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Abstract

For a large class of feature maps we provide a
tight asymptotic characterisation of the test error
associated with learning the readout layer, in the
high-dimensional limit where the input dimen-
sion, hidden layer widths, and number of training
samples are proportionally large. This character-
ization is formulated in terms of the population
covariance of the features. Our work is partially
motivated by the problem of learning with Gaus-
sian rainbow neural networks, namely deep non-
linear fully-connected networks with random but
structured weights, whose row-wise covariances
are further allowed to depend on the weights of
previous layers. For such networks we also derive
a closed-form formula for the feature covariance
in terms of the weight matrices. We further find
that in some cases our results can capture fea-
ture maps learned by deep, finite-width neural
networks trained under gradient descent.

1. Introduction
Deep neural networks are the backbone of most successful
machine learning algorithms in the past decade. Despite
their ubiquity, a firm theoretical understanding of the very
basic mechanism behind their capacity to adapt to different
types of data and generalise across different tasks remains,
to a large extent, elusive. For instance, what is the relation-
ship between the inductive bias introduced by the network
architecture and the representations learned from the data,
and how does it correlate with generalisation? Despite the
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lack of a complete picture, insights can be found in recent
empirical and theoretical works.

On the theoretical side, a substantial fraction of the
literature has focused on the study of deep networks at
initialisation, motivated by the lazy training regime of
large-width networks with standard scaling. Besides the
mathematical convenience, the study of random networks at
initialisation have proven to be a valuable theoretical testbed
– allowing in particular to capture some empirically observed
behaviour, such as the double-decent (Belkin et al., 2019)
and benign overfitting (Bartlett et al., 2020) phenomena.
As such, proxys for networks at initialisation, such as the
Random Features (RF) model (Rahimi & Recht, 2007) have
thus been the object of considerable theoretical attention,
with their learning being asymptotically characterized in the
two-layer case (Goldt et al., 2021; 2020; Gerace et al., 2021;
Hu & Lu, 2022; Dhifallah & Lu, 2020; Mei & Montanari,
2022; Mei et al., 2022) and the deep case (Zavatone-Veth
et al., 2022; Schröder et al., 2023; Bosch et al., 2023a;
Zavatone-Veth & Pehlevan, 2023). With the exception of
(Gerace et al., 2021; Mel & Pennington, 2022) (limited
to two-layer networks) and (Zavatone-Veth & Pehlevan,
2023) (limited to linear networks), all the analyses for
non-linear deep RFs assume unstructured random weights.
In sharp contrast, the weights of trained neural networks
are fundamentally structured - restricting the scope of these
results to networks at initialization.

Indeed, an active research direction consists of empirically
investigating how the statistics of the weights in trained neu-
ral networks encode the learned information, and how this
translates to properties of the predictor, such as inductive
biases (Thamm et al., 2022; Martin & Mahoney, 2021). Of
particular relevance to our work is a recent observation by
(Guth et al., 2023) that a random (but structured) network
with the weights sampled from an ensemble with matching
statistics can retain a comparable performance to the origi-
nal trained neural networks. In particular, for some tasks it
was shown that second order statistics suffices – defining a
Gaussian rainbow network ensemble.

Our goal in this manuscript is to provide an exact asymp-
totic characterization of the properties of Gaussian rainbow
networks, i.e. deep, non-linear networks with structured
random weights. Our main contributions are:
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• We derive a tight asymptotic characterization of the test er-
ror achieved by performing ridge regression with Lipschitz-
continuous feature maps, in the high-dimensional limit
where the dimension of the features and the number of
samples grow at proportional rate. This class of feature
maps encompasses as a particular case Gaussian rainbow
network features.
• The asymptotic characterization is formulated in terms
of the population covariance of the features. For Gaussian
rainbow networks, we explicit a closed-form expression
of this covariance, formulated as in the unstructured case
(Schröder et al., 2023) as a simple linear recursion depend-
ing on the weight matrices of each layer. These formulae
extend similar results of (Cui et al., 2023; Schröder et al.,
2023) for independent and unstructured weights to the case
of structured –and potentially correlated– weights.
• We empirically find that our theoretical characterization
captures well the learning curves of some networks trained
by gradient descent in the lazy regime.

Code The code for the numerical experiments described
in Appendix C is openly available in this repository.

Related works — Random features (Rfs) were intro-
duced in (Rahimi & Recht, 2007) as a computationally
efficient way of approximating large kernel matrices. In
the shallow case, the asymptotic spectral density of the
conjugate kernel was derived in (Liao & Couillet, 2018;
Pennington & Worah, 2019; Benigni & Péché, 2021). The
test error was on the other hand characterized in (Mei &
Montanari, 2022; Mei et al., 2022) for ridge regression, and
extended to generic convex losses by (Gerace et al., 2021;
Goldt et al., 2021; Dhifallah & Lu, 2020), and in (Liang
& Sur, 2022; Loureiro et al., 2022; Bosch et al., 2023b)
for other penalties. RFs have been studied as a model for
networks in the lazy regime, see e.g. (Ghorbani et al., 2019;
2021; Yehudai & Shamir, 2019; Refinetti et al., 2021). The
role of structure in the RF weights was discussed in (Gerace
et al., 2024a) for rotationally invariant weights and (Mel &
Pennington, 2022) for anisotropic Gaussian weights;
Deep RFs – Recent work have addressed the problem of
extending these results to deeper architectures. In the case
of linear networks, a sharp characterization of the test er-
ror is provided in (Zavatone-Veth et al., 2022) for the case
of unstructured weights and (Zavatone-Veth & Pehlevan,
2023) in the case of structured weights. For non-linear RFs,
(Schröder et al., 2023) provides deterministic equivalents
for the sample covariance matrices, and (Schröder et al.,
2023; Bosch et al., 2023a) provide a tight characterization
of the test error. The recent work of (Guth et al., 2023)
provides empirical evidence that for a given trained neu-
ral network, a resampled network from an ensemble with
matching statistics (rainbow networks) might achieve com-
parable generalization performance, thereby partly bridging

the gap between random networks and trained networks.

2. Setting
Consider a supervised learning task with training data
(xi, yi)i∈[n]. In this manuscript, we are interested in study-
ing the statistics of linear predictors fθ(x) = 1√

pθ
⊤φ(x) for

a class of fixed feature maps φ : Rd → Rp and weights
θ ∈ Rp trained via empirical risk minimization:

θ̂λ = min
θ∈Rp

∑
i∈[n]

(yi − fθ(xi))
2
+ λ||θ||2. (1)

Of particular interest is the generalization error:

Egen(θ̂λ) = E
(
y − fθ̂λ(x)

)2
(2)

where the expectation is over a fresh sample from the same
distribution as the training data. More precisely, our results
will hold under the following assumptions.

Assumption 2.1 (Labels). We assume that the labels yi are
generated by another feature map φ∗ : R

d → Rk as

yi =
1√
k
θ⊤∗ φ∗(xi) + εi, (3)

where ε ∈ Rn is an additive noise vector (independent of
the covariates xi) of zero mean and covariance Σ := E εε⊤,
and θ∗ ∈ Rk is a deterministic weight vector.

Assumption 2.2 (Data & Features). We assume that the
covariates xi are independent and come from a distribution
such that

(i) the feature maps φ,φ∗ are centered1 in the sense
Eφ(xi) = 0, Eφ∗(xi) = 0,

(ii) the feature covariances

Ω := Eφ(xi)φ(xi)
⊤ ∈ Rp×p,

Ψ := Eφ∗(xi)φ∗(xi)
⊤ ∈ Rk×k,

Φ := Eφ(xi)φ∗(xi)
⊤ ∈ Rp×k,

(4)

have uniformly bounded spectral norm.
(iii) scalar Lipschitz functions of the feature matrices

X := (φ(x1), . . . , φ(xn)) ∈ Rp×n

Z := (φ∗(x1), . . . , φ∗(xn)) ∈ Rk×n (5)

are uniformly sub-Gaussian.

Assumption 2.3 (Proportional regime). The number of sam-
ples n and the feature dimensions p, k are all large and
comparable, see Theorem 3.1 later.

1This is a commonly used assumption which simplifies the
analysis. Our techniques also apply to the case of non-zero mean,
however doing so would add a rank-one component to the sample
covariance matrix, considerably complicating the final expressions
for the deterministic equivalents.
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Remark 2.4. We formulated Assumption 2.2 as a joint
assumption on the covariates distribution and the feature
maps. A conceptually simpler but less general condition
would be to assume that

(ii’) the covariates xi are Gaussian with bounded covari-
ance Ω0 := E xix

⊤
i

(iii’) the feature maps φ,φ∗ are Lipschitz-continuous

instead of Assumptions (ii) and (iii).

The setting above defines a quite broad class of problems,
and the results that follow in Section 3 will hold under these
generic assumptions. The main class of feature maps we are
interested in are deep structured feature models.
Definition 2.5 (Deep structured feature model). For any
fixed L ∈ N and dimensions d, p1, . . . , pL = p, let
φ1, . . . , φL : R → R be Lipschitz-continuous activation
functions |φl(a)−φl(b)| ≲ |a−b| applied entrywise, and let
W1 ∈ Rp1×d,W2 ∈ Rp2×p1 , . . . be deterministic weight
matrices with uniformly bounded spectral norms, ∥Wl∥ ≲ 1.
We then call

φ(x) := φL (WLφL−1 (· · ·W2φ1 (W1x))) . (6)

a deep structured feature model.

Note that eq. (6) defines a Lipschitz-continuous map2

φ : Rd → Rp, φ∗ : R
d → Rk and therefore if both φ,φ∗

are deep structured feature models (with distinct parameters
in general), then Assumption 2.2 is satisfied whenever the
feature maps φ,φ∗ are centered3 with respect to Gaussian
covariates xi. As hinted in the introduction we will be par-
ticularly interested in one sub-class of Definition 2.5 known
as Gaussian rainbow networks.
Definition 2.6 (Gaussian rainbow ensemble). Borrowing
the terminology of (Guth et al., 2023), we define a fully-
connected, L-layer Gaussian rainbow network as a ran-
dom variant of Definition 2.5 where for each ℓ the hidden-
layer weights Wℓ = ZℓC

1/2
ℓ are random matrices with

Zℓ ∈ Rpℓ+1×pℓ having zero mean and i.i.d. variance
1/pℓ Gaussian entries and Cℓ ∈ Rpℓ×pℓ being uniformly
bounded covariance matrices, which we allow to depend on
previous layer weights Z1, . . . , Zl−1.

Note that Gaussian rainbow networks above can be seen
as a generalization of the deep random features model
studied in (Schröder et al., 2023; Bosch et al., 2023a; Fan
& Wang, 2020), with the crucial difference that the weights
are structured.

Notations — For square matrices A ∈ Rn×n we denote
the averaged trace by ⟨A⟩ := n−1 TrA, and for rectangular

2∥φ(W x) − φ(W x′)∥2 =
∑

i|φ(w
⊤
i x) − φ(w⊤

i x′)|2 ≲∑
i|w

⊤
i (x− x′)|2 = ∥W (x− x′)∥2 ≲ ∥x− x′∥2

3It is sufficent that e.g. ϕl is odd, and xi is centered.

matrices A ∈ Rn×m we denote the Frobenius norm by
∥A∥2F :=

∑
ij |aij |2, and the operator norm by ∥A∥. For

families of non-negative random variables X(n), Y (n) we
say that X is stochastically dominated by Y , and write
X ≺ Y , if for all ϵ,D it holds that P (X(n) ≥ nϵY (n)) ≤
n−D for n sufficiently large. For a centered random vector
x ∈ Rd we denote its sub-Gaussian norm as ∥x∥ψ2

:=

infσ≥0{E exp⟨v,x⟩ ≤ exp
∥v∥2σ2

2 ∀ v ∈ Rd}.

3. Test error of Lipschitz feature models
Under Assumptions 2.1 and 2.2 the generalization error
from Eq. (2) is given by

Egen(λ) =
θ⊤∗ Ψθ∗
k

+
θ⊤∗ ZX

⊤GΩGXZ⊤θ∗
kp2

+
n

p

〈
X⊤GΩGXΣ

p

〉
− 2

θ⊤∗ Φ
⊤GXZ⊤θ∗
kp

,

(7)

in terms of the resolvent G = G(λ) := (XX⊤/p+ λ)−1.

Our main result is a rigorous asymptotic expression
for Eq. (7). To that end define, m(λ) to be the unique
solution to the equation

1

m(λ)
= λ+

〈
Ω
(
I +

n

p
m(λ)Ω

)−1
〉
, (8)

and define

M(λ) =
(
λ+

n

p
λm(λ)Ω

)−1

(9)

which is the deterministic equivalent of the resolvent,
M(λ) ≈ G(λ), see Theorem 3.3 later. The fact that Eq. (8)
admits a unique solution m(λ) > 0 which is continuous in
λ follows directly from continuity and monotonicity. More-
over, from

0 ≤
〈
Ω
(
I +

n

p
mΩ

)−1
〉

≤ min

{
⟨Ω⟩, rankΩ

n

1

m

}
we obtain the bounds

max

{
1

λ+ ⟨Ω⟩
,
1− rankΩ

n

λ

}
≤ m(λ) ≤ 1

λ
. (10)

We also remark that m(λ) depends on Ω only through its
eigenvalues ω1, . . . , ωp, while M(λ) depends on the eigen-
vectors. The asymptotic expression Eq. (12) for the general-
ization error derived below depends on the eigenvalues of Ω,
the overlap of the eigenvectors of Ω with the eigenvectors
of Φ, and the overlap of the eigenvectors of Ψ,Φ with θ∗.

