box (AABB) (See Fig. 2. Only UNK voxels can intersect the implicit surface, therefore only this class of voxels are recursively subdivided along their largest dimension. To improve scalability, we introduce an early termination criterion: terminate further subdivision if (1) both bounding planes intersect the voxel, and (2) the distance between their intersections with the voxel is below a fixed threshold (Alg. 1). Once BaB terminates, we union all POS, NEG, and early-stopped UNK voxels to construct the final inner and outer bounding volume as described by (6). In practice, this corresponds to merging all polyhedral meshes derived from voxel trimming, yielding the *bounding surface meshes* $\mathcal{M}_- := \partial \mathcal{V}_-$ and $\mathcal{M}_+ := \partial \mathcal{V}_+$. This final union can be performed efficiently with existing mesh processing libraries such as Trimesh (et al., 2019).

Algorithm 1 Adaptive Split

Input: neural implicit surface f , AABB with range $[l, u]$, max split depth D .
Output: bounding volumes $\mathcal{V}_-, \mathcal{V}_+$
 $\mathcal{V}_- \leftarrow \emptyset, \mathcal{V}_+ \leftarrow \emptyset, \mathcal{B} \leftarrow \{[l, u]\}, d \leftarrow 0$
while $d < D$ **do**
 for \mathcal{B}_i in \mathcal{B} **do**
 $\mathcal{B} \leftarrow \mathcal{B} \setminus \{\mathcal{B}_i\}$
 $T, \bar{f}, \underline{f} \leftarrow \text{ComputeBounds}(x_-, x_+)$
 if $T = \text{POS}$ **then continue**
 else if $T = \text{NEG}$ **then** $\mathcal{V}_- \leftarrow \mathcal{V}_- \cup \mathcal{B}_i$
 else if $\text{EarlyStop}(\mathcal{B}_i, \bar{f}, \underline{f}) \vee d = D - 1$ **then**
 $\mathcal{V}_-^{\mathcal{B}_i}, \mathcal{V}_+^{\mathcal{B}_i} \leftarrow \text{Trim}(\mathcal{B}_i, \bar{f}, \underline{f})$
 $\mathcal{V}_- \leftarrow \mathcal{V}_- \cup \mathcal{V}_-^{\mathcal{B}_i}, \mathcal{V}_+ \leftarrow \mathcal{V}_+ \cup \mathcal{V}_+^{\mathcal{B}_i}$
 else
 $\mathcal{B} \leftarrow \mathcal{B} \cup \text{MaxDimSplit}(\mathcal{B}_i)$
 $d \leftarrow d + 1$
return $\mathcal{V}_-, \mathcal{V}_+$

Guaranteed Zero-Level Extraction via GIOM. We also introduce *Guaranteed Zero-Level* (GIOM-Z), a method that utilizes the linear bounds to approximate the isosurface, with tight precision guarantees. For each UNK voxel, we define an approximate linear surface by averaging the

270 upper and lower bounds: $A_0 = (\mathbf{A} + \bar{\mathbf{A}})/2$, $b_0 = (b + \bar{b})/2$, yielding an approximation of the true
 271 implicit surface within the voxel \mathcal{C} as $\mathcal{V}_0^{\mathcal{C}} := \{x \in \mathcal{C} \mid A_0 x + b_0 \leq 0\}$. For POS and NEG voxels,
 272 we set $\mathcal{V}_0^{\mathcal{C}} = \emptyset$ and \mathcal{C} , respectively. We extract a surface mesh by taking the boundary of the implicit
 273 volume, i.e. $\mathcal{M}_0 := \partial \mathcal{V}_0$, where $\mathcal{V}_0 := \cup_i \mathcal{V}_0^{\mathcal{B}_i}$. Unlike marching cubes, whose precision guarantee
 274 are the size of the smallest voxel, our GIOM-Z has a theoretical guarantee *equal to the smallest*
 275 *distance between bounding geometries*.

277 3.3 GIOM FOR GEOMETRY QUERIES

279 With GIOM, we can accelerate various geometry queries on neural SDFs or implicit surfaces, and
 280 the key insight is to use the guaranteed bounding volumes \mathcal{V}_- and \mathcal{V}_+ for a complex neural surface.

283 **GIOM-Accelerated Rendering.** The ray casting problem on an SDF f can be defined as finding
 284 the smallest t given ray root $p \in \mathbb{R}^3$ and ray direction $r \in \mathbb{R}^3$ such that $f(p + tr) = 0$. Given
 285 a pair of inner and outer shells, we present a fast Algorithm 2 to identify the intersection point
 286 $p' = p + t'r$ between a ray and an implicit surface encoded by an SDF with precision guarantee
 287 δ (e.g. $f(p + (t' + \delta)r) < 0 < f(p + t'r)$). We first extract **inner and outer bounding meshes**
 288 \mathcal{M}_- and \mathcal{M}_+ from bounding volumes \mathcal{V}_- and \mathcal{V}_+ . For each ray (p, r) that has at least two
 289 intersections p_i and p_o with $\mathcal{M}_- \cup \mathcal{M}_+$, we identify it as a candidate ray that might hit the true
 290 surface. By sampling with an interval of δ inside the range (p_i, p_o) and querying f with the
 291 samples, we are *guaranteed* to find the intersection between the ray and the true surface with
 292 precision of δ . If the intersection does not occur in the current range, we keep the status of the ray
 293 undetermined and proceed to the next iteration. Since our bounding shells are tight, we can afford
 294 to query all the samples along every ray in each iteration in parallel, even on a commodity GPU.

295
 296 **Algorithm 2** Efficient Ray Casting with GIOM
 297 Input: neural implicit surface f , inner shell
 298 mesh \mathcal{M}_- , outer shell mesh \mathcal{M}_+ , ray root p ,
 299 ray direction r , and precision δ .
 300 **while** True **do**
 301 $p_i \leftarrow (\mathcal{M}_- \cup \mathcal{M}_+).intersect(p, r)$
 302 $p_o \leftarrow (\mathcal{M}_- \cup \mathcal{M}_+).intersect(p_i, r)$
 303 **if** p_o is None **then**
 304 // The ray exits the bounding shells.
 305 **return** p_i
 306 $P \leftarrow \{p_i, p_i + \delta r \dots p_o\}$
 307 $D \leftarrow f(P)$
 308 **for** j in $0 \dots |D| - 2$ **do**
 309 **if** $d_{j+1} < 0 < d_j$ **then**
 310 // The ray intersects the isosurface.
 311 **return** p_j
 312 // The ray was grazing.
 313 // Update ray root.
 314 $p \leftarrow p_o$

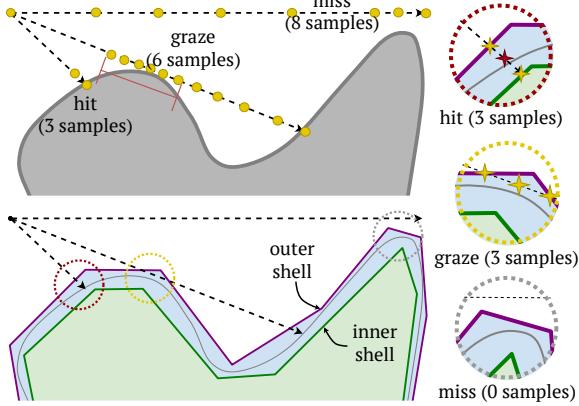


Figure 3: **GIOM bounds accelerate implicit ray casting.** Top: naive neural sphere tracing. Bottom: GIOM shells tightly bound the surface’s zero crossing. Right: skipping ray interval with GIOM shells cuts # of network queries significantly ($3 \rightarrow 3, 6 \rightarrow 3, 8 \rightarrow 0$).

315 Fig. 3 depicts how GIOM bounding shell can accelerate the required (#) of samples when rendering
 316 a neural implicit surface. The decrease in sample counts is positively correlated with the tightness
 317 of the shell, as visualized in Fig. 4. By casting rays directly on GIOM-Z, we can further boost
 318 efficiency at a subtle cost of quality.

320 **GIOM-Accelerated Collision Detection.** While neural SDFs can be baked into a voxel database
 321 for real-time physics simulation, collision detection efficiency remains a bottleneck, especially in
 322 large-scale particle collision and mesh-SDF collision. To address this issue, we utilize our outer
 323 bounding mesh as a spatial hierarchy, ensuring that an object not colliding with the mesh will never
 324 collide with the object defined by the neural SDF. Since checking collisions with a mesh can be done

324 very efficiently, and our bound mesh is also much tighter compared to loose approximations such as
 325 AABB boxes, GIOM can significantly improve collision detection efficiency.
 326

327 Table 1: CSG bounding volume computation and conventional formulation.

328 CSG Type	$f_1 \cup f_2$	$f_1 \cap f_2$	$f_1 - f_2$
330 Bounding Volumes	$\mathcal{V}_- = \mathcal{V}_-^{(1)} \cup \mathcal{V}_-^{(2)}$	$\mathcal{V}_- = \mathcal{V}_-^{(1)} \cap \mathcal{V}_-^{(2)}$	$\mathcal{V}_- = \mathcal{V}_-^{(1)} \setminus \mathcal{V}_-^{(2)}$
	$\mathcal{V}_+ = \mathcal{V}_+^{(1)} \cup \mathcal{V}_+^{(1)}$	$\mathcal{V}_+ = \mathcal{V}_+^{(1)} \cap \mathcal{V}_+^{(2)}$	$\mathcal{V}_+ = \mathcal{V}_+^{(1)} \setminus \mathcal{V}_+^{(2)}$
332 Conventional Formulae	$f = \min(f_1, f_2)$	$f = \max(f_1, f_2)$	$f = \max(f_1, -f_2)$

334 **GIOM-Accelerated CSG Operation.** CSG (constructive solid geometry) requires accurate com-
 335putation of the union, intersection, or difference of two SDFs f_1 and f_2 , in the form of one new
 336 implicit surface f . The conventional definition of the new implicit surface f from f_1 and f_2 (last
 337 row of Tab. 1) yields correct isosurfaces but distorts the distance field, making the SDF unsuit-
 338 able for rendering or physics simulation. To address this, CSG-nSDF (Marschner et al., 2023a)
 339 trains a neural network with geometric constraints to encode an exact neural SDF of CSG, but this
 340 optimization-based approach cannot perfectly align with the ground truth (Fig. 8).

