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Abstract

Text embeddings are essential for language001
understanding tasks. Large language models002
(LLMs) have recently become popular for text003
embedding due to their ability to capture com-004
plex information. Leveraging text-based adven-005
ture games as a test bed, we explore the impact006
of different language models on Reinforcement007
Learning (RL) behavior. The results show that008
contrary to common assumptions, larger em-009
bedding models do not guarantee better per-010
formance over smaller model sizes. Instead,011
the optimal model size depends on the specific012
game environment.013

1 Introduction014

Embedding techniques are crucial for all language-015

based tasks as they convert human language into016

a format that machines can understand (Kashyap017

et al., 2024). This paper focuses on how language018

embedding models affect reinforcement learning019

performance. Text-based adventure games provide020

a practical test bed for language-based RL agents.021

Figure 1 illustrates such a game, where the agent022

must make decisions based on its understanding023

of the state information and interact with the game024

environment to receive feedback. A critical step025

is selecting suitable embedding models to obtain026

state and action representations during RL training.027

The motivation for focusing on embedding meth-028

ods in RL agents in this paper is twofold: a)029

Training Efficiency: Training RL agents is time-030

consuming. We hypothesize that in many cases the031

performance difference between small and large032

models is minimal. Thus, opting for a smaller033

model can optimize the trade-off between perfor-034

mance and computing costs. b) Performance Im-035

provement: A common approach to enhancing036

agent performance is by exploring new RL algo-037

rithms. However, language is semantically rich,038

and sentence representation is a fundamental step039

for language-based RL that enables the agent to040

make decisions based on syntactic and semantic 041

understanding, rather than merely learning from 042

feedback such as rewards from game environments. 043

We hypothesize that selecting the right embedding 044

methods can improve RL agent performance with- 045

out modifying the RL algorithms themselves. 046

The contributions of this paper are: 047

• Our experiments compare whether the size 048

of the language model influences RL perfor- 049

mance and compare sentence embeddings to 050

word embeddings with GRU as different em- 051

bedding architectures. 052

• Additionally, we present the results of using 053

only Llama 3 (AI@Meta, 2024) for playing 054

the games without any RL-based training or 055

fine-tuning. 056

2 Benchmarks and Framework 057

2.1 Text-based Adventure Games: 058

Benchmarks 059

Jericho (Hausknecht et al., 2020) is one of the 060

most popular benchmarks, with major research di- 061

rections including action space generation (Yao 062

et al., 2020) and knowledge representation (Am- 063

manabrolu and Hausknecht, 2020; Xu et al., 2020; 064

Atzeni et al., 2021). One of the important works 065

relevant to this paper is the study by (Yao et al., 066

2021), which investigates whether RL agents can 067

make decisions without relying on semantic under- 068

standing. They evaluate three variants based on 069

DRRN (He et al., 2016): (a) using only location in- 070

formation as observation, (b) hashing observations 071

and actions instead of using pure text, and (c) using 072

inverse dynamic loss-based vector representations. 073

Their findings indicate that RL agents can achieve 074

high scores for some games, even when language 075

semantics are not considered. 076

The Jiminy Cricket benchmark (Hendrycks 077

et al., 2021) creates an environment for text-based 078
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State:
You turn the page to find out what’s in store for
you—only to have the letter yanked right out of
your hand. [...] If that. You debate to yourself
how to deal with her.

Action Space:
0: Grab her hand and take the letter from her.
1: I’m fast enough. I’ll just snatch the letter
from her hand.
2: Pretend the letter doesn’t matter.

Predicted Action: 0: Grab her hand and take
the letter from her.

Reward: 0, Morality: stealing: 1.0

Figure 1: An example from the game battlemage. The
RL agent receives a state from the game environment,
predicts the next action and subsequently receives re-
ward and morality scores.

