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Abstract

Graph neural networks (GNNs), a type of neural network that can learn from graph-1

structured data and learn the representation of nodes through aggregating neigh-2

borhood information, have shown superior performance in various downstream3

tasks. However, it is known that the performance of GNNs degrades gradually as4

the number of layers increases. In this paper, we evaluate the expressive power of5

GNNs from the perspective of subgraph aggregation. We reveal the potential cause6

of performance degradation for traditional deep GNNs, i.e., aggregated subgraph7

overlap, and we theoretically illustrate the fact that previous residual-based GNNs8

exploit the aggregation results of 1 to k hop subgraphs to improve the effectiveness.9

Further, we find that the utilization of different subgraphs by previous models is10

often inflexible. Based on this, we propose a sampling-based node-level residual11

module (SNR) that can achieve a more flexible utilization of different hops of sub-12

graph aggregation by introducing node-level parameters sampled from a learnable13

distribution. Extensive experiments show that the performance of GNNs with our14

proposed SNR module outperform a comprehensive set of baselines.15

1 Introduction16

GNNs have emerged in recent years as the most powerful model for processing graph-structured data17

and have performed very well in various fields, such as social networks [1], recommender systems18

[2], and drug discovery [3]. Through the message-passing mechanism that propagates and aggregates19

representations of neighboring nodes, GNNs provide a general framework for learning information20

on graph structure.21

Despite great success, according to previous studies [4, 5], GNNs show significant performance22

degradation as the number of layers increases, which makes GNNs not able to take full advantage of23

the multi-hop neighbor structure of nodes to obtain better node representations.24

The main reason for this situation is now widely believed to be oversmoothing [4, 6, 5, 7]. However,25

since ResNet [8] uses residual connection to solve a similar problem in computer vision and obtains26

good results, several new works have been inspired to apply the idea of residual connection to GNNs27

to alleviate oversmoothing and thus improve the expressive power. For example, JKNet [5] learns28

node representations by aggregating the outputs of all previous layers at the last layer. DenseGCN [9]29

concatenates the results of the current layer and all previous layers as the node representations of this30

layer. APPNP [7] uses the initial residual connection to retain the initial feature information with31

probability α, and utilizes the feature information aggregated at the current layer with probability32

1− α.33

In this paper, we evaluate the expressive power of GNNs from the perspective of subgraph aggregation.34

Based on this perspective, we show that the single high-hop subgraph aggregation of message-passing35
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GNNs is limited by the fact that high-hop subgraphs are prone to information overlap, which36

makes the node representations obtained from k-hop subgraph aggregation indistinguishable, i.e.,37

oversmoothing occurs.38

Based on this perspective, we conduct a theoretical analysis of previous residual-based models and39

find that previous methods are in fact able to utilize multiple subgraph aggregations to improve the40

expressiveness of the model. However, most methods tend to utilize subgraph information by fixed41

coefficients, which assumes that the information from the subgraph of the same hop are equally42

important for different nodes, which leads to inflexibility in the model’s exploitation of subgraph43

information and thus limits further improvement of the expressive power. Some existing methods try44

to overcome this inflexibility but lead to overfitting by introducing more parameters, which in turn45

affects the effectiveness of the model, which is demonstrated by the experiment.46

Considering these limitations, we propose a Sampling-based Node-level Residual module (SNR).47

Specifically, we adopt a more fine-grained node-level residual module to achieve a more flexible48

exploitation of subgraph aggregation, which is proved by the theoretical analysis. On the other49

hand, to avoid overfitting due to the introduction of more parameters, instead of learning the specific50

parameters directly, we first learn a correlation distribution through reparameterization trick and51

obtain the specific residual coefficients by sampling. Experiments verify that this sampling-based52

approach can significantly alleviate overfitting.53

Our Contributions. (1) We reinterpret the phenomenon that the effectiveness of traditional message-54

passing GNNs decreases as the number of layers increases from the perspective of k-hop subgraph55

overlap. (2) Based on the idea of subgraph aggregation, we theoretically analyze the previous residual-56

