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ABSTRACT

Data privacy is critical in many decision-making contexts, such as healthcare and
finance. A common mechanism is to create differentially private synthetic data
using generative models. Such data generation reflects certain statistical properties
of the original data, but often has an unacceptable privacy vs. utility trade-off. Since
natural data inherently exhibits causal structure, we propose incorporating causal
information into the training process to favorably navigate the aforementioned
trade-off. Under certain assumptions for linear gaussian models and a broader
class of models, we theoretically prove that causally informed generative models
provide better differential privacy guarantees than their non-causal counterparts.
We evaluate our proposal using variational autoencoders, and demonstrate that the
trade-off is mitigated through better utility for comparable privacy.

1 INTRODUCTION

Automating AI-based solutions and making evidence-based decisions both require data analyses.
However, in many situations, the data is sensitive and cannot be published directly. Synthetic data
generation, which captures certain statistical properties of the original data, is useful in resolving
these issues. However, naive data synthesis may not work: when improperly constructed, the
synthetic data can leak information about its sensitive counterpart (from which it was constructed).
Several membership inference (MI) and attribute inference attacks demonstrated for generative
models (Mukherjee et al., 2019; Zhang et al., 2020b) eliminate any privacy advantage provided by
releasing synthetic data. Therefore, effective privacy-preserving synthetic data generation methods
are needed.

The de-facto mechanism used for providing privacy in synthetic data release is that of differential
privacy (DP) (Dwork et al., 2006) which is known to degrade utility proportional to the amount of
privacy provided. This is further exacerbated in tabular data because of the correlations between
different records, and among different attributes within a record. In such settings, the amount of noise
required to provide meaningful privacy guarantees often destroys utility. Apart from assumptions
made on the independence of records and attributes, prior works make numerous assumptions about
the nature of usage of synthetic data and downstream tasks to customize DP application (Xiao et al.,
2010; Hardt et al., 2010; Cormode et al., 2019; Dwork et al., 2009).

To this end, we propose a mechanism to create synthetic data that is agnostic of the downstream task.
Similar to Jordan et al. (Jordon et al., 2018), our solution involves training a generative model to
provide formal DP guarantees. A key distinction arises as we encode knowledge about the causal
structure of the data into the generation process to provide better utility. Our approach leverages
the fact that naturally occurring data exhibits causal structure. In particular, to induce favorable
privacy vs. utility trade-offs, our main contribution involves encoding the causal graph (CG) into the
training of the generative model to synthesize data. Considering the case of linear gaussian models,
we formally prove that generative models trained with additional knowledge of the causal structure
of the specific dataset are more private than their non-causal counterparts. We extend this proof for a
more broader class of generative models as well.

To validate the theoretical results on real-world data, we present a novel practical solution utilizing
variational autoencoders (VAEs) (Kingma & Welling, 2013). These models combine the advantage
of both deep learning and probabilistic modeling, making them scale to large datasets, flexible to fit
complex data in a probabilistic manner, and can be used for data generation (Ma et al., 2019; 2020a).
Thus, in designing our solution, we train causally informed and differentially private VAEs. The
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CG can be obtained from a domain expert, or learnt directly from observed data (Zheng et al., 2018;
Morales-Alvarez et al., 2021) or by using DP CG discovery algorithm (Wang et al., 2020a). The
problem of learning the CG itself is important but orthogonal to the goals of this paper.

We evaluate our approach to understand its efficacy both towards improving the utility of downstream
tasks, and robustness to an MI attack (Stadler et al., 2020). Further, we aim to understand the effect
of true, partial and incorrect CG on the privacy vs. utility trade-off. We experimentally evaluate our
solution on a synthetic dataset where the true CG is known. We evaluate on real world applications:
a medical dataset (Tu et al., 2019), a student response dataset from a real-world online education
platform (Wang et al., 2020b), and perform ablation studies using the Lung Cancer dataset (Lauritzen
& Spiegelhalter, 1988).

Through our evaluation, we show that models that are causally informed are more stable (Kutin &
Niyogi, 2012) than associational (either non-causal, or with the incorrect causal structure) models
trained using the same dataset. In the absence of DP noise, causal models enhance the baseline utility1

by 2.42 percentage points (PPs) on average while non-causal models degrade it by 3.49 PPs. With
respect to privacy evaluation, prior works solely rely on the value of the privacy budget ε. We take
this one step further and empirically evaluate resilience to MI. Our experimental results demonstrate
the positive impact of causal information in inhibiting the MI adversary’s advantage on average.
Better still, we demonstrate that DP models that incorporate both complete or even partial causal
information are more resilient to MI adversaries than those with purely differential privacy with the
exact same ε-DP guarantees.

In summary, the contributions of our work include:

1. A deeper understanding of the advantages of causality through a theoretical result that highlights
the privacy amplification induced by being causally informed (§ 3), and insight as to how this can
be instantiated (§ 4.1).

2. Empirical results demonstrating that causally constrained (and DP) models are more utilitarian in
downstream classification tasks (§ 5.1) and are robust (on average) to MI attacks (§ 5.2).

2 PROBLEM STATEMENT & NOTATION

Problem Statement: Formally, we define a dataset D to be the set {x1, · · ·xn} of n records xi ∈ X
(the universe of records); each record x = (x1, · · · , xk) has k attributes (a.k.a variablesX1, · · · , Xk).

We aim to design a procedure which takes as input a private (or sensitive) dataset Dp and outputs
a synthetic dataset Ds. The output should have formal privacy guarantees and maintain statistical
properties from the input for downstream tasks. Formally speaking, we wish to design fθ : Z → X ,
where θ are the parameters of the method, and Z is some underlying latent representation for inputs
in X . In our work, we wish for fθ to provide the guarantee of differential privacy.

Differential Privacy (Dwork et al., 2006): Let ε ∈ R+ be the privacy budget, and H be a
randomized mechanism that takes a dataset as input. H is said to provide ε-differential privacy (DP)
if, for all datasets D1 and D2 that differ on a single record, and all subsets S of the outcomes of
running H: P[H(D1) ∈ S] ≤ eε · P[H(D2) ∈ S], where the probability is over the randomness of
H .

Sensitivity: Let d ∈ Z+, D be a collection of datasets, and define H : D → Rd. The `1 sensitivity
of H , denoted ∆H , is defined by ∆H = max‖H(D1)−H(D2)‖1, where the maximum is over all
pairs of datasets D1 and D2 in D differing in at most one record.

We rely on generative models to enable private data release. If they are trained to provide DP,
then any further post-processing (i.e., using them to obtain a synthetic dataset) is also DP by post-
processing (Dwork et al., 2014). In this work, we use variational autoencoders (VAEs) as our
generative models.

Variational Autoencoders (VAEs) (Kingma & Welling, 2013): Data generation, pθ(x|z), is realized
by a deep neural network (DNN) parameterized by θ, known as the decoder. To approximate the
posterior of the latent variable pθ(z|x), VAEs use another DNN (the encoder) with x as input to
produce an approximation of the posterior qφ(z|x). VAEs are trained by maximizing an evidence
lower bound (ELBO), which is equivalent to minimizing the KL divergence between qφ(z|x) and

1Utility obtained from models trained on the original dataset (without the use of any generative model).
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pθ(z|x) (Jordan et al., 1999; Zhang et al., 2018). Solutions using VAEs for data generation would
concatenate all variables as X , train the model, and generate data through sampling from the prior
p(Z). To train the model, we wish to minimize the KL divergence between the true posterior p(z|x)
and the approximated posterior qφ(z|x), by maximizing the ELBO:

ELBO = Eqφ(z|x))[log pθ(x|z)]−KL[qφ((z|x)||p(z)]

Causally Consistent Models: Formally, the underlying data generating process (DGP) is character-
ized by a causal graph that describes the conditional independence relationships between different
variables. In this work, we use the term causally consistent models to refer to those models that factor-
ize in the causal direction. For example, the graph X1 → X2 implies that the factorization following
the causal direction is p(X1, X2) = p(X1) · p(X2|X1). Due to the modularity property (Woodward,
2005), the mechanism to generate X2 from X1 is independent from the marginal distribution of X1.
This only holds in causal factorization but not in anti-causal factorization.

3 PRIVACY AMPLIFICATION THROUGH CAUSALITY

Here, we present our main result. Stated simply: under infinite training data, causally consistent (or
simply causal) models are more private than their non-causal (or associational) counterparts. We
also characterize the conditions needed for this claim to be true under finite training data. For ease of
exposition, we first consider the setting of linear gaussian structural causal models (SCMs) where
each node (i.e., variable) is generated as a linear function of its parents in the causal graph (CG).

Causal and Associational models. LetM = 〈X, f, ε〉 be a linear gaussian SCM corresponding to
a CG G = (X,EG). X is the set of variables {x1, · · · , xk}, EG are the edges in the CG connecting
them, f represents the linear generating function for each variable xi ∈ X , and ε are the error terms.
We assume all variables are standardized to be zero mean and unit variance. We use upper-case
variables to capture sets, bold-faced to capture vectors, and subscripts capture appropriate indexing.

In a linear gaussian SCM, each node is generated as a linear function of its parents (assuming no
interaction between them).

xi = Paiβi + εi (1)
where Pai is a matrix of parent variables of xi (of size n× ki, where n is the number of data points
and ki ≤ k denotes the number of parents of xi), and similarly βi is the estimated coefficient vector
(of size ki × 1). The error terms εi are mutually independent as well as independent of all other
variables. We can also write it as Xβi,ext + εi where X is the n × k matrix with all variables as
columns and βi,ext is an extended vector such that its value is fixed to 0 for all non-parents of xi.