adventure games to study potential immoral behav-079

ior. The behaviors in these games are labeled as080

Negative and Positive. A negative label indicates081

that the selected action is harmful to either ’other’082

individuals or the ’self’.083

MACHIAVELLI (Pan et al., 2023) is the latest084

benchmark focusing on the delicate balance be-085

tween achieving goals (rewards) and adhering to086

various facets of ethical behavior, including power,087

disutility, and immorality. The major contribution088

is the use of LLMs, such as GPT-4, for ethical be-089

havior labeling. Their experiments demonstrate090

that the GPT-4 model can independently play text-091

based adventure games while tending to moral be-092

haviors, but it achieves lower game scores com-093

pared to an RL agent. We employ this benchmark094

in our experimental section.095

2.2 Problem Setting096

An environment is defined as a Markov Decision097

Process (MDP) M := (S,A, T, γ,R), where the098

set of states and actions are denoted by S and A099

respectively. T : S × S × A → [0, 1] captures100

the state transition dynamics, i.e., T (s′ | s, a) de-101

notes the probability of landing in state s′. The102

reward R and terminal signal d come from the103

game environment, and γ is the discount factor.104

The stochastic policy π : S → ∆(A) is a mapping105

from a state to a probability distribution over ac-106

tions, i.e.,
∑

a∈A π(a|s) = 1, parameterized by a107

neural network.108

Deep Q-Learning is the most popular applied RL 109

algorithm in the text-based adventure game domain, 110

the Q-value is computed by the following (Sutton 111

and Barto, 2018): 112

Q(St, At)← Q(St, At)

+ α[Rt+1 + γmaxQ(St+1, a)−Q(St, At)]
(1) 113

where, Q(St, At) is the Q-value of the current state 114

St and action At, and Rt+1 is the reward from 115

the game environment. maxaQ(St+1, a) refers to 116

the maximum next state-action value among all 117

possible actions within the action space. 118

The reshaped Q-value for moral behavior (Pan 119

et al., 2023; Hendrycks et al., 2021) is computed 120

by: 121

Q′(ct, at) = Q(ct, at)− γI[fimmoral(at) > τ ].
(2) 122

where the new reshaped Q′(ct, at) is influenced 123

by the immorality score fimmoral(at), which is 124

controlled by the parameter γ. τ is the threshold 125

to indicate a moral or immoral action, and the im- 126

morality scores fimmoral(at) are determined using 127

a pre-trained large model trained on the ETHICS 128

benchmark (Hendrycks et al., 2020) which is not 129

updated during training of the RL agent. 130

2.3 Deep Q-Learning Architectures 131

Most of the previous work in the text-based adven- 132

ture game domain uses the deep Q-learning archi- 133

tecture proposed by He et al. (2016). The survey 134

paper by Osborne et al. (2022) summarizes vari- 135

ous encoder methods, highlighting that most pre- 136

vious work focuses on action generation or knowl- 137

edge representation while maintaining the same RL 138

agent encoder with Glove+GRU. Only a few papers 139

(Yin et al., 2020; Gruppi et al., 2024), introduce the 140

usage of a BERT-based encoder. 141

GloVe+GRU Representation: Most previous 142

work uses GloVe+GRU for learning embeddings. 143

GloVe (Pennington et al., 2014) encodes the in- 144

put text, and the GRU learns the representation of 145

each state element separately, which is then con- 146

catenated into a single vector. This new vector is 147

subsequently passed through a linear function to 148

predict the Q-value. 149

Transformer+GRU Representation: Instead 150

of using GloVe, in our experiments section, we use 151

transformer-based models to encode the word em- 152

beddings and GRU to learn the state representations 153

(Pan et al., 2023). 154
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hero-of-myth battlemage cliffhanger kendrickstone sea-eternal

Roberta-Base 280.77± 23.74 156.11± 40.10 192.89± 6.85 97.61± 27.89 218.66± 39.32

DeBERTa-v3-Xsmall 277.94± 22.52 213.71± 47.17 233.24± 10.17 93.21± 36.57 179.04± 28.45

DeBERTa-v3-small 283.72± 42.56 186.94± 50.90 218.97± 14.93 98.34± 24.31 155.79± 23.38

DeBERTa-v3-Base 310.52± 32.88 214.01± 22.29 215.56± 24.59 101.88± 20.0 182.33± 32.40

DeBERTa-v3-Large 250.24± 29.14 230.92± 85.58 195.65± 37.68 93.06± 18.67 190.36± 25.64

paraphrase-MiniLM 267.64± 40.92 167.64± 37.76 201.39± 44.78 75.76± 25.91 161.51± 13.44

sentence-t5-base 207.79± 20.99 183.43± 27.25 156.68± 27.08 92.20± 25.64 159.04± 18.20

sentence-t5-large 226.55± 21.93 163.67± 62.21 174.64± 42.45 62.61± 19.37 149.17± 9.58

gtr-t5-base 307.38± 39.11 93.60± 29.69 172.45± 39.92 78.87± 29.30 150.73± 2.73

Table 1: The average score of the last 100 episodes is shown for five repetitions of each game. The maximum
number of training steps is 500,000 for each model. (The full name of game kendrickstone is hero-of-kendrickstone )