based methods and find that they actually utilize multiple hop subgraph aggregation in different57

ways to improve the expressive power of the model, and we point out the limitations of inflexibility58

and overfitting in previous residual-based methods. (3) We propose a sampling-based node-level59

residual module that allows more flexible exploitation of different k-hop subgraph aggregations while60

alleviating overfitting due to more parameters. (4) Extensive experiments show that GNNs with the61

proposed SNR module achieve better performance than other methods, as well as with higher training62

efficiency, on semi-supervised tasks as well as on tasks requiring deep GNNs.63

2 Preliminaries64

2.1 Notations65

A connected undirected graph is represented by G = (V, E), where V = {v1, v2, . . . , vN} is the set66

of N nodes and E ⊆ V × V is the set of edges. The feature of nodes is given in matrix H ∈ RN×d67

where d indicates the length of feature. Let A ∈ {0, 1}N×N denotes the adjacency matrix and68

Aij = 1 only if an edge exists between nodes vi and vj . D ∈ RN×N is the diagonal degree matrix69

whose elements di computes the number of edges connected to node vi. Ã = A+ I is the adjacency70

matrix with self loop and D̃ = D+ I.71

2.2 Graph Neural Networks72

A GNNs layer updates the representation of each node via aggregating itself and its neighbors’73

representations. Specifically, a layer’s output H′ consists of new representations h′ of each node74

computed as:75

h′
i = fθ (hi, AGGREGATE ({hj | vj ∈ V, (vi, vj) ∈ E}))

where h′
i indicates the new representation of node vi and fθ denotes the update function. The76

key to the performance of different GNNs is in the design of the fθ and AGGREGATE function.77

Graph Convolutional Network (GCN)[10] is a classical massage-passing GNNs follows layer-wise78

propagation rule:79

Hk+1 = σ
(
D̃− 1

2 ÃD̃− 1
2HkWk

)
(1)

where Hk is the feature matrix of the kth layer, Wk is a layer-specific learnable weight matrix, σ(·)80

denotes an activation function.81
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2.3 Residual Connection82

Several works have used residual connection to solve the problem of oversmoothing. Common83

residual connection for GNNs are summarized below. Details are explained in Appendix A.

Table 1: Common residual connection for GNNs.

Residual Connection Corresponding GCN Formula

Res ResGCN Hk = Hk−1 + σ
(
D̃− 1

2 ÃD̃− 1
2Hk−1Wk−1

)
InitialRes APPNP Hk = (1− α) D̃− 1

2 ÃD̃− 1
2Hk−1 + αH

Dense DenseGCN Hk = AGGdense(H,H1, . . . ,Hk−1)

JK JKNet Houtput = AGGjk(H1, . . . ,Hk−1)

84

3 Motivation85

Message-passing GNNs recursively update the features of each node by aggregating information86

from its neighbors, allowing them to capture both the graph topology and node features. For a87

message-passing GNNs without a residual structure, the information domain of each node after88

k-layer aggregation is a related k-hop subgraph. Figure 1 shows that, after two aggregation operations,89

nodes on layer 2 obtain 1-hop neighbor and 2-hop neighbor information in layer 0, respectively.90

According to the definition of the k-hop subgraph, the information of the node on layer 2 in the figure91

is composed of all reachable nodes information shown on layer 0. We can consider the result of92

k-layer residual-free message-passing GNNs is equivalent to k-time aggregation of each node on its93

k-hop subgraph, which we call k-hop subgraph aggregation.94

Figure 1: k-hop subgraph.