A causal generative model has additional knowledge of the CG. Since mechanisms of the SCM are
stable and independent (Peters et al., 2017), fitting the causal generative model can be broken down
into a set of separately fit linear regression models. For any variable xi, parameters βi are learnt (as
β̂i) by minimizing the least squares error, `(x̂i,xi) =

∑
j∈[n](x̂

j
i − x

j
i )

2, where x̂i is given by,

x̂i = Paiβ̂i (2)

An associational generative model does not have knowledge of the true CG. In general, it can be a
generative model such as a VAE. However, for learning linear functional relationships, it makes sense
to instead learn a set of linear regression equations, which is based on an alternative acyclic structure
(e.g., an incorrect graph). For each xi, letHi be the feature matrix used to predict xi. We obtain,

x̂i = Hiγi (3)

where Hi is the data for all features that generate the value of xi in the model, analogous to Pai.
For each xi, γi is the learnt parameter vector of the associational model.

We show that sensitivity of β = {β1, · · · ,βk} is lower than or equal to γ = {γ1, · · · ,γk}. To do
so, we first prove a result about comparing sensitivity of linear regression when features are chosen
by the true data-generating process (DGP) or not. Our result on linear regression can be found in
Appendix A (see Lemma 1). Note that since our goal is to compare between models, we follow a
different set of assumptions than standard DP on linear regression. Rather than assuming that the
inputs are bounded, we assume that the error terms in the DGP are bounded, thus providing a bound
on the values of parameters that are optimal for any point.
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3.1 MAIN THEOREM

Theorem 1. Consider a linear gaussian SCM M = 〈X, f, ε〉 with standardized variables (zero
mean, unit variance). Let the true generative equations be expressed as,

∀xi ∈ X : xi = Paiβi + εi (4)

where (a) Pai is the data matrix denoting all parents of xi in the CG corresponding toM, (b) βi are
the true generative parameters, and (c) εi is an independent, symmetric error vector that is bounded
such that the maximum deviation from βi that minimizes |xji −βiPa

j
i | for the jth data point is δmax.

Let a mechanism take as input n data points and output the parameters of the fitted linear generative
functions. Then,

1. As n → ∞, the sensitivity of the mechanism based on causal information is lower than that
without it.

2. For finite n, whenever the empirical correlation of a variable’s parents with error is much less
than the empirical correlation of the features used by the associational model with error (i.e.,
PaTi εi <<H

T
i εi

2), the sensitivity of the mechanism based on causal information is the lowest.

Proof idea.3 Since a SCM consists of independent mechanisms, it is sufficient to prove the result for
regression parameters of any one mechanism. Given a fitted linear regression for one of the nodes in
the CG, its sensitivity is determined by stability: how much a new training point can alter the learnt
parameters; the new point is also constrained to be generated by the linear SCM equation, so the
optimal learnt parameters for the new point is the the true SCM parameters (within a δmax bound).

In the infinite data regime, for a causal model, the fitted parameters are exactly the true SCM
parameters since it uses exactly the parents as features. Whereas the associational model uses a
different set (with possibly correlated features) and therefore the learnt parameters for each feature
are different than the SCM parameters. So a new point generated from the true SCM parameters can
introduce a significant change in learnt parameters for associational models (note that new input is
not bounded), while for causal models the effect is bounded by δmax.

For finite data, we additionally need that the associational model deviates substantially from the
causal features (i.e., the contribution of non-causal features to the model is substantial); otherwise a
causal model may not have significant improvement on the sensitivity than the associational model.

The above proof also generalizes to case where all variables of SCM are not observed. We need the
following assumption.
Assumption 1. For each node xi ∈ X for the SCM M, any unobserved parents Paunobsi are
independent of all other observed parents of xi, Paobsi .

Paj,obsi ⊥⊥ Pak,unobsi ∀j, k where Paobsi ∪ Paunobsi = Pai (5)

Corollary 1. Under Assumption 1, Theorem 1 is satisfied even if some variables of the SCM are
unobserved.

By assuming strong convexity of the loss function, we are able to generalize our result beyond linear
gaussian SCMs; the detailed proof is in Appendix B. The key insight again stems from the higher
stability of causal models (in both the infinite and finite data regimes) resulting in lower sensitivity.

Why does causality provide any privacy benefit? In the case of causal models, we know the proper
factorization of the joint probability distribution. These factorized conditional probabilities remain
stable even under new data that corresponds to a different joint distribution (Peters et al., 2017).
Hence any learnt model using the factorization will be more stable. Due to this higher stability, its
(worst-case) loss on unseen points (or points generated by the true DGP) is lower. In the associational
case, the model does not have any such constraint, and thus may learn relationships that are not stable.

4 OUR APPROACH AND IMPLEMENTATION

Our theoretical analysis shows the privacy benefit of training a causally informed generative model
for the linear gaussian case. In practice, the generation of synthetic datasets requires flexibility for

2T is used to denote the transpose of the matrix.
3The detailed proof is in Appendix A.
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downstream tasks and computational efficiency in large-scale applications. Therefore, we propose
our approach of building causally informed generative models using VAEs and implement this
approach for evaluating on real-world datasets; salient features of each dataset is presented in Table 2.
Experiments were performed on a server with 8 NVIDIA GeForce RTX GPUs, 48 vCPU cores, and
252 GB of memory. All our code was implemented in python.

4.1 CAUSAL DEEP GENERATIVE MODELS

Let us consider that the original dataset contains variables X1 and X2 and the causal relationship
follows Figure 9(b) (in Appendix C.1). For example, X1 can be a medical treatment, X2 can be
a medical test, and Z is the patient health status which is not observed. Instead of using a VAE
to generate the data, we design a generative model as shown in Figure 9(c), where the solid line
shows the model p(X1, X2, Z) = p(Z) · pθ1(X1|Z) · pθ2(X2|X1, Z), and the dashed line shows the
inference network qφ(Z|X1, X2). In this way, the model is consistent with the underlying CG.

The modeling principle is similar to that of prior work, CAMA (Zhang et al., 2020a). However,
CAMA only focuses on prediction and ignores all variables outside the Markov Blanket of the
target. In our application, we aim for data generation and need to consider the full causal graph, and
generalizes CAMA.

Remark 1: In this work, we assume that the causal relationship is given. In practice, this can be
obtained from domain expert or using a careful chosen causal discovery algorithm (Glymour et al.,
2019); the latter can be learnt in a differentially-private manner (Wang et al., 2020a). Additionally,
recent advances enable simultaneously learning the CG and optimizing the parameters of a generative
model informed by it (Morales-Alvarez et al., 2021). We stress that the contribution of our work is
understanding the influence of causal information on the privacy associated with generative models,
and not on mechanisms to learn the required causal information.

Remark 2: The theory we propose in Appendices A and B show that the privacy amplification
induced by causal information is agnostic of the particular choice of generative model. We utilize
VAEs as the work of Morales-Alvarez et al. (2021) provides a platform for simultaneously performing
(P1) causal discovery and (P2) causal inference. Recent work provides both the aforementioned
properties in the context of generative adversarial networks (GANs) (Geffner et al., 2022) and
flow-based models (Kyono et al., 2021), and validating their efficacy is a subject of future research.

4.2 PRIVACY BUDGET (ε)

For training our DP models, we utilize opacus v0.10.0 library4 that supports the DP-SGD
training approach proposed by Abadi et al. (2016) of clipping the gradients and adding noise while
training. We ensure that the training parameters for training both causal and non-causal models are
fixed. These are described in Appendix C. For all our experiments, we perform a grid search to
obtain the optimal clipping norm and noise multiplier. Once training is done, we calculate the privacy
budget after training using the Renyi DP accountant provided as part of the opacus package. The
value of ε for both causal and non-causal models is the same (refer Table 2).

4.3 MEMBERSHIP INFERENCE (MI) ATTACK

Prior solutions for private generative models often use the value of ε as the sole measure for
privacy (Jordon et al., 2018; Zhang et al., 2020b). In addition to ε, we use an MI attack specific
to generative models to empirically evaluate if the models we train leak information (Stadler et al.,
2020). In this attack, the adversary has access to (a) synthetic data sampled from a generative model
trained with a particular record in the training data, and (b) synthetic data sampled from a generative
model trained without the same record in the training data. The objective of the adversary is to use
this synthetic data (from both cases) and learn a classifier to determine if a particular record was used
during training.