341 We propose an optimization-free algorithm (Alg. 3) to approximate the exact signed distance field
 342 resulting from a CSG operation between two SDFs. Given two SDFs f_1 and f_2 , and their bound-
 343 ing volumes, $\mathcal{V}_\pm^{(1)}$ and $\mathcal{V}_\pm^{(2)}$, we can easily compute the new bounding volumes \mathcal{V}_\pm (Tab. 1).
 344 After we extract the bounding meshes \mathcal{M}_- and \mathcal{M}_+ , we are ready to query for signed distance
 345 values. For points that lie between the bound-
 346 ing meshes \mathcal{M}_- and \mathcal{M}_+ , we use the conven-
 347 tional formulae as near-surface approximation.
 348 For points outside this region, we start by find-
 349 ing the closest point on the bounding meshes.
 350 We then compute the total distance as the sum
 351 of two components: the distance from the query
 352 point to this closest mesh point, and the dis-
 353 tance from the mesh point to the isosurface. Fi-
 354 nally, we assign a sign to the computed distance
 355 based on whether the query point is inside or
 356 outside the surface.

357
 358

4 EXPERIMENTS

 359

360 We validate our proposed GIOM method across three distinct neural implicit geometry-based visual
 361 computing tasks: neural rendering, physical simulation, and constructive solid geometry (CSG); we
 362 compare its performance and efficiency against existing methods in each task. Additional visualiza-
 363 tions and video results are provided in the supplementary material.
 364

365 **Real-Time Rendering** Given a neural SDF and camera settings (position, direction, and front-of-
 366 view (FOV) angle), our goal is to render high-resolution, high-fidelity images corresponding to the
 367 input geometry. We report SSIM, PSNR, and RMSE as image quality metrics, along with FPS to
 368 evaluate rendering efficiency. We compare against four baselines: sphere tracing (ST) (Hart, 1996),
 369 affine-arithmetic-based interval tracing (IT) (Sharp and Jacobson, 2022), adaptive shells for SDFs,
 370 and 0-level set approximation via marching cubes. Adaptive shells are originally used for acceler-
 371 ating queries on NeRF, but we use them here to denote inner and outer mesh extraction via dilation
 372 and erosion with marching cubes (the adaptation to our setting is described in Appendix C.2). We
 373 manually tune the dilation and erosion extents until the bounding meshes no longer intersect the
 374 surface mesh visually and combine them with Alg. 2 as the third baseline.

375 Fig. 10 shows that (1) GIOM outperforms every baseline in time while being comparable in quality,
 376 and that (2) GIOM-Z excels 0 level MC in quality with the same or better efficiency. Tab 2 consoli-
 377 dates the observation with overall trends. Although adaptive shells can achieve slightly better PSNR
 378 than GIOM, the latter beats it in efficiency by 3 \times . GIOM-Z beats 0-level MC in all magnitudes due

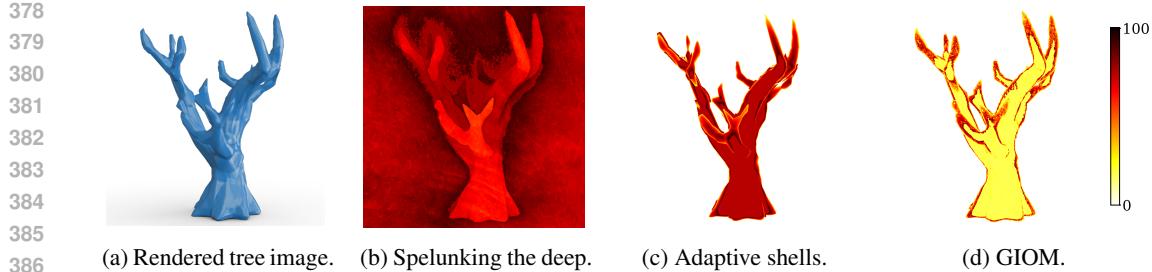


Figure 4: **Comparison of sample counts per pixel between high-quality exact rendering with adaptive shells and GIOM.** Compared to adaptive shells, which obtain bounds via a dilation-and-erosion procedure, GIOM is constructed using a neural-network bounding algorithm, resulting in tighter bounds and thus reducing the number (#) of samples per ray.

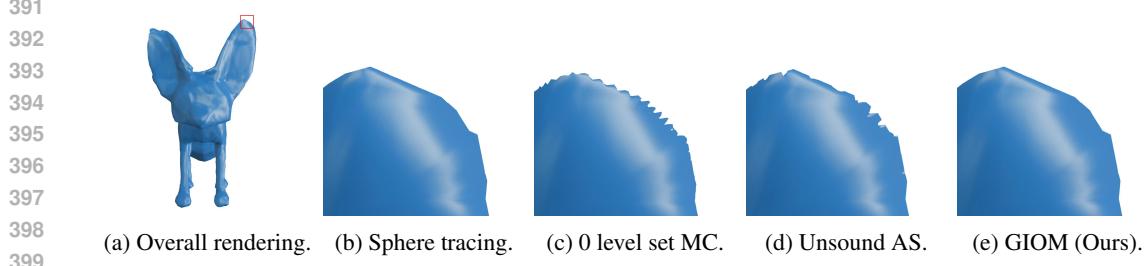


Figure 5: Qualitative comparison of rendering details. Compared to zero-set Marching Cube (c) and potentially unsound bounding meshes produced by Adaptive Shell (d), GIOS-based ray casting (Alg. 2) preserves thin-surface details and achieves performance comparable to the exact sphere tracing (b) using sphere tracing of Neural SDFs, while being 70 times faster.

to the adaptive refinement enabled by tight bounding planes. Fig. 5 demonstrates the advantage of tight bounding meshes and guaranteed ray casting algorithm in rendering fine details. The tip of the ear of the fox is almost volumeless, and marching cubes leads to missing volumes. Among all the guaranteed ray casting algorithms, GIOM remains the fastest.

Tab. 3 suggests that the overall runtime of collision detection decreases and stabilizes with our GIOM. We achieve a significant efficiency boost on the tree object. Because the tree has the most complex structure of all four objects, the tightness of GIOM becomes apparently advantageous once the particles come into contact with the query body (Fig. 6c). Fig. 6a further validates the effectiveness of GIOM on the tree object. In addition to the particle simulation, we run a cloth simulation with GIOM in Fig. 7c. GIOM is efficient and tunneling-free; in contrast, directly simulating with the voxel SDF causes unwanted intersections (Fig. 7a, Fig. 7b). We also show that CCD time can be reduced by replacing expensive neural SDF queries with cheap tests against GIOM (Tab. 4).

Constructive Solid Geometry Given two SDFs, our goal is to reconstruct the signed distance field of their CSG. The signed distance field should not only model the new border correctly but also be exact everywhere in the space. We measure reconstruction time and error, as well as the time to query the reconstructed SDF. We compare our method with CSG-nSDF (Marschner et al., 2023a). We use the open-source model on the union of a square and a circle provided in the official repository (Marschner et al., 2023b).

432 Table 2: Quantitative comparisons of implicit rendering quality and speed.
433

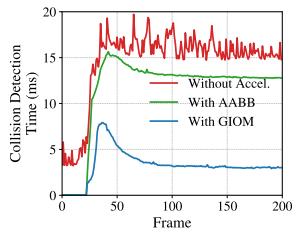
Method	Type	RMSE \downarrow	PSNR \uparrow	SSIM \uparrow	FPS \uparrow
ST (Groundtruth)	Ray Marching	0.00	∞	1.000	0.21 ± 0.12
IT (Spelunking)	Ray Marching	0.01	46.51 ± 5.68	0.999 ± 0.001	0.24 ± 0.16
AdaptiveShells	Shell Accel.	0.01	46.00 ± 5.20	0.998 ± 0.001	6.0 ± 5.6
GIOM (Ours)	Shell Accel.	0.01	45.87 ± 5.15	0.998 ± 0.001	18 ± 10
0 Level MC	Mesh Approx.	0.03	32.14 ± 3.42	0.985 ± 0.012	181 ± 113
GIOM-Z (Ours)	Mesh Approx.	0.01	37.80 ± 3.34	0.995 ± 0.004	202 ± 69

442 Table 3: Particle collision detection time (ms) for different methods and objects.
443

Method	fox	cat	tree	koala	Mean
SDF only	6.00 ± 1.36	5.94 ± 1.43	15.10 ± 5.87	5.94 ± 1.68	8.24 ± 8.54
AABB	3.52 ± 1.96	2.69 ± 1.53	12.09 ± 6.29	3.42 ± 2.03	5.43 ± 8.49
Ours	2.00 ± 1.02	2.13 ± 1.15	3.09 ± 2.41	1.95 ± 1.16	2.29 ± 1.80

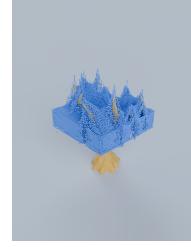
448 Table 4: Quantitative comparisons of CCD efficiency and bandwidth.
449

Method	Stepping time (ms) per frame \downarrow				# Tri tests \downarrow	
	min	median	max	total	Mesh	nSDF
CCD	52.89	2940.50	8504.33	5.34×10^5	0	9265
Ours	13.69	464.44	4366.14	1.90×10^5	9710	1695