It is evident that as the number of aggregation operations in-95

creases, the reachable information range of a node expands96

rapidly, that is, the size of its k-hop subgraph grows expo-97

nentially as k increases, leading to a significant increase98

in the overlap between the k-hop subgraphs of different99

nodes. As a result, the aggregation result of different nodes100

on their respective k-hop subgraphs becomes indistinguish-101

able. Furthermore, in a specific graph dataset, nodes with102

higher degrees tend to have a larger range of k-hop sub-103

graphs compared to nodes with lower degrees. As a result,104

the subgraphs are more likely to overlap between nodes105

with higher degrees, making their aggregation results more106

likely to become similar and indistinguishable.107

To verify this point, we conduct experiments on three graph datasets, Cora, Citeseer, and Pubmed.108

First, we group the nodes according to their degrees by assigning nodes with degrees in the range of109

[2i, 2i+1) to the i-th group. Subsequently, we perform aggregation with different layers of GCN and110

GAT, then calculate the degree of smoothing of the node representations within each group separately.111

We use the metric proposed in [11] to measure the smoothness of the node representations within112

each group, namely SMV, which calculates the average of the distances between the nodes within113

the group:114

SMV(X) =
1

N(N− 1)

∑
i ̸=j

D (Xi,:,Xj,:) (2)

where D(·, ·) denotes the normalized Euclidean distance between two vectors:115

D(x,y) =
1

2

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥
2

(3)

A smaller value of SMV indicates a greater similarity in node representations.116
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We select the most representative result illustrated in Figure 2, which shows the result of GAT on117

Pubmed. The rest of the results are shown in the Appendix B. It can be seen that the groups of nodes118

with higher degree tend to be more likely to have high similarity in the representation of nodes within119

the group in different layers of the model. This finding supports our claim.120

Figure 2: SMV for node groups of dif-
ferent degrees.

After verifying the conclusion that subgraph overlap leads121

to oversmoothing through experiments, a natural idea is to122

alleviate the problem of large overlap of single subgraph123

by utilizing multiple hop subgraph aggregations, thereby124

alleviating oversmoothing. In the following section, we125

will demonstrate that the previous k-layer residual-based126

GNNs are actually different forms of integration of 1 to k127

hop subgraph aggregations.128

3.1 Revisiting Previous Models in a New Perspective129

In the rest of this paper we will uniformly take GCN, a130

classical residual-free message-passing GNNs, as an exam-131

ple. We assume that H is non-negative, so the ELU function can be ignored. In addition, the weight132

matrix is ignored for simplicity. Combined with the formula of GCN given in Equation 1, we can133

formulate the specific result of k-hop subgraph aggregation as NkH, where N = D̃− 1
2 ÃD̃− 1

2 . To134

show more intuitively how different k-layer-based residual models utilize NjH, j = 0, 1, · · · , k. We135

derive the general term formulas of their final outputs, and the results are shown in Table 2. Details136

of the derivation of the formula in this part are given in Appendix C.

Table 2: General term formulas of residual models.

Model Name General Term Formula

ResGCN Hk =
∑k

j=0 C
j
kN

jH

APPNP Hk = (1− α)
k
NkH+ α

k−1∑
j=0

j∑
i=0

(−1)
j−i

(1− α)
i
NiH

JKNet Hk = AGGjk(NH, . . . ,Nk−1H)

DenseGCN —

137

From the formula in the table, we can see that, in comparison to message-passing GNNs, residual-138

based variants of GNNs can utilize multiple k-hop subgraphs. There are two methods to exploit139

them: (1) Summation, such as ResGCN and APPNP. Such methods employ linear summation over140

the aggregation of different hop subgraphs; (2) Aggregation functions, such as DenseNet and JKNet.141

Such methods make direct and explicit exploitation of different hop subgraph aggregations through142

methods such as concatenation.143

However, for the first type of methods, they all employ a fixed, layer-level coefficient for linear144

summation of the subgraph aggregation, which assumes that the information from the subgraph of the145

same hop are equally important for different nodes. It will limit the expressive power of GNNs, which146

reveals the need to design a more fine-grained node-level residual module that can more flexibly147

utilize information from different k-hop subgraphs. For another type of method, they can achieve148

finer-grained subgraph aggregation, but the experiment find that their performance is not improved149

because of the more finer-grained structure, mainly because the introduction of more parameters150

leads to overfitting Phenomenon. In general, neither of these two types of methods has achieved a151

more effective improvement in the expressive power of GNNs.152

4 The Proposed Method153

In order to solve the two limitations of flexibility and overfitting encountered by previous residual-154

based models, we try to propose a node-level, more flexible, general residual module, which can155
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alleviate overfitting caused by more parameters at the same time. Based on this, we propose a156

sampling-based node-level generic residual module SNR. We define SNR module as:157

h
(i)
k−1

′
= GraphConv

(
h
(i)
k−1

)
(4)