4.4 UTILITY METRICS

Utility is preserved if the synthetic data performs comparably to the original sensitive data for any
given task using any classifier. To measure the utility change, we perform the following experiment:
if a dataset has k attributes, we utilize k − 1 attributes to predict the kth attribute. We randomly
choose 20 different attributes to be predicted. Furthermore, we train 5 different classifiers for this task,

4https://github.com/pytorch/opacus
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Dataset (Baseline Utility Range) DP Non Causal Causal

kernel svc logistic rf knn kernel svc logistic rf knn

EEDI (86-92%) X 6.83 7.11 6.82 6.54 5.36 -4.04 -0.22 -3.49 6.09 5.87
× 1.14 3.86 2.6 5.27 2.41 -6.83 -2.74 -6.13 -0.03 -1.96

Pain1000 (88-95%) X 9.56 6.34 2.48 5.86 2.03 -1.84 4.03 -1.27 2.22 -4.64
× 5.42 5.5 1.31 6.22 -0.924 -1.73 1.56 -3.16 2.11 -6.92

Pain5000 (92-98%) X 4.09 6.89 6.8 2.27 5.22 1.7 2.11 4.58 0.62 -0.82
× 3.53 5.93 5.68 0.48 4.07 -0.64 0.07 -0.24 -4.62 -5.13

Table 1: Downstream Utility Change: We report the utility change induced by synthetic data on downstream
classification tasks in comparison to the original data i.e., (original data utility - synthetic data utility). Negative
values indicate the percentage point improvement, while positive values indicate degradation. The performance
range of the classifiers we consider is reported in parentheses next to each dataset. Observe that (a) DP training
induces performance degradation in both causal and non-causal settings, and (b) performance degradation in the
causal setting is lower than that of the non-causal setting.

and compare the predictive capabilities of these classifiers when trained on (a) the original sensitive
dataset, and (b) the synthetically generated private dataset. The 5 classifiers are: (a) linear SVC (or
kernel), (b) svc, (c) logistic regression, (d) rf (or random forest), (e) knn. Additionally,
we draw pairplots using the features from the original and the synthetic dataset to compare their
similarity visually. These pairplots are obtained by choosing 10 random attributes (out of the k
available attributes). Refer Appendix E for more details.

5 EVALUATION

Since the accounting mechanism returns the same value of ε, our evaluation is designed to understand:

• If (DP) causally informed models negatively influence accuracy?
• If causally informed models leak more information than their non-causal counterparts?

From our evaluation, we observe that:

• In the absence of DP, causal models enhance the baseline utility computed using the original dataset
by 2.42 percentage points (PPs) on average while non-causal models degrade it by 3.49 PPs (§ 5.1).

• The influence of causality (with DP) on MI resilience is nuanced. The general trend we observe is
that, as the accuracy of causal information increases, so does the model’s resilience to MI (§ 5.2).

5.1 UTILITY EVALUATION

Table 1 shows the change in utility on different downstream tasks using the generated synthetic data
when trained with and without causality as well as DP. The negative values in the table indicate an
improvement in utility5. We only present the range of absolute utility values when trained using the
original data in the table and provide individual utility for each classifier in Appendix E.

We observe an average performance degradation of 3.49 percentage points (PPs) across all non-causal
models trained without DP, and an average increase of 2.42 PPs in their causal counterparts. However,
it is well understood that DP training induces a privacy vs. utility trade-off, and consequently
the utility suffers (compare rows with DP and without DP). However, when causal information is
incorporated into the generative model, we observe that the utility degradation is less severe (compare
pairs of cells with and without causal information). These results suggest that causal information
encoded into the generative process improves the privacy vs. utility trade-off i.e., for the same ε-DP
guarantees, the utility for causal models is better than their non-causal counterparts.

In Figure 1, we plot the utility (measured by the average accuracy across the 5 downstream prediction
tasks) for both causal and associational models, for varied values of ε. Observe that for a fixed ε, the
causal models always have better utility than their associational counterparts. Note that our work is
the first to combine DP and causality. When compared with prior work, DP-PGM McKenna et al.
(2019) (which uses only DP), we observe that our approach (Causal in Figure 1) generates synthetic
data that is more utilitarian than DP-PGM.

5All trials were reported 5 times with different random seeds. The numbers reported in the table are an
average of these trials.
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Figure 1: Utility vs. Privacy: Causal models always
outperform their associational counterparts, for the
same ε.

(a) EEDI (Condensed) (b) EEDI (Morales-Alvarez
et al. (2021))

Figure 2: More Causal Information: EEDI
Morales-Alvarez et al. (2021) is resilient to MI attacks
with accurate causal information.Note that we evaluated the quality of synthetic data generated using a generative model trained using

the approach proposed by Morales-Alvarez et al. Morales-Alvarez et al. (2021), and the results are
not significantly different from those presented in Table 1 (which we omit for brevity).

5.2 EVALUATING MI RESILIENCE

Understanding the influence of causal information on MI requires nuanced discussion. Thus far, our
discussion has focused on how perfect causal information can be used to theoretically minimize ε.
However, causal information is often incomplete/partial, or incorrect. Our evaluation answers:

1. What is the effect of complete, partial and incorrect causal information on MI attack accuracy?
2. What is the effect on MI attack accuracy when a causally informed VAE is trained both with and

without DP?

We summarize our key results below:

1. Knowledge of a complete CG and training with DP consistently reduces the adversary’s advantage
across different feature extractors and classifiers i.e., provides better privacy (Figure 3).

2. We observe that incorrect causal information has disparate impacts on resilience to MI. While
introducing spurious correlations improves MI efficacy, removing causal information reduces MI
efficacy but also degrades utility (§ 5.2.2).

3. Even partial causal information reduces the advantage of the adversary when the model is trained
without DP and in most cases, with DP as well. As the accuracy of causal information increases,
so does the model’s resilience to MI attacks (§ 5.2.3).

Evaluation Methodology. We train 2 generative models: one that encodes information from a CG
and one that does not. We train each of them with and without DP, and thus have 4 models in total.
For all our datasets, we evaluate these models against the MI adversary (§ 4.3), and compute the
attack accuracy when a method (DP/causal consistency) is not used in comparison to when it is used.
Note that as part of the MI attack, we are unable to utilize the Correlation and Ensemble
feature extractors for the EEDI dataset due to computational constraints in our server.

5.2.1 WITH COMPLETE CG

We conduct a toy experiment with synthetic data where the complete (true) CG is known apriori. The
data is generated based on the CG defined in Appendix D. The results are presented in Figure 3. Here,
advantage degradation is the change in MI success between a scenario when DP is not used, and when
DP is used for training (positive values are better). Observe that in both the causal and non-causal
model, training with DP provides an advantage against the MI adversary, though to varying degrees.
However, the important observation is that causal models provide greater resilience on average in
comparison to the non-causal model.

5.2.2 ABLATION STUDY: INCORRECT CG

Many real-world datasets do not come with their associated CGs. CGs obtained from domain experts,
or those learnt through algorithmic means are potentially erroneous. We wish to understand how
these errors assist MI adversaries. To this end, we utilize the causally informed generative modelling
framework of Morales-Alvarez et al. (2021) to synthesize data for 3 different models for the Lung
Cancer dataset: (a) armed with the true CG (baseline), (b) with an edge added, and (c) with an edge
removed. Observe that the last 2 scenarios are introduced to induce error in the CG. The results of
average MI success (obtained by averaging the efficacy of the MI attack (Stadler et al., 2020) using 4
classifiers) is presented in Figure 4 (lower is better). By adding edges, we introduce more spurious
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(c) Non Causal

Figure 3: True CG: Both causal and non-causal mod-
els trained with DP reduce the adversary’s advantage.
Causal models provide more advantage degradation
on average.

Figure 4: Incorrect CGs: For the Lung Cancer
dataset, adding edges (introducing spurious relation-
ships) enables the MI adversary, but removing edges
(disabling causal relationships) hurts it.

(a) EEDI (b) Pain5000

Figure 5: Partial Causal Information & No DP: We
plot the (average) MI success the adversary uses a non-
causal model and switches to its causal counterpart. Ob-
serve that even in the absence of DP, causal information
by itself provides resilience against our MI adversary.

(a) EEDI (b) Pain5000

Figure 6: Partial Causal Information & DP: We
plot the MI success when the adversary uses a non-
causal model and switches to its causal counterpart.
Observe that in the presence of DP & causal infor-
mation, the adversary is less effective.

correlations which the MI adversary exploits, but by removing (causal) edges, we remove signal that
the MI adversary can use. While removing edges may seem tempting from a privacy perspective,
the average (across 8 trials) downstream utility of the data generated from the corresponding model
suffers. The utility of the data generated from the true CG is 82.94% which reduces to 81.8% when
edge is added and futher to 79.67% when an edge is removed. Our results show that while knowing a
true CG is always useful both for privacy and utility, having access to an approximate CG may also
provide privacy benefits at the cost of utility.

Disclaimer: There are two ways a model may use incorrect causal structure: missing a true parent of
a node, or adding an incorrect parent. Corollary 1 already covers the first: with missing parents in the
causal model, the result of lower sensitivity for causal models holds as long as Assumption 1 is true.
So overall, missing parents is a weaker violation and we may still obtain the same benefits. But if a
model adds an incorrect parent, then its sensitivity will definitely increase.