Theorem 3.1. Under Assumption 2.1, Assumption 2.2 and
Assumption 2.3 for fixed λ > 0 we have the asymptotics

Egen(λ) = Ermt
gen (λ) +O≺

( 1√
n

)
, (11)
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in the proportional n ∼ k ∼ p regime, where

Ermt
gen (λ) :=

1

k
θ⊤∗

Ψ− n
pmλΦ(M + λM2)Φ⊤

1− n
p (λm)2⟨ΩMΩM⟩

θ∗

+ ⟨Σ⟩
(λm)2 np ⟨MΩMΩ⟩

1− n
p (λm)2⟨ΩMΩM⟩

.

(12)

In the general case of comparable parameters we have the
asymptotics with a worse error of4

1√
min{n, p, k}

(
1 +

max{n, p, k}
min{n, p, k}

)
.

Remark 3.2 (Relation to previous results). We focus on the
misspecified case as this presents the main novelty of the
present work. In the wellspecified case Z = X our model
essentially reduces to linear regression with data distribu-
tion x = φ(x). There has been extensive research on the
generalization error of linear regression, see e.g. in (Bach,
2024; Dobriban & Wager, 2018; Bartlett et al., 2021; Cheng
& Montanari, 2022) and the references therein.

(a) We confirm Conjecture 1 of (Loureiro et al., 2022)
under assumption 2.2. The expression for the error
term in Theorem 3.1 matches the expression obtained
in (Loureiro et al., 2022) for a Gaussian covariates
teacher-student model.

(b) Independently and concurrently to the current
work (Latourelle-Vigeant & Paquette, 2023) (par-
tially confirming a conjecture made in (Louart et al.,
2018b)) obtained similar results under different assump-
tions. Most importantly (Latourelle-Vigeant & Paquette,
2023) considers one-layer unstructured random feature
models and computes the empirical generalization error
for a deterministic data set, while we consider general
Lipschitz features of random data, and compute the
generalization error.

(c) In the unstructured random feature model (Mei et al.,
2022; Adlam & Pennington, 2020) obtained an expression
for the generalization error under the assumption that the
target model is linear or rotationally invariant.

The novelty of Theorem 3.1 compared to many of the previ-
ous works is, besides the level of generality, two-fold:

(i) We obtain a deterministic equivalent for the generaliza-
tion error involving the population covariance Φ and the
sample covariance XZ⊤ in the general misspecified set-
ting.

(ii) Our deterministic equivalent is anisotropic, allowing to
evaluate Eq. (7) for fixed targets θ∗ and structured noise
covariance Σ ̸= I .
4This allows to identify the leading order of the generalization

error as long as the ratio of the largest and smallest parameter is
much smaller than the square-root of the smallest one.

Some of the previous rigorous results on the generaliza-
tion error of ridge regression have been limited to the well-
specified case, X = Z, since in this particular case the
second term of Eq. (7) can be simplified to

XX⊤

p
GΩG

XX⊤

p
= (1− λG)Ω(1− λG). (13)

When computing deterministic equivalents for terms as
GΩG, some previous results have relied on the “trick” of
differentiating a generalized resolvent matrix rG(λ, λ′) :=
(XX⊤/p+ λ′Ω + λ)−1 with respect to λ′. Our approach
is more robust and not limited to expressions which can be
written as certain derivatives.

To illustrate Item (ii), the conventional approach in the lit-
erature to approximating e.g. the third term on the right
hand side of Eq. (7) in the case Σ = I would be to use the
cyclicity of the trace to obtain

1

p2
TrX⊤GΩGX =

1

p
TrG

XX⊤

p
GΩ

= ⟨GΩ⟩ − λ⟨G2Ω⟩.
(14)

Then upon using Eq. (8) and ⟨GΩ⟩ ≈ ⟨MΩ⟩, the first term
of Eq. (14) can be approximated by 1/(λm(λ))− 1, while
for the second term it can be argued that this approximation
also holds in derivative sense to obtain

⟨G2Ω⟩ = − d

dλ
⟨GΩ⟩ ≈ − d

dλ

1

λm(λ)
=
λm′(λ) +m(λ)

(λm(λ))2

By differentiating Eq. (8), solving for m′ and simplifying, it
can be checked that this result agrees with the second term
of Eq. (12) in the special case Σ = I . However, it is clear
that any approach which only relies on scalar deterministic
equivalents is inherently limited in the type of expressions
which can be evaluated. Instead, our approach involving
anisotropic deterministic equivalents has no inherent limi-
tation on the structure of the expressions to be evaluated.

An alternative to evaluating rational expressions of X,Z,
commonly used in similar contexts, is the technique of lin-
ear pencils (Adlam & Pennington, 2020; Latourelle-Vigeant
& Paquette, 2023). The idea here is to represent rational
functions of X,Z as blocks of inverses of larger random
matrices which depend linearly X,Z. The downside of
linear pencils is that even for simple rational expressions
the linearizations become complicated, sometimes even
requiring the use of computer algebra software for the
analysis5 In comparison we believe that our approach is
more direct and flexible.

5For instance (Adlam & Pennington, 2020) used block matrices
with up to 16× 16 blocks in order to evaluate the asymptotic test
error.
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3.1. Proof of Theorem 3.1

We present the proof of Theorem 3.1 in details in Ap-
pendix A. The main steps and ingredients for the proof
of Theorem 3.1 consist of the following:

Concentration: As a first step we establish concentration
estimates for Lipschitz functions of X,Z and its columns.
A key aspect is the concentration of quadratic forms in the
columns xi := φ(xi) of X:

|x⊤i Axi −Ex⊤i Axi| = |x⊤i Axi − TrΩA| ≺ ∥A∥F

which follows from the Hanson-Wright inequality (Adam-
czak, 2015a). The concentration step is very similar to
analagous considerations in previous works (Chouard, 2022;
Louart et al., 2018a) but we present it for completeness. The
main property used extensively in the subsequent analysis
is that traces of resolvents with deterministic observables
concentrate as

|⟨A[G(λ)−EG(λ)]⟩| ≺ ⟨|A|2⟩1/2

nλ3/2
. (15)

Anisotropic Marchenko-Pastur Law: As a second step
we prove an anisotropic Marchenko-Pastur law for the re-
solvent G, of the form:

Theorem 3.3. For arbitrary deterministic matrices A we
have the high-probability bound

|⟨(G(λ)−M(λ)A⟩| ≺ ⟨|A|2⟩
nλ3

, (16)

in the proportional n ∼ p regime6.

Remark 3.4. Tracial Marchenko-Pastur laws (case A = I
above) have a long history, going back to (Marčenko & Pas-
tur, 1967) in the isotropic case Ω = I , (Silverstein, 1995)
in the general case with separable covariance x =

√
Ωz

and (Bai & Zhou, 2008) under quadratic form concentration
assumption. Anisotropic Marchenko-Pastur laws under vari-
ous conditions and with varying precision have been proven
e.g. in (Rubio & Mestre, 2011; Chouard, 2022; Louart et al.,
2018b; Knowles & Yin, 2017).

For the proof of Theorem 3.3 the resolvent qG := (X⊤X/p+
λ)−1 ∈ Rn×n of the Gram matrix X⊤X plays a key role.
The main tool used in this step are the commonly used
leave-one-out identities, e.g.

Gxi = λ qGiiG−ixi, G−i :=
(∑
j ̸=i

xjx
⊤
j

p
+ λ

)−1

(17)

6See the precise statement in the comparable regime in Eq. (51)
later

which allow to decouple the randomness due the i-th column
from the remaining randomness. Such identities are used
repeatedly to derive the approximation

EG ≈
(n
p
λ⟨E qG⟩Ω+ λ

)−1

(18)

in Frobenius norm, which, together with the relation 1 −
λ⟨ qG⟩ = p

n

(
1−λ⟨G⟩

)
between the traces ofG and qG, yields

a self-consistent equation for ⟨ qG⟩. This self-consistent equa-
tion is an approximate version of Eq. (8), justifying the
definition of m. The stability of the self-consistent equation
then implies the averaged asymptotic equivalent

|m− ⟨E qG⟩| ≲ 1

nλ2
. (19)

and therefore by Eq. (18) finally

∥M −EG∥F ≲
1

n1/2λ3
, (20)

which together with Eq. (15) implies Theorem 3.3.

Compared to most previous anisotropic deterministic equiv-
alents as in (Knowles & Yin, 2017) we measure the error
of the approximation Eq. (16) with respect to the Frobe-
nius norm of the observable A. As in the case of unified
local laws for Wigner matrices (Cipolloni et al., 2022) this
idea renders the separate handling of quadratic form bound
unnecessary, considerably streamlining the proof. To illus-
trate the difference note that specializing A to be rank-one
A = xy⊤ in

|y⊤(G−M)x| = |Tr(G−M)A| ≺

{
∥A∥
⟨|A|2⟩1/2

results in a trivial estimate ∥x∥∥y∥ in the case of the spectral
norm, and in the optimal estimate ∥x∥∥y∥/√p in the case
of the Frobenius norm.

Anisotropic Multi-Resolvent Equivalents The main nov-
elty of the current work lies in Proposition A.4 which asymp-
totically evaluates the expressions on the right-hand-side
of Eq. (7). A key property of the deterministic equivalents is
that the approximation is not invariant under multiplication.
E.g. for the last term in Eq. (7) we have the approximations
G ≈ M and 1

nXZ
⊤ = 1

n

∑
xiz

⊤
i ≈ Φ, while for the

product the correct deterministic equivalent is

G
XZ⊤

n
≈ λmMΦ, (21)

i.e. the is an additional factor of mλ. In this case the addi-
tional factor can be obtained from a direct application of
the leave-one-out identity Eq. (17) to the product GXZ⊤

n ,
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but the derivation of the multi-resolvent equivalents re-
quires more involved arguments. When expanding the multi-
resolvent expression ⟨GAGB⟩ we obtain an approximative
self-consistent equation of the form

⟨GAGB⟩ ≈ ⟨MAMB⟩+ n

p
(mλ)2⟨MBMΩ⟩⟨GAGΩ⟩.

Using a stability analysis this yields a deterministic equiv-
alent for the special form ⟨GAGΩ⟩ which then can be used
for the general case. The second term of Eq. (7) requires
the most careful analysis due to the interplay of the multi-
resolvent expression and the dependency among Z,X .

4. Population covariance for rainbow networks
Theorem 3.1 characterizes the test error for learning using
Lipschitz feature maps as a function of the three features
population (cross-)covariances Ω,Φ,Ψ. For the particular
case where both the target and learner feature maps are
drawn from the Gaussian rainbow ensemble from Defini-
tion 2.6, these population covariances can be expressed in
closed-form in terms of combinations of products of the
weights matrices. Consider two rainbow networks

φ(x) = φL(WLφL−1(. . . φ1(W1x)))

φ∗(x) = rφ
rL(VrL rφ

rL−1(. . . rφ1(V1x)))
(22)

with depths L, rL. The approach we introduce here is
in theory capable of obtaining linear or polynomial
approximations to Ω,Φ,Ψ under very general assumptions.
However, for definiteness we focus on a class of correlated
rainbow networks in which we allow the k-th row of Wℓ

to be correlated only to the k-th row of Wℓ′ , Vℓ′ as this
allows for particularly simple expressions for the linearized
covariances7. Note that we explicitly allow for weights to
be correlated across layers.

Assumption 4.1 (Correlated rainbow networks). By sym-
metry we assume without loss of generality L ≤ rL. Further-
more, for all ℓ ≤ L ≤ rL, we assume

(a) All the internal widths pℓ of Wℓ, Vℓ agree,
(b) The rows wℓ, vℓ of Wℓ, Vℓ are i.i.d. with mean zero and

Cℓ := pℓEwℓw
⊤
ℓ ,

rCℓ := pℓE vℓv
⊤
ℓ ,

qCℓ := pℓEwℓv
⊤
ℓ ,

with ∥Cℓ∥+ ∥ rCℓ∥+ ∥ qCℓ∥ ≲ 1,
(c) Asymptotic orthogonality of the rows of Wℓ, Vℓ. Let

w,w′ be two independent copies of a row of Wℓ. Then,
⟨w,w′⟩ ≺ d−1/2, same for Vℓ,

(d) The rows of Wℓ, Vℓ are sub-Gaussian random vectors:

∥wℓ∥ψ2
+ ∥vℓ∥ψ2

= O(d−1/2), (23)
7The identity matrices in Eq. (24) are a direct consequence

of this assumption. In case of weight matrices with varying row-
norms or covariances across rows the resulting expression would
be considerably more complicated.

(e) Centered activation functions φℓ, rφℓ (see Assump-
tion 2.2).