158

h
(i)
k = h

(i)
1 + sigmoid(p

(i)
k−1)

(
h
(i)
1 − h

(i)
k−1

′)
, p

(i)
k−1 ∼ N (α

(i)
k−1, β

(i)
k−1

2
) (5)

where h
(i)
k denotes the representation of k-th layer of node i, h(i)

k

′
denotes the result obtained by159

an arbitrary GNNs layer with h
(i)
k−1 as input. p(i)k is a random number sampled from N (α

(i)
k , β

(i)
k

2
)160

which associated with the i-th node at the k-th layer while α
(i)
k and β

(i)
k are learnable parameters161

representing the mean and the standard deviation of this distribution, respectively. Next, we will162

illustrate the superiority of the SNR module in terms of flexibility and overfitting alleviation.163

4.1 Flexibility164

In this section, we will analyze the expressive power of GCN with SNR module and show that SNR-165

GCN achieves a more flexible utilization of multiple subgraph aggregations. First of all, combined166

with the previous definition 5, the matrix form of the recurrence formula of SNR-GCN can be written167

as:168

Hk = H1 + Λk−1

(
H1 − D̃−1/2ÃD̃−1/2Hk−1

)
(6)

where Λk is a diagonal matrix whose i-th diagonal element is equal to p
(i)
k . We first try to obtain the169

general term formula of SNR-GCN according to the recursive formula and demonstrate SNR-GCN’s170

treatment of multiple subgraph aggregations. The following theorem can be proved:171

Theorem 1. The general term formula of SNR-GCN can be deduced as: Hk =172 ∑k−1
i=2

∏k−1
j=i Ñj (Mi −Mi−1) +

∏k−1
i=1 Ñi (H1 +M1) − Mk−1 where Ñi = −Λk−1N and173

Mk = − (ΛkN+ I)
−1

(I+ Λk)H1.174

The details of the proof are provided in Appendix D. From the general term formula of SNR-GCN,175

we can see that Mk is a linear transformation of H1. Therefore, the first two terms of the formula176

can be approximately regarded as a new form of subgraph aggregation. Further we can find that all177

1 to k hop subgraph aggregations appear in the formula, which ensures the expressive power. And178

because Λk are learnable diagonal matrixes , SNR-GCN’s subgraph aggregation is learnable and179

more flexible, which further makes expressive power stronger. Besides, when we set Λk = −αI, the180

first term will be 0, and the rest terms are equivalent to APPNP’s formula, which means SNR-GCN181

can be approximately regarded as a more fine-grained and expressive APPNP.182

4.2 Overfitting Alleviation183

Another key point of SNR is that it introduces randomness to alleviate overfitting. In our initial idea,184

we attempt to build a generic module similar to the initial residual at the node level. Based on this,185

we initially designed the following modules:186

h
(i)
k = h

(i)
1 + sigmoid(q

(i)
k )

(
h
(i)
1 − h

(i)
k−1

′)
(7)

where q
(i)
k is a learnable parameter which associated with the i-th node at the k-th layer. After187

conducting experiments, we discover that the model has a high risk of overfitting when adding this188

module. However, we also find that if we do not learn q
(i)
k directly through backpropagation, but first189

learn a normal distribution associated with it via reparameterization trick and obtain q
(i)
k by sampling190

at each computation, the issue can be resolved, and the performance of the model significantly191

improves. To prove this, we perform an experimental verification. The details of the experiments are192

shown in the Appendix E.193

It is worth noting that GCNII and SNR-GCN share a similar architecture, so both can be viewed194

approximately as more refined APPNP-style models. However, when faced with the problem of195

overfitting due to more parameters, GCNII adds an identity matrix to mitigate the issue. Later196

experiment results have shown that SNR-GCN’s learning distribution-sampling approach is more197

effective in alleviating overfitting.198
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4.3 Complexity Analysis199