5.2.3 WITH PARTIAL CG

For the real world EEDI and Pain datasets, we follow two approaches: (a) we utilize information
from domain experts to partially construct a condensed CG (where several variables are clubbed into
a single node of the condensed CG), and (b) we learn a CG from data and simultaneously train a VAE
that is informed by it (Morales-Alvarez et al., 2021)–resulting in a larger, yet partial CG. Note that
due to space constraints, we only report results for 2 out of the 3 datasets we evaluate. The trends
from Pain1000 are similar to that of Pain5000 and are in Appendix F.
Effect of only Causality. Figure 5 shows the MI adversary’s advantage when the model incorporates
causal information in the absence of DP. Observe that across both datasets, causal models result in
more resilient models i.e., lower attack accuracy. While this effect is moderate in the EEDI dataset6
(Figure 5a) (where the Histogram features enable a more effective attack in the causal model),
this effect is more pronounced in the Pain5000 dataset (Figure 5b). This suggests that standalone

6Unlike the other datasets we consider, the EEDI dataset is sparse. The Histogram attack relies on
counting the number of entries for a particular feature to aid in disambiguation, while the Naive attack relies
on condensing the entire dataset to summary statistics (such as mean, median, mode); we conjecture that sparsity
helps the adversary in this case.
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causal information provides some privacy guarantees. We conjecture that the MI adversary uses the
spurious correlation among the attributes to perform the attack. Even partial causal information is
able to eliminate spurious correlation present in the dataset. Hence, a causally informed VAE is also
able to reduce the MI adversary’s advantage.
Effect of Causality with DP. Figure 6 shows the results for models trained using partial causal
information with DP. Similar to the earlier results (of causal information and no DP), models trained
with DP and causal information are more resilient to MI attacks. These results validate that causality
amplifies privacy provided by DP training. We iterate that from results in Figure 1 we show that for
the same ε-DP guarantees, models learnt using causal information provide higher utility, thereby
providing a promising direction to balance the privacy vs. utility trade-off.

The results thus far rely on domain experts to partially construct a condensed CG. To see if additional
causal information provides more resilience, we repeat the experiments with the EEDI dataset using
the generative model proposed by Morales-Alvarez et al. (2021) that learns a CG from data. We
utilize the same training configuration as in the earlier case, resulting in a model learnt with ε ≈ 13.,
which learns a CG with 57 nodes (compared to the 3 node CG used thus far). From Figure 2, observe
that as we provide more accurate causal information to the causal model, its effects on privacy are
exacerbated by the presence of DP noise specifically for the attack using Naive features. The attack
using Histogram features in unaffected even with DP providing empirical evidence to recent work
that questions the sufficiency of DP training against MI attacks (Humphries et al., 2020).

5.3 DISCUSSION

1. Better understanding of MI. Yeom et al. (2018) exploit the relationship between MI and overfit-
ting, and propose DP training as a defense through a loose bound. However, recent work suggests
that DP training by itself is insufficient (Humphries et al., 2020), and often implemented incorrectly
leading to faulty conclusions (Tschantz et al., 2017). Our results also partially corroborate this
observation but further exploration is needed to understand the cause of MI in different settings.

2. Loose privacy budget. The values of ε used in our experiment are large. This is a result of the
batch size and training duration of the VAEs we use as DP training is expensive. If computation
resource is not a constraint then we should be able to get smaller epsilon values. There is extensive
discussion by Bhowmick et al. (2018) and Nasr et al. (2021) which discusses different threat
models where larger values of ε are tolerable.

3. Non-convex loss functions. VAEs are deep learning models trained to minimize ELBO which
is highly non-convex. Research shows that deep learning framework demonstrate for example
locally convex properties (Lucas et al., 2021; Littwin & Wolf, 2020) which explains our results.

4. Overheads: The work of Morales-Alvarez et al. (2021) discusses an approach to simultaneously
learn the CG and train the generative model with said structure. In practice, we observed that
causal discovery using this method adds limited overhead (∼ 100 epochs of additional training).

6 RELATED WORK

Private Data Generation: The primary issue associated with private synthetic data generation
involves dealing with data scale and dimensionality. Solutions involve using Bayesian networks to
add calibrated noise to the latent representations (Zhang et al., 2017; Jälkö et al., 2019), or smarter
mechanisms to determine correlations (Zhang et al., 2020b). Utilizing synthetic data generated by
GANs has been extensively studied, but only few solutions provide formal guarantees of privacy (Jor-
don et al., 2018; Wu et al., 2019; Harder et al., 2020; Torkzadehmahani et al., 2019; Ma et al., 2020b;
Tantipongpipat et al., 2019; Xin et al., 2020; Long et al., 2019; Liu et al., 2019). Across the spectrum,
very limited techniques are evaluated against MI adversaries (Mukherjee et al., 2019).
Membership Inference: Most MI work focuses on the discriminative setting (Shokri et al., 2017).
More recently, several works propose MI attacks against generative models (Chen et al., 2020;
Hilprecht et al., 2019) but offer a limited explanation as to why they are possible. Tople et al. (2020)
show the benefits of causal learning to alleviate membership privacy attacks but only limited to
classification models and not for generative models.

7 CONCLUSIONS
Our work proposes a mechanism for private data release using VAEs trained with differential privacy.
Theoretically, we highlight how causal information encoded into the training procedure can potentially
amplify the privacy guarantee provided by differential privacy, without degrading utility. Empirically,
we show how causal information enables advantageous privacy vs. utility trade-offs.
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A DETAILED PROOF: BENEFITS OF CAUSAL LEARNING IN LINEAR
GAUSSIAN SCM

A.1 BACKGROUND

LetM = 〈X, f, ε〉 be a linear gaussian structural causal model corresponding to a causal graph
G = (X,EG), where (a) X is the set of variables, G is the causal graph connecting them through
edges EG, (b) f represents the set of linear generating functions for each variable xi ∈ X , and (c) ε
are the error terms. We assume that all variables are standardized to be zero mean and unit variance.

In a linear gaussian SCM, each node is generated as a linear function of its parents (we assume
without any interaction terms). The error terms ε are mutually independent and independent of all
variables.

xi ←
∑
j

βjiPa
j
i + εi; xi = Paiβi + εi (6)

where Paji is a vector referring to the values of jth parent of node xi, Pai refers to a matrix of data
values with parents of xi as columns (total ki columns, where ki is the number of parents of xi) and
n rows as data-points, and βi refers to the true coefficient vector (or structural causal parameter).
Alternatively, we can write it asXβi,ext + εi whereX is the matrix with all variables as columns
and βi,ext is an extended vector such that its value is fixed to 0 for all non-parents of xi.

A causal generative model has additional knowledge of the graph structure. Since mechanisms
of SCM are stable and independent (Peters et al., 2017), fitting the causal generative model can be
broken down into a set of separately fit linear regression models. For any variable xi, parameters βi =

β1
i , β

2
i ...β

ki
i are learnt (as β̂i) by minimizing the least squares error, `(xi, x̂i) =

∑
j∈[n](

ˆ
xji − x

j
i )

2,
where x̂i is given by

x̂i =
∑
j

β̂jiPa
j
i ; x̂i = Paiβ̂i (7)

An associational generative model does not know the true causal graph, so it may learn an alternative
generative acyclic structure, which is also reducible to a set of independently fitted linear regressions.
For each xi, letHi be the matrix denoting the features used to predict xi (columns are features, rows
are data-points). We obtain

x̂i =
∑
j

γjiH
j
i ; x̂i = Hiγi (8)

where Hj
i andHi is the individual jth parent data vector and all parents’ data matrix respectively,

analogous to Paji and Pai. γi is the learnt parameter vector of the associational model, for each i

A.2 GOAL

Our goal is to show that sensitivity of β̂ = {β1, · · · ,βk} is lower than or equal to γ = {γ1, · · · ,γk}.
To do so, we first prove a result about sensitivity of linear regression, which is used to estimate the
parameters of the generative model. Note that since our goal is to compare between models, we
follow a different set of assumptions than standard differential privacy on linear regression. Rather
than assuming that the inputs are bounded, we assume that the error terms in the DGP are bounded,
thus providing a bound on the parameter values that are optimal for any point.

Our proof utilizes the following strategy. First, we define 2 worlds: world 1 where where a model is
learnt with causal information, and world 2 where a model is learnt without this causal information.
Next, we measure the sensitivity of the parameters learnt in both worlds and demonstrate that the
sensitivity is lower in world 1 than world 2. This suggests that if DP is used in both worlds, the
privacy budget in world 1 will be lower than that of world 2.

A.3 PRIMER

Lemma 1. Consider dataset (Xj , yj)nj=1 where the labels are generated by the following equation:
y = βXc + ε7 where Xc ⊆ X refers to variables having a non-zero coefficient in the true data-

7This equation holds for the data generating distribution; a dataset is sampled from this distribution. More
generally, this is the data-generating equation of the SCM that defines the distribution.
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generating process (DGP) of y,Xc corresponds to the data matrix associated with variables in Xc,
and ε is independent error that is bounded and symmetric. ε is bounded such that the maximum
deviation from β that minimizes |yj − βXj

c | for any jth data-point is δmax. Consider two linear
regression models fit to this dataset, one that has knowledge of the true DGP and includes Xc as
features, and one that does not and includes a different subset Xa ⊆ X as features. Assume all
variables are standardized (zero mean, unit variance).

1. As n→∞, the sensitivity of linear regression model fitted over Xc is lower than or equal to the
sensitivity of the linear regression model fitted over Xa.

2. For finite n, whenever the empirical correlation of Xc with error is much less than other features
Xa with error, Xcε << Xaε, the sensitivity of the mechanism based on causal information is
lower than that of the mechanism without it.

Proof. WARM-UP: TWO VARIABLE REGRESSION

As a warm-up exercise, consider a 2-variable regression where X = {x1, x2}. x1 is a part of the true
DGP for y (i.e., causes y), while x2 is not part of the DGP for y but is related to y (it may be a part of
Markov Blanket of y, or simply be correlated with y). As stated in the Lemma, the corresponding
data-generating equation is

y = βx1 + ε (9)

(Causal) Xc Model. The model will use the following for predicting y,

ŷ = β̂1x1 (10)
leading to the following learnt parameter,

β̂1 =

∑
x1y∑
x21

=

∑
x1(βx1 + ε)∑

x21
= β +

∑
x1ε∑
x21

(11)

To calculate sensitivity, we assume the existence of an adversary that wishes to add one more point to
the training process such that the estimated parameters are farthest from what is currently achieved
(capturing the definition of sensitivity).