(a) Collision detection time

(b) Frame 0



(c) Frame 39



(d) Frame 75

455 Figure 6: Accelerated physical simulation on a complex neural implicit surface (tree) with
456 **GIOM**. Top: Runtime per frame during the episode. GIOM is significantly faster than the
457 conventional AABB spatial-hierarchy bound, which provides negligible speedup compared to directly
458 querying voxel SDFs. This difference becomes particularly pronounced when more particles collide
459 with the body (see Fig. 6c, 6d). Bottom: Qualitative results. Thanks to the guaranteed bound, the
460 simulation exhibits realistic behavior with no noticeable differences compared to exact SDF queries.
461471 Figure 7: Qualitative results of cloth simulation. Compared to voxel-SDF-based approaches, the
472 combination of GIOM and Euler integrator yields a more visually satisfying result.
473474 Fig. 8d shows that we outperform CSG-nSDF in reconstruction efficiency and accuracy. The one
475 minute reconstruction time includes the overhead of bounding polygon computation. Fig. 8 offers
476 some clues for the drastic different in reconstruction accuracy. CSG-nSDF has visible errors, while
477 our method has not visual difference from the ground truth.
478

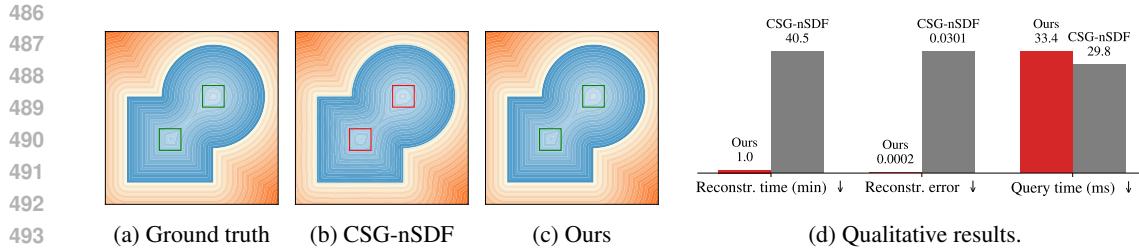


Figure 8: **Qualitative and quantitative results for constructive solid geometry.** Left (a–c): Compared to baseline (b), GIOM produces a more accurate signed distance field in the central regions. Right: Since no neural SDF retraining is needed, our reconstruction time is significantly lower while being more accurate. The query time is only marginally higher than baseline.

5 CONCLUSION & LIMITATIONS

In this paper, we proposed Guaranteed Inner-and-Outer Meshes (GIOM), a framework for generating tight, sound, and explicit bounding volumes of neural implicit surfaces. We leverage GIOM to accelerate a variety of geometric queries, including ray casting, collision detection, and CSG operations. GIOM offers a favorable balance between efficiency and quality across these tasks.

Limitations. GIOM is currently limited to static neural implicits. Extending it to support time-varying fields would be a promising direction for future work, potentially enabling applications such as dynamic collision detection, animation rendering, and swept volume estimation.

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
543 Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural
544 Radiance Fields. *ICCV* (2021).

545 Shaoru Chen, Lekan Molu, and Mahyar Fazlyab. 2024. Verification-aided learning of neural net-
546 work barrier functions with termination guarantees. In *2024 American Control Conference (ACC)*.
547 IEEE, 3610–3617.

548 Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2020. BSP-Net: Generating Compact Meshes
549 via Binary Space Partitioning. *Proceedings of IEEE Conference on Computer Vision and Pattern
550 Recognition (CVPR)* (2020).

551 Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative Shape Modeling. In
552 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
553 5939–5948. <https://doi.org/10.1109/CVPR.2019.00609>

554 Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. 2017. Maximum Resilience of Artificial
555 Neural Networks. *CoRR* abs/1705.01040 (2017). arXiv:1705.01040 <http://arxiv.org/abs/1705.01040>

556 Blender Online Community. 2023. Blender - a 3D modelling and rendering package. <https://www.blender.org/>. Version 3.x.

557 Vinícius da Silva, Tiago Novello, Guilherme Schardong, Luiz Schirmer, Hélio Lopes, and Luiz
558 Velho. 2022. Neural Implicit Mapping via Nested Neighborhoods. arXiv:2201.09147 [cs.GR]
559 <https://arxiv.org/abs/2201.09147>

560 Luiz Henrique De Figueiredo and Jorge Stolfi. 2004. Affine arithmetic: concepts and applications.
561 *Numerical algorithms* 37 (2004), 147–158.

562 Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea
563 Tagliasacchi. 2020. CvxNet: Learnable Convex Decomposition. arXiv:1909.05736 [cs.CV]
564 <https://arxiv.org/abs/1909.05736>

565 Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018. Output range
566 analysis for deep feedforward neural networks. In *NASA Formal Methods Symposium*.

567 Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli.
568 2018. A dual approach to scalable verification of deep networks. *Conference on Uncertainty in
569 Artificial Intelligence (UAI)* (2018).

570 Stefano Esposito, Anpei Chen, Christian Reiser, Samuel Rota Bulò, Lorenzo Porzi, Katja Schwarz,
571 Christian Richardt, Michael Zollhöfer, Peter Kortscheder, and Andreas Geiger. 2025. Volumetric
572 Surfaces: Representing Fuzzy Geometries with Layered Meshes. arXiv:2409.02482 [cs.CV]
573 <https://arxiv.org/abs/2409.02482>

574 Dawson-Haggerty et al. 2019. trimesh. <https://trimesh.org/>. Version 3.2.0.

575 Matteo Fischetti and Jason Jo. 2017. Deep Neural Networks as 0-1 Mixed Integer Linear Programs:
576 A Feasibility Study. *CoRR* abs/1712.06174 (2017). arXiv:1712.06174 <http://arxiv.org/abs/1712.06174>

577 Fridovich-Keil and Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa.
578 2022. Plenoxels: Radiance Fields without Neural Networks. In *CVPR*.

579 Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin
580 Vechev. 2018. Ai2: Safety and robustness certification of neural networks with abstract interpretation.
581 In *2018 IEEE Symposium on Security and Privacy (SP)*. IEEE.

582 Sven Gowal, Krishnamurthy Dj Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
583 Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. 2019. Scalable verified training
584 for provably robust image classification. In *Proceedings of the IEEE/CVF International Conference
585 on Computer Vision*. 4842–4851.

594 Antoine Guédon and Vincent Lepetit. 2024. Gaussian Frosting: Editable Complex Radiance Fields
595 with Real-Time Rendering. arXiv:2403.14554 [cs.CV] <https://arxiv.org/abs/2403.14554>

596

597 John C. Hart. 1996. Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of
598 Implicit Surfaces. In *The Visual Computer*, Vol. 12. Springer, 527–545. <https://doi.org/10.1007/s003710050111>

600

601 Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Reluplex: An
602 efficient SMT solver for verifying deep neural networks. In *Computer Aided Verification: 29th
603 International Conference, CAV 2017, Heidelberg, Germany, July 24–28, 2017, Proceedings, Part
604 I 30*. Springer, 97–117.

605

606 Dan Koschier, Crispin Deul, Magnus Brand, and Jan Bender. 2017. An hp-Adaptive Discretization
607 Algorithm for Signed Distance Field Generation. *IEEE Transactions on Visualization and Com-
608 puter Graphics* 23, 10 (2017), 2208–2221. <https://doi.org/10.1109/TVCG.2017.2730202>

609

610 Jiabao Lei and Kui Jia. 2020. Analytic Marching: An Analytic Meshing Solution from Deep Implicit
611 Surface Networks. *CoRR* abs/2002.06597 (2020). arXiv:2002.06597 <https://arxiv.org/abs/2002.06597>

612

613 Haoyu Li, Xiangru Zhong, Bin Hu, and Huan Zhang. 2025b. Two-Stage Learning of Stabiliz-
614 ing Neural Controllers via Zubov Sampling and Iterative Domain Expansion. *arXiv preprint
615 arXiv:2506.01356* (2025).

616

617 Tianyang Li, Xin Wen, Yu-Shen Liu, Hua Su, and Zhizhong Han. 2022. Learning Deep Implicit
618 Functions for 3D Shapes with Dynamic Code Clouds. In *Proceedings of the IEEE/CVF Confer-
619 ence on Computer Vision and Pattern Recognition (CVPR)*. 1832–1841. <https://doi.org/10.1109/CVPR52688.2022.00188>

620

621 Yangge Li, Chenxi Ji, Xiangru Zhong, Huan Zhang, and Sayan Mitra. 2025a. Abstract Rendering:
622 Computing All that is Seen in Gaussian Splat Scenes. *arXiv preprint arXiv:2503.00308* (2025).

623

624 Yiyi Liao, Simon Donné, and Andreas Geiger. 2018. Deep Marching Cubes: Learning Explicit
625 Surface Representations. In *2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
626 nition*. 2916–2925. <https://doi.org/10.1109/CVPR.2018.00308>

627

628 Pengfei Liu, Yuqing Zhang, He Wang, Milo K Yip, Elvis S Liu, and Xiaogang Jin. 2024b. Real-
629 time collision detection between general SDFs. *Computer Aided Geometric Design* 111 (2024),
630 102305.

631

632 Pengfei Liu, Yuqing Zhang, He Wang, Milo K Yip, Elvis S Liu, and Xiaogang Jin. 2024c. Real-
633 time collision detection between general SDFs. *Computer Aided Geometric Design* 111 (2024),
634 102305.

635

636 Stephanie Wenxin Liu, Michael Fischer, Paul D. Yoo, and Tobias Ritschel. 2024a. Neural Bounding.
637 arXiv:2310.06822 [cs.GR] <https://arxiv.org/abs/2310.06822>

638

639 Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability analysis for feed-forward
640 ReLU neural networks. *CoRR* abs/1706.07351 (2017). arXiv:1706.07351 <http://arxiv.org/abs/1706.07351>

641

642 William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution 3D surface
643 construction algorithm. *ACM SIGGRAPH Computer Graphics* 21, 4 (1987), 163–169.

644

645 Miles Macklin. 2022. Warp: A High-performance Python Framework for GPU Simulation and
646 Graphics. <https://github.com/nvidia/warp>. NVIDIA GPU Technology Conference
647 (GTC).