Taking vanilla GCN as an example, we analyzed the additional complexity of SNR in model and time.200

We assume that the number of nodes in the graph is n and hidden dimension is d.201

Model Complexity. As described in Section 4, at each layer the SNR module learns a mean and202

standard deviation of the corresponding distribution for each node, so the complexity can be calculated203

as O(n), and thus the additional complexity of the k-layer model equipped with SNR is O(kn).204

Time Complexity. The time complexity of a vanilla GCN layer mainly comes from the matrix205

multiplication of N and H, hence its complexity is O(n2d). And the main computational parts of a206

SNR module are the sampling of p(i)k , scalar multiplication and matrix addition, which correspond to207

a complexity of O(n), O(nd), and O(nd), respectively. Thus the time complexity of the SNR module is208

O(nd) and the time complexity of a GCN layer equipped the SNR module is O(n2d+ nd). Therefore,209

the introduction of the SNR module does not significantly affect the computational efficiency.210

5 Experiment211

In this section, we aim to experimentally evaluate the effectiveness of SNR on real datasets. To212

achieve this, we will compare the performance of SNR with other methods and answer the following213

research questions. Q1: How effective is SNR on classical tasks that prefer shallow models? Q2:214

Can SNR help overcome oversmoothing in GNNs and enable the training of deeper models? Q3:215

How effective is SNR on tasks that require deep GNNs? Q4: How efficient is the training of SNR?216

5.1 Experiment Setup217

In our study, we conduct experiments on four tasks: semi-supervised node classification (Q1),218

alleviating performance drop in deeper GNNs (Q2), semi-supervised node classification with missing219

vectors (Q3), and efficiency evaluation (Q4).220

Datasets. To assess the effectiveness of our proposed module, we have used four data sets that are221

widely used in the field of GNN, including Cora, Citeseer, Pubmed [12], and CoraFull [13] for testing222

purposes. In addition, we also use two webpage datasets collected from Wikipedia: Chameleon and223

Squirrel [14]. Details on the characteristics of these datasets and the specific data-splitting procedures224

used can be found in Appendix F.1.225

Models. We consider two fundamental GNNs, GCN [10] and GAT [15]. For GCN, we test the226

performance of SNR-GCN and its residual variant models, including ResGCN [9], APPNP [7],227

DenseGCN [9], GCNII [16] and JKNet [5]. For GAT, we directly equip it with the following228

residual module: Res, InitialRes, Dense, JK and SNR and test the performance. Additionally, for the229

SSNC-MV task, we compare our proposed module with several classical oversmoothing mitigation230

techniques, including BatchNorm [17], PairNorm [18], DGN [19], Decorr [11], DropEdge [20] and231

other residual-based methods. Further details on these models and techniques can be found in the232

following sections.233

Implementations. For all benchmark and variant models, the linear layers in the models are234

initialized with a standard normal distribution, and the convolutional layers are initialized with235

Xavier initialization. The Adam optimizer [21] is used for all models. Further details on the specific236

parameter settings used can be found in Appendix F.2. All models and datasets used in this paper are237

implemented using the Deep Graph Library (DGL) [22]. All experiments are conducted on a server238

with 15 vCPU Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz, A40 with 48GB GPU memory,239

and 56GB main memory.240

5.2 Semi-supervised Node Classification241

To validate the performance of SNR, we apply the module to two fundamental GNNs, GCN and242

GAT, and test the accuracy according to the mentioned experimental setup, and compare it with four243

classic residual modules, DenseNet, ResNet, InitialResNet and JKNet. We vary the number of layers244

in the range of {1, 2, 3, · · · , 10} and select the best result among all layers. Specifically, we run245

10 times for each number of layers to obtain the mean accuracy along with the standard deviation.246

We select the best results among all layers and report them in the Table 3. We find that GNNs with247
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Table 3: Summary of classification accuracy (%) results with various depths. The best results are in
bold and the second best results are underlined.