Under Assumption 4.1 the linearized population covari-
ances can be defined recursively as follows:
Definition 4.2 (Linearized population covariances). Define
the sequence of matrices Ωlin

ℓ ,Φ
lin
ℓ ,Ψ

lin
ℓ by the recursions

Ωlin
ℓ = (κ1ℓ)

2WℓΩ
lin
ℓ−1W

⊤
ℓ + (κ∗ℓ )

2Ipℓ
Ψlin
ℓ = (κ̃1ℓ)

2VℓΨ
lin
ℓ−1V

⊤
ℓ + (rκ∗ℓ )

2Ipℓ
Φlin
ℓ = κ1ℓ κ̃

1
ℓWℓΦ

lin
ℓ−1V

⊤
ℓ + (qκ∗ℓ )

2Ipℓ ,

(24)

with Ωlin
0 = Ψlin

0 = Φlin
0 = Ω0 the input covariance. The

coefficients {κ1ℓ , κ̃1ℓ , κ∗ℓ , κ̃∗ℓ , qκ∗ℓ} are defined by the recursion

κ1ℓ := Eφ′
ℓ(Nℓ), rκ1ℓ := E rφ′

ℓ(
rNℓ) (25)

and

κ∗ℓ =
√

E[φℓ(Nℓ)2]− rℓ(κ1ℓ)
2

κ̃∗ℓ =

√
E[rφℓ( rNℓ)2]− r̃ℓ(κ̃1ℓ)

2

qκ∗ℓ =

√
E[φℓ(Nℓ)rφℓ( rNℓ)]− řℓκ1ℓrκ1ℓ ,

(26)

where Nℓ, rNℓ are jointly mean-zero Gaussian with EN2
ℓ =

rℓ, E rN2
ℓ = rrℓ, ENℓ rNℓ = qrℓ, with

rℓ = Tr[CℓΩ
lin
ℓ−1], rrℓ = Tr[ rCℓΨ

lin
ℓ−1], qrℓ = Tr[ qC⊤

ℓ Φ
lin
ℓ−1].

Finally, for L̃ ≥ ℓ ≥ L+ 1, define

Φlin
ℓ = rκ1ℓΦ

lin
ℓ−1V

⊤
ℓ , (27)

with still rκ1ℓ , rκ
∗
ℓ just as before, and Ψlin

ℓ with the same
recursion (24).
Conjecture 4.3. The populations covariances Ω,Φ,Ψ in-
volved in Theorem 3.1 can be asymptotically approximated
with the last iterates of the linear recursions of Definition
4.2, i.e.

∥Ω− Ωlin
L ∥F + ∥Ψ−Ψlin

L̃
∥F + ∥Φ− Φlin

L̃
∥F ≲ 1 (28)

Note that the linearization from Definition 4.2 also pro-
vides good approximation to the population covariances
Ωℓ,Φℓ,Ψℓ of the post-activations at intermediate layers ℓ.
The method we use to rigorously derive the linearizations
is in theory applicable to any depths, however the estimates
quickly become tedious. To keep the present work at a man-
ageable length we provide a rigorous proof of concept only
for the simplest multi-layer case.
Theorem 4.4. Under Assumption 4.1 with L = rL = 2, we
have

∥Ω1 − Ωlin
1 ∥F + ∥Ψ1 −Ψlin

1 ∥F + ∥Φ1 − Φlin
1 ∥F ≺ 1,

∥Ω2 − Ωlin
2 ∥F + ∥Ψ2 −Ψlin

2 ∥F + ∥Φ2 − Φlin
2 ∥F ≺ 1.
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Remark 4.5 (Comparison). The approach we take here is
somewhat different from previous works (Schröder et al.,
2023; Fan & Wang, 2020; Chouard, 2023) on (multi-layer)
random feature models. In these previous results, the de-
terministic equivalent for the resolvent was obtained using
primarily the randomness of the weights, resulting in rela-
tively stringent assumptions (Gaussianity and independence
between layers). This layer-by-layer recursive approach re-
sulted in a deterministic equivalent for the resolvent which is
consistent with a sample covariance matrix with linearized
population covariance. Here we take the direct approach
of considering feature models with arbitrary structured fea-
tures, and then linearize the population covariances in a
separate step for random features.

4.1. Proof of Theorem 4.4

We sketch the main tools used in the argument and we refer
the reader to Proposition B.13 and Theorem B.14 for the
formal proof. In the proof, we crucially rely on the theory of
Wiener chaos expansion and Stein’s method (see (Nourdin &
Peccati, 2012)). Gaussian Wiener chaos is a generalization
of Hermite polynomial expansions, which previously have
been used for approximate linearization (Fan & Wang, 2020;
Schröder et al., 2023) in similar contexts. The basic idea
is to decompose random variables F = F (x) which are
functions of the Gaussian random vector x, into pairwise
uncorrelated components

F = EF +
∑
p≥1

Ip

(EDpF

p!

)
, (29)

where Ip is a so called multiple integral (generaliz-
ing Hermite polynomials) and Dp is the p-th Malliavin
derivative. By applying this to the one-layer quantities
φ1(w

⊤x), φ1(u
⊤x) we obtain, for instance

Eφ1(w
⊤x)φ1(v

⊤x)

=
∑
p≥1

1

p!
Eφ

(p)
1 (w⊤x)Eφ

(p)
1 (u⊤x)⟨w, v⟩p, (30)

which for independent w, v we can truncate after p = 1,
giving rise to the linearization.

For the multi-layer case we combine the chaos expansion
with Stein’s method in order to prove quantitative central
limit theorems of the type

dW (F,N) ≲ E|EF 2 − ⟨DF,−DL−1F ⟩| (31)

for the Wasserstein distance dW , where

F := w⊤ϕ1(W x), N ∼ N (0,EF 2), (32)

and L−1 is the pseudo-inverse of the generator of the Orn-
stein–Uhlenbeck semigroup.

Figure 1. Test error for a target θ⊤∗ tanh(W∗x), when learning
with a four-layer Gaussian rainbow network with feature map
φ(x) = tanh(W3 tanh(W2 tanh(W1x))). All width were taken
equal to the input dimension d, and the regularization employed
is λ = 10−4. The student weights are correlated across layers,
with W1 = W2, and the covariance C3 of W3 depending on W1

as C3 = (W1W
⊤
1 + 1/2Id)−1. Target/student correlations are also

present, with Č1 = 1/2Id. The covariances C1, C2, C̃1 were finally
taken to have a spectrum with power-law decay, parametrized by
γ. All details are provided in App. C. Solid lines: theoretical
prediction of Theorem 3.1, in conjunction with the closed-form
expression for the features population covariance of Definition 4.2.
Circles : numerical simulations in d = 1000.

4.2. Discussion of Theorem 4.4

The population covariances thus admit simple approximate
closed-form expressions as linear combinations of products
of relevant weight matrices. These expressions general-
ize similar linearizations introduced in (Cui et al., 2023;
Schröder et al., 2023; Bosch et al., 2023a; Fan & Wang,
2020; Chouard, 2023) for the case of weights which are
both unstructured and independent, and iteratively build
upon earlier results for the two-layer case developed in (Mei
& Montanari, 2022; Gerace et al., 2021; Goldt et al., 2021;
Hu & Lu, 2022). In fact, the expressions leveraged in these
works can be recovered as a special case for Cℓ = C̃ℓ = Ipℓ
(isotropic weights) and Čℓ = 0 (independence). Impor-
tantly, note that possible correlation between weights across
different layers do not enter in the reported expressions. In
practice, we have observed in all probed settings the test
error predicted by Theorem 3.1, in conjunction with the
linearization formulae for the features covariance, to match
well numerical experiments.

Figure 1 illustrates a setting where many types of weights
correlations are present. It represents the learning curves
of a four-layer Gaussian rainbow network with feature
map tanh(W3 tanh(W2 tanh(W1x))), learning from a two-
layer target θ⊤∗ tanh(V x). To illustrate our result, we con-
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sider both target/student correlations qC1 = 1/2Id, and inter-
layer correlations W1 = W2. We furthermore took the
covariance of the third layer to depend on the weights of
the first layer, C3 = (W1W

⊤
1 + 1/2Id)−1. In order to have

structured weights, the covariances rC1, C1, C2 were chosen
to have a power-law spectrum. All details on the experi-
mental details and parameters are exhaustively provided in
Appendix C. Note that despite the presence of such non-
trivial correlations, the theoretical prediction of Theorem
3.1 using the linearized closed-form formulae of Def. 4.2 for
the features covariances (solid lines) captures compellingly
the test error evaluated in numerical experiment (crosses).

Finally, we note that akin to (Schröder et al., 2023), as
a consequence of the simple linear recursions, it follows
that the Gaussian rainbow network feature map φ shares
the same second moments, and thus by Theorem 3.1 the
same test error, as an equivalent linear stochastic network
φlin = ψL ◦ · · · ◦ ψ1, with

ψℓ(x) = κ1ℓWℓx+ κ∗ℓξℓ (33)

where ξℓ ∼ N (0, Ipℓ) a stochastic noise. This equivalent
viewpoint has proven fruitful in yielding insights on the im-
plicit bias of RFs (Schröder et al., 2023; Jacot et al., 2020)
and on the fundamental limitations of deep networks in the
proportional regime (Cui et al., 2023). In the Section 5 we
push this perspective further, by heuristically finding that the
linearization and Theorem 3.1 can also describe determinis-
tic networks trained with gradient descent in the lazy regime.

5. Linearizing trained neural networks
The previous discussion addressed feature maps associated
to random Gaussian networks. However, note that the lin-
earization itself only involves products of the weights matri-
ces, and coefficient depending on weight covariances which
can straightforwardly be estimated therefrom. The lineariza-
tion 4.2 can thus be readily heuristically evaluated for fea-
ture maps associated to deterministic trained finite-width
neural networks. As we discuss later in this section, the re-
sulting prediction for the test error captures well the learning
curves when re-training the readout weights of the network
in a number settings. Naturally, such settings correspond
to lazy learning regimes (Jacot et al., 2020), where the net-
work feature map is effectively linear, thus little expressive.
However, these trained feature map, albeit linear, can still
encode some inductive bias, as shown by (Ba et al., 2022)
for one gradient step in the shallow case. In this section,
we briefly explore these questions for fully trained deep
networks, through the lens of our theoretical results.

Fig. 2 contrasts the test error achieved by linear regression
(red), and regression on the feature map associated to a three-
layer student at initialization (green) and after 3000 epochs
of end-to-end training using full-batch Adam (Kingma &

Figure 2. Test error when training the readout layer only of a
relu-activated three-layer neural network during training, using
the Tensorflow implementation of the Adam (Kingma & Ba,
2014) optimizer, over 120 epochs with batch size 128. (dashed):
ridge regression. The data is sampled from a Gaussian distribution
with mean and variance matching the distribution of MNIST im-
ages. In all training procedures, the regularization parameter has
been numerically optimized. Solid lines represent the theoretical
prediction of Theorem 3.1, dots represent numerical experiments.
For more details we refer to Appendix C.3.

Ba, 2014) at learning rate 10−4 and weight decay 10−3 over
n0 = 1400 training samples (blue). For all curves, the read-
out weights were trained using ridge regression, with reg-
ularization strength optimized over using cross-validation.
Solid curves indicate the theoretical predictions of Thm. 3.1
leveraging the closed-form linearized formulae 4.2 for the
features covariance. Interestingly, even for the deterministic
trained network features, the formula captures the learn-
ing curve well. This observation temptingly suggests to
interpret the feature map φ(x) as the stochastic linear map

φg(x) =Weff.x+ C
1/2
eff.ξ (34)

where Weff. ∈ Rp×d is proportional to the product of all
the weight matrices

Weff. =

(
L∏
ℓ=1

κ1ℓ

)
ŴLŴL−1 . . . Ŵ1 (35)

and ξ ∼ N (0, Ip) is a stochastic noise colored by the co-
variance

Ceff. ≡
L−1∑
ℓ=1

(
κ∗ℓ

L∏
s=ℓ+1

κ1s

)2

ŴL . . . Ŵℓ+1Ŵ
⊤
ℓ+1 . . . Ŵ

⊤
L

+ (κ∗L)
2IpL . (36)

Note that the effective linear network (34) simply corre-
sponds to the composition of the equivalent stochastic linear
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layers (33). A very similar expression for the covariance
of the effective structured noise (36) appeared in (Schröder
et al., 2023) for the random case with unstructured and
untrained random weights. The effective linear model
(34) affords a concise viewpoint on a deep finite-width
non-linear network trained in the lazy regime. On an
intuitive level, during training, the network effectively
tunes the two matrices Weff., Ceff. which parametrize
the effective model (34). Indeed, the interplay between
these two matrices – both depending on the weights Ŵℓ

– defines the inductive bias of the trained network in the
high-dimensional regime, which ultimately determines
the generalization properties of the network. To see this
explicitly, consider the ridge regression problem on the
effective linear features in eq. (34). Changing variables
β = C

1/2
eff.θ/

√
p and assuming for simplicity that Ceff. is

invertible, this yields the following effective problem:

min
β∈Rp

∑
i∈[n]

(
yi − β⊤(C

−1/2
eff. Weff.xi + ξi)

)2
+ pλβ⊤C−1

eff.β.