Sensitivity. Let us consider a new data-point added to the training set by an adversary, to maximize
difference between β̂1 and β̂1

′
(the estimated parameter obtained after adding the adversarial data-

point). Any new input chosen by the adversary will be generated based on Eqn 9.

Note that the definition of DP is for any 2 databases from a universe of databases; Eqn 9 captures
this universe. Since the adversary operates in the same world, any point they sample has to also obey
the same equation. Their overall distribution can be different, e.g., Pr(y|x1, x2) can be different, but
Pr(y|x1) has to remain the same.

Since the error is bounded, the adversary tries to generate a point such that new estimated β̂1 is
farthest from above. That is, the adversary may choose a point such that the parameter obtained after
minimizing the squared loss using that point is β ± δmax minimizes the squared loss on the point.
Further, the adversary can choose a point with large enough x′1 such that estimate on the entire dataset
matches β ± δmax. This can be done by choosing a point (x′1, y

′) such that |x
′
1ε
′+

∑
x1ε

x
′2
1 +

∑
x2
1

| = δmax.

⇒ Thus, for the parameter corresponding to variable x1, the sensitivity is |δmax|+ |
∑
x1ε3∑
x2
1
|. For the

parameter corresponding to the variable x2,the sensitivity is zero (since there is no parameter).

(Associational) Xa Model. In contrast, the full regression model will use the following parameters.
Since x2 is not independent of y after conditioning on x1, the model may include x2 since it may
result in predictive accuracy gain for y.

ŷ = γ1x1 + γ2x2 (12)
leading to the following learnt parameters,

γ̂1 =

∑
x22

∑
x1y −

∑
x1x2

∑
x2y∑

x21
∑
x22 − (

∑
x1x2)2

γ̂2 =

∑
x21

∑
x2y −

∑
x1x2

∑
x1y∑

x21
∑
x22 − (

∑
x1x2)2

(13)
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Sensitivity. Compared to the Xc model, the second parameter (γ̂2) will have non-zero sensitivity
(while that for causal model is zero). So we focus on showing that the first parameter γ̂1 will also
have a higher sensitivity. Observe that the first parameter can be rewritten as

γ̂1 =

∑
x22

∑
x1(βx1 + ε)−

∑
x1x2

∑
x2(βx1 + ε)∑

x21
∑
x22 − (

∑
x1x2)2

= β +

∑
x22

∑
x1ε−

∑
x1x2

∑
x2ε∑

x21
∑
x22 − (

∑
x1x2)2

(14)

Now the adversary can select a (x′′1 , x
′′
2 , y
′′) such that x′′2 = 0. Here x2’s coefficient becomes

irrelevant and the parameter that minimizes error on any new adversarial point is β ± δmax.

Thus, the sensitivity of the first parameter is

|γ̂1 − β ± δmax| = |
∑
x22

∑
x1ε−

∑
x1x2

∑
x2ε∑

x21
∑
x22 − (

∑
x1x2)2

|+ |δmax|

Note that this sensitivity can be achieved by choosing x′′1 , y
′′ (and therefore ε′′) for a new adversarial

point such that its value is much higher than other points and thus the estimated coefficient tends to
β + δmax.

We now prove the main claims.

1. Infinite Data. As n → ∞,
∑
x1ε = 0 because x1 and ε are independent, by property of the

generative process. But
∑
x2ε 6= 0 because it is correlated with y. Thus, for infinite data, sensitivity

of Xc model (|δmax|) is lower than another Xa model.

2. Finite Data. For finite data, if
∑
x2ε >>

∑
x1ε, then sensitivity of Xc model is lower than or

equal to the Xa model.

PROVING THE GENERAL CASE

Using the closed form solution for linear regression, we can write,

β̂ = (ZTZ)−1ZTy (15)

where Z is a matrix denoting the model’s features’ values and y is a column vector denoting the
values in a dataset for the variable y. For the causal model, Z = Xc, the true variables from the DGP.
Expanding y based on the DGP equation,

β̂ = (XT
c Xc)

−1XT
c y = (XT

c Xc)
−1(XT

c Xc)β + (XT
c Xc)

−1(XT
c ε)

β̂ = β + (XT
c Xc)

−1(XT
c ε)

(16)

In contrast, for the associational model, we obtain

γ̂ = (HTH)−1HTy

= (HTH)−1(HTXc)β + (HTH)−1(HT ε)
(17)

whereH representsXa.

The set of featuresH used by the Xa model may not be equal to the true DGP variables, Xc. Thus,
the above can be rewritten in terms of the true parameter, β, as follows,

γ̂ = (HTH)−1HT (Xcβ) + (HTH)−1(HT ε)

= (HTH)−1HT (Hβi,extended + Sβ′) + (HTH)−1(HT ε)

= βi,extended + (HTH)−1HTSβ′ + (HTH)−1(HT ε)

(18)

where βi,extended and β′ are simply re-parameterizations of the true β; they are zero for all variables
x /∈ Xc. βi,extended is an extension of β for variables in H , and β′ is an additional vector which
is used only ifH does not include all true DGP variables Xc. S is the matrix denoting data for all
x ∈ Xc that are not inH
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PROOF OF MAIN CLAIM

Infinite data case. Error is independent of the DGP variables, i.e., XT
c ε = 0 as the number of

samples n → ∞. Thus, β̂ = β and any new training point provided by the adversary will also be
generated using the same true β (within an bound of ±δmax). Thus, β̂ = β ± δmax will also be
optimal for this new point and the estimated value will change within δmax.

For the Xa model, however, note that γ̂ 6= β unless H = Xc. We provide a construction for
adversary’s input such that estimated γ̂ will change more than or equal to δmax after adding that
input. For all variables xk ∈ Xa that are correlated (not in Xc), an adversary chooses value of xk = 0
and generates y using β such that the correlation between y and xk is broken. Further, for the Xc

features and y, the adversary is constrained to choose an input such that γXc = β ± δmax is optimal
on the input, irrespective of the value of other γ dimensions (since xk = 0). That is, after addition
of new point, the least squares optimization will ignore xk and move γ̂Xc closer to β for the Xc

features. The total sensitivity is |β̂Xc − β| + |δmax| for the parameters corresponding to Xc. For
all other parameters, the Xc model outputs value of zero (and hence sensitivity of zero), which is
trivially lower than or equal to the Xa’s model’s parameter sensitivity for those parameters.

Finite data case. In the finite data case, given a fitted β̂ the sensitivity that a new adversarial point
can lead to is |β ± δmax − β̂| = |(XT

c Xc)
−1(XT

c ε)|+ |δmax| (from Eqn 16). For large-enough n,
XT
c ε should be close to zero due to independence. Sensitivity of coefficients for all non-parents is

zero. For the Xa model, the coefficients can be written as,

γ̂ = βi,extended + (HTH)−1HTSβ′ + (HTH)−1(HT ε) (19)

As we can see, for the variables /∈ Xc, γ̂ depends on the data and therefore will have a non-zero
sensitivity to a new data-point, greater than the Xc model.

We next consider sensitivity of parameters corresponding to variables in Xc. As with the infinite
data case, to generate a new input, the adversary can set the value of variables such that the non-Xc

features in h ∈ H become 0. Then optimal γ̂Xc for the new point will be β ± δmax (which is
equivalent to βextended ± δmax), and sensitivity will be the last two terms from Eqn 19 plus δmax
(which can be achieved by sufficiently high values of Xc variables for the adversarial point). Thus,
sensitivity is |β ± δmax − γ̂Xc | = |(HTH)−1HTSβ′ + (HTH)−1(HT ε)| + |δmax|. Since β′
and S correspond to the true β andXc respectively, , the sensitivity of Xa model will be higher than
Xc model’s sensitivity for the same parameter wheneverHT ε >>XT

c ε.

We now use this lemma to prove our main theorem.

A.4 MAIN THEOREM

Theorem 1. Consider a linear gaussian SCM M = 〈X, f, ε〉 with standardized variables (zero
mean, unit variance). Let the true generative equations be expressed as,

∀xi ∈ X : xi = Paiβi + εi (4)

where (a) Pai is the data matrix denoting all parents of xi in the CG corresponding toM, (b) βi are
the true generative parameters, and (c) εi is an independent, symmetric error vector that is bounded
such that the maximum deviation from βi that minimizes |xji −βiPa

j
i | for the jth data point is δmax.

Let a mechanism take as input n data points and output the parameters of the fitted linear generative
functions. Then,

1. As n → ∞, the sensitivity of the mechanism based on causal information is lower than that
without it.

2. For finite n, whenever the empirical correlation of a variable’s parents with error is much less
than the empirical correlation of the features used by the associational model with error (i.e.,
PaTi εi <<H

T
i εi

8), the sensitivity of the mechanism based on causal information is the lowest.

