
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUARANTEED BOUNDING MESHES EXTRACTION
FROM NEURAL IMPLICIT SURFACES
VIA NEURAL NETWORK VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Geometric queries on neural implicit surfaces, such as ray tracing and collision
detection, present a significant challenge since they require explicit spatial reason-
ing over neural networks. This work addresses this challenge by connecting these
geometric queries to neural network verification problems. Inspired by the state-
of-the-art neural verification tools, we propose a new framework utilizing linear
bound propagation-based verifiers to solve these queries in real time, enabling
applications such as real-time rendering and physics simulation with soundness
guarantees. Instead of naively running neural network verifiers on-the-fly, we first
classify a 3D input domain into multiple regions of interest, which can then as-
sist in subsequent verifications. We achieve this objective by constructing explicit
bounding volumes and then leveraging linear bounds generated by SOTA neu-
ral network verifiers to guide the generation of sound piecewise linear bounding
meshes. In this paper, we propose Guaranteed Inner-and-Outer Meshes (GIOM),
which can serve as bounding volumes and merge seamlessly with existing explicit
geometry processors to accelerate queries on neural implicits. As tight and sound
bounding meshes, GIOM enables accelerated neural SDF queries without sacri-
ficing quality. With GIOM, we develop accelerated neural implicit ray casting,
collision detection, and constructive solid geometry methods (CSG), achieving up
to a 300% speedup in real-time rendering, a 500% speedup in physics simulation,
and an optimization-free neural CSG procedure. Experiments show that GIOM
significantly outperforms existing methods in the speed-quality trade-off.

1 INTRODUCTION

Neural implicit surfaces, particularly those represented as signed distance functions (SDFs), provide
compact, high-fidelity representations of complex 3D geometry. Their continuous and resolution-
independent nature makes them ideal for tasks such as shape modeling, completion, and generative
design. However, their implicit formulation, typically as multi-layer perceptrons (MLPs), poses
challenges for geometry queries central to computer graphics and simulation, including ray inter-
section, collision detection, and boolean operations (e.g., constructive solid geometry). These tasks
often require explicit spatial reasoning and, in many cases, formal guarantees on intersection, en-
closure, or safe clearance (Sharp and Jacobson, 2022; Liu et al., 2024b; Marschner et al., 2023a),
which implicit neural representations inherently struggle to satisfy.

To address these challenges, recent works (Liu et al., 2024a;c; Sharp and Jacobson, 2022; Wang
et al., 2023b) have focused on extracting bounding volumes from neural SDFs to accelerate down-
stream tasks. However, these approaches trade off either soundness or tightness, hindering their
utility in safety-critical and performance-intensive settings. Our key insight is that deriving formal
guarantees over neural SDFs is closely connected to the field of neural network (NN) verification.
In particular, bound verification techniques (Zhang et al., 2018; Gehr et al., 2018; Singh et al., 2018;
Weng et al., 2018; Wong and Kolter, 2018a; Dvijotham et al., 2018; Wang et al., 2018) have demon-
strated the ability to compute tight, certified bounds on NN outputs in a highly scalable and efficient
manner, providing a compelling foundation for deriving tight and certifiable bounds over neural
implicit surfaces. In this work, we propose Guaranteed Inner-and-Outer Meshes (GIOM), a novel
algorithm that synergizes the rigor of neural network verification with the performance demands of
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(a) Original Neural SDF (b) Adaptive Shells (c) Spelunking the Deep (d) GIOM (Ours)

Figure 1: Comparison of bounding-shell methods for Neural SDFs at equal granularity. Adap-
tive Shells (Wang et al., 2023b) use SDF dilation and erosion with marching squares to produce rel-
atively tight shells but lack correctness guarantees (see intersecting isosurfaces in Fig. 1b); Spelunk-
ing the Deep (Sharp and Jacobson, 2022) employs a KD-tree with affine arithmetic, yielding loose,
non-smooth bounds (Fig. 1c); our Guaranteed Inner-and-Outer Meshes (GIOM) method ex-
ploits CROWN (Zhang et al., 2018), one state-of-the-art network verification technique to deliver
tight, smooth bounds with provable correctness (Fig. 1d).
real-time graphics applications. Our work utilizes CROWN Zhang et al. (2018), a representative
verification method with linear bound propagation, and organizes the input domain into a spatial
hierarchical grid to progressively and adaptively refining voxel enclosures. The 3D planes derived
from linear bound coefficients allow us to subsequently slice voxels and extract volumetric meshes
that tightly encloses the surface. Unlike prior voxel-based methods Sharp and Jacobson (2022) only
addressed soundness (the inner bounding volume lies within and the outer bounding volume con-
tains the surface), GIOM produces geometry-aware shells that are directly compatible with spatial
acceleration structures. More importantly, GIOM offers adjustable tightness-efficiency trade-offs
while ensuring soundness, enabling the same core algorithm to support multiple downstream tasks
ranging from fast ray tracing to certified collision detection.

We validate GIOM across three tasks. For real-time rendering, GIOM achieves frame rates 3×
faster than Wang et al. (2023b) and yields 13 dB peak signal-to-noise-ratio (PSNR) over 0-level
marching cubes, eliminating common artifacts. In collision detection, we provide tighter bounding
volumes and more efficient queries, outperforming heuristic-based alternatives. For constructive
solid geometry (CSG) operations, our shell-based framework supports robust boolean operations
without the large approximation errors introduced by traditional min/max operations or the excessive
overhead spent on training a new neural implicit Marschner et al. (2023a). In summary, our main
contributions are:

• We connect rigorous bounding techniques from NN verification with the soundness and perfor-
mance demands of visual computing with neural implicits. By formalizing this connection in
Section 3.1, we enable cross-domain insights for reliable, high-performance queries on neural
implicit surfaces.

• We introduce GIOM, the first method to leverage sound linear bounds on neural networks to
construct tight, scalable bounding meshes tailored for 3D graphics applications. We also show
GIOM enables three challenging downstream tasks, rendering, collision detection, and CSG, each
of which benefits from tightness, generality, efficiency, and formal guarantees.

• We demonstrate that GIOM provides a 3× speed-up and a 5 dB PSNR improvement in rendering,
a 5× speed-up in collision detection without loss of authenticity, and a 10× reduction in CSG
distance field reconstruction error with minimal overhead.

2 RELATED WORK

Neural Implicit Representations. Neural implicit representations model geometry as continuous
functions parameterized by NNs. SDF-based methods (Park et al., 2019; Sitzmann et al., 2020;
Wang et al., 2021a; Takikawa et al., 2021) define surfaces as zero level sets, while occupancy-based
approaches (Mescheder et al., 2019; Tang et al., 2021) classify points as interior or exterior. Other
works employ explicit primitives (Chen et al., 2020; Deng et al., 2020; Tretschk et al., 2021; Es-
posito et al., 2025), volumetric fields Mildenhall et al. (2020); Zhang et al. (2020); Wang et al.
(2023a), and hybrid approaches Martel et al. (2021); Guédon and Lepetit (2024) for view synthe-
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sis. Neural SDFs offer compact and expressive geometry representations and are widely used in
applications such as scene reconstruction Wang et al. (2021a; 2023a); Zhang et al. (2024; 2020);
Müller et al. (2022); Fridovich-Keil and Yu et al. (2022), 3D modeling Chen and Zhang (2019); Li
et al. (2022); Novello et al. (2023); Yang et al. (2021), and collision detection Koschier et al. (2017);
Macklin et al. (2020). However, they are costly to query, challenging to edit, and inefficient for ray
tracing or certified collision avoidance. To mitigate this, some acceleration techniques have been
proposed. NGLOD (Takikawa et al., 2021) sparsely voxelizes space and uses compact MLPs; NeRF
variants (Reiser et al., 2023; Müller et al., 2022; Martin-Brualla et al., 2021; Barron et al., 2021;
Fridovich-Keil and Yu et al., 2022) exploit multi-resolution hash grids; da Silva et al. (2022) lever-
ages nested neural SDFs; Adaptive Shells (Wang et al., 2023b) restricts sampling to narrow bands
via dilation and erosion with marching cubes (Lorensen and Cline, 1987). For collision detection,
affine arithmetic (De Figueiredo and Stolfi, 2004) has been applied (Sharp and Jacobson, 2022; Liu
et al., 2024b) but struggles with the non-convex nature of neural networks. CSG-nSDF (Marschner
et al., 2023a) trains neural SDFs to encode constructive solid geometry.