Method Cora Citeseer Pubmed CoraFull Chameleon Squirrel
GCN 80.16±1.15 70.20±0.62 78.26±0.61 68.40±0.33 68.00±2.30 51.69±1.83

ResGCN 79.01±1.26 69.27±0.66 78.08±0.51 67.98±0.51 65.26±2.47 47.43±1.14
APPNP 79.04±0.84 69.64±0.49 76.38±0.12 37.77±0.43 59.80±2.68 43.17±1.01
GCNII 78.53±0.67 69.55±1.14 76.17±0.70 68.30±0.26 64.76±2.43 52.83±1.51

DenseGCN 77.24±1.12 65.03±1.58 76.93±0.78 64.52±0.71 59.04±2.07 38.89±1.25
JKNet 78.16±1.21 65.33±1.66 78.10±0.55 66.11±0.49 55.75±2.93 35.95±1.10

SNR-GCN (Ours) 81.17±0.72 70.39±1.01 78.34±0.62 69.80±0.28 72.04±1.89 58.35±1.55
GAT 79.24±1.18 69.51±1.07 77.59±0.80 67.39±0.32 65.81±2.13 50.16±2.42

Res-GAT 78.43±0.99 68.15±1.25 77.27±0.52 67.67±0.32 69.08±2.50 49.77±1.72
InitialRes-GAT 77.77±1.51 67.48±2.15 77.46±1.17 65.49±0.42 65.90±2.98 52.83±2.39

Dense-GAT 78.27±2.22 64.92±1.94 76.84±0.64 66.61±0.63 63.86±3.03 43.01±1.34
JK-GAT 78.91±1.71 65.59±2.62 77.70±0.64 67.69±0.65 56.14±2.68 37.25±1.01

SNR-GAT (Ours) 79.65±0.84 69.85±0.67 77.76±0.93 68.00±0.27 69.54±2.22 55.14±1.78

the SNR module consistently achieve the best performance in all cases (Q1). However, from the248

experimental results, many models with residual modules have not achieved the expected results. In249

many cases, compared with the basic model, the accuracy is even reduced. According to previous250

research [18], we speculate that overfitting may have contributed to this phenomenon. To verify our251

hypothesis, we conduct further experiments. Given that most models in the previous experiments252

achieve their best performance with shallow models, we select models with two layers, train 500253

epochs, and report their accuracy on the training and validation sets at each epoch. The results are254

shown in Appendix G. Most models show signs of overfitting and SNR module demonstrates the best255

ability to alleviate overfitting. Specifically, in shallow GNNs with limited subgraph aggregation, most256

models have similar expressive abilities, and overfitting is the main factor affecting their performance.257

Our proposed method effectively alleviates overfitting by learning a more representative distribution,258

resulting in a better performance than the base models.259

5.3 Alleviating Performance Drop in Deeper GNNs260

As the number of layers in GNNs increases, oversmoothing occurs, resulting in performance degrada-261

tion. Our objective is to investigate the performance of deep GNNs equipped with SNR and observe262

the impact of oversmoothing on their performance. We evaluate the performance of GNNs with263

different residual modules on 2, 16, and 32 layers using the Cora, Citeseer, and Pubmed datasets. The264

"None" column represents vanilla GNNs without any additional modules. According to [16], APPNP265

is a shallow model, hence we use GCNII to represent GCN with initial residual connection instead.266

The same settings are used in section 5.4. The experimental results are presented in Table 4.267

From Table 4, we can observe that GNNs with SNR consistently outperform other residual methods268

and the base models in most of cases when given the same number of layers. SNR can significantly269

improve the performance of deep GNNs (Q2). For instance, on the Cora dataset, SNR improves the270

performance of 32-layer GCN and GAT by 53.69% and 56.20%, respectively. By flexibly utilizing271

multiple subgraph aggregation results with our SNR module, we can enhance the expressive power272

of the model and produce more distinctive node representations than those of regular GNNs, thereby273

overcoming the oversmoothing problem. These results suggest that we can train deep GNNs based274

on SNR, making them suitable for tasks that require the use of deep GNNs.275

5.4 Semi-supervised Node Classification with Missing Vectors276

When do we need deep GNNs? [18] first proposed semi-supervised node classification with missing277

vectors (SSNC-MV), where nodes’ features are missing. SSNC-MV is a practical problem with278

various real-world applications. For example, new users on social networks usually lack personal279

information [23]. Obviously, we need more propagation steps to effectively aggregate information280

associated with existing users so that we can obtain representations of these new users. In this281

scenario, GNNs with more layers clearly perform better.282
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Table 4: Node classification accuracy (%) on different number of layers. The best results are in bold
and the second best results are underlined.