Proof. WARM-UP: Three node SCM. As a warm-up, consider a 3-node SCM where X =
{x1, x2, x3}. x1 causes x3, while x2 does not have a causal relationship with x3 but is related

8T is used to denote the transpose of the matrix.
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to x3 (it may be a part of Markov Blanket of x3, or simply be correlated with x3. The corresponding
data-generating equations are,

x1 = ε1

x2 = f2(x1, x3, ε2)

x3 = β3x1 + ε3

(20)

where f2 can be any linear function (x2 optionally is caused by x1). If x2 depends on x3, it will
be a child of x3; if x2 depends on x1, it will be correlated with x3; if x2 depends on both x1 and
x3, it will be both a child and correlated with x3. Let us consider the estimation equation for any
xi. The proof logic follows the same way for other estimating equations, since they correspond to
independent mechanisms.

Causal Model. The causal model will use the following model for predicting x3,

x̂3 = β̂3x1 (21)

Associational Model. In contrast, the associational generative model will use the following parame-
ters. Since x2 is not independent of x3 after conditioning on x1, the model may include x2 since it
may result in predictive accuracy gain for x3.

x̂3 = γ13x1 + γ23x2 (22)

Using Lemma 1, we see that causal model corresponds to the true DGP, whereas associational model
does not. Thus, sensitivity of causal model is lower than or equal to associational model, under the
same conditions (where Xc is replaced by causal parents Pa = {x1} and Xa by H = {x1, x2}) .

We can analogously use Lemma 1 for the general case with all variables.

The above proof also generalizes to case where all variables of SCM are not observed. We need the
following assumption.

Assumption 1. For each node xi ∈ X for the SCM M, any unobserved parents Paunobsi are
independent of all other observed parents of xi, Paobsi .

Paj,obsi ⊥⊥ Pak,unobsi ∀j, k where Paobsi ∪ Paunobsi = Pai (5)

If all parents of a node xi are observed, the above assumption is true trivially. If all parents are not
observed (e.g., xi shares an unobserved common cause with another variable), then this assumption
ensures that the estimated error from linear regression is independent of the true parents.

Corollary 2. Under Assumption 1, Theorem 1 is satisfied even if some variables of the SCM are
unobserved.

Proof. Under Assumption 1, the empirical error is still independent of the causal parents. Under the
simple case, if x3 has an unobserved parent, it may share an unobserved parent with x2 and thus
the ε3 term can be expanded as, ε3 = βunobs3 xunobs + ε′3 where ε′3 is the true SCM error with an
unobserved variable. However, due to Assumption 1, xunobs ⊥⊥ x1; hence x1 ⊥⊥ ε3. Hence the logic
of above proof holds and the rest of the proof follows identically to Theorem 1.

REMARK: Counter-Examples Where Causal Information May Not Help Sensitivity. Note that
the above proof would not work if the additional features used by the associational model are
independent or weakly correlated with the variable to be generated (and thus we cannot claim that
HT
i εi >> Pa

T
i εi). In the 3-node SCM, for example, if x2 is weakly correlated with x3;

∑
x2ε3

will also be close to zero, as would be
∑
x1ε3, for large n. So the sensitivity of γ̂13 may be comparable

to β̂1
3 (though parameter γ̂23 may still have non-zero sensitivity compared to the causal model’s zero

sensitivity). Specifically, if relationship between x2 and x3 is weak enough such that
∑
x2ε3 is

comparable to
∑
x1ε3, then it is not guaranteed that causal information will help.

To provide a contrived example where a model with causal information will have worse sensitivity than
without, consider the following counter-example. Suppose a finite dataset such that

∑
x22

∑
x1ε3 −
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∑
x1x2

∑
x2ε3 = 0. Then γ̂31 = β3 and will have minimal (δmax) sensitivity, while β̂3

1
6= β3

and thus its sensitivity is > δmax. In addition, we can construct relationship of x2 and x3 such that
sensitivity of γ23 is also zero. Specifically, x2 may be the child of x3 and be fully determined by x3;
x2 = β2x3 ⇒ x3 = 1

β2
x2, leading to γ̂23 = 1

β2
. Then γ̂23 will also be optimal for any new adversarial

point. Thus, comparing the causal versus associational model, the sensitivity of both γ̂32 and β̂3
2

is
zero, but the sensitivity of γ̂31 is lower than that of β̂3

1
.

Correctness of the Proof: Our proof does not simply depend on the number of features. As a
counterexample, consider a graph where a node x3 has two parents: x1 and x2 and is correlated with
x4. A causal model will use both x1 and x2 while the associational model may use x4. The logic in
the proof (independence of error w.r.t features) will show that causal model with more features is less
sensitive.

Clarification (& Comparison to Prior Work): We would like to clarify that the proof involving
linear mixture of gaussians is meant to serve as intuition to understand what the benefit of causal
side-information has towards the stability of the learnt parameters. Prior work (Chaudhuri et al.,
2011) also studies the learning of linear models using DP and performs a similar style of analysis.
However, we remark that (a) their work does not focus on using any causal information, and (b)
measuring sensitivity through parameter stability is a fairly general technique used (and does not
imply that output perturbation is the only mechanism to be used to achieve DP in such a setting). We
would also like to stress that (a) we use a different proof technique that is motivated by the causal
graph structure, and (b) their work is for discriminative models while ours is for generative models.

B PRIVACY BENEFIT OF CAUSAL MODELS IN NON-LINEAR SETTINGS

Note: The notation in this section is slightly different from that used earlier.

B.1 NOTATION

A mechanism H takes in as input a dataset D and outputs a parameterized model fθ, where θ are
the parameters of the model. The model (and its parameters) belongs to a hypothesis spaceH. The
dataset comprises of samples, where each sample x = (x1, · · · , xk) comprise of k features. To learn
the model, we utilize the empirical risk mechanism (ERM), and a loss function L. The subscript of
the loss function denotes what the loss is calculated over. For example Lx denotes the loss being
calculated over sample x. Similarly, LD denotes the average loss calculated over all samples in the
dataset i.e., LD = 1

|D|
∑

x∈D Lx. Additionally, Lx(fθ) = `(fθ(x), f∗(x)) where f∗ is the oracle
(responsible for generating ground truth), and `(., .) can be any loss function (such as the cross
entropy loss or reconstruction loss for a generative model).

1. Data Generating Process (DGP): The DGP 〈f∗, η〉 is obtained using the following procedure:
f∗ = limn→∞ arg minLD(fθ). Essentially f? can be thought of as the infinite data limit of
the ERM learner and can be viewed as the ground truth. In a causal setting, the DGP for all
variables/features x is defined as f∗(x) = (f∗1 (Pa(x1)) + ηi, · · · , f∗n(Pa(xn)) + ηn) where ηi are
mutually, independently chosen noise values and Pa(xi) are the parents of xi in the SCM.

2. Distinction between Causal and Associational Worlds: For each feature xi, we call Pa(xi) as
the causal features, and X \ {xi, Pa(xi)} as the associational features for predicting xi. Corre-
spondingly, the model using only Pa(xi) for each feature xi is known as the causal model, and the
model using all features X (including associational features) is known as the associational model.
We denote the causal model learnt by ERM with loss L as fθc , and the associational model learnt
by ERM using the same loss L as fθa . Note that the hypothesis class for the models is different:
fθc ∈ HC and fθa ∈ HA, whereHC ⊆ HA.

Like fθc , the true DGP function uses only the causal features. Assuming that the true function f∗
belongs in the hypothesis classHC , we write, f∗ = lim|D|→∞ arg minf∈HC LD(f).

3. Adversary. Given a dataset D and a model fθ, the role of an adversary is to create a neighboring
dataset D′ by adding a new point x′. We assume that the adversary does so by choosing a point x′
where the loss of fθ is maximized. Thus, the difference of the empirical loss on D′ compared to D
will be high, which we expect to lead to high susceptibility to membership inference attacks.
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4. Loss-maximizing (LM) Adversary: Given a model fθ, dataset D, and a loss function L, an
LM adversary chooses a point x′ (to be added to D to obtain D′) as arg maxx Lx(fθ). Note that
Lx(fθ) = Lx(fθ(x))

Main Result. Given a dataset D of size n, and a strongly convex and Lipschitz continuous
loss function L, assume we train two models in a differentially private manner: a causal
(generative) model fθc , and an associational (generative) model fθa , such that they minimize
L on D. Assume that the class of hypothesesH is expressive enough such that the true causal
function lies inH.
1. Infinite sample case. As n→∞, the privacy budget of the causal model is lower than that

of the associational model i.e., εc ≤ εa.
2. Finite sample case. For finite n, assuming certain conditions on the associational models

learnt and n, the privacy budget of the causal model is lower than that of the associational
model i.e., εc ≤ εa.

B.2 PROOF OUTLINE

The main steps of our proof are as follows:

1. We instantiate two worlds: one with a causal model, and one without one (i.e., with an associational
model).

2. We show that the maximum loss of a causal model is lower than or equal to maximum loss of the
corresponding associational model.

3. Using strong convexity and Lipschitz continuity of the loss function, we show how the difference
in loss corresponds to the sensitivity of the learning function.

4. Finally, the privacy budget ε is a monotonic function of the sensitivity.

We prove step 2 separately for n→∞ (Appendix B.1) and finite n (Appendix B.2) below. Then we
prove step 3 in Appendix B.3. Step 4 follows from differential privacy literature (Dwork et al., 2014).

B.3 PROOF WHEN n→∞ (FOR STEP 2 FROM OUTLINE)

As |D| = n→∞, the proof arises from knowledge that the causal model becomes the same as the
true DGP f∗.