Certified Bound Extraction and Mesh Enclosures. Standard surface extraction methods such as
marching cubes generate triangle meshes for the zero level set, but few address the challenge of com-
puting certified inner and outer meshes that provably bound the isosurface. Differentiable variants
of marching cubes (Liao et al., 2018; Remelli et al., 2020) learns explicit meshes, but only for the
zero level set and without bounding guarantees. In special cases like ReLU networks, the level set is
polyhedral and could, in theory, be triangulated exactly. However, this is computationally expensive
and does not extend to more expressive architectures (Lei and Jia, 2020). Other approaches, such
as Wang et al. (2023b), approximate inner and outer shells via dilation and erosion combined with
marching cubes, but these are primarily intended to accelerate sampling and offer no guarantees,
often resulting in unsound or visually incorrect renderings (see Figure 1, 5). Although errors may be
reduced by increasing marching cubes resolution, adjusting dilation/erosion parameters, or moving
bounding-mesh vertices along SDF normals, these heuristics introduce trade-offs in memory con-
sumption, bounding-mesh tightness, and risks of self-intersection in thin or complex regions. More
importantly, none of them can provide a theoretical guarantee that the implicit surface lies strictly
between the bounding meshes.

Bound Computation. Bound propagation is a core technique in NN verification, enabling formal
guarantees for tasks related to safety and robustness analysis (Li et al., 2025b; Yang et al., 2024;
Serry et al., 2025; Li et al., 2025a; Chen et al., 2024). Among these methods, Interval Bound
Propagation (IBP) (Gowal et al., 2019; Moore et al., 2009) has been adopted for tasks regarding
certified querying and collision detection (Sharp and Jacobson, 2022; Liu et al., 2024b) due to its
fast manner of forward-propagating bounds throughout the layer of a network. However, IBP tends
to produce conservative bounds and ignores the structure of the input-output relationship, offer-
ing limited geometric insight. In contrast, linear bound propagation techniques (Wong and Kolter,
2018a;b; Dvijotham et al., 2018; Zhang et al., 2018; Raghunathan et al., 2018; Gehr et al., 2018;
Singh et al., 2018; 2019; Wang et al., 2018) which compute bounds via affine relaxations of nonlin-
ear operators offer much tighter enclosures and preserve geometric structure. While more rigorous
NN verifiers (Wang et al., 2021b; Zhang et al., 2022; Cheng et al., 2017; Lomuscio and Maganti,
2017; Dutta et al., 2018; Fischetti and Jo, 2017; Tjeng et al., 2019; Xiao et al., 2018; Scheibler et al.,
2015) can offer stronger guarantees, their high computational complexity severely limits scalability.

3 METHODOLOGY

Overview. We introduce the Guaranteed Inner-and-Outer Meshes (GIOM) algorithm, which
constructs tight, explicit geometric envelopes that bridge the expressive power of neural implicit
representations with the efficiency of traditional geometry processors. We also propose Guaran-
teed Zero-Level (GIOM-Z), a method for approximating the isosurface with theoretical guaran-
tees. Our key insight is to integrate scalable NN verification techniques with voxelized spatial
hierarchies to efficiently and soundly bound regions of interest. In Section 3.1, we show how bound
propagation methods such as CROWN can reformulate geometric queries as NN verification prob-
lems. Section 3.2 introduces our bounding shell construction for tight enclosures, and Section 3.3
demonstrates the framework’s utility in real-time rendering, physics simulation, and constructive
solid geometry.
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3.1 GEOMETRIC QUERIES AS NN VERIFICATION PROBLEMS.

Geometric queries such as those related to ray-tracing, collision detection, or constructive solid
geometry (CSG) operations, can be naturally framed as NN verification problems. Given a 3D SDF
f(x) : R3 → R, we have f(x) < 0 for points inside the isosurface, f(x) = 0 on the surface, and
f(x) > 0 outside. While an exact SDF also requires that |f(x)| equals the shortest distance from
x to the surface, we do not make such assumption in this work. Let F (x) denote the verification
property of interest. For example, in collision detection, it is useful to know if a region of space lies
entirely outside an object. This can be formulated as:

∀x ∈ C, F (x) > 0 where F (x) := f(x) (1)

Here, C ⊂ R3 is a region in space (e.g., an axis-aligned bounding box (AABB) defined by corners x−
and x+), and f(x) is the neural SDF evaluated at point x. Verifying this property confirms that C lies
strictly outside the object and is thus provably collision-free. Conversely, verifying F (x) < 0 over
C ensures that the region lies entirely inside the object. If neither condition holds, i.e. f(x) changes
sign within the region, then the region must intersect the surface, providing useful cues for contact
determination and surface reconstruction. In principle, such properties can be verified by solving
global optimization problems that compute minx∈C F (x) and maxx∈C F (x). However, due to the
non-convex, nonlinear nature of neural networks, this problem is NP-complete (Katz et al., 2017).
Modern NN verification circumvents this by employing scalable techniques like bound propagation,
which provide sound interval bounds f(x) ∈ [f(x), f(x)] over a region C, enabling global geometric
reasoning, such as containment, exclusion, or intersection, with formal guarantees.

A particularly effective and representative method of linear bound propagation is CROWN (Zhang
et al., 2018), which efficiently computes tight output bounds by backward-propagating affine relax-
ations through each layer of the network, yielding:

∀x ∈ C, Ax+ b ≤ f(x) ≤ Ax+ b (2)

where A, b,A, b define lower and upper bounding hyperplanes that can be computed in polynomial
time (see Appendix B.1 for details). Optimizing these affine forms over the domain C = [x−, x+]
yields tight bounds:

yC− = min{Ax+ b | x ∈ C}, yC+ = max{Ax+ b | x ∈ C} (3)
This provides a sound over-approximation of the true range of f(x) across the entire region, enabling
principled, efficient, and certifiable reasoning about geometry from neural SDFs. In the remainder of
this work, we show how CROWN facilitates scalable and verifiable solutions to Neural SDF queries.

3.2 SHELL EXTRACTION VIA GUARANTEED BOUNDING MESHES

Motivation. The goal of sound shell extraction is to compute the tightest possible bounding
meshes,M− andM+, such that the isosurface S of a signed distance function (SDF) f lies strictly
between them, providing formal guarantees of containment and exclusion that are critical for safety,
robustness, and downstream geometric processing. While one might attempt to heuristically ”patch”
such meshes (e.g., by increasing resolution, adjusting dilation/erosion, or shifting vertices along
SDF normals; see Sec. 2), these modifications still cannot provide formal soundness guarantees. In
contrast, our bounding meshes are sound by construction. Throughout the rest of this section, we
demonstrate that it is possible to extract sound inner and outer shells for general neural network ar-
chitectures. Moreover, we show that this can be achieved efficiently using linear bound propagation
techniques originally developed for verification tasks as described by (1).

Voxel Classification and Trimming. Generating a high-fidelity, explicit volume that tightly en-
closes or is enclosed within an implicit surface is challenging, but we can start with a basic building
block: computing for each voxel two polyhedral volumes VC

− and VC
+ such that

VC
− ⊆ {x ∈ C | f(x) ≤ 0} ⊆ VC

+, (4)

i.e., VC
− is strictly inside the implicit surface within C, while VC

+ is guaranteed to contain it. We
obtain these volumes using a simple, two-step procedure that only relies on the linear bounds and
over-approximation given in (3).

(1) Classification. Use the concretized scalar bounds yC− and yC+ to classify the voxel:
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Figure 2: BaB refinement via voxel trimming. (a) the bounding meshesMC0
± (blue and green) of

an SDF, the boundary of which cuts through an UNK voxel C, experiences BaB refinement. (b) UNK
subdomains like C2 are trimmed by bounding meshes. (c) The union of UNK voxels produce tighter
bounding volumes VC′

0
± and meshesMC′

0
± than before BaB and voxel trimming.

• If yC− > 0, then f(x) > 0 for all x ∈ C. Mark C as POS and set VC
− = VC

+ = ∅.
• If yC+ < 0, then f(x) < 0 for all x ∈ C. Mark C as NEG and set VC

− = VC
+ = C.

• Otherwise mark C as UNK (potentially intersecting).