In this basis, the effective linear features has two com-
ponents: an irreducible isotropic noise ξi and a term
C

−1/2
eff. Weff.xi controlling the (linear) representation of the

training data. A key difference with respect to the deep
unstructured case of (Schröder et al., 2023) is that the
effective ℓ2-regularization is anisotropic.

For a (typically employed) random isotropic initialization,
the initial network is equivalent to a unstructured dRF. In
particular, the unstructured dRF inductive bias (Jacot et al.,
2020) is not aligned to the target, treating all directions
equally. In terms of generalization, since the effective linear
features are noisy, this implies that the initial generalization
error is lower-bounded by the best ridge estimator (Schröder
et al., 2023). As the network is trained, the weights
Ŵℓ adapt to the target, implying that even in the regime
where the linearization in eq. (34) holds, the effective
linear problem eq. (34) can regularize different directions
adaptively, potentially outperforming the ridge regression
baseline. The fact that the optimal regularization for ridge
regression on linear feature maps might be anisotropic has
been explored in detail in (Wu & Xu, 2020).

The learning of beneficial inductive biases over training
is illustrated by Fig. 2 for synthetic data. Despite the fact
that all represented feature maps are effectively just linear
feature maps, they can still encode very different biases,
yielding different phenomenology. In particular, remark
that, when trained over a sufficient number of epochs, the
trained feature map outperforms by ridge regression on the
whole range of probed sample complexities – suggesting the
trained weights Weff., Ceff. learned some form of helpful
inductive bias, and allow for a more performant linear model.
A similar qualitative behaviour can also be observed in real
data sets, as illustrated in Fig.3.

Figure 3. Test error when re-training the readout layer only of an
Adam-optimized relu-activated three-layer neural network, trained
on a regression task on MNIST. Labels are +1 (resp. −1) for even
(resp. odd) digits. Solid lines represent the theoretical prediction
of Theorem 3.1, dots represent numerical experiments on the real
dataset. Different colors indicate different reguarization strengths
λ. Different panels correspond to different training times. All
details are provided in App. C.2.

6. Concluding remarks
Real data — We observe that the theoretical predictions
of Theorem 3.1 also capture the learning curves of trained
networks on some real datasets, when retraining the readout
only using ridge regression, provided the features covari-
ances Ω,Φ,Ψ are estimated from data. Fig. 3 contrasts the
theoretical characterization of Theorem 3.1 with numerical
experiments on MNIST (LeCun et al., 1998), for a three-
neural network optimized with Adam (Kingma & Ba, 2014),
revealing overall good agreement. All experimental details
are reported in Appendix C.2. Note that closely related
observations have also been made in (Loureiro et al., 2022).

Limitations — Our results provides an insight in the in-
ductive bias of trained deep rainbow networks. However, as
discussed in (Guth et al., 2023), this only captures a subset
of neural networks. Understanding the boundaries of appli-
cability of the Gaussian rainbow framework (and hence of
our theory) is an interesting problem. A recent line of work
investigating the properties of two-layer neural networks
after a single step of training (Ba et al., 2022; Dandi et al.,
2023; Moniri et al., 2023; Cui et al., 2024) provides a first
clue. These works show that with an aggressive learning rate
the hidden-layer weights can be approximated by a spiked
random matrix model. Investigating under which conditions
the asymptotic performance is equivalent to a structured
Gaussian model is an interesting venue for future research.
A similar problem was studied in the context of structured
inputs in (Pesce et al., 2023; Gerace et al., 2024b).
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Stéphane Mallat, Lenka Zdeborová for fruitful discussions
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and Zdeborová, L. Gaussian universality of per-
ceptrons with random labels. Phys. Rev. E, 109:
034305, Mar 2024a. doi: 10.1103/PhysRevE.109.
034305. URL https://link.aps.org/doi/10.
1103/PhysRevE.109.034305.

Gerace, F., Krzakala, F., Loureiro, B., Stephan, L.,
and Zdeborová, L. Gaussian universality of per-
ceptrons with random labels. Phys. Rev. E, 109:

034305, Mar 2024b. doi: 10.1103/PhysRevE.109.
034305. URL https://link.aps.org/doi/10.
1103/PhysRevE.109.034305.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari,
A. Limitations of lazy training of two-layers neural net-
work. In Wallach, H., Larochelle, H., Beygelzimer, A.,
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A. Anisotropic asymptotic equivalents
Recall from Assumption 2.2 that we assume that the feature matrices X,Z are Lipschitz-concentrated in the following sense
(considering the vectors space of rectangular matrices equipped with the Frobenius norm):
Definition A.1 (Lipschitz concentration). We say that a random vector x in a normed vector space X is Lipschitz-
concentrated with constant µ if there exists a constant C such that for all 1-Lipschitz functions f : X → R it holds
that

P(|f(x)−E f(x)| ≥ t) ≤ C exp
(
− t2

Cµ2

)
. (37)

A sufficent condition for Lipschitz concentration is that that the columns xi = φ(xi) are Lipschitz functions of Gaussian
random vectors xi of bounded covariance Ω0 := E xix

⊤
i , c.f. Remark 2.4. Indeed, let rφ(g) := φ(

√
Ω0g) and consider

standard Gaussian vectors gi, . . . , gn. We recall that standard Gaussian random vectors are Lipschitz-concentrated with a
constant which is independent of the dimension:
Theorem A.2 (Gaussian concentration). Let g be a random vector with independent standard Gaussian entries. Then g is
Lipschitz-concentrated with constant µ = 1.

Therefore we can stack the Gaussian vectors g1, . . . , gn into g ∈ Rnp and write X = X(g) = (rφ(g1), . . . , rφ(gn)). Then
X is Lipschitz-concentrated with dimension-independent constant by Theorem A.2 since for any Lipschitz f : Rp×n → R
it holds that g 7→ f(X(g)) is Lipschitz due to

|f(X(g))− f(X(g′))|2 ≤ ∥X(g)−X(g)′∥2F =
∑
i

∥rφ(gi)− rφ(g′i)∥2 ≲
∑
i

∥gi − g′i∥2 = ∥g − g′∥2. (38)

Resolvent concentration

It will be useful to introduce also the resolvent of the associated Gram matrix X⊤X/p which is given by

qG =
(X⊤X

p
+ λ

)−1

. (39)

The two resolvents are related by the identity

X⊤GX

p
=

1

p
X⊤

(XX⊤

p
+ λ

)−1

X =
X⊤X

p

(X⊤X

p
+ λ

)−1

= 1− λ qG. (40)

Both resolvents G, qG are Lipschitz-continuous with respect to the Frobenius norm due to the resovlent identity(XX⊤

p
+ λ

)−1

−
(Y Y ⊤

p
+ λ

)−1

=
(XX⊤

p
+ λ

)−1 (Y −X)Y ⊤ +X(Y −X)⊤

p

(Y Y ⊤

p
+ λ

)−1
(41)

and the bound
∥GX∥ ≤

√
p∥G∥+ pλ∥G2∥ ≤

√
2p/λ, (42)

implying

∥G−G′∥F ≤ 2
µ

λ3/2p1/2
∥X − Y ∥F , G :=

(XX⊤

p
+ λ

)−1

, G′ :=
(Y Y ⊤

p
+ λ

)−1

. (43)

Therefore we obtain that

|⟨A(G−EG)⟩| ≲ ⟨|A|2⟩1/2

λ3/2p
, |⟨A( qG−E qG)⟩| ≲ ⟨|A|2⟩1/2

λ3/2p1/2n1/2
(44)

from Theorem A.2,

|⟨A(G−G′)⟩| ≤ 1

p
∥A∥F ∥G−G′∥F ≤ 1

p
∥A∥F ∥G−G′∥F ≤ 2⟨|A|2⟩1/2

λ3/2p
∥X − Y ∥F . (45)

and the analogous estimate for qG− qG′. An important special case of eq. (44) is A being rank-one which yields

|x⊤Gy −Ex⊤Gy| ≲ ∥x∥∥y∥
λ3/2p1/2

, |x⊤ qGy −Ex⊤ qGy| ≲ ∥x∥∥y∥
λ3/2p1/2

(46)
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Quadratic form and norm concentration

The other important concentration result needed in the proof of Theorem 3.1 is the concentration of quadratic forms, see e.g.
Theorem 2.3 in (Adamczak, 2015b).

Theorem A.3. If x is a random vector of mean zero satisfying Lipschitz concentration with constant µ, and A is a
deterministic matrix, then

|x⊤Ax−Ex⊤Ax| ≲ µ2∥A∥F . (47)

Finally we need some upper bound on the operator norm of X/
√
p which can be obtained standard ϵ-net arguments,∥∥∥∥XX⊤

n
− Ω

∥∥∥∥ ≺ p

n
, (48)

see e.g. Remark 5.40 in (Vershynin, 2010).

Leave-one-out identities

Define the leave-one-out resolvent G−i = (λ+ p−1
∑
j ̸=i xjx

⊤
j )

−1 for which we have the identity

G = G−i −
1

p

G−ixix
⊤
i G−i

1 + x⊤i G−ixi/p
= G−i − λ

G−ixix
⊤
i G−i

p
qGii

Gxi = G−ixi

(
1− 1

p

x⊤i G−ixi
1 + x⊤i G−ixi/p

)
=

G−ixi
1 + x⊤i G−ixi/p

= λ qGiiG−ixi

(49)

where the denominators can be simplified using

− 1

1 + x⊤i G−ixi/p
=

x⊤i G−ixi
1 + x⊤i G−ixi/p

− 1 =
x⊤i Gxi
p

− 1 = −λ( qG)ii (50)

due to (40).

Anisotropic Marchenko-Pastur Law

We are now ready to prove Theorem 3.3, the anisotropic Marchenko-Pastur Law. In the comparable regime from Theorem 3.1
we will show that

|⟨[G(λ)−M(λ)]A⟩| ≺ ⟨|A|2⟩1/2

pλ3

(
1 +

p

n
+
n

p

)
. (51)

Proof of Theorem 3.3. For the resolvent G we obtain the equation

I =
λ

p

∑
i

(
(E qGii)EG−iΩ+E( qGii −E qGii)G−ixix

⊤
i

)
+ λEG

= EG
(
λ
n

p
⟨E qG⟩Ω+ λ

)
+
λ

p

∑
i

(
⟨E qG⟩(EG−i −EG)Ω +E( qGii −E qGii)G−ixix

⊤
i

) (52)

so that

EG =
(
λ
n

p
⟨E qG⟩Ω+ λ

)−1

+
λ

p

∑
i

(
⟨E qG⟩(EG−i−EG)Ω+E( qGii−E qGii)G−ixix

⊤
i

)(
λ
n

p
⟨E qG⟩Ω+ λ

)−1

. (53)

Using the bounds

∥G−ixix
⊤
i −EG−ixix

⊤
i ∥F ≤ ∥G−ixix

⊤
i −G−iΩ∥F + ∥(G−i −E−iG−i)Ω∥F ≺ 1

λ
+

1

p1/2λ3/2
, (54)

∥EG−i −EG∥F = λ| qGii|
∥∥∥∥G−ixix

⊤
i G−i

p

∥∥∥∥
F

≺ 1

p

(
∥G−iΩG−i∥F + ∥G−i(xix

⊤
i − Ω)G−i∥F

)
≺ 1

p1/2λ2
(55)
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and | qGii −E qGii| ≺ 1
p1/2λ3/2 from Eq. (46) we thus obtain∥∥∥EG(λ)−M(λ, ⟨E qG⟩)

∥∥∥
F
≺ n

p3/2λ3
, M(λ,m) :=

(
λ
n

p
mΩ+ λ

)−1

. (56)

Note that while M(λ, ⟨E qG⟩) is a deterministic matrix, it still depends on the expected trace of qG explicitly. However, we
claim that

|m− ⟨E qG⟩| ≲ m

pλ3
, (57)

proving

∥EG−M∥F ≲
1

p1/2λ3/2
+

n

p3/2λ3
+ ∥M(λ, ⟨E qG⟩)−M(λ,m)∥F ≲

1

p1/2λ3

(
1 +

n

p
+
p

n

)
. (58)

Now Eq. (51) follows directly together with the concentration estimate Eq. (44). w

Multi-Resolvent Deterministic Equivalents

The key for proving Theorem 3.1 is extending the anisotropic Marchenko-Pastur to mutli-resolvent expressions, which we
summarize in the following proposition. For simplicity we carry the precise error term in the comparable regime only in the
first statement, the other ones being similar.

Proposition A.4.

1. For any A ∈ Rk×p we have8

1√
kp

⟨GXZ⊤A⟩ = λmn√
kp

⟨MΦA⟩+O

(
n

k1/2p3/2λ3

(
1 +

n

p
+
p

n

))
(59)

2. For any A ∈ Rp×p we have more generally

⟨AGΩG⟩ = ⟨AMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩1/2

pλ7

)
(60a)

while for any A,B ∈ Rp×p we have

⟨AGBG⟩ = ⟨AMBM⟩+ n

p
(mλ)2

⟨AMΩM⟩⟨ΩMBM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩1/2∥B∥

pλ7

)
(60b)

3. For any A ∈ Rp×p we have〈
X⊤GΩGXA

p

〉
=

λ2m2⟨ΩMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

⟨A⟩+O

(
⟨|A|2⟩1/2

pλ7

)
(61)

4. Finally, for any A ∈ Rp×p we have

〈
ZX⊤GΩGXZ⊤A

kp

〉
= (mλ)2

n

k

〈
A
((

Ψ− 2npλmΦ⊤MΦ
)
⟨ΩMΩM⟩+ n

pΦ
⊤MΩMΦ

)〉
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩1/2

pλ7

) (62)

Before turning to the proof of Proposition A.4, we demonstrate how Proposition A.4 implies Theorem 3.1.