Preliminary 1. Given any variable xt, the causal model learns a function based only on its parents,
Pa(xt). The adversary for causal model chooses points from the DGP 〈f∗, η〉9 s.t.,

x′ = arg max
x
Lx(fθc(x)) s.t. ∀i xi = f∗i (Pa(xi)) + ηi (23)

where fθc = arg minf∈HC LD(f). Assuming thatHC is expressive enough such that f∗ ∈ HC , as
n = |D| → ∞, we can write

lim
|D|→∞

fθc = lim
|D|→∞

arg max
f∈HC

LD(f) = f∗

Therefore, the causal model is equivalent to the true DGP’s function. For any target xi to be predicted,
maximum error on any point is ηi for the `1 loss, and a function of ηi for other losses. Intuitively, the
adversary is constrained to choose points at a maximum ηi distance away from the causal model.

But for associational models, we have,

x′′ = arg max
x
Lx(fθa(x)) s.t. ∀i xi = f∗i (Pa(xi)) + ηi (24)

As n = |D| → ∞, fθa 6= f∗. Thus, the adversary is less constrained and can generate points for a
target xi that are generated from a different function than the associational model. For any point, the
difference in the associational model’s prediction and the true value is |fθa(x))− f∗(Pa(xi))|+ ηi,
which is equivalent to the loss under `1. For a general loss function, the loss is a function of
|fθa(x)− f∗(Pa(xi))|+ ηi. Therefore, we obtain,

∀i ηi ≤ |fθa(x)− f∗(Pa(xi))|+ ηi ⇒ max
x
Lx(fθc(x)) ≤ max

x
Lx(fθa(x)) (25)

for all losses that are increasing functions of the difference between the predicted and actual value.
9One should think of the DGP = 〈f∗, η〉 as the oracle that generates labels.
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B.4 PROOF WHEN FINITE n (FOR STEP 2 FROM OUTLINE)

When n is finite, the proof argument remains the same but we need an additional assumption on the
associational model fθa learnt from D. From learning theory (Shalev-Shwartz & Ben-David, 2014),
we know that the loss of fθc will converge to that of f∗, while loss of fθa will converge to loss of
f∞θa 6= f∗. Thus, with high probability, fθc will have a lower loss w.r.t. f∗ than fθa and a similar
argument follows as for the infinite-data case. However, since this convergence is probabilistic and
depends on the size of n, it is possible to obtain a fθc that has a higher loss w.r.t. f∗ compared to fθa .

Therefore, rather than assuming convergence of fθc to f∗, we instead rely on the property that the
true DGP function f∗ does not depend on the associational features xa. As a result, even if the loss
of the associational model is lower than the causal model on a particular point x = xc ∪ xa10, we
can change the value of xa to obtain a higher loss for the associational model (without changing the
loss of the causal model). This requires that the associational model have a non-trivial contribution
from the associational (non-causal) features, sufficient to change the loss. We state the following
assumption.

Assumption 2: If fθc is the causal model and fθa is the associational model, then we assume that the
associational model has non-trivial contribution from the associational features. Specifically, denote
xc as the causal features and xa as the associational features, such that x = xc ∪ xa. We define any
two new points: x′ = x′c ∪ xa and x′′ = x′′c ∪ x′′a . Let us first assume a fixed value of xa. The LHS
(below) denotes the max difference in loss between fθc and fθa (i.e., change in loss between causal
and associational models over the same causal features). The RHS (below) denotes difference in loss
of fθa between xa and another value x∗a, keeping xc constant (i.e., effect due to the associational
features). Formally speaking

∃xa max
x′c
{Lx′(fθc(x

′
c ∪ xa))− Lx′(fθa(x′c ∪ xa))}

≤ min
x′′c

max
x′′a
Lx′′(fθa(x′′c ∪ x′′a))− Lx′′c ∪xa(fθa(x′′c ∪ xa))

(26)

The inequality above can be interpreted as follows: if adversary 1 aims to find the x′c such that
difference in loss between associational and causal features is highest for a given xa, then there can
always be another adversary 2 who can obtain a bigger difference in loss by changing the associational
features (from the same xa to x′′a).

Intuition: Imagine that fθc is trained initially, and then associational features are introduced to train
fθa . fθa can obtain a lower loss than fθc by using the associational features xa. In doing so, it might
even change the model parameters related to xc. Assumption 1 says that change in xc’s parameters is
small compared to the importance of the xa’s parameters in fθa . For example, consider a f∗, fθc , fθa
to predict the value of xt such that xc = {x1} and xa = {x2}, and consider `1 loss.

f∗ = x1; fθc = 2x1; fθa = 1.9x1 + φ(x2)

where xt = f∗(x) + η and η ∈ [−0.5, 0.5]. Note that without φ(x2), the loss of the associational
model is lower than the loss of causal model on any point. However, if xa = x2 ∈ R, then we can
always set |x2| to an extreme value such that φ(x2) overturns the reduction in loss for the associational
model, without invoking Assumption 1. When xa is bounded (e.g., x2 ∈ {0, 1}), then Assumption 1
states that the change in loss possible due to changing φ(x2) is higher than the loss difference (which
is 0.1 for `1 loss). IfH was the class of linear functions and we assume `1 loss with all features in the
same range (e.g., [0, 1]), then Assumption 1 implies that the coefficient of the associational features
in fθa is higher than the change in coefficient for the causal features from fθc to fθa .

10Note that xa and xc each represent a set of features, and not a single feature.
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Lemma 2. Assume an LM adversary and a strongly convex loss function L. Given a causal
fθc and an associational model fθa trained on dataset D using ERM. The LM adversary
selects two points: x′ and x′′. Then under Assumption 2, the worst-case loss obtained on the
causal ERM model Lx′(fθc) is lower than the worst-case loss obtained on the associational
ERM model Lx′′(fθa) i.e.,

Lx′(fθc) ≤ Lx′′(fθa)

which can be re-written as

max
x
Lx(fθc) ≤ max

x
Lx(fθa) (27)

Proof: Before we discuss the proof, let us establish another preliminary.

Preliminary 2. Let us write fθa(x) = fθa(xc ∪ xa) as a combination of terms due to xc and xa,
where xc and xa are the causal features (parents) and non-causal features respectively i.e., xc∪xa = x,
and xc ∩ xa = φ. Let x′ = x′c ∪ x′a be the point chosen by the causal adversary.

We will show that the associational adversary can always choose a point x′′ = x′c ∪ x′′a such that loss
of the adversary is higher. We write, for any value xa11,

L(fθa(x′c ∪ x′′a)) = L(fθa(x′c ∪ x′′a))− L(fθa(x′c ∪ xa)) + L(fθa(x′c ∪ xa))

= (L(fθa(x′c ∪ x′′a))− L(fθa(x′c ∪ xa))) + (L(fθa(x′c ∪ xa))

− L(fθc(x
′
c ∪ xa))) + L(fθc(x

′
c ∪ xa))

(28)

Rearranging terms, and since L(fθc(x
′
c ∪ x′a)) = L(fθc(x

′
c ∪ xa)) for any value of xa (causal model

does not depend on associational features),

L(fθa(x′c ∪ x′′a))− L(fθc(x
′
c ∪ x′a)) = (L(fθa(x′c ∪ x′′a))− L(fθa(x′c ∪ xa)))︸ ︷︷ ︸

Term 1

− (L(fθc(x
′
c ∪ xa))− L(fθa(x′c ∪ xa))︸ ︷︷ ︸

Term 2

)
(29)

Now the first term is ≥ 0 since the adversary can select x′′a such that loss increases (or stays constant)
for fθa . Since the true function f∗ does not depend on xa, changing xa does not change the true
function’s value but will change the value of the associational model (and adversary can choose it
such that loss on the new point is higher). The second term can either be positive or negative. If it is
negative, then we are done. Then the LHS > 0.

If the second term is positive, then we need to show that the first term is higher in magnitude than the
second term. From assumption 1, let it be satisfied for some x◦a. We know that L(fθc(x

′
c ∪ x′a)) =

L(fθc(x
′
c ∪ x◦a)) since the causal model ignores the associational features.

L(fθc(x
′
c ∪ x◦a))− L(fθa(x′c ∪ x◦a)) ≤ max

xc
(L(fθc(xc ∪ x◦a))− L(fθa(xc ∪ x◦a)))

≤ min
xc

max
x∗a

(L(fθa(xc ∪ x∗a)− L(fθa(xc ∪ x◦a)) ≤ max
x∗a

(L(fθa(x′c ∪ x∗a)− L(fθa(x′c ∪ x◦a))

(30)

Now suppose adversary chooses a point such that x′′a = xmaxa where xmaxa is the arg max of the RHS
above. Then Equation 7 can be rewritten as

L(fθa(x′c ∪ xmaxa ))− L(fθc(x
′
c ∪ x′a)) = (L(fθa(x′c ∪ xmaxa ))− L(fθa(x′c ∪ x◦a)))

− (L(fθc(x
′
c ∪ x◦a))− L(fθa(x′c ∪ x◦a)))

> 0

(31)

where the last inequality is due to equation 8.

Thus, adversary can always select a different value of x = x′c ∪ xmaxa such that loss is higher than
the max loss in a causal model.

L(fθc(x
′
c ∪ x′a)) = max

x
Lx(fθc) ≤ L(fθa(x′c ∪ xmaxa )) ≤ max

x
Lx(fθa)

11We omit the subscript for L for brevity. It can be implied from context.