(2) Voxel trimming for UNK voxels. For an UNK voxel we can fall back to the trivial choice VC
+ = C,

VC
− = ∅, but this is often overly coarse. Instead, we propose to reuse the affine linear bounds to trim
C into tighter polyhedral enclosures:

VC
+ := {x ∈ C | Ax+ b ≤ 0}, VC

− := {x ∈ C | Ax+ b ≤ 0} (5)

By construction these sets are conservative: VC
− is guaranteed to lie inside the true negative region

and VC
+ to contain the surface portion inside C. The trimmed volume VC

+ \ VC
− is a convex polytope

that conservatively contains any isosurface segment crossing C.

Branch-and-Bound for Voxel Verification. Given a collection of bounding volumes, B =
{B0 . . .Bn}, we define the inner and outer bounding volumes of the true implicit volume, V , as:

V− =
⋃
i

VBi
− , V+ =

⋃
i

VBi
+ (6)

Algorithm 1 Adaptive Split

Input: neural implicit surface f , AABB with range [l, u],
max split depth D.
Output: bounding volumes V−, V+
V− ← ∅, V+ ← ∅, B ← {[l, u]}, d← 0
while d < D do

for Bi in B do
B ← B \ {Bi}
T, f, f ← ComputeBounds(x−, x+)
if T = POS then continue
else if T = NEG then V− ← V− ∪ Bi

else if EarlyStop(Bi, f , f) ∨ d = D − 1 then
VBi
− ,VBi

+ ← Trim(Bi, f , f)

V− ← V− ∪ VBi
− , V+ ← V+ ∪ VBi

+

else
B ← B ∪MaxDimSplit(Bi)

d← d+ 1
return V−,V+

To construct these approximations effi-
ciently, we apply a branch-and-bound
(BaB) process starting from an initial
Axis-Aligned Bounding Box (AABB)
(See Fig. 2. Only UNK voxels can intersect
the implicit surface, therefore only this
class of voxels are recursively subdivided
along their largest dimension. To improve
scalability, we introduce an early termi-
nation criterion: terminate further subdi-
vision if (1) both bounding planes inter-
sect the voxel, and (2) the distance be-
tween their intersections with the voxel is
below a fixed threshold (Alg. 1). Once
BaB terminates, we union all POS, NEG,
and early-stopped UNK voxels to construct
the final inner and outer bounding volume
as described by (6). In practice, this corre-
sponds to merging all polyhedral meshes
derived from voxel trimming, yielding the
bounding surface meshes M− := ∂V−
and M+ := ∂V+. This final union can be performed efficiently with existing mesh processing
libraries such as Trimesh (et al., 2019).

Guaranteed Zero-Level Extraction via GIOM. We also introduce Guaranteed Zero-Level
(GIOM-Z), a method that utilizes the linear bounds to approximate the isosurface, with tight pre-
cision guarantees. For each UNK voxel, we define an approximate linear surface by averaging the
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upper and lower bounds: A0 = (A+A)/2, b0 = (b+ b)/2, yielding an approximation of the true
implicit surface within the voxel C as VC

0 := {x ∈ C | A0x + b0 ≤ 0}. For POS and NEG voxels,
we set VC

0 = ∅ and C, respectively. We extract a surface mesh by taking the boundary of the implicit
volume, i.e. M0 := ∂V0, where V0 := ∪iVBi

0 . Unlike marching cubes, whose precision guarantee
are the size of the smallest voxel, our GIOM-Z has a theoretical guarantee equal to the smallest
distance between bounding geometries.

3.3 GIOM FOR GEOMETRY QUERIES

With GIOM, we can accelerate various geometry queries on neural SDFs or implicit surfaces, and
the key insight is to use the guaranteed bounding volumes V− and V+ for a complex neural surface.

GIOM-Accelerated Rendering. The ray casting problem on an SDF f can be defined as finding
the smallest t given ray root p ∈ R3 and ray direction r ∈ R3 such that f(p + tr) = 0. Given
a pair of inner and outer shells, we present a fast Algorithm 2 to identify the intersection point
p′ = p + t′r between a ray and an implicit surface encoded by an SDF with precision guarantee
δ (e.g. f(p + (t′ + δ)r) < 0 < f(p + t′r)). We first extract inner and outer bounding meshes
M− and M+ from bounding volumes V− and V+. For each ray (p, r) that has at least two
intersections pi and po with M− ∪M+, we identify it as a candidate ray that might hit the true
surface. By sampling with an interval of δ inside the range (pi, po) and querying f with the
samples, we are guaranteed to find the intersection between the ray and the true surface with
precision of δ. If the intersection does not occur in the current range, we keep the status of the ray
undetermined and proceed to the next iteration. Since our bounding shells are tight, we can af-
ford to query all the samples along every ray in each iteration in parallel, even on a commodity GPU.

Algorithm 2 Efficient Ray Casting with GIOM

Input: neural implicit surface f , inner shell
mesh M−, outer shell mesh M+, ray root p,
ray direction r, and precision δ.
while True do

pi ← (M− ∪M+).intersect(p, r)
po ← (M− ∪M+).intersect(pi, r)
if po is None then

// The ray exits the bounding shells.
return pi

P ← {pi, pi + δr . . . po}
D ← f(P )
for j in 0 . . . |D| − 2 do

if dj+1 < 0 < dj then
// The ray intersects the isosurface.
return pj

// The ray was grazing.
// Update ray root.
p← po

outer
shell

inner
shell

Text

hit
(3 samples)

graze
(6 samples)

miss
(8 samples)

hit (3 samples)

graze (3 samples)

miss (0 samples)

Figure 3: GIOM bounds accelerate implicit ray cast-
ing. Top: naive neural sphere tracing. Bottom: GIOM
shells tightly bound the surface’s zero crossing. Right:
skipping ray interval with GIOM shells cuts # of net-
work queries significantly (3→ 3, 6→ 3, 8→ 0).

Fig. 3 depicts how GIOM bounding shell can accelerate the required (#) of samples when rendering
a neural implicit surface. The decrease in sample counts is positively correlated with the tightness
of the shell, as visualized in Fig. 4. By casting rays directly on GIOM-Z, we can further boost
efficiency at a subtle cost of quality.

GIOM-Accelerated Collision Detection. While neural SDFs can be baked into a voxel database
for real-time physics simulation, collision detection efficiency remains a bottleneck, especially in
large-scale particle collision and mesh-SDF collision. To address this issue, we utilize our outer
bounding mesh as a spatial hierarchy, ensuring that an object not colliding with the mesh will never
collide with the object defined by the neural SDF. Since checking collisions with a mesh can be done
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very efficiently, and our bound mesh is also much tighter compared to loose approximations such as
AABB boxes, GIOM can significantly improve collision detection efficiency.

Table 1: CSG bounding volume computation and conventional formulation.
CSG Type f1 ∪ f2 f1 ∩ f2 f1 − f2

Bounding Volumes V− = V(1)
− ∪ V(2)

−
V+ = V(1)

+ ∪ V(1)
+

V− = V(1)
− ∩ V(2)

−
V+ = V(1)

+ ∩ V(2)
+

V− = V(1)
− \ V(2)

+

V+ = V(1)
+ \ V(2)

−

Conventional Formulae f = min(f1, f2) f = max(f1, f2) f = max(f1,−f2)

GIOM-Accelerated CSG Operation. CSG (constructive solid geometry) requires accurate com-
putation of the union, intersection, or difference of two SDFs f1 and f2, in the form of one new
implicit surface f . The conventional definition of the new implicit surface f from f1 and f2 (last
row of Tab. 1) yields correct isosurfaces but distorts the distance field, making the SDF unsuit-
able for rendering or physics simulation. To address this, CSG-nSDF (Marschner et al., 2023a)
trains a neural network with geometric constraints to encode an exact neural SDF of CSG, but this
optimization-based approach cannot perfectly align with the ground truth (Fig. 8).

We propose an optimization-free algorithm (Alg. 3) to approximate the exact signed distance field
resulting from a CSG operation between two SDFs. Given two SDFs f1 and f2, and their bound-
ing volumes, V(1)

± and V(2)
± , we can easily compute the new bounding volumes V± (Tab. 1).

Algorithm 3 CSG with GIOM

Input: query point x, SDF f1 and f2, bounding
volumes V(1)

± and V(2)
± , and boolean operator ◦.