8In a slight abuse of notation we use the O(· · · ) notation in the sense of “≺”
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Proof of Theorem 3.1. By applying Proposition A.4 to the terms of Eq. (2) we obtain

Egen =
φ⊤
∗ Ψφ∗

k
+
φ⊤
∗ ZX

⊤GΩGXZ⊤φ∗

kp2
+
n

p

〈
X⊤GΩGXΣ

p

〉
− 2

φ⊤
∗ Φ

⊤GXZ⊤φ∗

kp

=
1

k
φ∗

(
Ψ+ (mλ)2

n

p

(
Ψ− 2npλmΦ⊤MΦ

)
⟨ΩMΩM⟩+ n

pΦ
⊤MΩMΦ

1− n
p (mλ)

2⟨ΩMΩM⟩
− 2λm

n

p
Φ⊤MΦ

)
φ∗

+ ⟨Σ⟩
(λm)2 np ⟨MΩMΩ⟩

1− n
p (λm)2⟨ΩMΩM⟩

+O

(
∥φ∗∥2

p1/2λ7

)
.

(63)

It remains to show that the matrix in the brackets can be simplified to the expression in Theorem 3.1. For the last term in the
numerator of the fraction we use

mλ
n

p
MΩM =M − λM2, (64)

so that the bracket, after simplifying, becomes

Ψ−mλnpΦ
⊤(M + λM2)Φ

1− n
p (mλ)

2⟨ΩMΩM⟩
, (65)

just as claimed.

Proof of Proposition A.4. We begin with the proof of Item 1. First note that ⟨GXZ⊤A⟩ is a Lipschitz function of the
Gaussian randomness d used to construct X and Z. Indeed, denoting G,X,Z evaluated at another realization of the
Gaussian randomness by G′, X ′, Z ′ we have

⟨GXZ⊤A⟩ − ⟨G′X ′(Z ′)⊤A⟩ = ⟨(G−G′)XZ⊤A⟩+ ⟨G′(X −X ′)Z⊤A⟩+ ⟨G′X ′(Z − Z ′)⊤A⟩

= O

(
∥X −X ′∥F ∥X∥∥Z∥⟨|A|2⟩1/2

λ3/2p
+

(∥X −X ′∥F ∥Z∥+ ∥X∥∥Z − Z ′∥F )⟨|A|2⟩1/2

pλ

)
,

(66)

so that on the high probability event (recall Eq. (48)) that ∥X∥ ≺ √
p, ∥Z∥ ≺

√
k it follows that ⟨GXZ⊤A⟩ is Lipschitz

with constant ⟨|A|2⟩1/2/pλ3/2. By estimating the complement of this high probability event trivially we can conclude∣∣∣∣ 1√
kp

⟨GXZ⊤A⟩ − 1√
kp

⟨EGXZ⊤A⟩
∣∣∣∣ ≺ ⟨|A|2⟩1/2

pλ3/2
. (67)

For the expectation we write out XZ⊤ and use eq. (49) we obtain

1√
kp
GXZ⊤ =

1√
kp

∑
i

Gxiz
⊤
i =

1√
kp

∑
i

λ qGiiGixiz
⊤
i . (68)

With

λ√
kp

E
∑
i

( qG)ii⟨Gixiz⊤i A⟩ =
λ√
kp

∑
i

(
(E qGii)⟨EGixiz⊤i A⟩+O

(√
Var qGii

√
Var⟨Gixiz⊤i A⟩

))
=

λ√
kp

∑
i

(E qGii)⟨EGiΦA⟩+O

(
n

k1/2p3/2λ2

)
=
λmn√
kp

⟨MΦA⟩+O

(
n

k1/2p3/2λ3

(
1 +

n

p
+
p

n

))
(69)

due to Eq. (58), Var qGii ≲ 1
pλ3 and

Var⟨G−ixiz
⊤
i A⟩ ≲

1

p2
E−i∥AG−i∥2F +Var−i⟨G−iΦA⟩ ≲

⟨|A|2⟩
pλ3

(70)
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by eq. (44), this concludes the proof of Item 1.

We now turn to the proof of Item 2. First note that by Lipschitz concentration we have

|⟨AGBG−EAGBG⟩| ≲ ∥A∥⟨|B|2⟩1/2

pλ5/2
(71)

due to

|⟨AGBG⟩ − ⟨AG′BG′⟩| ≤ |⟨A(G−G′)BG⟩|+ |⟨AG′B(G−G′)⟩| ≤ 2
∥A∥∥B∥F

pλ
∥G−G′∥F (72)

and eq. (43).

It is useful to expand G around M as in

G =M + λMΩG
n

p
⟨m− qG⟩ −M

XX⊤

p
G+ λMΩG

n

p
⟨ qG⟩ =M −M

XX⊤

p
G+ λ⟨ qG⟩MΩG

n

p
+O

(
1

pλ3

)
MΩG

(73)

using eq. (57) in the second step. Consequently we obtain

⟨GAGB⟩ = ⟨MAGB⟩ − ⟨MXX⊤

p
GAGB⟩+ nλ

p
⟨ qG⟩⟨MΩGAGB⟩+O

(
⟨|A|2⟩1/2⟨|B|2⟩1/2

pλ6

)
= ⟨MAMB⟩ − 1

p

∑
i

(⟨Mxix
⊤
i GAGB⟩ − λ qGii⟨MΩGAGB⟩) +O

(
∥B∥⟨|A|2⟩1/2

pλ6

)
= ⟨MAMB⟩ − λ

p

∑
i

qGii(⟨Mxix
⊤
i G−iAG−iB⟩ − ⟨MΩGAGB⟩) +O

(
∥B∥⟨|A|2⟩1/2

pλ6

)
+
λ2

p

∑
i

qG2
ii

x⊤i G−iAG−ixi
p

x⊤i G−iBMxi
p

,

(74)

using eq. (49) in the third step. The second term of eq. (74) can be estimated in expectation using

λ

p
E
∑
i

qGii⟨Mxix
⊤
i G−iAG−iB⟩ = λ

p

∑
i

(
(E qGii)⟨EMΩG−iAG−iB⟩+O

(√
Var qGii

√
Var⟨Mxix⊤i G−iAG−iB⟩

))
=
λ

p

∑
i

(E qGii)⟨EMΩGAGB⟩+O

(
n∥B∥⟨|A|2⟩1/2

p2λ4

)
=
λ

p
E
∑
i

qGii⟨MΩGAGB⟩+O

(
n∥B∥⟨|A|2⟩1/2

p2λ4

)
(75)

since Var qGii ≲ 1
pλ3 ,

Var⟨Mxix
⊤
i G−iAG−iB⟩ ≲ 1

p2
E−i∥G−iAG−iBM∥2F +Var−i⟨MΩG−iAG−iB⟩ ≲ ∥B∥2⟨|A|2⟩

pλ6
(1 +

1

pλ
). (76)

and

∥G−Gi∥ ≲
1

pλ2
, ⟨MΩG−iAG−iB⟩ = ⟨MΩGAGB⟩+O

(
∥B∥⟨|A|2⟩1/2

pλ4

)
. (77)

For the last term of Eq. (74) we have

x⊤i G−iAG−ixi
p

= ⟨ΩG−iAG−i⟩+O

(
1

p
∥G−iAG−i∥F

)
= ⟨ΩGAG⟩+O(

⟨|A|2⟩1/2

p1/2λ2
)

x⊤i G−iBMxi
p

= ⟨ΩG−iBM⟩+O

(
1

p
∥G−iBM∥F

)
= ⟨ΩMBM⟩+O(

⟨|B|2⟩1/2

p1/2λ2
),

(78)
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so that with

E qG2
ii

x⊤i G−iAG−ixi
p

x⊤i G−iBMxi
p

= (E qG2
ii)
(
E
x⊤i G−iAG−ixi

p

)(
E
x⊤i G−iBMxi

p

)
+O

(
⟨|A|2⟩1/2⟨|B|2⟩1/2

pλ7

)
= (E qG2

ii)⟨EΩGAG⟩⟨EΩGBM⟩+O

(
⟨|A|2⟩1/2⟨|B|2⟩1/2

pλ7

)
(79)

and
1

p

∑
i

qG2
ii =

n

p
m2 + 2

n

p
m⟨ qG−m⟩+ 1

p

∑
i

( qGii −m)2 =
n

p
m2 +O

(
1

pλ5
+

n

p2λ3

)
(80)

we arrive at

λ2

p
E
∑
i

qG2
ii

x⊤i G−iAG−ixi
p

x⊤i G−iBMxi
p

=
n

p
(mλ)2⟨ΩMBM⟩⟨EΩGAG⟩+O

(
⟨|A|2⟩1/2⟨|B|2⟩1/2

pλ6

)
. (81)

Choosing B = Ω it follows that

⟨GAGΩ⟩(1− n

p
λ2m2⟨ΩMΩM⟩) = ⟨MAMΩ⟩+O

(
⟨|A|2⟩1/2

pλ6

)
, (82)

so that the final claim Item 2 follows upon division.

Turning to the proof of Item 3 we first note that by eq. (49) we have

E
(X⊤GΩGX

p

)
ii
= λ2 E qG2

ii⟨EΩG−iΩG−i⟩+O

(
1

p

√
Var qG2

ii

√
Varx⊤i G−iΩG−ixi

)
= λ2 E qG2

ii

⟨ΩMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
1

pλ7

)
,

(83)

so that by a Lipschitz concentration argument as in Eq. (71) we obtain for the diagonal part Ad of A = Ad +Ao that〈
X⊤GΩGX

p
Ad

〉
=

λ2m2⟨ΩMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

⟨Ad⟩+O

(
⟨|Ad|2⟩1/2

pλ7

)
. (84)

For the off-diagonal part we use eq. (49) twice to obtain(X⊤GΩGX

p

)
ij
=
λ2 qGii qGjj

p
x⊤i G−iΩG−jxj

=
λ2 qGii qGjj

p
x⊤i G−ijΩG−ijxj +

λ4 qG2
ii

qG2
jj

p3
x⊤i G−ijxjx

⊤
j G−ijΩG−ijxix

⊤
i G−ijxj

− λ3 qG2
ii

qGjj
p2

x⊤i G−ijΩG−ijxix
⊤
i G−ijxj −

λ3 qGii qG2
jj

p2
x⊤i G−ijxjx

⊤
j G−ijΩG−ijxj .

(85)

The second term can be estimated trivially by p−3/2λ−4, while for the first, third and fourth terms the trivial estimates of
p−1/2λ−2, p−1λ−3 and p−1/2λ−3 do not suffice. For those we use the expectation and decompose qGii = m+ ( qGii −m),
qGjj = m+ ( qGjj −m) to obtain

E
λ2 qGii qGjj

p
x⊤i G−ijΩG−ijxj = E

λ2( qGii −m)( qGjj −m)

p
x⊤i G−ijΩG−ijxj = O

(
1

λ2p3/2

)
(86)

and

E
λ3 qG2

ii
qGjj

p2
x⊤i G−ijΩG−ijxix

⊤
i G−ijxj = E

λ3( qG2
ii

qGjj −m3)

p2
x⊤i G−ijΩG−ijxix

⊤
i G−ijxj = O

(
1

p3/2λ7/2

)
(87)
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using that, say, xj is centered and independent of xi, G−ij . By combining these estimates we obtain

E

∣∣∣∣(X⊤GΩGX

p

)
ij

∣∣∣∣ = O

(
1

p3/2λ4

)
, (88)

concluding the proof of Item 3.

We now turn to the proof of (4) which follows a similar strategy as the proof of Item 2. First we note that by a Lipschitz
concentration argument as in Eq. (71) it is sufficient to approximate the expectation of ZX⊤GΩGXZ⊤. By writing out
ZX⊤ and XZ⊤ and using eq. (49) twice we obtain

1

kp
ZX⊤GΩGXZ⊤ =

1

kp

∑
ij

zix
⊤
i GΩGxjz

⊤
j

=
1

kp

∑
i

(λ qGii)
2zix

⊤
i G−iΩG−ixiz

⊤
i +

1

kp

∑
i̸=j

(λ qGii)(λ qGjj)zix
⊤
i G−iΩG−jxjz

⊤
j .