648

649 Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2020. A Unified Particle
650 Framework for Solid and Liquid Simulation. In *ACM SIGGRAPH 2020 Talks*. ACM. <https://mmacklin.com/sdfcontact.pdf>

648 Zoë Marschner, Silvia Sellán, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023a. Constructive
 649 Solid Geometry on Neural Signed Distance Fields. In *SIGGRAPH Asia 2023 Conference Papers*
 650 (Sydney, NSW, Australia). Association for Computing Machinery, New York, NY, USA, 1–12.
 651 <https://doi.org/10.1145/3610548.3618170>

652 Zoë Marschner, Silvia Sellán, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023b. Constructive Solid
 653 Geometry on Neural Signed Distance Fields (Code Repository). https://github.com/zoemarschner/csg_on_nsdf. Accessed: 2025-09-24.

654 Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gor-
 655 don Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural Scene Representation.
 656 arXiv:2105.02788 [cs.CV] <https://arxiv.org/abs/2105.02788>

657 Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovit-
 658 skiy, and Daniel Duckworth. 2021. NeRF in the Wild: Neural Radiance Fields for Unconstrained
 659 Photo Collections. In *CVPR*.

660 Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
 661 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space . In *2019 IEEE/CVF*
 662 *Conference on Computer Vision and Pattern Recognition (CVPR)*. IEEE Computer Society, Los
 663 Alamitos, CA, USA, 4455–4465. <https://doi.org/10.1109/CVPR.2019.00459>

664 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 665 Ren Ng. 2020. NeRF: Representing scenes as neural radiance fields for view synthesis. In *The*
 666 *European Conference on Computer Vision (ECCV)*.

667 RE Moore, RB Kearfott, and MJ Cloud. 2009. Introduction to Interval Analysis. Society for Indus-
 668 trial and Applied Mathematics (2009). *Google Scholar Google Scholar Digital Library Digital*
 669 *Library* (2009).

670 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neural Graphics
 671 Primitives with a Multiresolution Hash Encoding. *ACM Trans. Graph.* 41, 4, Article 102 (July
 672 2022), 15 pages. <https://doi.org/10.1145/3528223.3530127>

673 Tiago Novello, Vinicius Da Silva, Guilherme Schardong, Luiz Schirmer, Helio Lopes, and Luiz
 674 Velho. 2023. Neural Implicit Surface Evolution. In *2023 IEEE/CVF International Confer-
 675 ence on Computer Vision (ICCV)*. IEEE, 14233–14243. <https://doi.org/10.1109/iccv51070.2023.01313>

676 NVIDIA Corporation. 2024. NVIDIA OptiX Ray Tracing Engine. <https://developer.nvidia.com/optix>. Version 8.0.0.

677 Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019.
 678 DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In *2019*
 679 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 165–174. <https://doi.org/10.1109/CVPR.2019.00025>

680 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 681 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 682 Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Srinath Chilamkurthy,
 683 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative
 684 Style, High-Performance Deep Learning Library. In *Advances in Neural Information Processing*
 685 *Systems*, Vol. 32. https://papers.nips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

686 Joël Pelletier-Guénnette, Alexandre Mercier-Aubin, and Sheldon Andrews. 2025. Real-Time
 687 Triangle-SDF Continuous Collision Detection. *Proc. ACM Comput. Graph. Interact. Tech.* 8,
 688 4, Article 49 (Aug. 2025), 22 pages. <https://doi.org/10.1145/3747862>

689 Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified defenses against adversarial
 690 examples. *arXiv preprint arXiv:1801.09344* (2018).

702 Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P. Srinivasan, Ben Mildenhall, Andreas
 703 Geiger, Jonathan T. Barron, and Peter Hedman. 2023. MERF: Memory-Efficient Radiance Fields
 704 for Real-time View Synthesis in Unbounded Scenes. *SIGGRAPH* (2023).

705 Edoardo Remelli, Artem Lukoianov, Stephan R. Richter, Benoît Guillard, Timur M. Bagautdinov,
 706 Pierre Baqué, and Pascal Fua. 2020. MeshSDF: Differentiable Iso-Surface Extraction. *CoRR*
 707 abs/2006.03997 (2020). arXiv:2006.03997 <https://arxiv.org/abs/2006.03997>

708 Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker. 2015. Towards Verification
 709 of Artificial Neural Networks.. In *MBMV*. 30–40.

710 Mohamed Serry, Haoyu Li, Ruikun Zhou, Huan Zhang, and Jun Liu. 2025. Safe Domains of At-
 711 traction for Discrete-Time Nonlinear Systems: Characterization and Verifiable Neural Network
 712 Estimation. *arXiv preprint arXiv:2506.13961* (2025).

713 Nicholas Sharp and Alec Jacobson. 2022. Spelunking the deep: Guaranteed queries on general
 714 neural implicit surfaces via range analysis. *ACM Transactions on Graphics (TOG)* 41, 4 (2022),
 715 1–16.

716 Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. 2018. Fast
 717 and Effective Robustness Certification. In *Advances in Neural Information Processing Systems*
 718 (*NeurIPS*).

719 Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An abstract domain
 720 for certifying neural networks. *Proceedings of the ACM on Programming Languages (POPL)*
 721 (2019).

722 Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. 2020.
 723 Implicit neural representations with periodic activation functions. *Advances in neural information*
 724 *processing systems* 33 (2020), 7462–7473.

725 Oded Stein. 2024. odedstein-meshes: A Computer Graphics Example Mesh Repository. (2024).

726 Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
 727 Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural Geometric
 728 Level of Detail: Real-time Rendering with Implicit 3D Shapes. *arXiv preprint arXiv:2101.10994*
 729 (2021).

730 Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, and Lei Zhang. 2021. SA-ConvONet: Sign-
 731 Agnostic Optimization of Convolutional Occupancy Networks. In *Proceedings of the IEEE/CVF*
 732 *International Conference on Computer Vision*.

733 Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating Robustness of Neural Net-
 734 works with Mixed Integer Programming. In *7th International Conference on Learning Repre-
 735 sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net. <https://openreview.net/forum?id=HyGIdiRqtm>

736 Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Carsten Stoll, and Christian
 737 Theobalt. 2021. PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations.
 738 arXiv:2008.01639 [cs.CV] <https://arxiv.org/abs/2008.01639>

739 Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. 2021a.
 740 Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. *arXiv*
 741 *preprint arXiv:2106.10689* (2021).

742 Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Efficient Formal
 743 Safety Analysis of Neural Networks. *CoRR* abs/1809.08098 (2018). arXiv:1809.08098 [http://arxiv.org/abs/1809.08098](https://arxiv.org/abs/1809.08098)

744 Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
 745 2021b. Beta-crown: Efficient bound propagation with per-neuron split constraints for neural
 746 network robustness verification. *Advances in Neural Information Processing Systems* 34 (2021),
 747 29909–29921.

756 Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and Lingjie Liu.
 757 2023a. NeuS2: Fast Learning of Neural Implicit Surfaces for Multi-view Reconstruction. In
 758 *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*.
 759

760 Zian Wang, Tianchang Shen, Merlin Nimier-David, Nicholas Sharp, Jun Gao, Alexander Keller,
 761 Sanja Fidler, Thomas Müller, and Zan Gojcic. 2023b. Adaptive Shells for Efficient Neural Ra-
 762 diance Field Rendering. *ACM Trans. Graph.* 42, 6, Article 259 (2023), 15 pages. <https://doi.org/10.1145/3618390>
 763

764 Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Bon-
 765 ing, and Inderjit Dhillon. 2018. Towards Fast Computation of Certified Robustness for ReLU
 766 Networks. In *International Conference on Machine Learning*. 5273–5282.
 767

768 Eric Wong and J Zico Kolter. 2018a. Provable defenses against adversarial examples via the convex
 769 outer adversarial polytope. In *ICML*.
 770

771 Eric Wong and Zico Kolter. 2018b. Provable defenses against adversarial examples via the convex
 772 outer adversarial polytope. In *International conference on machine learning*. PMLR, 5286–5295.
 773

774 Kai Yuanqing Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiqullah, and Aleksander Madry.
 775 2018. Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability. *CoRR*
 776 [abs/1809.03008](https://arxiv.org/abs/1809.03008) (2018). arXiv:1809.03008 [http://arxiv.org/abs/1809.03008](https://arxiv.org/abs/1809.03008)
 777

778 Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
 779 Kailkhura, Xue Lin, and Cho-Jui Hsieh. 2020a. Automatic perturbation analysis for scalable
 780 certified robustness and beyond. *Advances in Neural Information Processing Systems* 33 (2020),
 781 1129–1141.
 782

783 Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. 2020b.
 784 Fast and complete: Enabling complete neural network verification with rapid and massively par-
 785 allel incomplete verifiers. *arXiv preprint arXiv:2011.13824* (2020).
 786

787 Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. 2021. Geometry Pro-
 788 cessing with Neural Fields. In *Advances in Neural Information Processing Systems*, M. Ranzato,
 789 A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran As-
 790 sociates, Inc., 22483–22497. https://proceedings.neurips.cc/paper_files/paper/2021/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
 791

792 Lujie Yang, Hongkai Dai, Zhouxing Shi, Cho-Jui Hsieh, Russ Tedrake, and Huan Zhang. 2024.
 793 Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation. In *ICML*.
 794

795 Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J. Zico
 796 Kolter. 2022. General Cutting Planes for Bound-Propagation-Based Neural Network Verification.
 797 arXiv:2208.05740 [cs.LG] <https://arxiv.org/abs/2208.05740>
 798

799 Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018. Efficient neural
 800 network robustness certification with general activation functions. *Advances in neural information
 801 processing systems* 31 (2018).
 802

803 Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. NeRF++: Analyzing and
 804 Improving Neural Radiance Fields. arXiv:2010.07492 [cs.CV] <https://arxiv.org/abs/2010.07492>
 805

806 Wenyuan Zhang, Yu-Shen Liu, and Zhizhong Han. 2024. Neural Signed Distance Function Inference
 807 through Splatting 3D Gaussians Pulled on Zero-Level Set. arXiv:2410.14189 [cs.CV] <https://arxiv.org/abs/2410.14189>
 808