Output: signed distance from x to CSG surface
V±, f ← f1 ◦ f2 per Table 1
M− ← ∂V−,M+ ← ∂V+
if x ∈ V+ \ V− then

return f(x)
else

xd ← ClosestPoint(x,M− ∪M+)
return f(xd) + sign(x /∈ V+) · ∥x− xd∥

After we extract the bounding meshesM− and
M+, we are ready to query for signed distance
values. For points that lie between the bound-
ing meshesM− andM+, we use the conven-
tional formulae as near-surface approximation.
For points outside this region, we start by find-
ing the closest point on the bounding meshes.
We then compute the total distance as the sum
of two components: the distance from the query
point to this closest mesh point, and the dis-
tance from the mesh point to the isosurface. Fi-
nally, we assign a sign to the computed distance
based on whether the query point is inside or
outside the surface.

4 EXPERIMENTS

We validate our proposed GIOM method across three distinct neural implicit geometry-based visual
computing tasks: neural rendering, physical simulation, and constructive solid geometry (CSG); we
compare its performance and efficiency against existing methods in each task. Additional visualiza-
tions and video results are provided in the supplementary material.

Real-Time Rendering Given a neural SDF and camera settings (position, direction, and front-of-
view (FOV) angle), our goal is to render high-resolution, high-fidelity images corresponding to the
input geometry. We report SSIM, PSNR, and RMSE as image quality metrics, along with FPS to
evaluate rendering efficiency. We compare against four baselines: sphere tracing (ST) (Hart, 1996),
affine-arithmetic-based interval tracing (IT) (Sharp and Jacobson, 2022), adaptive shells for SDFs,
and 0-level set approximation via marching cubes. Adaptive shells are originally used for acceler-
ating queries on NeRF, but we use them here to denote inner and outer mesh extraction via dilation
and erosion with marching cubes (the adaptation to our setting is described in Appendix C.2). We
manually tune the dilation and erosion extents until the bounding meshes no longer intersect the
surface mesh visually and combine them with Alg. 2 as the third baseline.

Fig. 10 shows that (1) GIOM outperforms every baseline in time while being comparable in quality,
and that (2) GIOM-Z excels 0 level MC in quality with the same or better efficiency. Tab 2 consoli-
dates the observation with overall trends. Although adaptive shells can achieve slightly better PSNR
than GIOM, the latter beats it in efficiency by 3×. GIOM-Z beats 0-level MC in all magnitudes due
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(a) Rendered tree image. (b) Spelunking the deep. (c) Adaptive shells.

0

100

(d) GIOM.

Figure 4: Comparison of sample counts per pixel between high-quality exact rendering
with adaptive shells and GIOM. Compared to adaptive shells, which obtain bounds via a
dilation-and-erosion procedure, GIOM is constructed using a neural-network bounding algorithm,
resulting in tighter bounds and thus reducing the number (#) of samples per ray.

(a) Overall rendering. (b) Sphere tracing. (c) 0 level set MC. (d) Unsound AS. (e) GIOM (Ours).

Figure 5: Qualitative comparison of rendering details. Compared to zero-set Marching Cube (c)
and potentially unsound bounding meshes produced by Adaptive Shell (d), GIOS-based ray casting
(Alg. 2) preserves thin-surface details and achieves performance comparable to the exact sphere
tracing (b) using sphere tracing of Neural SDFs, while being 70 times faster.

to the adaptive refinement enabled by tight bounding planes. Fig. 5 demonstrates the advantage of
tight bounding meshes and guaranteed ray casting algorithm in rendering fine details. The tip of the
ear of the fox is almost volumeless, and marching cubes leads to missing volumes. Among all the
guaranteed ray casting algorithms, GIOM remains the fastest.

Real-Time Physics Simulation We run discrete particle, cloth, and continuous mesh-SDF col-
lision simulations to demonstrate two dimensions of the benefits of GIOM in physics simulation:
efficiency and quality. We measure the time spent on physics simulation and visualize the simulated
collision. For particle collision, we compare our GIOM against two baselines: voxel SDF (sampled
from neural SDF) without any acceleration and with Axis-Aligned Bounding Box (AABB). For
cloth simulation, we compare GIOM with Euler integrator against with only Euler or XPBD inte-
grator. For mesh-SDF continuous collision detection (CCD), we compare against a state-of-the-art
method (Pelletier-Guénette et al., 2025).

Tab. 3 suggests that the overall runtime of collision detection decreases and stabilizes with our
GIOM. We achieve a significant efficiency boost on the tree object. Because the tree has the most
complex structure of all four objects, the tightness of GIOM becomes apparently advantageous once
the particles come into contact with the query body (Fig. 6c). Fig. 6a further validates the effective-
ness of GIOM on the tree object. In addition to the particle simulation, we run a cloth simulation
with GIOM in Fig. 7c. GIOM is efficient and tunneling-free; in contrast, directly simulating with
the voxel SDF causes unwanted intersections (Fig. 7a, Fig. 7b). We also show that CCD time can be
reduced by replacing expensive neural SDF queries with cheap tests against GIOM (Tab. 4).

Constructive Solid Geometry Given two SDFs, our goal is to reconstruct the signed distance
field of their CSG. The signed distance field should not only model the new border correctly but
also be exact everywhere in the space. We measure reconstruction time and error, as well as the
time to query the reconstructed SDF. We compare our method with CSG-nSDF (Marschner et al.,
2023a). We use the open-source model on the union of a square and a circle provided in the official
repository (Marschner et al., 2023b).
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Table 2: Quantitative comparisons of implicit rendering quality and speed.
Method Type RMSE↓ PSNR↑ SSIM↑ FPS↑
ST (Groundtruth) Ray Marching 0.00 ∞ 1.000 0.21 ± 0.12
IT (Spelunking) Ray Marching 0.01 46.51 ± 5.68 0.999± 0.001 0.24 ± 0.16

AdaptiveShells Shell Accel. 0.01 46.00± 5.20 0.998 ± 0.001 6.0 ± 5.6
GIOM (Ours) Shell Accel. 0.01 45.87 ± 5.15 0.998 ± 0.001 18± 10

0 Level MC Mesh Approx. 0.03 32.14 ± 3.42 0.985 ± 0.012 181 ± 113
GIOM-Z (Ours) Mesh Approx. 0.01 37.80± 3.34 0.995± 0.004 202± 69

Table 3: Particle collision detection time (ms) for different methods and objects.
Method fox cat tree koala Mean

SDF only 6.00± 1.36 5.94± 1.43 15.10± 5.87 5.94± 1.68 8.24± 8.54
AABB 3.52± 1.96 2.69± 1.53 12.09± 6.29 3.42± 2.03 5.43± 8.49
Ours 2.00± 1.02 2.13± 1.15 3.09± 2.41 1.95± 1.16 2.29± 1.80

Table 4: Quantitative comparisons of CCD efficiency and bandwidth.
Stepping time (ms) per frame↓ # Tri tests↓

Method min median max total Mesh nSDF

CCD 52.89 2940.50 8504.33 5.34× 105 0 9265
Ours 13.69 464.44 4366.14 1.90× 105 9710 1695
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(a) Collision detection time (b) Frame 0 (c) Frame 39 (d) Frame 75

Figure 6: Accelerated physical simulation on a complex neural implicit surface (tree) with
GIOM. Top: Runtime per frame during the episode. GIOM is significantly faster than the con-
ventional AABB spatial-hierarchy bound, which provides negligible speedup compared to directly
querying voxel SDFs. This difference becomes particularly pronounced when more particles collide
with the body (see Fig. 6c, 6d). Bottom: Qualitative results. Thanks to the guaranteed bound, the
simulation exhibits realistic behavior with no noticeable differences compared to exact SDF queries.

(a) SDF with Euler integrator (b) SDF with XPBD integrator (c) GIOM with Euler integrator

Figure 7: Qualitative results of cloth simulation. Compared to voxel-SDF-based approaches, the
combination of GIOM and Euler integrator yields a more visually satisfying result.