(89)

For the first term of Eq. (89) we have

n

kp
E⟨Azix⊤i G−iΩG−ixiz

⊤
i ⟩ =

n

k2p
(E z⊤i Azi)(Ex

⊤
i G−iΩG−ixi) +O

(
n

k2p

√
Var z⊤i Azi

√
Varx⊤i G−iΩG−ixi

)
=
n

k
⟨AΨ⟩E⟨ΩG−iΩG−i⟩+O

(
n⟨|A|2⟩1/2

p1/2k3/2λ2

)
=
n

k
⟨AΨ⟩ ⟨ΩMΩM⟩

1− n
p (mλ)

2⟨ΩMΩM⟩
+O

(
n⟨|A|2⟩1/2

pkλ3
(1 +

√
p/k)

)
(90)

using Item 2 in the ultimate step. For the second term in the right hand side of Eq. (89) we expand both G−i and G−j
around G−ij using Eq. (49) to

⟨zix⊤i G−iΩG−jxjz
⊤
j A⟩ ≈

〈
zix

⊤
i

(
G−ij − λmG−ij

xjx
⊤
j

p
G−ij

)
Ω
(
G−ij −mλG−ij

xix
⊤
i

p
G−ij

)
xjz

⊤
j A

〉

=
〈
zix

⊤
i G−ijΩG−ijxjz

⊤
j A
〉
+ (λm)2

〈
zix

⊤
i G−ij

xjx
⊤
j

p
G−ijΩG−ij

xix
⊤
i

p
G−ijxjz

⊤
j A

〉

− λm

〈
zix

⊤
i G−ijΩG−ij

xix
⊤
i

p
G−ijxjz

⊤
j A

〉
− λm

〈
zix

⊤
i G−ij

xjx
⊤
j

p
G−ijΩG−ijxjz

⊤
j A

〉
.

(91)

Here in the first line we replaced ( qG−i)jj and ( qG−j)ii by m which results in an error term negligible compared to the other
error terms. The first term of Eq. (91) can, in expectation, be approximated by

E
〈
zix

⊤
i G−ijΩG−ijxjz

⊤
j A
〉
= E⟨Φ⊤G−ijΩG−ijΦA⟩ =

⟨Φ⊤MΩMΦA⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩1/2

pλ7

)
, (92)

using Item 2 in the ultimate step. The third term of Eq. (91) can be approximated by

λmE

〈
zix

⊤
i G−ijΩG−ij

xix
⊤
i

p
G−ijxjz

⊤
j A

〉
=

1

kp
λm(x⊤i G−ijΦAzi)(x

⊤
i G−ijΩG−ijxi)

= λmE−ij

(
⟨Φ⊤G−ijΦA⟩⟨ΩG−ijΩG−ij⟩+O

√Vari
x⊤i G−ijΦAzi

k

√
Vari

x⊤i G−ijΩG−ijxi
p

)
= λm

⟨Φ⊤MΦA⟩⟨ΩMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩
λ7p

(
1 +

√
p

k

))
(93)
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and the fourth term is exactly the same by symmetry. Here in the ultimate step we used

Vari
x⊤i G−ijΩG−ijxi

p
≲

1

p2
∥G−ijΩG−ij∥2F ≲

1

pλ2
, Vari

x⊤i G−ijΦAzi
k

≲
⟨|A|2⟩
λk

(94)

and Eq. (58) and Item 2. Finally, for the second term of Eq. (89) we use the simple bound〈
zix

⊤
i G−ij

xjx
⊤
j

p
G−ijΩG−ij

xix
⊤
i

p
G−ijxjz

⊤
j A

〉

=
1

kp2
(x⊤i G−ijxj)(x

⊤
j G−ijΩG−ijxi)(x

⊤
i G−ijxj)(z

⊤
j Azi)

= O

(
1

kp2
∥G−ij∥F ∥G−ijΩG−ij∥F ∥G−ij∥F ∥A∥F

)
= O

(
⟨|A|2⟩1/2

k1/2p1/2λ4

)
.

(95)

By combining all the above estimates we conclude the proof of Item 4.

B. Linearization of population covariance
B.1. Technical background

In this section we state several definition and propositions from (Nourdin & Peccati, 2012), that will be used further in our
arguments. Let x ∈ Rd be a mean-zero Gaussian vector with covariance ExxT = I . LetX = {X(v) := v⊤x, for v ∈ Rd}
be a collection of jointly Gaussian centered random variables. Note that EX(g)X(h) = g⊤h. The theory of Wiener chaos,
which will be introduced shortly, can be used to study functions on the probability space (Ω,F , P ), where F is generated by
X . For our needs, we only state the results for the explicit construction of X , however, note that the results from (Nourdin &
Peccati, 2012) are about general separable Hilbert spaces.

Following ((Nourdin & Peccati, 2012), Definition 2.2.3), we write Hn to denote the closed linear subspace of L2(Ω,F , P )
generated by the random variables of type Hn(X(h)), h ∈ Rd, ∥h∥ = 1, where Hn is the n-th Hermite polynomial. We
call Hn, the n-th Wiener chaos.

Definition B.1. Let L2(Ω,H⊗̃p) be the space of functions f : Rd×p → R, such that f is square-integrable and

f(a1, . . . , ap) =
1

p!

∑
σ∈Sp

f(aσ(1), . . . , aσ(p)). (96)

Let S denote the set of all random variables of the form f(X(h1), . . . , X(hm)), where f : Rm → R is a C∞-function.

Definition B.2 ((Nourdin & Peccati, 2012), Definition 2.3.2). Let F ∈ S and p ≥ 1 be an integer. The pth Malliavin
derivative of F (with respect to X) is the element of L2(Ω,H⊗̃p), defined by

DpF :=

m∑
i1,...,ip=1

∂pf

∂xi1 . . . ∂xip
(X(h1), . . . , X(hm))hi1 ⊗ . . .⊗ hip . (97)

Proposition B.3 ((Nourdin & Peccati, 2012), Proposition 2.3.7). Let ϕ : Rm → R be a continuously differentiable function
with bounded partial derivatives. Suppose that F = (F1, . . . , Fm) is a random vector whose components are functions with
derivatives in Lq(γ), for some q ≥ 1. Then, derivative of ϕ(F ) also lies in Lq(γ) and

Dϕ(F ) =

m∑
i=1

∂ϕ

∂xi
(F )DFi. (98)

Definition B.4 ((Nourdin & Peccati, 2012), Definition 2.5.2). We define δpu as the unique element of L2 satisfying

E[Fδp(u)] = E[⟨DpF, u⟩H⊗p ].

Definition B.5 ((Nourdin & Peccati, 2012), Definition 2.7.1). Let p ≥ 1 and f ∈ H⊗̃p. The pth multiple integral of f with
respect to X is defined by Ip(f) = δp(f).
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Proposition B.6 ((Nourdin & Peccati, 2012), Proposition 2.7.5). Fix integers 1 ≤ q ≤ p and f ∈ H⊗̃p and g ∈ H⊗̃q. We
have

E Ip(f)Iq(g) = δpqp!⟨f, g⟩H⊗p (99)

Theorem B.7 ((Nourdin & Peccati, 2012), Theorem 2.7.7). Let f ∈ H be such that ∥f∥H = 1. Then, for any integer p ≥ 1,
we have

Hp(X(f)) = Ip(f
⊗p), (100)

where Hp is the p-th Hermite polynomial.

Corollary B.8 ((Nourdin & Peccati, 2012), Corollary 2.7.8). Every F ∈ L2(Ω) can be expanded as

F = EF +

∞∑
p=1

Ip(fp), (101)

for some unique collection of kernels fp ∈ H⊗̃p, p ≥ 1. Moreover, if F ∈ C∞, then for all p ≥ 1,

fp =
1

p!
EDpF. (102)

Theorem B.9 ((Nourdin & Peccati, 2012), Theorem 5.1.5). Let F ∈ C∞ be a square-integrable function. Let EF = 0 and
EF 2 = σ2 > 0 and N ∼ N (0, σ2). Let h : R → R be C2 with ∥h′′∥∞ <∞. Then,

|Eh(N)−Eh(F )| ≤ 1

2
∥h′′∥∞ E

[
|⟨DF,−DL−1F ⟩ − σ2|

]
. (103)

Finally, we use the following multivariate version of the previous theorem.

Theorem B.10 ((Nourdin & Peccati, 2012), Theorem 6.1.2). Fix c ≥ 2, and let F = (F1, . . . , Fc) be a random vector
such that Fi ∈ D1,4 with EFi = 0 for any i. Let C ∈ Mc(R) be a symmetric non-negative definite matrix, and let
N ∼ N (0, C). Then, for any h : Rc → R belonging to C2 such that ∥h′′∥∞ <∞,

|Eh(F )−Eh(N)| ≤ c

2
∥h′′∥∞

√√√√ c∑
i,j=1

E
[
(Cij − ⟨DFj ,−DL−1Fi⟩H)2

]
(104)

Remark B.11. We believe there is a mistake in the original formulation of Theorem 6.1.2 in (Nourdin & Peccati, 2012). In
particular, originally the expression on the right hand side did not contain c term.

For our application, we need the following expansion: for smooth odd functions f , and matrix W ∈ Rk×d, we can write

f(Wx)i = f(w⊤
i x) =

∑
p≥1

E f (p)((WW⊤)
1/2
ii N)

p!
Ip(w

⊗p
i ), (105)

where wi ∈ Rd is the i-th row of W . Here without loss of generality we assume that x has i.i.d. entries, the general case of
covariance Ω0 then follows upon redefining W1 7→W1

√
Ω0. Let (fℓ) : R → R be a sequence of smooth functions, (W ℓ)

be a sequence of matrices. We define a sequence of vectors xi, such that x0 := x ∼ N (0, I), xℓ+1 = fℓ+1(W
ℓ+1xℓ).

Lemma B.12 (Weak correlation). Let b ≥ 1 be a fixed integer. Let h0, h1, . . . , hb be a collection of functions. Then, we
have that

E

[
h0(u

⊤f1(W
1x))

b∏
i=1

hi(w
⊤
i x)

]
= Eh0(u

⊤f1(W
1x))

b∏
i=1

Ehi(w
⊤
i x) +O(d−1/2). (106)

Proof. The fact that ui ≲ d−1/2 and f1(w⊤x) ≲ 1 together with perturbation analysis imply that

E

[
h0(u

⊤f1(W
1x))

b∏
i=1

hi(w
⊤
i x)

]
= E

h0
 ∑
k≥b+1

ukf1(w
⊤
k x)

 b∏
i=1

hi(w
⊤
i x)

+O(d−1/2). (107)
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Let A := h0

(∑
k≥b+1 ukf1(w

⊤
k x)

)
and B :=

∏b
i=1 hi(w

⊤
i x). Note that for any p ≥ 1, ⟨EDpA,EDpB⟩ constitutes of

products of ⟨wi, wj⟩, where i ̸= j. Each of these products is of order O(d−1/2) by our assumptions. Therefore, in total,
⟨EDpA,EDpB⟩ = O(d−p/2). This implies that

E

h0
 ∑
k≥b+1

ukf1(w
⊤
k x)

 b∏
i=1

hi(w
⊤
i x)

 = E

h0
 ∑
k≥b+1

ukf1(w
⊤
k x)

E

[
b∏
i=1

hi(w
⊤
i x)

]
+O(d−1/2). (108)

Similarly, it follows that E
∏b
i=1 hi(w

⊤
i x) =

∏b
i=1 Ehi(w

⊤
i x) +O(d−1/2) and finally, using perturbation analysis again,

we conclude that

E

[
h0(u

⊤f1(W
1x))

b∏
i=1

hi(w
⊤
i x)

]
= Eh0(u

⊤f1(W
1x))

b∏
i=1

Ehi(w
⊤
i x) +O(d−1/2) (109)

B.2. One layer linearization

Consider a mean-zero Gaussian random vector x ∈ Rd with covariance Exx⊤ = I , two weight matrices W ∈ Rk×d, V ∈
Rs×d and two smooth odd functions f, g applied entrywise to Wx, V x. We assume that rows of W and V are mean-zero
i.i.d. samples (wi, vi) ∼ (w, v), such that Cw := Eww⊤ and Cv := E vv⊤. Let Cwv = Ewv⊤ if s = k and Cwv = 0d×d
(all-zero matrix) otherwise.

Let Nw, Nv be jointly Gaussian mean-zero random variables, such that

EN2
w = TrCw, EN2

v = TrCv, ENwNv = TrCwv. (110)

Define
Φ1 = E f(Wx)g(V x)⊤,

Φlin
1 = (E f ′(Nw))(E g

′(Nv))WV ⊤ + [E f(Nw)g(Nv)− (E f ′(Nw))(E g
′(Nv))(ENwNv)]I.

(111)

Proposition B.13. We have that, with high probability, ∥Φ1 − Φlin
1 ∥F = O(1).