GRU-based model Params(M)
RoBERTa-base 126
DeBERTa-v3-xsmall 71.4
DeBERTa-v3-small 142.6
DeBERTa-v3-base 185
DeBERTa-v3-large 435.5
Sentence-based model Params(M)
paraphrase-MiniLM-L6-v2 22.9
sentence-t5-base 110.6
sentence-t5-large 336.1
gtr-t5-base 110.6

Table 2: The size of parameters in millions for the Q-
learning model varies with different embedding models.

Transformer-based Sentence Representation:155

Recently, many embedding methods have fo-156

cused on directly obtaining sentence embed-157

dings(Kashyap et al., 2024). In subsequent experi-158

ments, we employ a transformer to directly obtain159

sentence embeddings. We then concatenate the160

sentence embeddings of the state and action into161

a single feature, which is subsequently fed into a162

linear function to predict the q-value of each state-163

action pair.164

3 Experiments165

3.1 Experimental Setting166

The primary reason for using the Machiavelli167

benchmark in this paper instead of Jiminy Cricket168

or Jericho is that actions in the Machiavelli bench-169

mark are typically complete sentences, rather than170

‘Verb’+‘Noun’ (e.g., ’go east’) combinations. The171

Machiavelli benchmark aims to identify the trade-172

off between game scores and moral behavior. In173

the following experiments, our primary focus is174

on the game scores. The immorality score, calcu- 175

lated using Equation 2 as the Q-value minus a fixed 176

immorality score from the pre-trained model, the 177

constrained immoral score can be considered as 178

fixed value and remains unchanged during training. 179

Therefore, we do not focus on immorality scores in 180

this paper. 181

In our investigation of the language model’s 182

significance for RL performance, we examine 183

DeBERTa-v3 (He et al., 2021) and RoBERTa (Liu 184

et al., 2019) as word embedding models. DeBERTa- 185

v3 represents an enhanced iteration of DeBERTa. 186

Our experiments with DeBERTa-v3 encompass dif- 187

ferent model sizes, spanning from xsmall to large. 188

DeBERTa-v3 was used in the Machiavelli experi- 189

ments. 190

Furthermore, we present results using sentence 191

embedding models facilitated by sentence trans- 192

former (Reimers and Gurevych, 2019). We select 193

four models (paraphrase-MiniLM-L6-v2, sentence- 194

t5-base(Ni et al., 2021a) , sentence-t5-large) of 195

varying sizes, ranging from small to large, as well 196

as models of identical sizes but with distinct archi- 197

tectures (sentence-t5-base vs.gtr-t5-base (Ni et al., 198

2021b)). 199

3.2 Main Findings 200

How does the size of the embedding model affect 201

RL performance? Embeddings from large models 202

often yield higher accuracy. For instance, DeBerta- 203

V3-large (He et al., 2021) outperforms DeBerta- 204

V3-base, small, and xsmall on benchmarks like 205

MNLI (Williams et al., 2018) and SQuAD (Ra- 206

jpurkar et al., 2018). However, large embeddings 207

also lead to increased memory and computational 208

demands, which can be problematic, especially 209

since RL itself is time-consuming. Training an 210
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agent to play a game requires running hundreds211