Fig. 8d shows that we outperform CSG-nSDF in reconstruction efficiency and accuracy. The one
minute reconstruction time includes the overhead of bounding polygon computation. Fig. 8 offers
some clues for the drastic different in reconstruction accuracy. CSG-nSDF has visible errors, while
our method has not visual difference from the ground truth.
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(a) Ground truth (b) CSG-nSDF (c) Ours

Reconstr. time (min)  Reconstr. error  Query time (ms)  

Ours
1.0

Ours
0.0002

Ours
33.4

CSG-nSDF
40.5

CSG-nSDF
0.0301 CSG-nSDF

29.8

(d) Qualitative results.

Figure 8: Qualitative and quantitative results for constructive solid geometry. Left (a–c): Com-
pared to baseline (b), GIOM produces a more accurate signed distance field in the central regions.
Right: Since no neural SDF retraining is needed, our reconstruction time is significantly lower while
being more accurate. The query time is only marginally higher than baseline.

5 CONCLUSION & LIMITATIONS

In this paper, we proposed Guaranteed Inner-and-Outer Meshes (GIOM), a framework for gener-
ating tight, sound, and explicit bounding volumes of neural implicit surfaces. We leverage GIOM
to accelerate a variety of geometric queries, including ray casting, collision detection, and CSG
operations. GIOM offers a favorable balance between efficiency and quality across these tasks.

Limitations. GIOM is currently limited to static neural implicits. Extending it to support time-
varying fields would be a promising direction for future work, potentially enabling applications such
as dynamic collision detection, animation rendering, and swept volume estimation.
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A LLM USAGE

The roles of LLM in this work are: simple baseline code generation, result post-processing, and lan-
guage revision. LLM is not involved in the development of core methodology, design of evaluation,
analysis of results, or any other significant component.

B FORMULATIONS

B.1 NN VERIFICATION BACKGROUND

In this section, we provide a more detailed prescription describing how a linear bound propagation
method such as CROWN is able to provide sound, linear bounds for a ReLU feed-forward neural
network. These ideas may be generalized to more complex neural network architectures with more
diverse activation functions, and we provide the appropriate references to works that are well-suited
to describing these extensions.

The MIP Formulation The mixed integer programming (MIP) formulation is the root of many
NN verification algorithms. Given the ReLU activation function’s piecewise linearity, the model
requires binary encoding variables, or ReLU indicators, s, only for unstable neurons. We formulate
the optimization problem aiming to minimize the function f(x), subject to a set of constraints that
encapsulate the DNN’s architecture and the perturbation limits around a given input x, as follows:

f⋆ = min
z,ẑ,s

f(x) s.t. f(x) = z(L); ẑ(0) = x ∈ C (7a)

ẑ(i) = W(i)ẑ(i−1) + b(i); i ∈ [L] (7b)

I+(i) := {j : l ≥ 0} (7c)

I−(i) := {j : u ≤ 0} (7d)

I(i) := {j : l < 0,u > 0} (7e)

I+(i) ∪ I−(i) ∪ I(i) = J i (7f)

ẑ ≥ 0; j ∈ I(i), i ∈ [L− 1] (7g)

ẑ ≥ z; j ∈ I(i), i ∈ [L− 1] (7h)

ẑ ≤ us; j ∈ I(i), i ∈ [L− 1] (7i)

ẑ ≤ z − l(1− s); j ∈ I(i), i ∈ [L− 1] (7j)

s ∈ {0, 1}; j ∈ I(i), i ∈ [L− 1] (7k)

ẑ = z; j ∈ I+(i), i ∈ [L− 1] (7l)

ẑ = 0; j ∈ I−(i), i ∈ [L− 1] (7m)

To initialize intermediate bounds for each neuron, we replace the original objective f(x) with the
neuron’s pre-activation value z. This lets us solve the following bounds for every neuron j in layer
i, with i ∈ [L− 1] and j ∈ J (i):

l = min
x∈C

f(x), u = max
x∈C

f(x). (8)

Here, the set J (i) comprises all neurons in layer i, which can be categorized into three groups:
‘active’ (I+(i)), ‘inactive’ (I−(i)), and ‘unstable’ (I(i)).
Next, the MIP formulation is initialized with the constraints

l ≤ z ≤ u (9)

across all neurons and layers i. These bounds can be computed recursively, propagating from the
first layer up to the i-th layer. However, since MIP problems involve integer variables, they are
generally NP-hard, reflecting the computational challenge of this approach.
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The LP and Planet relaxation. By relaxing the binary variables in equation 7k to s ∈ [0, 1], j ∈
I(i), i ∈ [L − 1], we can get the LP relaxation formulation. By replacing the constraints in equa-
tion 7i, equation 7j, equation 7k with

x̂ ≤ u

u− l
(x− l); j ∈ I(i), i ∈ [L− 1], (10)

we can eliminate the s variables and get the well-known Planet relaxation formulation. Both of
these two relaxations are solvable in polynomial time to yield lower bounds.

Linear Bound Propagation. We now consider linear bound propagation methods which bound a
NN in a recursive fashion such as CROWN. For a feed-forward network, CROWN will sequentially
provide a bound on all vectors z(i), i ∈ [L], by back-propagating linear relationships from the ith

layer back to input x. These bounds are described as:

z(i) := min
x∈C

A(i)x+ c(i) ≤ z(i), z(i) := max
x∈C

A
(i)
x+ c(i) ≥ z(i) (11)

When C is an ℓ∞ box, we may “concretize” the lower and upper bounds using Hölder’s inequality:
z(i) = A(i)x̂−|A(i)|ϵ+c(i) and z(i) = A

(i)
x̂+ |A(i)|ϵ+c(i), i ∈ [L], where A(i) ∈ Rni×n0 and

c(i) ∈ Rni . Once concretized, the post-activation neuron, ẑ, at intermediate layers may be bounded
using the Planet relaxation as described in equation equation 10. Bound propagation is not limited
to feed-forward networks, and readers are deferred to the LiRPA framework in Xu et al. (2020a)
which describes how bound propagation algorithms may be applied to more general networks.

In a feedforward network, A(i),A
(i)
, c(i) and c(i) must be derived for every linear layer preceding

an activation layer, as well as the final layer of the network. In order to derive the hyperplane
coefficients (A(i)/A

(i)
) and biases (c(i)/c(i)), at this ith layer, all preceding activation layers must

have already had their inputs bounded. The following lemma describes how a ReLU activation layer
may be relaxed which will be useful for defining bounding hyperplanes, A(i),A

(i)
, c(i) and c(i) .

(Relaxation of a ReLU layer in CROWN). Given the lower and upper bounds of z(i−1)
j , denoted

as l
(i−1)
j and u

(i−1)
j , respectively, the linear layer proceeding the ReLU activation layer may be

lower-bounded element-wise by the following inequality:

z(i) = W (i)σ(z(i−1)) ≥W (i)D(i−1)z(i−1) +W (i)b(i−1) (12)

where D(i−1) is a diagonal matrix with shape Rni−1×ni−1 whose off-diagonal entries are 0, and
on-diagonal entries are defined as:

D
(i−1)
j,j :=



1, l
(i−1)
j ≥ 0

0, u
(i−1)
j ≤ 0

α
(i−1)
j , l

(i−1)
j < 0 < u

(i−1)
j and W ≥ 0

u
(i−1)
j

u
(i−1)
j −l

(i−1)
j

, l
(i−1)
j < 0 < u

(i−1)
j and W < 0

(13)

and b
(i−1)
j is a vector with shape Rni−1 whose elements are defined as:

b
(i−1)
j :=


0, l

(i−1)
j > 0 or u(i−1)

j ≤ 0

0, l
(i−1)
j < 0 < u

(i−1)
j and W ≥ 0

− u
(i−1)
j l

(i−1)
j

u
(i−1)
j −l

(i−1)
j

, l
(i−1)
j < 0 < u

(i−1)
j and W < 0

(14)

In the above definitions, α(i−1)
j is a parameter in range [0, 1] and may be fixed or optimized as in

Xu et al. (2020b).

For the jth ReLU at the (i− 1)th layer, it’s result may be bounded as follows:

α
(i−1)
j z

(i−1)
j ≤ σ(z

(i−1)
j ) ≤

u
(i−1)
j

u
(i−1)
j − l

(i−1)
j

(z
(i−1)
j − l

(i−1)
j ). (15)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The right-hand side holds as this is the Planet-relaxation. For the left-hand side, we first consider
when z

(i−1)
j ≤ 0. For every input in this range, the result of the ReLU is σ(z(i−1)

j ) = 0. α(i−1)
j z

forms a line for which inputs in this range will always produce a non-positive result when α
(i−1)
j ∈

[0, 1]. For inputs in the range z
(i−1)
j ≥ 0, the result of the ReLU is σ(z(i−1)

j ) = z
(i−1)
j . This result

is never exceeded by α
(i−1)
j z

(i−1)
j when α

(i−1)
j ∈ [0, 1].