Dataset Method GCN GAT
L2 L16 L32 L2 L16 L32

Cora

None 79.50±0.84 69.83±2.47 25.31±12.49 79.11±1.55 75.44±1.08 22.74±7.47
Res 78.73±1.27 78.46±0.79 38.70±8.20 78.36±1.42 34.80±6.26 32.06±0.54

InitialRes 77.67±0.51 77.74±0.73 77.92±0.56 77.20±1.54 74.99±0.75 25.08±7.27
Dense 75.24±1.73 71.34±1.51 75.43±2.49 76.80±1.71 74.75±2.22 75.70±2.20

JK 76.28±1.73 72.39±3.20 75.03±1.11 78.06±0.51 76.66±1.39 23.29±8,45
SNR (Ours) 80.58±0.82 78.55±0.92 79.00±1.43 79.69±0.55 77.92±1.54 78.94±0.80

Citeseer

None 68.31±1.40 54.07±2.48 34.84±1.60 68.64±1.20 59.16±2.44 24.37±3.59
Res 67.68±1.36 63.99±1.12 25.96±4.27 67.55±1.10 28.53±4.93 24.70±4.12

InitialRes 68.23±0.95 68.29±0.92 68.74±0.61 66.86±1.60 60.24±2.29 23.78±4.87
Dense 64.83±0.94 58.42±2.96 58.75±3.37 64.58±2.07 61.17±1.78 61.87±2.91

JK 64.69±1.44 58.38±3.36 58.63±4.76 65.84±2.02 62.64±1.66 23.09±4.02
SNR (Ours) 70.18±0.61 67.07±1.78 66.27±2.00 69.71±0.92 67.51±2.28 66.53±2.48

Pubmed

None 77.53±0.73 76.16±0.96 51.29±11.71 77.07±0.52 77.49±0.65 53.20±9.18
Res 77.64±1.01 77.65±0.78 73.31±7.15 77.36±0.60 50.16±7.65 43.46±3.30

InitialRes 75.66±0.82 75.15±0.48 75.31±0.55 77.42±0.79 77.42±0.82 44.96±5.91
Dense 76.81±1.06 74.01±2.36 76.33±1.17 76.66±0.61 76.38±1.26 76.50±1.47

JK 77.61±0.78 76.31±1.45 76.59±1.53 77.48±0.84 77.75±0.77 40.84±0.23
SNR (Ours) 77.84±0.51 78.02±0.71 77.36±0.78 77.51±0.62 78.17±0.85 77.77+0.46

Table 5: Test accuracy (%) on missing feature setting. The best results are in bold and the second
best results are underlined.

GCN GAT

Method Cora Citeseer Pubmed Cora Citeseer Pubmed
Acc #K Acc #K Acc #K Acc #K Acc #K Acc #K

None 57.3 3 44.0 6 36.4 4 50.1 2 40.8 4 38.5 4
BatchNorm 71.8 20 45.1 25 70.4 30 72.7 5 48.7 5 60.7 4
PairNorm 65.6 20 43.6 25 63.1 30 68.8 8 50.3 6 63.2 20

DGN 76.3 20 50.2 30 72.0 30 75.8 8 54.5 5 72.3 20
DeCorr 73.8 20 49.1 30 73.3 15 72.8 15 46.5 6 72.4 15

DropEdge 67.0 6 44.2 8 69.3 6 67.2 6 48.2 6 67.2 6
Res 74.06±1.10 7 57.52±1.30 6 76.32±0.41 8 74.86±1.25 6 57.88±2.79 4 76.70±0.55 7