809

810 **A LLM USAGE**
811812 The roles of LLM in this work are: simple baseline code generation, result post-processing, and lan-
813 guage revision. LLM is not involved in the development of core methodology, design of evaluation,
814 analysis of results, or any other significant component.
815816 **B FORMULATIONS**
817818 **B.1 NN VERIFICATION BACKGROUND**
819820 In this section, we provide a more detailed prescription describing how a linear bound propagation
821 method such as CROWN is able to provide sound, linear bounds for a ReLU feed-forward neural
822 network. These ideas may be generalized to more complex neural network architectures with more
823 diverse activation functions, and we provide the appropriate references to works that are well-suited
824 to describing these extensions.
825826 **The MIP Formulation** The mixed integer programming (MIP) formulation is the root of many
827 NN verification algorithms. Given the ReLU activation function’s piecewise linearity, the model
828 requires binary encoding variables, or ReLU indicators, \mathbf{s} , only for unstable neurons. We formulate
829 the optimization problem aiming to minimize the function $f(\mathbf{x})$, subject to a set of constraints that
830 encapsulate the DNN’s architecture and the perturbation limits around a given input \mathbf{x} , as follows:
831

832
$$f^* = \min_{\mathbf{z}, \hat{\mathbf{z}}, \mathbf{s}} f(\mathbf{x}) \quad \text{s.t. } f(\mathbf{x}) = \mathbf{z}^{(L)}; \hat{\mathbf{z}}^{(0)} = \mathbf{x} \in \mathcal{C} \quad (7a)$$

833
$$\hat{\mathbf{z}}^{(i)} = \mathbf{W}^{(i)} \hat{\mathbf{z}}^{(i-1)} + \mathbf{b}^{(i)}; \quad i \in [L] \quad (7b)$$

834
$$\mathcal{I}^{+(i)} := \{j : \mathbf{l} \geq 0\} \quad (7c)$$

836
$$\mathcal{I}^{-(i)} := \{j : \mathbf{u} \leq 0\} \quad (7d)$$

837
$$\mathcal{I}^{(i)} := \{j : \mathbf{l} < 0, \mathbf{u} > 0\} \quad (7e)$$

839
$$\mathcal{I}^{+(i)} \cup \mathcal{I}^{-(i)} \cup \mathcal{I}^{(i)} = \mathcal{J}^i \quad (7f)$$

840
$$\hat{\mathbf{z}} \geq 0; j \in \mathcal{I}^{(i)}, i \in [L-1] \quad (7g)$$

841
$$\hat{\mathbf{z}} \geq \mathbf{z}; j \in \mathcal{I}^{(i)}, i \in [L-1] \quad (7h)$$

843
$$\hat{\mathbf{z}} \leq \mathbf{u}\mathbf{s}; j \in \mathcal{I}^{(i)}, i \in [L-1] \quad (7i)$$

844
$$\hat{\mathbf{z}} \leq \mathbf{z} - \mathbf{l}(1-\mathbf{s}); j \in \mathcal{I}^{(i)}, i \in [L-1] \quad (7j)$$

846
$$\mathbf{s} \in \{0, 1\}; j \in \mathcal{I}^{(i)}, i \in [L-1] \quad (7k)$$

847
$$\hat{\mathbf{z}} = \mathbf{z}; j \in \mathcal{I}^{+(i)}, i \in [L-1] \quad (7l)$$

848
$$\hat{\mathbf{z}} = 0; j \in \mathcal{I}^{-(i)}, i \in [L-1] \quad (7m)$$

850 To initialize intermediate bounds for each neuron, we replace the original objective $f(\mathbf{x})$ with the
851 neuron’s pre-activation value \mathbf{z} . This lets us solve the following bounds for every neuron j in layer
852 i , with $i \in [L-1]$ and $j \in \mathcal{J}^{(i)}$:
853

854
$$\mathbf{l} = \min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}), \quad \mathbf{u} = \max_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}). \quad (8)$$

855

856 Here, the set $\mathcal{J}^{(i)}$ comprises all neurons in layer i , which can be categorized into three groups:
857 ‘active’ ($\mathcal{I}^{+(i)}$), ‘inactive’ ($\mathcal{I}^{-(i)}$), and ‘unstable’ ($\mathcal{I}^{(i)}$).
858859 Next, the MIP formulation is initialized with the constraints
860

861
$$\mathbf{l} \leq \mathbf{z} \leq \mathbf{u} \quad (9)$$

862 across all neurons and layers i . These bounds can be computed recursively, propagating from the
863 first layer up to the i -th layer. However, since MIP problems involve integer variables, they are
generally NP-hard, reflecting the computational challenge of this approach.

864 **The LP and Planet relaxation.** By relaxing the binary variables in equation 7k to $s \in [0, 1], j \in \mathcal{I}^{(i)}, i \in [L - 1]$, we can get the LP relaxation formulation. By replacing the constraints in equation 7i, equation 7j, equation 7k with

$$868 \quad \hat{x} \leq \frac{\mathbf{u}}{\mathbf{u} - \mathbf{l}}(\mathbf{x} - \mathbf{l}); \quad j \in \mathcal{I}^{(i)}, i \in [L - 1], \quad (10)$$

869 we can eliminate the s variables and get the well-known Planet relaxation formulation. Both of
870 these two relaxations are solvable in polynomial time to yield lower bounds.
871

872 **Linear Bound Propagation.** We now consider linear bound propagation methods which bound a
873 NN in a recursive fashion such as CROWN. For a feed-forward network, CROWN will sequentially
874 provide a bound on all vectors $\mathbf{z}^{(i)}, i \in [L]$, by back-propagating linear relationships from the i^{th}
875 layer back to input \mathbf{x} . These bounds are described as:
876

$$877 \quad \underline{\mathbf{z}}^{(i)} := \min_{\mathbf{x} \in \mathcal{C}} \underline{\mathbf{A}}^{(i)} \mathbf{x} + \underline{\mathbf{c}}^{(i)} \leq \mathbf{z}^{(i)}, \quad \bar{\mathbf{z}}^{(i)} := \max_{\mathbf{x} \in \mathcal{C}} \bar{\mathbf{A}}^{(i)} \mathbf{x} + \bar{\mathbf{c}}^{(i)} \geq \mathbf{z}^{(i)} \quad (11)$$

879 When \mathcal{C} is an ℓ_∞ box, we may “concretize” the lower and upper bounds using Hölder’s inequality:
880 $\underline{\mathbf{z}}^{(i)} = \underline{\mathbf{A}}^{(i)} \hat{\mathbf{x}} - |\underline{\mathbf{A}}^{(i)}| \epsilon + \underline{\mathbf{c}}^{(i)}$ and $\bar{\mathbf{z}}^{(i)} = \bar{\mathbf{A}}^{(i)} \hat{\mathbf{x}} + |\bar{\mathbf{A}}^{(i)}| \epsilon + \bar{\mathbf{c}}^{(i)}$, $i \in [L]$, where $\underline{\mathbf{A}}^{(i)} \in \mathbb{R}^{n_i \times n_0}$ and
881 $\underline{\mathbf{c}}^{(i)} \in \mathbb{R}^{n_i}$. Once concretized, the post-activation neuron, $\hat{\mathbf{z}}$, at intermediate layers may be bounded
882 using the Planet relaxation as described in equation 10. Bound propagation is not limited
883 to feed-forward networks, and readers are deferred to the LiRPA framework in Xu et al. (2020a)
884 which describes how bound propagation algorithms may be applied to more general networks.
885

886 In a feedforward network, $\underline{\mathbf{A}}^{(i)}, \bar{\mathbf{A}}^{(i)}, \underline{\mathbf{c}}^{(i)}$ and $\bar{\mathbf{c}}^{(i)}$ must be derived for every linear layer preceding
887 an activation layer, as well as the final layer of the network. In order to derive the hyperplane
888 coefficients $(\underline{\mathbf{A}}^{(i)} / \bar{\mathbf{A}}^{(i)})$ and biases $(\underline{\mathbf{c}}^{(i)} / \bar{\mathbf{c}}^{(i)})$, at this i^{th} layer, all preceding activation layers must
889 have already had their inputs bounded. The following lemma describes how a ReLU activation layer
890 may be relaxed which will be useful for defining bounding hyperplanes, $\underline{\mathbf{A}}^{(i)}, \bar{\mathbf{A}}^{(i)}, \underline{\mathbf{c}}^{(i)}$ and $\bar{\mathbf{c}}^{(i)}$.
891

892 (Relaxation of a ReLU layer in CROWN). Given the lower and upper bounds of $\mathbf{z}_j^{(i-1)}$, denoted
893 as $\mathbf{l}_j^{(i-1)}$ and $\mathbf{u}_j^{(i-1)}$, respectively, the linear layer proceeding the ReLU activation layer may be
894 lower-bounded element-wise by the following inequality:

$$895 \quad \mathbf{z}^{(i)} = \mathbf{W}^{(i)} \sigma(\mathbf{z}^{(i-1)}) \geq \mathbf{W}^{(i)} \mathbf{D}^{(i-1)} \mathbf{z}^{(i-1)} + \mathbf{W}^{(i)} \mathbf{b}^{(i-1)} \quad (12)$$

896 where $\mathbf{D}^{(i-1)}$ is a diagonal matrix with shape $\mathbb{R}^{n_{i-1} \times n_{i-1}}$ whose off-diagonal entries are 0, and
897 on-diagonal entries are defined as:
898

$$899 \quad \mathbf{D}_{j,j}^{(i-1)} := \begin{cases} 1, & \mathbf{l}_j^{(i-1)} \geq 0 \\ 0, & \mathbf{u}_j^{(i-1)} \leq 0 \\ \alpha_j^{(i-1)}, & \mathbf{l}_j^{(i-1)} < 0 < \mathbf{u}_j^{(i-1)} \text{ and } \mathbf{W} \geq 0 \\ \frac{\mathbf{u}_j^{(i-1)}}{\mathbf{u}_j^{(i-1)} - \mathbf{l}_j^{(i-1)}}, & \mathbf{l}_j^{(i-1)} < 0 < \mathbf{u}_j^{(i-1)} \text{ and } \mathbf{W} < 0 \end{cases} \quad (13)$$