When the result, σ(z(i−1)
j ), is multiplied by a scalar such as W , a valid lower-bound of Wσ(z

(i−1)
j )

requires a lower bound on σ(z
(i−1)
j ) when W ≥ 0, and an upper bound on σ(z

(i−1)
j ) when W < 0.

Such lower and upper bounds are indeed produced by D
(i−1)
j,j and b

(i−1)
j , whose definitions are

derived from the inequality displayed in equation equation 15. This concludes the proof.

Lemma B.1 suggests a recursive approach to bounding a neural network as the bounds at the ith

layer depends on the bounds of the layer preceding it due to the dependence on l
(i−1)
j and u

(i−1)
j .

This is indeed the case, and we may define our hyperplane coefficients as A(i) = Ω(i,1)W (1) where

Ω(i,k) :=

{
W (i)D(i−1)Ω(i−1), i > k

I, i = k
(16)

To collect the remaining terms, we set c(i) =
∑i

k=2

(
Ω(i,k)W (k)b(k−1)

)
+
∑i

k=1

(
Ω(i,k)b(k)

)
. To

obtain an upper bound, Lemma B.1 and its proof may be adjusted accordingly where appearances
of the inequalities W (i) ≥ 0 and W (i) < 0 are flipped. In doing so, we may repeat this recursive
process in order to obtain A

(i)
and c(i).

Though we have described how a ReLU feedforward network may be bounded, appropriately updat-
ing the definitions of D(i) and b(i) allows feedforward networks with general activation functions
(that act element-wise) to be bounded. Such a general formulation is described in Zhang et al. (2018)
that is similar to the template described above, and goes into further detail on how this formulation
may be extended to quadratic bound propagation.

C IMPLEMENTATIONS

C.1 MESH METADATA

Bound computation is achieved via auto LiRPA, and geometry processing, including voxel trimming
and union, is completed via Trimesh et al. (2019). The number of vertices and faces are kept at
the same level for fairness (see Appendix). We have four objects encoded with neural SDF: fox,
cat, koala, and tree. The fox SDF is a pre-trained one from the codebase of Sharp and Jacobson
(2022), and the other three were trained with the training script provided by Sharp and Jacobson
(2022), using training data from Stein (2024). In Tables 5, 7, 9, and 17, we present the max mesh
resolution (Res.), total bounding mesh construction time in seconds (Time), bounding mesh type
(I/O for inner/outer), number of mesh vertices (Vertices), number of mesh faces (Faces), memory
cost in MB (Mem.), maximum and minimum signed distance (Max SD and Min SD) from mesh
surface samples to the bounded surface, and mean unsigned distance (Mean D) from mesh surface
samples to the bounded surface. In addition, for AdaptiveShells, we present the aforementioned
metrics with the minimum dilation/erosion extent (DE) required to achieve empirical robustness
in Tables 6, 8, 10, and 18. The minimum robust dilation and erosion extents are grid-searched in
space [0.001, 0.1] with step size 0.001 until 10000 random samples from the outer mesh surface
have positive signed distance to the implicit surface and the same number of samples from the inner
mesh surface have negative signed distance. For GIOM, mesh construction time take into account
the whole process of bound computation, voxel trimming, and voxel union. Accordingly, mesh
construction time for AdaptiveShells includes time spent on SDF grid computation and marching
cubes mesh extraction.
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Table 5: Ablation of fox object GIOM on resolution

Res. Time I/O Verticecs Faces Mem. Max SD Min SD Mean D

1283 38.7 I 1.12E+05 2.24E+05 3.8 -2.12E-04 -3.99E-02 5.77E-03
O 1.37E+05 2.75E+05 4.7 3.55E-02 5.02E-05 4.05E-03

2563 89.3 I 3.54E+05 7.09E+05 12.2 -2.26E-05 -1.42E-02 1.54E-03
O 3.95E+05 7.91E+05 13.6 1.12E-02 2.12E-05 1.18E-03

I 6.47E+05 1.30E+06 22.2 -1.38E-05 -4.28E-03 1.02E-03
5123 159.5 O 7.09E+05 1.42E+06 24.3 3.57E-03 9.61E-06 7.63E-04

Table 6: Ablation of fox object AdaptiveShells on resolution

DE Res. Time I/O Vertices Faces Mem. Max SD Min SD Mean D

0.009 1283 0.3 I 1.20E+04 2.40E+04 0.4 -3.29E-03 -1.65E-02 9.33E-03
O 1.63E+04 3.25E+04 0.6 1.41E-02 9.26E-04 8.72E-03

0.004 2563 1.9 I 5.38E+04 1.08E+05 1.8 -1.14E-03 -7.27E-03 4.08E-03
O 6.14E+04 1.23E+05 2.1 6.59E-03 6.44E-04 3.92E-03

0.002 5123 14.1 I 2.25E+05 4.49E+05 7.7 -7.02E-04 -3.45E-03 2.02E-03
O 2.40E+05 4.79E+05 8.2 3.21E-03 2.68E-04 1.98E-03

I 9.16E+05 1.83E+06 31.4 -2.01E-04 -1.69E-03 1.01E-030.001 10243 131.2 O 9.46E+05 1.89E+06 32.5 1.49E-03 3.22E-04 9.95E-04

Table 7: Ablation of tree object GIOM on resolution

Res. Time I/O Verticecs Faces Mem. Max SD Min SD Mean D

1283 54.4 I 1.39E+05 2.79E+05 4.8 -4.16E-04 -8.07E-02 1.12E-02
O 1.97E+05 3.94E+05 6.8 6.05E-02 7.69E-05 6.93E-03

2563 138.7 I 5.83E+05 1.17E+06 20.0 -3.63E-05 -4.64E-02 2.66E-03
O 6.34E+05 1.27E+06 21.8 4.96E-02 1.72E-05 1.76E-03

I 1.31E+06 2.62E+06 45.0 -6.68E-06 -4.35E-02 1.24E-03
5123 299.1 O 1.38E+06 2.77E+06 47.5 3.24E-02 4.72E-06 8.07E-04

Table 8: Ablation of tree object AdaptiveShells on resolution

DE Res. Time I/O Vertices Faces Mem. Max SD Min SD Mean D

0.01 1283 0.4 I 1.52E+04 3.04E+04 0.5 -3.07E-03 -1.95E-02 1.05E-02
O 2.40E+04 4.80E+04 0.8 1.87E-02 1.53E-03 9.59E-03

0.007 2563 2.7 I 6.80E+04 1.36E+05 2.3 -1.25E-03 -1.25E-02 7.11E-03
O 9.24E+04 1.85E+05 3.2 1.36E-02 1.85E-04 6.89E-03

0.005 5123 19.8 I 2.88E+05 5.77E+05 9.9 -9.57E-04 -8.84E-03 5.03E-03
O 3.58E+05 7.17E+05 12.3 8.05E-03 7.91E-04 4.97E-03

I 1.22E+06 2.44E+06 41.9 -7.07E-04 -5.25E-03 3.01E-030.003 10243 198.7 O 1.38E+06 2.77E+06 47.5 5.62E-03 6.93E-04 2.99E-03
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Table 9: Ablation of koala object GIOM on resolution