InitialRes 60.68±1.29 2 46.86±4.14 10 69.14±0.90 7 60.68±1.29 2 57.34±3.78 4 76.10±0.70 4
Dense 70.52±3.21 10 54.96±2.25 9 75.26±1.32 8 70.52±3.21 10 58.28±0.14 10 75.22±1.21 15

JK 72.68±2.61 8 57.54±1.14 10 76.44±1.51 20 72.68±2.63 8 58.82±2.02 5 76.12±0.87 10
SNR (Ours) 76.34±0.68 7 61.78±1.41 9 76.92±0.70 8 77.02±0.89 9 61.00±1.07 8 77.00±0.74 20

Previous research has shown that normalization techniques can be effective in mitigating oversmooth-283

ing, and further, exploring deeper architectures. Therefore, we apply several techniques that can284

overcome oversmoothing and residual modules to GCN and GAT to compare their performance on285

tasks that require deep GNNs.286

We remove the node features in the validation and test set following the idea in [11, 18, 19]. We287

reuse the metrics that already reported in [11] for None, BatchNorm [17], PairNorm [18], DGN288

[19], DeCorr [11], and DropEdge [20]. For all residual-based models, the results are obtained by289

varying the number of layers in {1, 2, 3, · · · , 10, 15, · · · , 30} and running five times for each number290

of layers. We select the layer #K that achieves the best performance and report its average accuracy291

along with the standard deviation. The results are reported in Table 5.292

Our experiments show that GNNs with the SNR module outperform all previous methods (Q3).293

Additionally, we find that for most models, the number of layers to reach the best accuracy is relatively294

large, which indicates that it is necessary to perform more propagation to gather information from295

further nodes so that we can obtain effective representations of nodes with missing features.296
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5.5 Efficiency Experiment297

In real-world tasks, the rate at which a model achieves optimal performance through training is often298

important, and this affects the true effectiveness and time consumption of the model in real-world299

applications. To enable concrete measurement and comparison, here we define the following metrics300

for model training efficiency:301

Efficiency =
Accuracy

Time
(8)

where Accuracy denotes the accuracy of the model when it reaches its optimal performance and302

Time denotes the time when the model reaches its optimal performance. The definition of this303

formula shows that a larger Efficiency represents a higher performance per unit time improvement,304

and therefore a higher training efficiency.305

Based on the above equation, we evaluate the training efficiency of vanilla GNNs and SNR-GNNs.306

We use the 2, 4, 8, 16, 32, and 64-layer and average five Efficiency calculated for each layer of307

the model. Specifically, each Efficiency is calculated based on the time for the model to reach the308

highest accuracy on the validation set after 100 epochs of training and the accuracy achieved on the309

test set at that time. Figure 3 shows the models’ Efficiency on Cora. The results on other datasets310

are shown in the Appendix H. It can be noticed that the training efficiency decreases as the number

Figure 3: Efficiency for different models at different layers.

311
of layers increases, which is due to the increase in training time caused by the rise in the number of312

model parameters. However, in most cases, compared to vanilla GNNs, our SNR module is able to313

maintain the highest training efficiency (Q4).314

6 Conclusion315

Our work proposes a new perspective for understanding the expressive power of GNNs: the k-hop316

subgraph aggregation theory. From this perspective, we have reinterpreted and experimentally317

validated the reason why the performance of message-passing GNNs decreases as the number of318

layers increases. Furthermore, we have evaluated the expressive power of previous residual-based319

GNNs based on this perspective. Building on these insights, we propose a new sampling-based320

generalized residual module SNR and show theoretically that SNR enables GNNs to more flexibly321

utilize information from multiple k-hop subgraphs, thus further improving the expressive power of322

GNNs. Extensive experiments demonstrate that the proposed SNR can effectively address the issues323

of overfitting in shallow layers and oversmoothing in deep layers that are commonly encountered in324

message-passing GNNs, and significantly improves the performance, particularly in SSNC-MV tasks.325

Our research will facilitate a deeper exploration of deep GNNs and enable a wider range of potential326

applications.327
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