900 and $\mathbf{b}_j^{(i-1)}$ is a vector with shape $\mathbb{R}^{n_{i-1}}$ whose elements are defined as:
901

$$902 \quad \mathbf{b}_j^{(i-1)} := \begin{cases} 0, & \mathbf{l}_j^{(i-1)} > 0 \text{ or } \mathbf{u}_j^{(i-1)} \leq 0 \\ 0, & \mathbf{l}_j^{(i-1)} < 0 < \mathbf{u}_j^{(i-1)} \text{ and } \mathbf{W} \geq 0 \\ -\frac{\mathbf{u}_j^{(i-1)} \mathbf{l}_j^{(i-1)}}{\mathbf{u}_j^{(i-1)} - \mathbf{l}_j^{(i-1)}}, & \mathbf{l}_j^{(i-1)} < 0 < \mathbf{u}_j^{(i-1)} \text{ and } \mathbf{W} < 0 \end{cases} \quad (14)$$

911 In the above definitions, $\alpha_j^{(i-1)}$ is a parameter in range $[0, 1]$ and may be fixed or optimized as in
912 Xu et al. (2020b).
913

914 For the j^{th} ReLU at the $(i - 1)^{th}$ layer, its result may be bounded as follows:
915

$$916 \quad \alpha_j^{(i-1)} \mathbf{z}_j^{(i-1)} \leq \sigma(\mathbf{z}_j^{(i-1)}) \leq \frac{\mathbf{u}_j^{(i-1)}}{\mathbf{u}_j^{(i-1)} - \mathbf{l}_j^{(i-1)}} (\mathbf{z}_j^{(i-1)} - \mathbf{l}_j^{(i-1)}). \quad (15)$$

The right-hand side holds as this is the Planet-relaxation. For the left-hand side, we first consider when $z_j^{(i-1)} \leq 0$. For every input in this range, the result of the ReLU is $\sigma(z_j^{(i-1)}) = 0$. $\alpha_j^{(i-1)} z$ forms a line for which inputs in this range will always produce a non-positive result when $\alpha_j^{(i-1)} \in [0, 1]$. For inputs in the range $z_j^{(i-1)} \geq 0$, the result of the ReLU is $\sigma(z_j^{(i-1)}) = z_j^{(i-1)}$. This result is never exceeded by $\alpha_j^{(i-1)} z_j^{(i-1)}$ when $\alpha_j^{(i-1)} \in [0, 1]$.

When the result, $\sigma(z_j^{(i-1)})$, is multiplied by a scalar such as W , a valid lower-bound of $W \sigma(z_j^{(i-1)})$ requires a lower bound on $\sigma(z_j^{(i-1)})$ when $W \geq 0$, and an upper bound on $\sigma(z_j^{(i-1)})$ when $W < 0$. Such lower and upper bounds are indeed produced by $D_{j,j}^{(i-1)}$ and $b_j^{(i-1)}$, whose definitions are derived from the inequality displayed in equation 15. This concludes the proof.

Lemma B.1 suggests a recursive approach to bounding a neural network as the bounds at the i^{th} layer depends on the bounds of the layer preceding it due to the dependence on $l_j^{(i-1)}$ and $u_j^{(i-1)}$. This is indeed the case, and we may define our hyperplane coefficients as $\underline{A}^{(i)} = \Omega^{(i,1)} W^{(1)}$ where

$$\Omega^{(i,k)} := \begin{cases} W^{(i)} D^{(i-1)} \Omega^{(i-1)}, & i > k \\ I, & i = k \end{cases} \quad (16)$$

To collect the remaining terms, we set $\underline{c}^{(i)} = \sum_{k=2}^i (\Omega^{(i,k)} W^{(k)} \underline{b}^{(k-1)}) + \sum_{k=1}^i (\Omega^{(i,k)} b^{(k)})$. To obtain an upper bound, Lemma B.1 and its proof may be adjusted accordingly where appearances of the inequalities $W^{(i)} \geq 0$ and $W^{(i)} < 0$ are flipped. In doing so, we may repeat this recursive process in order to obtain $\overline{A}^{(i)}$ and $\overline{c}^{(i)}$.

Though we have described how a ReLU feedforward network may be bounded, appropriately updating the definitions of $D^{(i)}$ and $b^{(i)}$ allows feedforward networks with general activation functions (that act element-wise) to be bounded. Such a general formulation is described in Zhang et al. (2018) that is similar to the template described above, and goes into further detail on how this formulation may be extended to *quadratic* bound propagation.

C IMPLEMENTATIONS

C.1 MESH METADATA

Bound computation is achieved via auto_LiRPA, and geometry processing, including voxel trimming and union, is completed via Trimesh et al. (2019). The number of vertices and faces are kept at the same level for fairness (see Appendix). We have four objects encoded with neural SDF: fox, cat, koala, and tree. The fox SDF is a pre-trained one from the codebase of Sharp and Jacobson (2022), and the other three were trained with the training script provided by Sharp and Jacobson (2022), using training data from Stein (2024). In Tables 5, 7, 9, and 17, we present the max mesh resolution (Res.), total bounding mesh construction time in seconds (Time), bounding mesh type (I/O for inner/outer), number of mesh vertices (Vertices), number of mesh faces (Faces), memory cost in MB (Mem.), maximum and minimum signed distance (Max SD and Min SD) from mesh surface samples to the bounded surface, and mean unsigned distance (Mean D) from mesh surface samples to the bounded surface. In addition, for AdaptiveShells, we present the aforementioned metrics with the minimum dilation/erosion extent (DE) required to achieve empirical robustness in Tables 6, 8, 10, and 18. The minimum robust dilation and erosion extents are grid-searched in space $[0.001, 0.1]$ with step size 0.001 until 10000 random samples from the outer mesh surface have positive signed distance to the implicit surface and the same number of samples from the inner mesh surface have negative signed distance. For GIOM, mesh construction time take into account the whole process of bound computation, voxel trimming, and voxel union. Accordingly, mesh construction time for AdaptiveShells includes time spent on SDF grid computation and marching cubes mesh extraction.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
Table 5: Ablation of fox object GIOM on resolution

Res.	Time	I/O	Verticecs	Faces	Mem.	Max SD	Min SD	Mean D
128 ³	38.7	I	1.12E+05	2.24E+05	3.8	-2.12E-04	-3.99E-02	5.77E-03
		O	1.37E+05	2.75E+05	4.7	3.55E-02	5.02E-05	4.05E-03
256 ³	89.3	I	3.54E+05	7.09E+05	12.2	-2.26E-05	-1.42E-02	1.54E-03
		O	3.95E+05	7.91E+05	13.6	1.12E-02	2.12E-05	1.18E-03
512 ³	159.5	I	6.47E+05	1.30E+06	22.2	-1.38E-05	-4.28E-03	1.02E-03
		O	7.09E+05	1.42E+06	24.3	3.57E-03	9.61E-06	7.63E-04

985
986
Table 6: Ablation of fox object AdaptiveShells on resolution

DE	Res.	Time	I/O	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
0.009	128 ³	0.3	I	1.20E+04	2.40E+04	0.4	-3.29E-03	-1.65E-02	9.33E-03
			O	1.63E+04	3.25E+04	0.6	1.41E-02	9.26E-04	8.72E-03
0.004	256 ³	1.9	I	5.38E+04	1.08E+05	1.8	-1.14E-03	-7.27E-03	4.08E-03
			O	6.14E+04	1.23E+05	2.1	6.59E-03	6.44E-04	3.92E-03
0.002	512 ³	14.1	I	2.25E+05	4.49E+05	7.7	-7.02E-04	-3.45E-03	2.02E-03
			O	2.40E+05	4.79E+05	8.2	3.21E-03	2.68E-04	1.98E-03
0.001	1024 ³	131.2	I	9.16E+05	1.83E+06	31.4	-2.01E-04	-1.69E-03	1.01E-03
			O	9.46E+05	1.89E+06	32.5	1.49E-03	3.22E-04	9.95E-04

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
Table 7: Ablation of tree object GIOM on resolution

Res.	Time	I/O	Verticecs	Faces	Mem.	Max SD	Min SD	Mean D
128 ³	54.4	I	1.39E+05	2.79E+05	4.8	-4.16E-04	-8.07E-02	1.12E-02
		O	1.97E+05	3.94E+05	6.8	6.05E-02	7.69E-05	6.93E-03
256 ³	138.7	I	5.83E+05	1.17E+06	20.0	-3.63E-05	-4.64E-02	2.66E-03
		O	6.34E+05	1.27E+06	21.8	4.96E-02	1.72E-05	1.76E-03
512 ³	299.1	I	1.31E+06	2.62E+06	45.0	-6.68E-06	-4.35E-02	1.24E-03
		O	1.38E+06	2.77E+06	47.5	3.24E-02	4.72E-06	8.07E-04

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 8: Ablation of tree object AdaptiveShells on resolution

DE	Res.	Time	I/O	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
0.01	128 ³	0.4	I	1.52E+04	3.04E+04	0.5	-3.07E-03	-1.95E-02	1.05E-02
			O	2.40E+04	4.80E+04	0.8	1.87E-02	1.53E-03	9.59E-03
0.007	256 ³	2.7	I	6.80E+04	1.36E+05	2.3	-1.25E-03	-1.25E-02	7.11E-03
			O	9.24E+04	1.85E+05	3.2	1.36E-02	1.85E-04	6.89E-03
0.005	512 ³	19.8	I	2.88E+05	5.77E+05	9.9	-9.57E-04	-8.84E-03	5.03E-03
			O	3.58E+05	7.17E+05	12.3	8.05E-03	7.91E-04	4.97E-03
0.003	1024 ³	198.7	I	1.22E+06	2.44E+06	41.9	-7.07E-04	-5.25E-03	3.01E-03
			O	1.38E+06	2.77E+06	47.5	5.62E-03	6.93E-04	2.99E-03