of episodes, which further amplifies these issues.212

The results from Table 1 indicate that using a large213

model will not guarantee that the agent achieves214

higher game scores as compared to using smaller215

models. The large model only achieves the highest216

average scores in the game battlemage, yet it also217

exhibits the highest standard deviation, indicating218

its unstable performance.219

For the games battlemage and cliffhanger, the220

DeBERTa-v3-xsmall model achieves higher aver-221

age game scores compared to the DeBERTa-v3-222

small model. In cliffhanger, the DeBERTa-v3-223

xsmall model even outperforms the base model.224

In SQuAD tasks, the DeBERTa-v3-xsmall model225

achieves better scores than the DeBERTa-v3-small226

model, despite having only half the parameters.227

The possible reason suggested by He et al. (2021)228

is that DeBERTa-v3-xsmall possesses deeper lay-229

ers, enabling more effective extraction of semantic230

features.231

Is it possible to use the sentence-embedding232

architecture as an alternative?233

Although the results show that234

Transformer+GRU-based models still gener-235

ally perform better, the advantage of using236

sentence-embedding models lies in their simpler237

architecture compared to GRU-based models.238

These models directly obtain sentence embeddings239

from sentence-transformer models and use linear240

functions to predict scores. As shown in Table 2,241

sentence-embedding models generally have fewer242

parameters than GRU-based models. Similar to243

the GRU-based model, the large embedding model244

will not yield better results. Surprisingly, the245

Paraphrase-MiniLM model, despite its extremely246

small parameter size, achieves average game247

scores that are comparable to other models.248

Overall, our key findings are:249

• In the text-based adventure games domain, no250

single embedding model can guarantee the251

best performance. This is in line with results252

by Muennighoff et al. (2022) who show that253

there is no universal embedding model suit-254

able for all tasks such as classification, clus-255

tering or reranking.256

• DeBERTa-v3-Base, in general, has better and257

more stable performance than other models.258

• Considering the size of parameters, the259

DeBERTa-v3-xsmall and paraphrase-MiniLM260

Games Average Max
Heroes-of-myth 297 405
Battlemage 128 310
Cliffanger 104 130
hero-of-kendrickstone 76 120
sea-eternal 185 250

Table 3: Llama3 results: LM agent runs five times with
the maximum step of 1000. The Max column lists the
maximum score over five runs.

models are extremely small. However, for 261

most of the games, their results are compara- 262

ble to those of the base and large models. 263

3.3 Llama3 for Text-based Adventure Games 264

Another option is to use an LLM directly, without 265

RL, to play the games. Here, we use Llama3 (Tou- 266

vron et al., 2023), execute each game five times, 267

and compute the average game score. While the 268

original Machiavelli paper used GPT-3.5 and GPT- 269

4 (Achiam et al., 2023) for game play, they did 270

not provide individual game results. We have repli- 271

cated these findings using Llama3. As shown in 272

Table 3, on average, Llama3 fails to achieve higher 273

scores than an RL agent across all games, mirror- 274

ing the conclusions drawn in the Machiavelli paper. 275

Notably, the limitation of the LLM-only agent lies 276

in its inability to interact with game environments, 277

hallucination, and knowledge boundaries (Wang 278

et al., 2024; Zhao et al., 2023). 279

4 Conclusion and Future Work 280

In this paper, we investigate the effectiveness of 281

embedding methods in RL agents. Significant po- 282

tential remains to enhance RL agents using bench- 283

marks like Machiavelli. Based on our findings, one 284

promising direction for future research is to inte- 285

grate the strengths of both RL and LLMs. For ex- 286

ample, using an extremely small embedding model 287

for RL to learn from game environments, while 288

seeking guidance from advanced LLMs such as 289

Llama3 or GPT-4. There are still unresolved ques- 290

tions regarding how well embedding methods cap- 291

ture semantic meaning, similar to most NLP tasks. 292

A possible approach could involve saving the trajec- 293

tories during RL training and then using post-hoc 294

interpretation techniques, such as probing (Hewitt 295

and Liang, 2019; Wu and Xiong, 2020), to under- 296

stand the decision-making process. 297
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Limitations298

The objective of this paper is to comprehend the im-299

pact of embedding on RL performance. Employing300

a broader range of language models will strengthen301

and enhance the persuasiveness of our findings. Ad-302

ditionally, We have not yet evaluated RL techniques303

aimed at constraining immoral behavior, which rep-304

resents an important area for future research. For305

instance, this could involve developing constrained306

RL to address ethical considerations. Bridging the307

gap between NLP and RL is imperative for advanc-308

ing the field.309

References310

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama311
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,312
Diogo Almeida, Janko Altenschmidt, Sam Altman,313
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.314
arXiv preprint arXiv:2303.08774.315

AI@Meta. 2024. Llama 3 model card.316

Prithviraj Ammanabrolu and Matthew Hausknecht.317
2020. Graph constrained reinforcement learning for318
natural language action spaces. In International Con-319
ference on Learning Representations.320

Mattia Atzeni, Shehzaad Dhuliawala, Keerthiram Mu-321
rugesan, and Mrinmaya Sachan. 2021. Case-322
based reasoning for better generalization in tex-323
tual reinforcement learning. arXiv preprint324
arXiv:2110.08470.325

Mauricio Gruppi, Soham Dan, Keerthiram Murugesan,326
and Subhajit Chaudhury. 2024. On the effects of fine-327
tuning language models for text-based reinforcement328
learning. arXiv preprint arXiv:2404.10174.329