Proof. Using a Wiener chaos expansion (eq. (105)), we can write

f(Wx)i =
∑
p≥1

E f (p)((WW⊤)
1/2
ii N)

p!
Ip(Wx)i, g(V x)j =

∑
p≥1

E g(p)((V V ⊤)
1/2
jj N)

p!
Ip(V x)j (112)

where N ∼ N (0, 1) and Ip(Wx), Iq(V x) are random vectors with covariance

E Ip(Wx)Iq(V x)
⊤ = p!δpq(WV ⊤)⊙p (113)

with A⊙p denoting the p-th entrywise (Hadamard) power. Thus we have the identity

E f(Wx)ig(V x)j =
∑
p≥1

1

p!
(E f (p)((WW⊤)

1/2
ii N))(WV ⊤)pij(E g

(p)((V V ⊤)
1/2
jj N)). (114)

From Theorem A.3 (note that ∥w∥ψ2
∼ d−1/2 and same for v), and since TrCw ∼ 1, it follows that

(WW⊤)ii = TrCw +O(d−1/2), (V V ⊤)jj = TrCv +O(d−1/2), (115)

(WV ⊤)ij = δij TrCwv +O(d−1/2). (116)

From perturbation analysis, we can write

E f (p)((WW⊤)
1/2
ii N) = E f (p)(

√
TrCwN) +O(d−1/2) = E f (p)(Nw) +O(d−1/2), (117)

and similarly E g(p)((V V ⊤)
1/2
jj N) = E g(p)(Nv) +O(d−1/2).
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Off-diagonal entries Here, for p ≥ 2, we have that (WV ⊤)pij = O(d−p/2). Therefore,

E f(Wx)ig(V x)j = E f ′(Nw)g
′(Nv)(WV ⊤)ij +O(d−1) = (Φlin

1 )ij +O(d−1). (118)

Diagonal entries If s ̸= k, we have (WV ⊤)pii = O(d−p/2) for p ≥ 2, and thus obtain the same expression as in previous
case. When s = k, we can rewrite the infinite sum as

E f(Wx)ig(V x)i =
∑
p≥1

1

p!
(E f (p)((WW⊤)

1/2
ii N))(WV ⊤)pii(E g

(p)((V V ⊤)
1/2
ii N))

=
∑
p≥1

[E f (p)(
√
TrCwN)][E g(p)(

√
TrCvN)]

p!
(TrCwv)

p +O(d−1/2)

= E f(Nw)g(Nv) +O(d−1/2) = (Φlin
1 )ii +O(d−1/2).

(119)

Summing up over all entries, we conclude that ∥Φ1 − Φlin
1 ∥F = O(1).

Note that in case of independent Nv, Nw (i.e., independent v, w) the second term of Φlin
1 vanishes and in case of W = V ,

f ≡ g this reduces to
Φlin

1 = (E f ′(Nw))
2WW⊤ + [E f(Nw)

2 − (E f ′(Nw))
2 TrCw]I. (120)

B.3. Two layer case

We now consider the 2-layer example

f2(W
2f1(W

1x)), g2(V
2g1(V

1x)), (121)

with smooth odd9 functions f1, f2, g1, g2. We assume that the rows of W 1,W 2, V 1, V 2 are mean-zero i.i.d. samples
(w1

i , w
2
i , v

1
i , v

2
i ) ∼ (w1, w2, v1, v2), such that C1 := Ew1(w1)⊤, C2 := Ew2(w2)⊤, C̃1 := E v1(v1)⊤, and C̃1 :=

E v2(v2)⊤. Let Č1 = Ew1(v1)⊤ and Č2 = Ew2(v2)⊤. Let (N1, rN1) be a zero-mean jointly Gaussian random variables:

(N1, Ñ1) ∼ N
(
0,

(
Tr(C1) Tr(Č1)

Tr(Č1) Tr(C̃1)

))
, (122)

and define

Φ1 := E f1(W
1x)g1(V

1x)⊤,

Φlin
1 = (E f ′1(N1))(E g

′
1(

rN1))W
1(V 1)⊤ + [E f1(N1)g1( rN1)− (E f ′1(N1))(E g

′
1(

rN1))(EN1
rN1)]I.

(123)

Similarly, we define Ω1,Ω
lin
1 with V 1, g1, rN1 replaced by W 1, f1, N1 and we define Ψ1,Ψ

lin
1 with W 1, f1, N1 replaced by

V 1, g1, rN1 (see Definition 4.2). Next, let (N2, rN2) be a zero-mean jointly Gaussian random variables:

(N2, Ñ2) ∼ N
(
0,

(
Tr(C2Ω

lin
1 ) Tr(Č2Φ

lin
1 )

Tr(Č2Φ
lin
1 ) Tr(C̃2Ψ

lin
1 )

))
, (124)

and define

Φ2 := E f2(W
2f1(W

1x))g2(V
2g1(V

1x))⊤,

Φlin
2 = (E f ′2(N2))(E g

′
2(

rN2))W
2Φlin

1 (V 2)⊤ + [E f2(N2)g2( rN2)− (E f ′2(N2))(E g
′
2(

rN2))(EN2
rN2)]I,

(125)

and, again, similarly Ω2,Ω
lin
2 ,Ψ2, and Ψlin

2 .

Theorem B.14. We have that ∥Φ2 − Φlin
2 ∥F ≺ 1.

We split the proof into the following lemmas:

9For brevity we present the full proof in the case of odd activation functions. The argument for the general case (i.e., when only
assuming that activation functions are centered w.r.t. Gaussian distribution) is similar, but requires more tedious estimates.
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Lemma B.15 (Diagonal entries of Φ2). For possibly correlated vectors u, z, we have the bound∣∣∣E f2(u⊤f1(W 1x))g2(z
⊤g1(V

1x))−E f2(N2)g2(Ñ2)
∣∣∣ ≺ d−1/2. (126)

Lemma B.16 (Off-diagonal entries of Φ2). If u and z are independent, we have∣∣E f2(u⊤f1(W 1x))g2(z
⊤g1(V

1x))− (E f ′2(N1))(E g
′
2(N2))u

⊤Φlin
1 z
∣∣ ≺ d−1. (127)

Proof of Theorem B.14. The proof follows from Lemmas B.15 and B.16 upon summation over all entries.

Proof of Theorem 4.4. The proof follows from Proposition B.13 and Theorem B.14. Note that results for Ωi and Ψi can be
obtained using aforementioned results only for fi,W i and only for gi, V i respectively.

B.4. Proof of Lemma B.16

For simplicity of notation, we omit indices in W 1, V 1 and write W,V instead. We begin with showing that

E f2(u
⊤f1(Wx))g2(z

⊤g1(V x)) = E
[
f ′2(u

⊤f1(Wx))
]
E
[
g′2(z

⊤g1(V x))
]
u⊤Φ1z +O(d−1), (128)

for independent random vectors u and z. Recall that

f2(u
⊤f1(Wx)) =

∑
p≥1

1

p!
Ip

E
∑
π⊢[p]

f
(|π|)
2 (u⊤f1(Wx))

Ą

⊗
B∈π

(∑
ukf

(|B|)
1 (w⊤

i x)w
⊗|B|
i

)
︸ ︷︷ ︸

EDpf2(u⊤f1(Wx))

 , (129)

and that E f2(u⊤f1(Wx))g2(z
⊤g1(V x)) =

∑
p≥1

1
p! ⟨ED

pf2(u
⊤f1(Wx)),EDpg2(z

⊤g1(V x))⟩.

Let fp2 := E f
(p)
2 (u⊤f1(Wx)) and gp2 := E g

(p)
2 (z⊤g1(V x)). Lemma B.12 implies that〈

E

[
f
(|π|)
2 (u⊤f1(W

1x))
Ą

⊗
B∈π

(∑
k

ukf
(|B|)
1 (w⊤

i x)w
⊗|B|
i

)]
,

E

[
g
(|π′|)
2 (z⊤g1(V

1x))
Ą

⊗
B∈π′

(∑
k

ukf
(|B|)
1 (w⊤

i x)w
⊗|B|
i

)]〉
= f

|π|
2 g

|π′|
2

〈
Ą

⊗
B∈π

(∑
k

ukf
(|B|)
1 (w⊤

i x)w
⊗|B|
i

)
,
Ą

⊗
B′∈π′

(∑
k

zkg
(|B′|)
1 (v⊤i x)v

⊗|B′|
i

)〉
+O(d−1).

(130)

Using it, we can write (denoting fp1i := E f
(p)
1 (w⊤

i x) and gp1i := E g
(p)
1 (v⊤i x))

⟨EDpf2(u
⊤f1(Wx)),EDpg2(z

⊤g1(V x))⟩

=
∑

π,π′⊢[p]

∑
i1,...,i|π|
j1,...,j|π′|

f
|π|
2 g

|π′|
2

|π|∏
k=1

(
f
b(k)
1i uik

) |π′|∏
k=1

(
g
b′(k)
1i zjk

) 1

p!

∑
σ∈Sp

p∏
q=1

⟨wiπ(q)
, vjπ′(σ(q))

⟩+O(d−1), (131)

where b(k) and b′(k) denote the size of kth block in π and π′ respectively. The term π = π′ = {[p]} corresponds to∑
i,j

E f ′2(u
⊤f1(Wx))E g′2(z

⊤g1(V x))f
(p)
1 (w⊤

i x)g
(p)
1 (v⊤j x)uizj⟨wi, vj⟩p, (132)

which, after summing over p ≥ 1 is equal to

E
[
f ′2(u

⊤f1(Wx))
]
E
[
g′2(z

⊤g1(V x))
]
u⊤ E

[
f1(W

⊤x)g1(V
⊤x)

]
z. (133)

Therefore, it remains to show that all the other terms contribute in total O(d−1). Note that f |π|2 = O(1) and same for other
derivatives.
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Lemma B.17. Fix π, π′ ⊢ [p]. Then,

∑
i1,...,i|π|
j1,...,j|π′|

|π|∏
k=1

uik

|π′|∏
k=1

zjk

p∏
q=1

⟨wiπ(q)
, vjπ′(q)⟩ ≺ d

1
2 (min(|π|,|π′|)−p). (134)

Proof. Without loss of generality, it is enough to show upper bound ≺ d
1
2 (|π

′|−p). By separating terms that depend on ik for
k ∈ [|π|], we can rewrite

∑
i1,...,i|π|
j1,...,j|π′|

|π|∏
k=1

uik

|π′|∏
k=1

zjk

p∏
q=1

⟨wiπ(q)
, vjπ′(q)⟩ =

∑
j1,...,j|π′|

|π′|∏
k=1

zjk

|π|∏
k=1

∑
ik

uik
∏

q:π(q)=k

⟨wik , vjπ′(q)⟩

 . (135)

Note that
∑
ik
uik
∏
q:π(q)=k⟨wik , vjπ′(q)⟩ ≺ d−b(k)/2, where b(k) denotes the size of k-th block of π. Since

∑
k b(k) = p,

we bound the total expression by d|π
′|−|π′|/2−p/2 = d

1
2 (|π

′|−p).

Since we assume that f1, g1 are odd, terms with |π| = p − 1 are equal to zero, and same with |π′| = p − 1. When
min(|π|, |π′|) ≤ p − 2, the previous lemma implies O(d−1) total contribution. Therefore, the only case left is with
π = π′ = {{1}, {2}, . . . , {p}}. However, in this case it is easy to see that the final contribution is O(d−p/2).

Next, note that perturbation analysis implies that E f ′2(u
⊤f1(W

1x)) = E f ′2(N2) +O(d−1/2), same for g2. Finally, using
that ∥Φ1 − Φlin

1 ∥F ≺ 1, we obtain that∣∣∣E f2(u⊤f1(W 1x))g2(z
⊤g1(V

1x))− (E f ′2(N2))(E g
′
2(Ñ2))u

⊤Φlin
1 z
∣∣∣ ≺ d−1, (136)

which finishes the proof.

B.5. Proof of Lemma B.15

For convenience we restate several concentration results that follow from Assumption 4.1.
Lemma B.18. Let w1, . . . , wd be a collection of independent random vectors, such that for all ∥wi∥ψ2

= O(d−1/2) and
∥wi∥ = O(1) for all i ∈ [d]. Then

(i)
∑
i⟨w1, wi⟩ ≺ 1,

(ii)
∑
ij⟨w1, wi⟩⟨w1, wj⟩ ≺ 1.

Proof. Let X =
∑
i≥2⟨w1, wi⟩. Note that ∥X∥ψ2 = O(1), which, together with ∥w1∥ = O(1) implies (i).

For (ii), note that
∑
ij⟨w1, wi⟩⟨w1, wj⟩ = (

∑
i⟨w1, wi⟩)2 ≺ 1 using (i).

Let F1 = u⊤f1(W
1x) and F2 = z⊤g1(V

1x), where u, z may be correlated. For simplicity we omit indices in f1, g1,W 1,
and V 1. Using Wiener chaos expansion, we obtain

F1 = u⊤f(Wx) =
∑
p≥1

Ip

(
EDpF1

p!

)
=
∑
p odd

Ip

(∑
i

uiw
⊗p
i E f (p)(w⊤

i x)

p!

)
, (137)

where the last equality uses the fact that E f (p)(w⊤
i x) = 0 for even p. Similarly, we can write

F2 = z⊤g(V x) =
∑
p odd

Ip

(∑
i

ziv
⊗p
i E g(p)(v⊤i x)

p!

)
, (138)

and denote fpi := E f (p)(w⊤
i x), g

p
i := E g(p)(v⊤i x). Next, we compute

DF1 =
∑
odd p

pIp−1

(∑
i

uiw
⊗p
i fpi
p!

)
and −DL−1F2 =

∑
odd q

Iq−1

(∑
i

ziv
⊗q
i gqi
q!