Table 9: Ablation of koala object GIOM on resolution

Res.	Time	I/O	Verticecs	Faces	Mem.	Max SD	Min SD	Mean D
128 ³	47.5	I	1.83E+05	3.67E+05	6.3	-8.20E-05	-5.61E-02	2.73E-03
		O	2.06E+05	4.12E+05	7.1	3.82E-02	3.55E-05	2.01E-03
128 ³	85.3	I	3.66E+05	7.33E+05	12.6	-3.11E-05	-1.73E-02	1.42E-03
		O	4.07E+05	8.15E+05	14.0	1.28E-02	2.07E-05	1.07E-03
512 ³	124.4	I	5.25E+05	1.05E+06	18.0	-2.56E-05	-1.47E-01	1.34E-03
		O	5.76E+05	1.15E+06	19.8	4.68E-03	1.18E-05	9.62E-04
1024 ³	165.3	I	6.37E+05	1.28E+06	21.9	-6.42E-06	-4.30E-03	1.27E-03
		O	6.96E+05	1.39E+06	23.9	4.66E-03	1.02E-05	9.55E-04

Table 10: Ablation of koala object AdaptiveShells on resolution

DE	Res.	Time	I/O	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
0.008	128 ³	0.3	I	2.68E+04	5.36E+04	0.9	-2.51E-03	-1.48E-02	8.15E-03
			O	2.98E+04	5.96E+04	1.0	1.36E-02	2.23E-04	7.85E-03
0.004	256 ³	2.1	I	1.11E+05	2.21E+05	3.8	-1.45E-03	-8.61E-03	4.04E-03
			O	1.17E+05	2.33E+05	4.0	6.94E-03	5.19E-04	3.96E-03
0.002	512 ³	14.9	I	4.49E+05	8.98E+05	15.4	-3.33E-04	-3.88E-03	2.01E-03
			O	4.61E+05	9.22E+05	15.8	3.21E-03	7.83E-05	1.99E-03
0.001	1024 ³	175.8	I	1.81E+06	3.62E+06	62.1	-3.11E-04	-1.81E-03	1.00E-03
			O	1.83E+06	3.67E+06	62.9	1.67E-03	1.45E-04	9.98E-04

Table 11: Ablation of cat object GIOM on resolution

Res.	Time	I/O	Verticecs	Faces	Mem.	Max SD	Min SD	Mean D
128 ³	36.6	I	1.22E+05	2.45E+05	4.2	-6.07E-05	-8.92E-02	3.60E-03
		O	1.39E+05	2.78E+05	4.8	1.97E-02	3.12E-05	2.37E-03
256 ³	67.0	I	2.79E+05	5.58E+05	9.6	-3.77E-05	-8.56E-03	1.38E-03
		O	3.11E+05	6.22E+05	10.7	7.89E-03	7.01E-06	1.01E-03
512 ³	100.1	I	4.14E+05	8.28E+05	14.2	-1.24E-05	-2.63E-02	1.18E-03
		O	4.56E+05	9.13E+05	15.7	4.63E-03	8.62E-06	8.55E-04
1024 ³	123.3	I	5.07E+05	1.01E+06	17.4	-2.28E-06	-1.27E-02	1.15E-03
		O	5.57E+05	1.11E+06	19.1	4.89E-03	6.67E-06	8.46E-04

Table 12: Ablation of cat object AdaptiveShells on resolution

DE	Res.	Time	I/O	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
0.007	128 ³	0.3	I	1.41E+04	2.83E+04	0.5	-4.16E-04	-1.35E-02	7.23E-03
			O	1.64E+04	3.28E+04	0.6	1.26E-02	1.98E-03	6.79E-03
0.003	256 ³	1.9	I	5.94E+04	1.19E+05	2.0	-4.17E-04	-5.58E-03	3.05E-03
			O	6.33E+04	1.27E+05	2.2	5.44E-03	6.13E-04	2.94E-03
0.002	512 ³	14.0	I	2.41E+05	4.82E+05	8.3	-7.44E-04	-3.38E-03	2.01E-03
			O	2.51E+05	5.03E+05	8.6	3.41E-03	1.01E-03	1.99E-03
0.001	1024 ³	126.9	I	9.76E+05	1.95E+06	33.5	-3.31E-04	-1.60E-03	1.00E-03
			O	9.97E+05	1.99E+06	34.2	1.75E-03	4.46E-04	9.96E-04

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
Table 13: Ablation of skull object GIOM on resolution

Type	Res.	Time	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
128 ³	53.5	I	1.58E+05	3.15E+05	5.4	-4.42E-04	-1.06E-01	9.88E-03
		O	2.26E+05	4.52E+05	7.8	1.08E-01	2.74E-04	9.49E-03
256 ³	140.3	I	6.82E+05	1.36E+06	23.4	-5.32E-05	-2.64E-02	2.29E-03
		O	8.02E+05	1.60E+06	27.5	5.16E-02	2.85E-05	2.05E-03
512 ³	232.2	I	1.74E+06	3.48E+06	59.7	-1.16E-05	-4.96E-03	9.31E-04
		O	1.48E+06	2.95E+06	50.6	5.79E-03	1.77E-05	1.02E-03

1093
1094
Table 14: Ablation of skull object AdaptiveShells on resolution

DE	Res.	Time	I/O	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
0.008	128 ³	0.4	I	1.97E+04	3.94E+04	0.7	-3.40E-03	-1.50E-02	8.21E-03
			O	2.83E+04	5.65E+04	1.0	1.54E-02	3.44E-04	7.43E-03
0.004	256 ³	2.9	I	9.77E+04	1.95E+05	3.4	-1.10E-03	-6.84E-03	4.09E-03
			O	1.09E+05	2.19E+05	3.8	6.91E-03	1.87E-04	3.77E-03
0.002	512 ³	21.9	I	4.10E+05	8.20E+05	14.1	-7.19E-04	-3.20E-03	2.03E-03
			O	4.31E+05	8.63E+05	14.8	3.33E-03	5.55E-04	1.93E-03
0.001	1024 ³	191.7	I	1.67E+06	3.34E+06	57.2	-4.82E-04	-1.58E-03	1.01E-03
			O	1.71E+06	3.42E+06	58.7	1.76E-03	3.89E-04	9.81E-04

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
Table 15: Ablation of lion statue object GIOM on resolution

Type	Res.	Time	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
128 ³	96.8	I	4.16E+05	8.32E+05	14.3	-4.68E-04	-1.94E-01	6.49E-03
		O	4.75E+05	9.49E+05	16.3	5.13E-02	4.15E-04	4.42E-03
256 ³	282.8	I	1.42E+06	2.85E+06	48.9	-1.35E-04	-1.97E-02	1.30E-03
		O	1.52E+06	3.04E+06	52.2	1.38E-02	1.34E-04	1.16E-03
512 ³	525.3	I	2.45E+06	4.91E+06	84.2	-2.29E-05	-5.71E-03	1.09E-03
		O	2.56E+06	5.13E+06	88.0	4.25E-03	1.72E-05	9.16E-04

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Table 16: Ablation of lion statue object AdaptiveShells on resolution

DE	Res.	Time	I/O	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
0.008	128 ³	0.5	I	5.90E+04	1.18E+05	2.0	-1.76E-03	-1.61E-02	8.11E-03
			O	6.24E+04	1.25E+05	2.1	1.39E-02	6.92E-04	7.93E-03
0.003	256 ³	2.7	I	2.42E+05	4.85E+05	8.3	-3.10E-04	-5.80E-03	3.02E-03
			O	2.47E+05	4.95E+05	8.5	5.68E-03	5.34E-04	2.98E-03
0.002	512 ³	17.8	I	9.75E+05	1.95E+06	33.5	-8.70E-04	-3.32E-03	2.00E-03
			O	9.88E+05	1.98E+06	33.9	3.06E-03	6.82E-04	1.99E-03
0.001	1024 ³	151.5	I	3.92E+06	7.83E+06	134.5	-5.48E-04	-1.44E-03	1.00E-03
			O	3.94E+06	7.88E+06	135.3	1.50E-03	5.36E-04	9.99E-04

1134
1135
1136 Table 17: Ablation of scorpion object GIOM on resolution
1137
1138
1139
1140
1141
1142
1143

Type	Res.	Time	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
128 ³	55.3	I	2.33E+05	4.67E+05	8.0	-8.27E-05	-1.07E-01	7.38E-03
		O	2.91E+05	5.83E+05	10.0	4.22E-02	7.87E-05	4.90E-03
256 ³	150.7	I	8.06E+05	1.61E+06	27.7	-5.10E-05	-1.46E-01	2.13E-03
		O	8.95E+05	1.79E+06	30.7	1.07E-02	2.40E-05	1.31E-03
512 ³	320.6	I	1.56E+06	3.12E+06	53.6	-1.04E-05	-3.95E-02	1.09E-03
		O	1.70E+06	3.40E+06	58.4	3.89E-03	1.29E-05	7.61E-04

1144
1145
1146 Table 18: Ablation of scorpion object AdaptiveShells on resolution
1147

DE	Res.	Time	I/O	Vertices	Faces	Mem.	Max SD	Min SD	Mean D
0.007	128 ³	0.4	I	2.79E+04	5.57E+04	1.0	-1.27E-03	-1.41E-02	7.42E-03
			O	3.51E+04	7.02E+04	1.2	1.49E-02	3.15E-04	6.66E-03
0.004	256 ³	3.0	I	1.19E+05	2.38E+05	4.1	-1.23E-03	-7.23E-03	4.10E-03
			O	1.35E+05	2.71E+05	4.6	6.65E-03	6.51E-04	3.91E-03
0.002	512 ³	22.1	I	4.94E+05	9.88E+05	17.0	-7.28E-04	-3.77E-03	2.02E-03
			O	5.27E+05	1.05E+06	18.1	3.45E-03	5.90E-04	1.98E-03
0.001	1024 ³	186.2	I	2.02E+06	4.03E+06	69.2	-3.18E-04	-1.61E-03	1.01E-03
			O	2.08E+06	4.16E+06	71.5	1.51E-03	3.09E-04	9.94E-04

1159
1160 C.2 EXPERIMENT DETAILS
1161

1162 C.2.1 REAL-TIME RENDERING

1163 **Task Setup and Metrics.** Given a pre-constructed Neural SDF and specified camera settings (position, 1164 direction, and front-of-view (FOV) angle), our goal is to render high-resolution, high-fidelity images corresponding to the input geometry. We evaluate our method using four pretrained neural SDFs representing the 1165 fox, cat, koala, and tree models. Each SDF consists of 8 layers of width 64 (tree) or 32 (others). The fox SDF 1166 is directly inherited from the open-source implementation in Sharp and Jacobson (2022), while the remaining 1167 models were trained on meshes from Stein (2024). For rendering, we use the neural SDF as the exact geometric 1168 representation, and employ the bounding meshes solely to accelerate ray casting. Specifically, we (1) find 1169 the intersection between each ray and the implicit surface with Alg. 2, and (2) compute the surface normal by 1170 querying the neural SDF at the intersection point. We used PyTorch Paszke et al. (2019) for MLP inference and 1171 Optix NVIDIA Corporation (2024) for the ray-mesh intersection. To quantitatively evaluate rendering quality, 1172 we render 50 images per object at a resolution of 1024×1024 from 50 fixed camera positions spanning the 1173 surface of a sphere centered on the object. We report SSIM, PSNR, and RMSE as image quality metrics, along 1174 with FPS to evaluate rendering efficiency.