Res. Time I/O Verticecs Faces Mem. Max SD Min SD Mean D

1283 47.5 I 1.83E+05 3.67E+05 6.3 -8.20E-05 -5.61E-02 2.73E-03
O 2.06E+05 4.12E+05 7.1 3.82E-02 3.55E-05 2.01E-03

1283 85.3 I 3.66E+05 7.33E+05 12.6 -3.11E-05 -1.73E-02 1.42E-03
O 4.07E+05 8.15E+05 14.0 1.28E-02 2.07E-05 1.07E-03

5123 124.4 I 5.25E+05 1.05E+06 18.0 -2.56E-05 -1.47E-01 1.34E-03
O 5.76E+05 1.15E+06 19.8 4.68E-03 1.18E-05 9.62E-04

I 6.37E+05 1.28E+06 21.9 -6.42E-06 -4.30E-03 1.27E-03
10243 165.3 O 6.96E+05 1.39E+06 23.9 4.66E-03 1.02E-05 9.55E-04

Table 10: Ablation of koala object AdaptiveShells on resolution

DE Res. Time I/O Vertices Faces Mem. Max SD Min SD Mean D

0.008 1283 0.3 I 2.68E+04 5.36E+04 0.9 -2.51E-03 -1.48E-02 8.15E-03
O 2.98E+04 5.96E+04 1.0 1.36E-02 2.23E-04 7.85E-03

0.004 2563 2.1 I 1.11E+05 2.21E+05 3.8 -1.45E-03 -8.61E-03 4.04E-03
O 1.17E+05 2.33E+05 4.0 6.94E-03 5.19E-04 3.96E-03

0.002 5123 14.9 I 4.49E+05 8.98E+05 15.4 -3.33E-04 -3.88E-03 2.01E-03
O 4.61E+05 9.22E+05 15.8 3.21E-03 7.83E-05 1.99E-03

I 1.81E+06 3.62E+06 62.1 -3.11E-04 -1.81E-03 1.00E-030.001 10243 175.8 O 1.83E+06 3.67E+06 62.9 1.67E-03 1.45E-04 9.98E-04

Table 11: Ablation of cat object GIOM on resolution

Res. Time I/O Verticecs Faces Mem. Max SD Min SD Mean D

1283 36.6 I 1.22E+05 2.45E+05 4.2 -6.07E-05 -8.92E-02 3.60E-03
O 1.39E+05 2.78E+05 4.8 1.97E-02 3.12E-05 2.37E-03

2563 67.0 I 2.79E+05 5.58E+05 9.6 -3.77E-05 -8.56E-03 1.38E-03
O 3.11E+05 6.22E+05 10.7 7.89E-03 7.01E-06 1.01E-03

5123 100.1 I 4.14E+05 8.28E+05 14.2 -1.24E-05 -2.63E-02 1.18E-03
O 4.56E+05 9.13E+05 15.7 4.63E-03 8.62E-06 8.55E-04

I 5.07E+05 1.01E+06 17.4 -2.28E-06 -1.27E-02 1.15E-03
10243 123.3 O 5.57E+05 1.11E+06 19.1 4.89E-03 6.67E-06 8.46E-04

Table 12: Ablation of cat object AdaptiveShells on resolution

DE Res. Time I/O Vertices Faces Mem. Max SD Min SD Mean D

0.007 1283 0.3 I 1.41E+04 2.83E+04 0.5 -4.16E-04 -1.35E-02 7.23E-03
O 1.64E+04 3.28E+04 0.6 1.26E-02 1.98E-03 6.79E-03

0.003 2563 1.9 I 5.94E+04 1.19E+05 2.0 -4.17E-04 -5.58E-03 3.05E-03
O 6.33E+04 1.27E+05 2.2 5.44E-03 6.13E-04 2.94E-03

0.002 5123 14.0 I 2.41E+05 4.82E+05 8.3 -7.44E-04 -3.38E-03 2.01E-03
O 2.51E+05 5.03E+05 8.6 3.41E-03 1.01E-03 1.99E-03

I 9.76E+05 1.95E+06 33.5 -3.31E-04 -1.60E-03 1.00E-030.001 10243 126.9 O 9.97E+05 1.99E+06 34.2 1.75E-03 4.46E-04 9.96E-04
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Table 13: Ablation of skull object GIOM on resolution

Type Res. Time Vertices Faces Mem. Max SD Min SD Mean D

I 1.58E+05 3.15E+05 5.4 -4.42E-04 -1.06E-01 9.88E-03
1283 53.5 O 2.26E+05 4.52E+05 7.8 1.08E-01 2.74E-04 9.49E-03

I 6.82E+05 1.36E+06 23.4 -5.32E-05 -2.64E-02 2.29E-03
2563 140.3 O 8.02E+05 1.60E+06 27.5 5.16E-02 2.85E-05 2.05E-03

I 1.74E+06 3.48E+06 59.7 -1.16E-05 -4.96E-03 9.31E-04
5123 232.2 O 1.48E+06 2.95E+06 50.6 5.79E-03 1.77E-05 1.02E-03

Table 14: Ablation of skull object AdaptiveShells on resolution

DE Res. Time I/O Vertices Faces Mem. Max SD Min SD Mean D

0.008 1283 0.4 I 1.97E+04 3.94E+04 0.7 -3.40E-03 -1.50E-02 8.21E-03
O 2.83E+04 5.65E+04 1.0 1.54E-02 3.44E-04 7.43E-03

0.004 2563 2.9 I 9.77E+04 1.95E+05 3.4 -1.10E-03 -6.84E-03 4.09E-03
O 1.09E+05 2.19E+05 3.8 6.91E-03 1.87E-04 3.77E-03

0.002 5123 21.9 I 4.10E+05 8.20E+05 14.1 -7.19E-04 -3.20E-03 2.03E-03
O 4.31E+05 8.63E+05 14.8 3.33E-03 5.55E-04 1.93E-03

I 1.67E+06 3.34E+06 57.2 -4.82E-04 -1.58E-03 1.01E-030.001 10243 191.7 O 1.71E+06 3.42E+06 58.7 1.76E-03 3.89E-04 9.81E-04

Table 15: Ablation of lion statue object GIOM on resolution

Type Res. Time Vertices Faces Mem. Max SD Min SD Mean D

I 4.16E+05 8.32E+05 14.3 -4.68E-04 -1.94E-01 6.49E-03
1283 96.8 O 4.75E+05 9.49E+05 16.3 5.13E-02 4.15E-04 4.42E-03

I 1.42E+06 2.85E+06 48.9 -1.35E-04 -1.97E-02 1.30E-03
2563 282.8 O 1.52E+06 3.04E+06 52.2 1.38E-02 1.34E-04 1.16E-03

I 2.45E+06 4.91E+06 84.2 -2.29E-05 -5.71E-03 1.09E-03
5123 525.3 O 2.56E+06 5.13E+06 88.0 4.25E-03 1.72E-05 9.16E-04

Table 16: Ablation of lion statue object AdaptiveShells on resolution

DE Res. Time I/O Vertices Faces Mem. Max SD Min SD Mean D

0.008 1283 0.5 I 5.90E+04 1.18E+05 2.0 -1.76E-03 -1.61E-02 8.11E-03
O 6.24E+04 1.25E+05 2.1 1.39E-02 6.92E-04 7.93E-03

0.003 2563 2.7 I 2.42E+05 4.85E+05 8.3 -3.10E-04 -5.80E-03 3.02E-03
O 2.47E+05 4.95E+05 8.5 5.68E-03 5.34E-04 2.98E-03

0.002 5123 17.8 I 9.75E+05 1.95E+06 33.5 -8.70E-04 -3.32E-03 2.00E-03
O 9.88E+05 1.98E+06 33.9 3.06E-03 6.82E-04 1.99E-03

I 3.92E+06 7.83E+06 134.5 -5.48E-04 -1.44E-03 1.00E-030.001 10243 151.5 O 3.94E+06 7.88E+06 135.3 1.50E-03 5.36E-04 9.99E-04
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Table 17: Ablation of scorpion object GIOM on resolution

Type Res. Time Vertices Faces Mem. Max SD Min SD Mean D

I 2.33E+05 4.67E+05 8.0 -8.27E-05 -1.07E-01 7.38E-03
1283 55.3 O 2.91E+05 5.83E+05 10.0 4.22E-02 7.87E-05 4.90E-03

I 8.06E+05 1.61E+06 27.7 -5.10E-05 -1.46E-01 2.13E-03
2563 150.7 O 8.95E+05 1.79E+06 30.7 1.07E-02 2.40E-05 1.31E-03

I 1.56E+06 3.12E+06 53.6 -1.04E-05 -3.95E-02 1.09E-03
5123 320.6 O 1.70E+06 3.40E+06 58.4 3.89E-03 1.29E-05 7.61E-04

Table 18: Ablation of scorpion object AdaptiveShells on resolution

DE Res. Time I/O Vertices Faces Mem. Max SD Min SD Mean D

0.007 1283 0.4 I 2.79E+04 5.57E+04 1.0 -1.27E-03 -1.41E-02 7.42E-03
O 3.51E+04 7.02E+04 1.2 1.49E-02 3.15E-04 6.66E-03

0.004 2563 3.0 I 1.19E+05 2.38E+05 4.1 -1.23E-03 -7.23E-03 4.10E-03
O 1.35E+05 2.71E+05 4.6 6.65E-03 6.51E-04 3.91E-03

0.002 5123 22.1 I 4.94E+05 9.88E+05 17.0 -7.28E-04 -3.77E-03 2.02E-03
O 5.27E+05 1.05E+06 18.1 3.45E-03 5.90E-04 1.98E-03