)
(139)
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Lemma B.19.
E(⟨DF1,−DL−1F2⟩ −EF1F2)

2 = O(d−1). (140)

Proof. Since Ip−1(w
⊗p
i ) = Ip−1(w

⊗p−1
i )wi, we can write

⟨DF1,−DL−1F2⟩ =
∑
odd p
odd q

cpq
∑
i,j

⟨wi, vj⟩uizjfpi g
q
j Ip−1(w

⊗p−1
i )Iq−1(w

⊗q−1
j ). (141)

Using ((Nourdin & Peccati, 2012), Theorem 2.7.10), we obtain

Ip−1(w
⊗p−1
i Iq−1(w

⊗
j q − 1)

=

p∧q−1∑
r=0

⟨wi, vj⟩rcrpqIp+q−2(r+1)(w
⊗p−1−r
i

r⊗v⊗q−1−r
j )

=

p+q−2∑
s=|p−q|

2 divides (s−|p−q|)

c′spq⟨wi, vj⟩(p+q−2−s)/2Is(w
⊗p−q+s
i

r⊗vq−p+sj ).

(142)

Therefore, we obtain

⟨DF1,−DL−1F2⟩ =
∑
s≥0

∑
|p−q|≤s

2 divides (s−|p−q|)
p∧q≥1+(s−|p−q|)/2

c̃r,p,q
∑
i,j

⟨wi, vj⟩(p+q−s)/2uizjfpi f
q
j Is(w

⊗(s+p−q)/2
i

r⊗v⊗(s+q−p)/2
j ).

(143)
The term s = 0 corresponds to EF1F2. Since p and q must be odd in the non-zero terms of the sum, we obtain that s must
be even. For a := (p+ q − s)/2, the s-th multiplie integral Is can be rewritten as follows:

Is

∑
a≥1

∑
i,j

⟨wi, vj⟩uizjT sij

 , (144)

where T sij is a s-dimensional tensor, consisting of a sum of inner products of wi and vj , also containing combinatorial terms,
and products of expectations of derivatives of f, g. We can write

E
(
⟨DF1,−DL−1F2⟩ −EF1F2

)2
=
∑
s≥2

E Is

∑
a≥1

∑
i,j

⟨wi, vj⟩uizjT sij

2

. (145)

Fix s ≥ 2 and observe that

E Is

∑
a≥1

∑
i,j

⟨wi, vj⟩uizjT sij

2

=
∑
a,a′≥1

∑
i,j
i′,j′

⟨wi, vj⟩a⟨wi′ , vj′⟩a
′
uiui′zjzj′⟨T sij , T si′j′⟩, (146)

and note that for some constant C > 0 (depending on combinatorial terms, and products of expectations of derivatives of f )
⟨T sij , T si′j′⟩ can be upper bounded by

⟨T sij , T si′j′⟩ ≤ C(⟨wi, wi′⟩+ ⟨wi, vj′⟩+ ⟨vj , wi′⟩+ ⟨vj , vj′⟩)s. (147)

We analyze each term of the summand in Eq. (146) depending on a, a′, i, i′, j, j′. Let N = |{i, i′, j, j′}|, the number of
distinct indices among i, i′, j, j′. Since entries of u and z are O(d−1/2), we get that in total the term uiui′zjzj′ contributes
O(d−2).

Case N = 1 Here, since there are only d such terms in total, we immediately obtain an O(d−1) upper bound.
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Case N = 2 There are O(d2) such terms. It must be that either (i) i ̸= j or (ii) i′ ̸= j′ or (iii) both i = j and i′ = j′. In
the latter case, we obtain bound O(d−1) since s ≥ 2, and thus ⟨T sij , T si′j′⟩ = O(d−1). Otherwise, without loss of generality,
assume that i = i′ = j′ and a = 1. Here, Lemma B.18 (i) implies that the summand is ≺ 1/d.

Case N = 3 If i = j, note that ⟨T sij , T si′j′⟩ ≺ d−1 and we need to show that
∑
i̸=i′ ̸=j′⟨wi′ , vj′⟩a ≺ d2. When

a ≥ 2 this follows from asymptotic orthogonality (⟨wi′ , vj′⟩ ≺ d−1/2 for i′ ̸= j′, see Assumption 4.1), and otherwise
from Lemma B.18 (i). If i = i′, we need to show that∑

ijj′

⟨wi, vj⟩a⟨wi′ , vj′⟩a
′
d−2 ≺ 1

d
. (148)

When a ≥ 2 and a′ ≥ 2, this follows from asymptotic orthogonality. When a = 1 and a′ ≥ 2 (or vice versa), this follows
from Lemma B.18 (i). Finally, when a = 1 and a′ = 1, this follows from Lemma B.18 (ii). The remaining cases are
identical to the covered ones.

Case N = 4 When a ≥ 2 and a′ ≥ 2, the result follows trivially. When a = 1 and a′ ≥ 2, the result follows
from Lemma B.18 (i). When a = a′ = 1, the result follows again from Lemma B.18 (i) and noticing that

1

d2

∑
i ̸=j
i′ ̸=j′

⟨wi, vj⟩⟨wi′ , vj′⟩ =

1

d

∑
i̸=j

⟨wi, vj⟩

2

≺ 1. (149)

Next, using Theorem B.10 for h(F1, F2) = f2(F1)g2(F2), we obtain that∣∣E f2(u⊤f1(W 1x))g2(z
⊤g1(V

1x))−E f2(G1)g2(G2)
∣∣ ≺ d−1/2, (150)

where (G1, G2) is a jointly Gaussian random vector:

(G1, G2) ∼ N
(
0,

(
Tr
[
uu⊤Ω1

]
Tr
[
uz⊤Φ1

]
Tr
[
uz⊤Φ1

]
Tr
[
zz⊤Ψ1

])) . (151)

Finally, using that ∥Ω1 − Ωlin
1 ∥F ≺ 1 (same for Φ1,Ψ1) and perturbation analysis, we obtain that∣∣E f2(u⊤f1(W 1x))g2(z

⊤g1(V
1x))−E f2(N1)g2(N2)

∣∣ ≺ d−1/2. (152)

B.6. Extending to L ≥ 3

A natural question is to ask whether the same technique can be applied for a deeper networks. One possible direction is
to apply Theorem B.10 for d-dimensional vector (F1, . . . Fd) := (u⊤1 f1(W

1x), . . . , u⊤d f1(W
1x)), to approximate it by a

Gaussian random vector (N1, . . . , Nd). Then, for example, the diagonal entries of Ω3 can be written as h(F1, . . . , Fd) =
f3(
∑
k ukf2(Fk))

2. If it is possible to derive that f3(
∑
k ukf2(Fk))

2 = f3(
∑
k ukf2(Nk)), then the problem is reduced to

the 2 layered case, which can be treated as before.

However, it seems hard to apply Theorem B.10 to the d-dimensional vector, since this requires a much more careful error
analysis. Recall that we only applied Theorem B.10 to 2-dimensional vectors. We leave the extension to L, rL ≥ 3 as an
interesting open question.

C. Details on numerics
C.1. Details of Fig. 1

Target We consider a two-layer structured RF teacher, with feature map

φ∗(x) = tanh (W∗x) (153)

where the weight W∗ = Z∗C̃
1
2
1 ∈ Rd×d has covariance

C̃1 = diag({k−0.3}1≤k≤d). (154)
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Student We consider the task of learning this target with a four-layer RF student, with feature map

φ(x) = tanhW3(tanh (W2 tanh(W1x))) (155)

where, in order to introduce inter-layer and target/student weight correlations, we considered W2 =W1, with

W1 = 1/2Z1diag({k−
γ/2}1≤k≤d) + 1/2W∗, (156)

for γ ∈ {0.0, 0.2, 0.5, 0.8}. In other words, the covariance C1 of W1,W2 is a sum of two power laws with decay γ and
0− 3. Finally, in order to introduce another form of correlation, we chose

W3 = Z3C
1/2
3 (157)

where the covariance C3 depends on the previous weights as

C3 = (W1W
⊤
1 + 1/2Id)−1. (158)

C.2. MNIST Experiments

Data set We use the MNIST data set which we normalize by pixel-wise centering and global scaling to ensure unit
variance. For each normalized image xi ∈ R784 we define a label

yi :=

{
1, if xi is an even digit,
−1, if xi is an odd digit.

We split the data set into four parts:

10% Test data Itest

25% Training data for the Adam optimizer IAdam,

25% Training data for regression Ireg,

40% Data for approximating the (empirical) population covariance Iemp.

Neural network We then train a simple neural network of the form

x 7→ θ⊤φ(x), φ(x) := θ⊤ relu(W2 relu(W1x)), W1 ∈ R2352×784, W2 ∈ R2352×2352, θ ∈ R2352 (159)

using the Adam optimizer over 120 epochs with a batch size of 128 using only the IAdam split. During training we save the
feature maps φt at various time steps t in order to study the training dynamics.

Feature ridge regression We then perform a ridge regression task using the features φt(xi) by minimizing

θ(t, λ, I) := argmin
θ

( 1

|I|
∑
i∈I

(yi − θ⊤φt(xi))
2 + λ∥θ∥2

)
(160)

for various random subsets I ⊂ Ireg, and Itest, empirically estimate the generalization error

Egen(t, λ, I)2 :=
1

|Itest|
∑
i∈Itest

(yi − θ(t, λ, I)⊤φt(xi))
2. (161)
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Deterministic equivalent In order to compare Egen(t) with the theoretical prediction from Theorem 3.1, we need to
determine the covariance of the features ϕt as well as the label-feature covariance and the label variance. To do so, we use
the Iemp part of the data to empirically estimate

Ωt :=
1

|Iemp|
∑
i∈Iemp

φt(xi)φt(xi)
⊤ ∈ R2352×2352, ψt :=

1

|Iemp|
∑
i∈Iemp

φt(xi)yi ∈ R2352, σ2 :=
1

|Iemp|
∑
i∈Iemp

y2i ∈ R

(162)
and note that we expect this to be a reasonable approximation since |Iemp| = 27805 ≫ 2352. Using these we have the
formula

Ermt
gen (t, λ, n) :=

σ2 − nλmtψ
⊤
t (Mt + λM2

t )ψt
1− n(mtλ)2 TrΩtMtΩtMt

(163)

analogous to Eq. (12), where mt,Mt = mt(λ, n),Mt(λ, n) are the solution to

1

mt(λ, n)
= λ+TrΩt(1 + nmt(λ, n)Ωt)

−1, Mt(λ, n) := (λ+ λnm(λ, n)Ωt)
−1. (164)

We observe in Figure 4 that Ermt
gen is indeed an excellent approximation for Egen throughout the training and for various

choices of regularization. In Figure 5 we depict the interesting dynamics of the learning curves throughout the training
process with a significant shift of the interpolation threshold to the left.

Figure 4. Plot of Ermt
gen , Egen for various regularization parameters λ and time steps t (in “epoch.step” format). The horizontal lines

represent the generalization error of the neural network, the curves Ermt
gen and the dots Egen. The last pane contains a linear regression

model for the sake of comparison. Interestingly, for this particular case already the random feature model outperforms linear regression.

Optimal regularization So far we have focused on fixed regularization parameters. Using the deterministic equivalent we
can also find the optimal regularization parameter

λopt(t, n) := argmin
λ

Ermt
gen (t, λ, n) (165)

for each sample complexity n and time t by simply one-dimensional minimization. In Figure 6 we show the corresponding
results. Interestingly ridge regression initially performs worse than the random feature regression also at optimal regulariza-
tion. Then in the initial phase of training the performance of feature regression deteriorates before improving way beyond
the initialization performance.
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Figure 5. Dynamics of Ermt
gen throughout the training

C.3. Synthetic MNIST experiments

We carried out similar experiments for synthetic data in order to empirically study the effect of population covariance
linearization.

Data We generate Gaussian random vectors of zero mean and variance matching the variance of the normalized MNIST
images described above. The synthetic labels are generated by a one hidden layer random feature network

φ∗(x) := θ∗ tanh(W∗x), W∗ ∈ R800×784, θ∗ ∈ R800

for fixed but random W∗, θ∗.

Neural network We again train a simple neural network of the form

x 7→ θ⊤φ(x), φ(x) := θ⊤ relu(W2 relu(W1x)), W1 ∈ R800×784, W2 ∈ R700×800, θ ∈ R700 (166)

using the Adam optimizer over 50 epochs with a batch size of 128 using 40 000 samples. During training we save the
feature maps φt at various time steps t in order to study the training dynamics.

Feature ridge regression We perform feature ridge regression on the trained features φt exactly as described above. The
fact that the labels are now generated by a feature model now enables us to test the effect of population covariance lineariza-
tion. In Figure 7 we observe that for random features the linearized deterministic equivalent is an excellent approximation
for the empirically observed feature ridge regression error. However, during training the prediction deteriorates. We suspect
that this effect is due to outlying eigevalues of the weight matrices which increasingly violate Assumption 4.1.
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Figure 6. The left pane shows Egen and Ermt
gen throughout the training process at optimal regularization λopt. The colour of the dots encodes

the value of λopt, while the dashed lines represent the generalization error of the neural network. The right pane shows the dynamics of
Ermt
gen throughout the training process, compared with linear regression.
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Figure 7. The solid and dashed lines represent Ermt
gen using the empirical population covariances and the linearized population covariances,

respectively. The dots represent the empirical Egen while the horizontal line show the test error of the neural network during training. The
right-most pane shows linear regression for comparison.
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