1175 **Baselines and Experiment Details.** We compare against four baselines: sphere tracing Hart (1996), 1176 affine-arithmetic-based interval tracing Sharp and Jacobson (2022), Adaptive Shells for SDFs, and 0-level set 1177 approximation via marching cubes. Sphere tracing marches rays by the signed distance evaluated at the ray 1178 head in each iteration and terminates when the absolute value falls below a small threshold. It can cause the 1179 ray to graze near a complex surface, wasting compute on excessive samples. Interval tracing adjusts step size 1180 dynamically based on whether the next step is safe, which is determined by the bounds computed via affine 1181 arithmetic. Although this approach guarantees precision when the neural SDF is not exact, it still takes more 1182 steps than necessary, especially into the empty space. Nonetheless, it is a state-of-the-art approach for rendering 1183 with *guaranteed* precision. Adaptive shells are originally used for accelerating queries on NeRF, but we use 1184 them here to denote inner and outer mesh extraction via dilation and erosion with marching cubes. The dilation 1185 and erosion extents are controlled by the varying kernel size of Neus in the original work, accommodating both 1186 solid and fluffy surfaces. Since we only use simple MLPs to encode uniformly solid surfaces, we manually tune 1187 the dilation and erosion extents until the bounding meshes are sound and combine them with Alg. 2 as our third 1188 baseline. The last baseline, 0 level set approximation via marching cubes (0 level MC), is a classic yet error- 1189 prone approach. We can approximate the ray-surface intersection with ray-mesh intersection, but the inherent 1190 lack in flexibility of marching cubes can often introduce missing volumes or artifacts, thereby obscuring the 1191 rendering result.

1188 We adaptively split for at least 27 rounds for each object to construct GIOM and GIOM-Z, using an early stop
 1189 distance threshold of 0.001. We apply the same threshold to any baseline that it may concern, such as sphere
 1190 and interval tracing. The same value is used for the precision δ of Alg. 2.

1191

1192 C.2.2 PHYSICS SIMULATION

1193

Task Setup and Metrics. We run particle collision and cloth simulation to demonstrate two dimensions
 1194 of the benefits of GIOM in physics simulation: efficiency and quality. In particle collision tasks, our goal is to
 1195 efficiently detect collision between the query body and tens of thousands of small spherical particles. We drop
 1196 a $64 \times 64 \times 16$ particle grid on each object under gravity $g = 9.81$ from 2.5 meters above the ground, then we
 1197 measure the time spent on collision detection only. In cloth simulation tasks, we drop a piece cloth modeled
 1198 as a 30×50 2-manifold particle grid onto a object and inspect the authenticity of the simulation. We run both
 1199 simulation tasks with NVIDIA Warp Macklin (2022). For the mesh-SDF continuous collision detection, we
 1200 use Pelletier-Guénette et al. (2025) as the baseline and enhance its broad phase triangle culling with GIOM.
 1201 Given a dynamic mesh colliding with a static SDF, our goal is to improve collision detection efficiency without
 1202 loss of robustness. We measure the time spent on collision detection as well as the number of triangles tested in
 1203 the narrow phase. All visual results are rendered with Blender Community (2023).

1204

Baselines and Experiment Details. For particle collision, we compare our GIOM against two baselines:
 1205 voxel SDF and Axis-Aligned Bounding Box (AABB). Voxel SDF can be directly sampled from neural SDF.
 1206 Querying the former with the point involves only trilinear interpolation and saves the expensive call on a neural
 1207 network, boosting efficiency significantly. AABB can be used to further decrease bandwidth by filtering points
 1208 that can potentially collide with the query body. For cloth simulation, we compare against two baselines: voxel
 1209 SDF with Euler integrator, a real-time but less accurate approach, and voxel SDF with XPBD integrator, a slow
 1210 but refined approach. We adaptively split for up to 15 iterations to keep the bounding mesh simple because
 1211 complex bounding mesh can increase the filtering overhead. For both tasks, we simulate for 60 frames per
 1212 second and 64 substeps per frame. The cloth grid has cell dimension 0.05×0.05 and kinematics coefficients
 1213 $k_e = k_a = 2.5e2$, $k_d = 1.0e1$. For mesh-SDF continuous collision detection, we used 60 simulation steps per
 1214 second with a friction coefficient of 0.45.

1215

1216 C.2.3 CONSTRUCTIVE SOLID GEOMETRY

1217

Tasks Setup and Metrics. Given two SDFs, our goal is to reconstruct the signed distance field of their
 1218 CSG. The signed distance field should not only model the new border correctly but also be exact everywhere in
 1219 the space. We measure reconstruction time (in minutes) and quality (with L1-error) as well as the time to query
 1220 the reconstructed SDF (in milliseconds).

1221

Baselines and Experiment Details. We compare our method against CSG-nSDF Marschner et al.
 1222 (2023a). CSG-nSDF is a state-of-the-art approach that models the CSG of SDFs with a neural SDF. By in-
 1223 tegrating critical geometric objectives into the training loss function, it remains one of the most accurate ap-
 1224 proximation of the exact signed distance field of CSG. We use the open-source CSG model on the union of a
 1225 square and a circle. We adaptively split for 18 iterations for the square and the circle. We accelerate closest
 1226 point queries with Warp kernels.

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

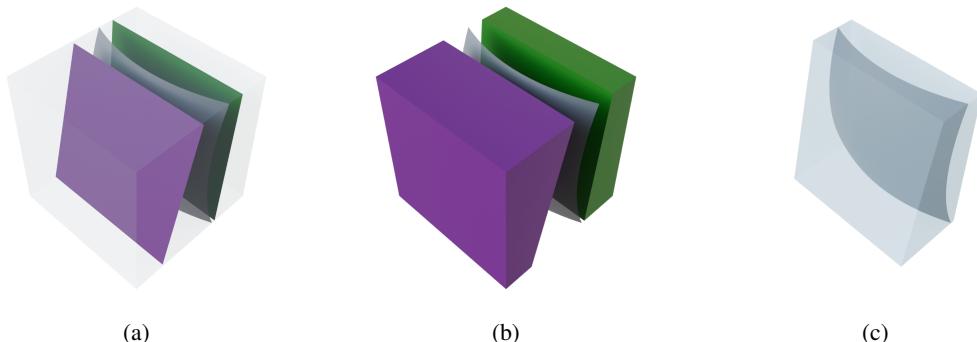
1237

1238

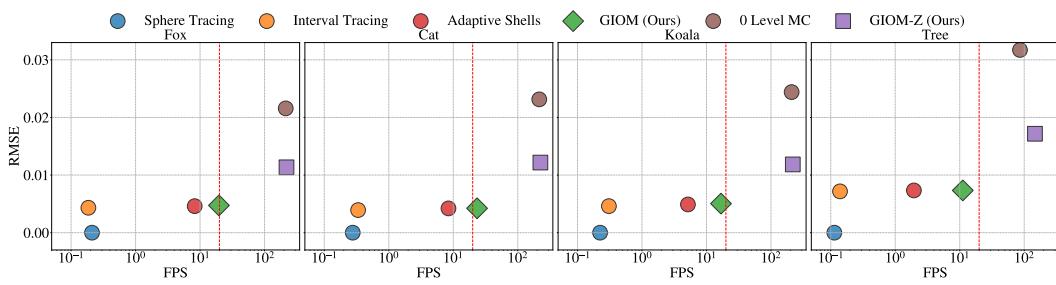
1239

1240

1241

1242
1243 C.3 ADDITIONAL FIGURES
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

1254
1255 Figure 9: Voxel trimming with inner (green) and outer (purple) bounding planes of a local surface
1256 (gray) in Figure 9a. The inner and outer volumes are visualized as purple and green convex poly-
1257 topes 9b. The region (light blue) between the bounding planes conservatively contains the local
1258 isosurface in Figure 9c (i.e. $V_+^c \setminus V_-^c \supset S^c$)
1259



1269 Figure 10: **Rendering quality (RMSE) vs speed (FPS) trade-off** among all competing algorithms.
1270

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 11: **Visualization of GIOM with max resolution 512^3 .** GIOM can produce sound inner and outer bounding meshes at medium resolutions. The bounding meshes not only align well with the geometric details of the bounded surfaces but are also tight—the geometric difference between the inner and outer meshes is barely noticeable by human eyes. Thanks to voxel trimming 3.2, the inner and outer meshes are visibly refined from NEG and UNK voxels. For geometries involving uneven surfaces (lion statue), holes (skull), and narrow structures (scorpion), GIOM can still delivery consistent performance. The surfaces (yellow) are approximated marching cubes with resolution 1024^3 .