I 2.02E+06 4.03E+06 69.2 -3.18E-04 -1.61E-03 1.01E-030.001 10243 186.2 O 2.08E+06 4.16E+06 71.5 1.51E-03 3.09E-04 9.94E-04

C.2 EXPERIMENT DETAILS

C.2.1 REAL-TIME RENDERING

Task Setup and Metrics. Given a pre-constructed Neural SDF and specified camera settings (position,
direction, and front-of-view (FOV) angle), our goal is to render high-resolution, high-fidelity images corre-
sponding to the input geometry. We evaluate our method using four pretrained neural SDFs representing the
fox, cat, koala, and tree models. Each SDF consists of 8 layers of width 64 (tree) or 32 (others). The fox SDF
is directly inherited from the open-source implementation in Sharp and Jacobson (2022), while the remaining
models were trained on meshes from Stein (2024). For rendering, we use the neural SDF as the exact geomet-
ric representation, and employ the bounding meshes solely to accelerate ray casting. Specifically, we (1) find
the intersection between each ray and the implicit surface with Alg. 2, and (2) compute the surface normal by
querying the neural SDF at the intersection point. We used PyTorch Paszke et al. (2019) for MLP inference and
Optix NVIDIA Corporation (2024) for the ray-mesh intersection. To quantitatively evaluate rendering quality,
we render 50 images per object at a resolution of 1024 × 1024 from 50 fixed camera positions spanning the
surface of a sphere centered on the object. We report SSIM, PSNR, and RMSE as image quality metrics, along
with FPS to evaluate rendering efficiency.
Baselines and Experiment Details. We compare against four baselines: sphere tracing Hart (1996),
affine-arithmetic-based interval tracing Sharp and Jacobson (2022), Adaptive Shells for SDFs, and 0-level set
approximation via marching cubes. Sphere tracing marches rays by the signed distance evaluated at the ray
head in each iteration and terminates when the absolute value falls below a small threshold. It can cause the
ray to graze near a complex surface, wasting compute on excessive samples. Interval tracing adjusts step size
dynamically based on whether the next step is safe, which is determined by the bounds computed via affine
arithmetic. Although this approach guarantees precision when the neural SDF is not exact, it still takes more
steps than necessary, especially into the empty space. Nonetheless, it is a state-of-the-art approach for rendering
with guaranteed precision. Adaptive shells are originally used for accelerating queries on NeRF, but we use
them here to denote inner and outer mesh extraction via dilation and erosion with marching cubes. The dilation
and erosion extents are controlled by the varying kernel size of Neus in the original work, accommodating both
solid and fluffy surfaces. Since we only use simple MLPs to encode uniformly solid surfaces, we manually tune
the dilation and erosion extents until the bounding meshes are sound and combine them with Alg. 2 as our third
baseline. The last baseline, 0 level set approximation via marching cubes (0 level MC), is a classic yet error-
prone approach. We can approximate the ray-surface intersection with ray-mesh intersection, but the inherent
lack in flexibility of marching cubes can often introduce missing volumes or artifacts, thereby obscuring the
rendering result.
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We adaptively split for at least 27 rounds for each object to construct GIOM and GIOM-Z, using an early stop
distance threshold of 0.001. We apply the same threshold to any baseline that it may concern, such as sphere
and interval tracing. The same value is used for the precision δ of Alg. 2.

C.2.2 PHYSICS SIMULATION

Task Setup and Metrics. We run particle collision and cloth simulation to demonstrate two dimensions
of the benefits of GIOM in physics simulation: efficiency and quality. In particle collision tasks, our goal is to
efficiently detect collision between the query body and tens of thousands of small spherical particles. We drop
a 64× 64× 16 particle grid on each object under gravity g = 9.81 from 2.5 meters above the ground, then we
measure the time spent on collision detection only. In cloth simulation tasks, we drop a piece cloth modeled
as a 30× 50 2-manifold particle grid onto a object and inspect the authenticity of the simulation. We run both
simulation tasks with NVIDIA Warp Macklin (2022). For the mesh-SDF continuous collision detection, we
use Pelletier-Guénette et al. (2025) as the baseline and enhance its broad phase triangle culling with GIOM.
Given a dynamic mesh colliding with a static SDF, our goal is to improve collision detection efficiency without
loss of robustness. We measure the time spent o collision detection as well as the number of triangles tested in
the narrow phase. All visual results are rendered with Blender Community (2023).

Baselines and Experiment Details. For particle collision, we compare our GIOM against two baselines:
voxel SDF and Axis-Aligned Bounding Box (AABB). Voxel SDF can be directly sampled from neural SDF.
Querying the former with the point involves only trilinear interpolation and saves the expensive call on a neural
network, boosting efficiency significantly. AABB can be used to further decrease bandwidth by filtering points
that can potentially collide with the query body. For cloth simulation, we compare against two baselines: voxel
SDF with Euler integrator, a real-time but less accurate approach, and voxel SDF with XPBD integrator, a slow
but refined approach. We adaptively split for up to 15 iterations to keep the bounding mesh simple because
complex bounding mesh can increase the filtering overhead. For both tasks, we simulate for 60 frames per
second and 64 substeps per frame. The cloth grid has cell dimension 0.05 × 0.05 and kinematics coefficients
ke = ka = 2.5e2, kd = 1.0e1. For mesh-SDF continuous collision detection, we used 60 simulation steps per
second with a friction coefficient of 0.45.

C.2.3 CONSTRUCTIVE SOLID GEOMETRY

Tasks Setup and Metrics. Given two SDFs, our goal is to reconstruct the signed distance field of their
CSG. The signed distance field should not only model the new border correctly but also be exact everywhere in
the space. We measure reconstruction time (in minutes) and quality (with L1-error) as well as the time to query
the reconstructed SDF (in milliseconds).

Baselines and Experiment Details. We compare our method against CSG-nSDF Marschner et al.
(2023a). CSG-nSDF is a state-of-the-art approach that models the CSG of SDFs with a neural SDF. By in-
tegrating critical geometric objectives into the training loss function, it remains one of the most accurate ap-
proximation of the exact signed distance field of CSG. We use the open-source CSG model on the union of a
square and a circle. We adaptively split for 18 iterations for the square and the circle. We accelerate closest
point queries with Warp kernels.
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C.3 ADDITIONAL FIGURES

(a) (b) (c)

Figure 9: Voxel trimming with inner (green) and outer (purple) bounding planes of a local surface
(gray) in Figure 9a. The inner and outer volumes are visualized as purple and green convex poly-
topes 9b. The region (light blue) between the bounding planes conservatively contains the local
isosurface in Figure 9c (i.e. VC
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Figure 10: Rendering quality (RMSE) vs speed (FPS) trade-off among all competing algorithms.
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(a) Skull NEG voxels. (b) Skull inner mesh. (c) Skull surface. (d) Skull outer mesh. (e) Skull UNK voxels.

(f) Lion NEG voxels. (g) Lion inner mesh. (h) Lion surface. (i) Lion outer mesh. (j) Lion UNK voxels.

(k) Scor. NEG voxels. (l) Scor. inner mesh. (m) Scor. surface. (n) Scor. outer mesh. (o) Scor. UNK voxels.

Figure 11: Visualization of GIOM with max resolution 5123. GIOM can produce sound inner
and outer bounding meshes at medium resolutions. The bounding meshes not only align well with
the geometric details of the bounded surfaces but are also tight—the geometric difference between
the inner and outer meshes is barely noticeable by human eyes. Thanks to voxel trimming 3.2,
the inner and outer meshes are visibly refined from NEG and UNK voxels. For geometries involving
uneven surfaces (lion statue), holes (skull), and narrow structures (scorpion), GIOM can still delivery
consistent performance. The surfaces (yellow) are approximated marching cubes with resolution
10243.
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