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-330
Alexandre Côté, and Xingdi Yuan. 2020. Interactive331
fiction games: A colossal adventure. In Proceedings332
of the AAAI Conference on Artificial Intelligence,333
pages 7903–7910.334

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-335
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep336
reinforcement learning with a natural language ac-337
tion space. In Proceedings of the 54th Annual Meet-338
ing of the Association for Computational Linguistics339
(Volume 1: Long Papers), pages 1621–1630, Berlin,340
Germany. Association for Computational Linguistics.341

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.342
Debertav3: Improving deberta using electra-style pre-343
training with gradient-disentangled embedding shar-344
ing. arXiv preprint arXiv:2111.09543.345

Dan Hendrycks, Collin Burns, Steven Basart, Andrew346
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.347
2020. Aligning ai with shared human values. arXiv348
preprint arXiv:2008.02275.349

Dan Hendrycks, Mantas Mazeika, Andy Zou, Sahil Pa- 350
tel, Christine Zhu, Jesus Navarro, Dawn Song, Bo Li, 351
and Jacob Steinhardt. 2021. What would jiminy 352
cricket do? towards agents that behave morally. 353
NeurIPS. 354

John Hewitt and Percy Liang. 2019. Designing and 355
interpreting probes with control tasks. arXiv preprint 356
arXiv:1909.03368. 357

Abhinav Ramesh Kashyap, Thanh-Tung Nguyen, Vik- 358
tor Schlegel, Stefan Winkler, See Kiong Ng, and 359
Soujanya Poria. 2024. A comprehensive survey of 360
sentence representations: From the bert epoch to the 361
chatgpt era and beyond. In Proceedings of the 18th 362
Conference of the European Chapter of the Associa- 363
tion for Computational Linguistics (Volume 1: Long 364
Papers), pages 1738–1751. 365

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 366
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 367
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 368
Roberta: A robustly optimized bert pretraining ap- 369
proach. arXiv preprint arXiv:1907.11692. 370

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and 371
Nils Reimers. 2022. Mteb: Massive text embedding 372
benchmark. arXiv preprint arXiv:2210.07316. 373

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, 374
Ji Ma, Keith B Hall, Daniel Cer, and Yinfei Yang. 375
2021a. Sentence-t5: Scalable sentence encoders 376
from pre-trained text-to-text models. arXiv preprint 377
arXiv:2108.08877. 378

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus- 379
tavo Hernández Ábrego, Ji Ma, Vincent Y Zhao, 380
Yi Luan, Keith B Hall, Ming-Wei Chang, et al. 381
2021b. Large dual encoders are generalizable re- 382
trievers. arXiv preprint arXiv:2112.07899. 383

Philip Osborne, Heido Nõmm, and André Freitas. 2022. 384
A survey of text games for reinforcement learning 385
informed by natural language. Transactions of the 386
Association for Computational Linguistics, 10:873– 387
887. 388

Alexander Pan, Jun Shern Chan, Andy Zou, Nathaniel 389
Li, Steven Basart, Thomas Woodside, Hanlin Zhang, 390
Scott Emmons, and Dan Hendrycks. 2023. Do the 391
rewards justify the means? measuring trade-offs be- 392
tween rewards and ethical behavior in the machiavelli 393
benchmark. In International Conference on Machine 394
Learning, pages 26837–26867. PMLR. 395

Jeffrey Pennington, Richard Socher, and Christopher 396
Manning. 2014. GloVe: Global vectors for word 397
representation. In Proceedings of the 2014 Confer- 398
ence on Empirical Methods in Natural Language Pro- 399
cessing (EMNLP), pages 1532–1543, Doha, Qatar. 400
Association for Computational Linguistics. 401

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. 402
Know what you don’t know: Unanswerable questions 403
for squad. arXiv preprint arXiv:1806.03822. 404

5

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162


Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:405
Sentence embeddings using siamese bert-networks.406
arXiv preprint arXiv:1908.10084.407

Richard S Sutton and Andrew G Barto. 2018. Reinforce-408
ment learning: An introduction. MIT press.409

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier410
Martinet, Marie-Anne Lachaux, Timothée Lacroix,411
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal412
Azhar, et al. 2023. Llama: Open and efficient413
foundation language models (2023). arXiv preprint414
arXiv:2302.13971.415

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao416
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,417
Xu Chen, Yankai Lin, et al. 2024. A survey on large418
language model based autonomous agents. Frontiers419
of Computer Science, 18(6):186345.420

Adina Williams, Nikita Nangia, and Samuel Bowman.421
2018. A broad-coverage challenge corpus for sen-422
tence understanding through inference. In Proceed-423
ings of the 2018 Conference of the North American424
Chapter of the Association for Computational Lin-425
guistics: Human Language Technologies, Volume 1426
(Long Papers), pages 1112–1122. Association for427
Computational Linguistics.428

Chien-Sheng Wu and Caiming Xiong. 2020. Probing429
task-oriented dialogue representation from language430
models. arXiv preprint arXiv:2010.13912.431

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du,432
Joey Tianyi Zhou, and Chengqi Zhang. 2020. Deep433
reinforcement learning with stacked hierarchical at-434
tention for text-based games. Advances in Neural435
Information Processing Systems, 33:16495–16507.436

Shunyu Yao, Karthik Narasimhan, and Matthew437
Hausknecht. 2021. Reading and acting while blind-438
folded: The need for semantics in text game agents.439
In Proceedings of the 2021 Conference of the North440
American Chapter of the Association for Computa-441
tional Linguistics: Human Language Technologies,442
pages 3097–3102, Online. Association for Computa-443
tional Linguistics.444

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and445
Karthik Narasimhan. 2020. Keep CALM and ex-446
plore: Language models for action generation in text-447
based games. In Proceedings of the 2020 Conference448
on Empirical Methods in Natural Language Process-449
ing (EMNLP), pages 8736–8754, Online. Association450
for Computational Linguistics.451

Xusen Yin, Ralph Weischedel, and Jonathan May. 2020.452
Learning to generalize for sequential decision mak-453
ing. arXiv preprint arXiv:2010.02229.454

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,455
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen456
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A457
survey of large language models. arXiv preprint458
arXiv:2303.18223.459

A Plotting Results 460

Figure 2 shows the results of Transformer+GRU 461

representation and Transformer-based sentence rep- 462

resentation for each game. The shaded areas repre- 463

sent the standard deviations. 464

B Llama3 for text-based adventure games 465

We conducted our Llama3 experiments using the 466

ollama open-source platform. Following the Machi- 467

avelli experiments, we provided the same prompt to 468

the Llama3 model. These prompts focused solely 469

on selecting actions that would maximize the game 470

score, without considering any moral constraints. 471

Each game is run for five episodes, Table 4 472

shows the average game point and point of each 473

episode. 474

C Deep Q-Learning Architectures Details 475

Input representation: Following Pan et al. (2023), 476

the state s comprises three elements: observa- 477

tion, inventory, and description at the current time 478

step. For Transformer+GRU Representation, the 479

text of these elements in the state and the ac- 480

tion is tokenized and encoded by a large-language 481

model. Then, separate GRUs are employed to learn 482

the state and actions embeddings. Notably, for 483

Transformer-based Sentence Representation, tok- 484

enization is not necessary. Sentence-transformer 485

can directly encode the text of these three elements 486

and then concatenate the three representations. 487

Policy Neural networks After the input repre- 488

sentation learning, the policy neural network in- 489

cludes two linear layers with hidden dimensions 490

D1 = 128, each hidden layer connects with the 491

ReLU activation function, and the categorical dis- 492

tribution is on top to ensure that the sum of action 493

probabilities is one. The policy update at each step. 494

The hyperparameters followed the previous DRRN 495

model and our experiments were run on the GPU 496

DGX-100. 497
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Games Average Game Scores
Heroes-of-myth 297 270, 405, 220, 375, 215
Battlemage 128 50, 50, 140, 310, 90
hero-of-kendrickstone 76 45, 11, 60, 45, 120
Cliffanger 104 130, 90, 120, 90, 90
sea-eternal 250 250, 200, 150, 150, 175
i-cyborg 121 126, 108, 127, 121, 123

Table 4: Llama3 results
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(a) heros-of-math: Transformer+GRU (b) heros-of-math: Sentence-transformer

(c) cliffhanger: Transformer+GRU (d) Sentence-transformer

(e) battlemage: Transformer+GRU (f) battlemage: Sentence-transformer

(g) hero-of-kendrickstone: Transformer+GRU (h) hero-of-kendrickstone: Sentence-transformer

Figure 2: Last100 Scores: Transformer+GRU representation vs. Transformer-based sentence representation8