21



Under review as a conference paper at ICLR 2023

B.5 PROOF OF STEP 3 FROM OUTLINE

Theorem 2. Assume the existence of a datasetD of n samples. Further, assume a neighboring
dataset is defined by adding a data point toD. Let fθc and fθa be the causal and associational
models learnt using D, and fθ′c and fθ′a be the causal and associational models learnt using
neighboring datasets D′ and D′′ respectively. All models are obtained by ERM on a Lipschitz
continuous (with parameter ρ), strongly convex (with parameter λ) loss function L. Then,
the sensitivity of a causal learning function HC will be lower than that of its associational
counterpart HA. Mathematically, assuming large enough n such that n > 2ρ

λ − 1,

max
D,D′

||θc − θ′c|| ≤ max
D,D′

||θa − θ′a|| (32)

Proof: The proof uses strongly convex and Lipschitz properties of the loss function. Before we
discuss the proof, let us introduce a requisite preliminary.

Preliminary 3. Assume the existence of a dataset D of size n. There are two generative models
learnt, fθa and fθc using this dataset. Similarly, assume there is a neighboring dataset D′ which is
obtained by adding one point x′. Then the corresponding ERM models learnt using D′ are fθ′a and
fθ′c .

We now detail the steps of the proof.

Step 1. Assume L is strongly convex. Then by the optimality of ERM predictor on D and the
definition of strong convexity,

LD(fθ) ≤ LD(αfθ + (1− α)fθ′)

≤ αLD(fθ) + (1− α)LD(fθ′)−
λ

2
α(1− α)||θ − θ′||2

(33)

Step 2. Rearranging terms, and as α→ 1,

(1− α)LD(fθ) ≤ (1− α)LD(fθ′)−
λ

2
α(1− α)||θ − θ′||2

⇒ ||θ − θ′||2 ≤ 2

λ
(LD(fθ′)− LD(fθ))

(34)

Step 3. Further, we can write (LD(fθ′)− LD(fθ)) in terms of loss on x′.

LD′(fθ) =
n

n+ 1
LD(fθ) +

1

n+ 1
Lx′(fθ) (since D′ = D ∪ x′)

≤ n

n+ 1
LD(fθ′) +

1

n+ 1
Lx′(fθ) (from Equation 34)

≤ n

n+ 1

n+ 1

n
LD′(fθ′)−

n

n+ 1

1

n
Lx′(fθ′) +

1

n+ 1
Lx′(fθ) (since D = D′ − {x′})

⇒ LD′(fθ)− LD′(fθ′) ≤
1

n+ 1
(Lx′(fθ)− Lx′(fθ′))

(35)

Step 4. Combining the above two equations, we obtain,

||θ − θ′||2 ≤ 2

λ
(LD(fθ′)− LD(fθ)) ≤

2

λ(n+ 1)
(Lx′(fθ)− Lx′(fθ′)) (36)

Step 5. From Claim 1 above, we know that

max
x
Lx(fθc) ≤ max

x
Lx(fθa)

⇒ Lx′(fθc) ≤ Lx′′(fθa)
(37)
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where x′ = arg maxx Lx(fθc) and x′′ is chosen such that x′ and x′′ differ only in the associational
features. Thus, Lx′(fθ′c) = Lx′′(fθ′c). Also becauseHC ⊆ HA, the training loss of the ERM model
for any D′′ defined using D and x′′ is higher for a causal model i.e.,

Lx′(fθ′c) = Lx′′(fθ′c) ≥ Lx′′(fθ′a) (38)

Therefore, we obtain,

Lx′(fθc)− Lx′(fθ′c) = max
x
Lx(fθc)− Lx′(fθ′c) ≤ Lx′′(fθa)− Lx′′(fθ′a) (39)

So we have now shown that the max loss difference on a point x′ for causal ERM models trained on
neighboring datasets is lower than the corresponding loss difference over x′′ for the associational
models.

Step 6. Now we use the Lipschitz property, to claim,

Lx′′(fθa)− Lx′′(fθ′a) ≤ ρ||θa − θ′a|| (40)

Step 7. Combining Equations 36 (substituting fθc ) and 40, and taking max on the RHS, we get,

max
D,D′

||θc − θ′c||2 ≤
2

λ(n+ 1)
max
D,D′

Lx′(fθc)− Lx′(fθ′c)

≤ 2

λ(n+ 1)
max
D,D′

Lx′(fθa)− Lx′(fθ′a)

≤ 2ρ

λ(n+ 1)
max
D,D′

||θa − θ′a||

(41)

⇒ max
D,D′

||θc − θ′c||2 ≤
2ρ

λ(n+ 1)
max
D,D′

||θa − θ′a|| (42)

For n+ 1 > 2ρ
λ ,

max
D,D′

||θc − θ′c||2 ≤ max
D,D′

||θa − θ′a|| (43)

Now if maxD,D′ ||θc − θ′c|| ≥ 1, then the result follows by taking the square root over LHS. If not,
we need a sufficiently large n such that n+ 1 > 2ρ

λmaxD,D′ ||θc−θ′c||
, then we obtain,

max
D,D′

||θc − θ′c|| ≤ max
D,D′

||θa − θ′a|| (44)

Remark on Theorem 2. Theorem 2 depends on two key assumptions:

1. Assumption 1 that constrains associational model to have non-trivial contribution from associa-
tional (non-causal) features.

2. A sufficiently large n as shown above.

When any of these assumptions is violated (e.g., a small-n training dataset or an associational model
that is negligibly dependent on the associational features), then it is possible that the causal ERM
model has higher ε than the associational model.

Connections between Theory & Practice: The proof provided in Appendix A is meant
to provide intuition as to the benefit of causal information in a simpler setting using linear
gaussian mixtures, similar to what is done in other work (Ilyas et al., 2019). We provide a
more general proof (across all classes of generative models), for a general privacy adversary
in Appendix B, but under some constraining assumptions regarding the convexity of the loss
function.
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C TRAINING DETAILS

C.1 OVERALL SCHEME

We outline the work-flow overview (refer Figure 7): 1. The user provides a dataset for which they
want to create a synthetic copy; 2. We utilize techniques (e.g., Morales-Alvarez et al. (2021)) to learn
the structured causal model (SCM) associated with this dataset (or can assume the SCM is given);
3. We encode this structure into a generative model (e.g., Morales-Alvarez et al. (2021); Geffner
et al. (2022); Kyono et al. (2021)) and train it with DP-SGD; 4. The generative model is sampled to
obtain a synthetic data which is DP (by post-processing) and can be used for arbitrary downstream
tasks. We will also clarify that unlike some works which require some information about the nature
of usage of downstream data, ours does not.

Causal
Discovery

Generative 
Model

Dataset SCM Synthetic Data

Downstream Usage

DP-SGD
SERVER

CLIENT

Figure 7: Overview of procedure.

X

Z

(a) VAE

X2

X1 Z

(b) Causal Graph

X2

X1 Z

(c) Causal DGM

Figure 9: Exemplar case comparing our solution to VAE.

C.2 MODELS

Pain

X2

X1 Z

Encoder: qφ(z, x1|x2) = qφ1(z|x1, x2) · qφ2(x1|x2)

Decoder: pθ(x2, x1, z) = pθ1(x2|x1) · pθ2(x2|z) · pθ3(x1|z)

EEDI
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X2

X1 Z

Encoder: qφ(z, x1|x2) = qφ1
(z|x2)

Decoder: pθ(x2, x1, z) = p(z) · p(x1) · pθ1(x2|z) · pθ2(x2|x1)

Note: All encoders and decoders used as part of our experiments comprised of simple feed-forward
architectures. In particular, these architectures have 3 layers. All embeddings generated are of size
10. We set the learning rate to be 0.001.

C.3 DATASETS

Dataset # Records k ε

EEDI Wang et al. (2020b) 2950 948 12.42
Pain5000 Tu et al. (2019) 5000 222 5.62
Pain1000 Tu et al. (2019) 1000 222 2.36
Synthetic 1000 22 3.9
Lung Cancer Lauritzen & Spiegelhalter (1988) 80,000 8 -

Table 2: Salient features of our experimental setup. More information about the datasets and parameters used
can be found in the Appendix C.4.

We evaluate on datasets from three real-world applications. The first one is the EEDI dataset Wang
et al. (2020b) which is one of the largest real-world education data collected from an online education
platform. It contains answers by students (of various educational backgrounds) for certain diagnostic
questions. The second one is the neuropathic pain (Pain) diagnosis dataset obtained from a causally
grounded simulator Tu et al. (2019). For this dataset, we consider two variants: one with 1000
data records (or Pain1000), and another with 5000 data records (or Pain5000). The third
dataset (Lung Cancer) contains information about lung diseases and visits to Asia Lauritzen &
Spiegelhalter (1988).

More salient features of each dataset is presented in Table 2. We choose these datasets as they
encompass diversity in their size (n), dimensionality (k), and have some prior information on causal
structures (refer Appendix D). We utilize this causal information in building a causally informed
generative models. The (partial) SCM is given utilizing domain knowledge of the EEDI12 and Pain
contexts.

12A larger SCM for the EEDI dataset was learnt using the VICause methodology proposed by Morales-Alvarez
et al. (2021).
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C.4 TRAINING PARAMETERS

Causality Dataset Batch Size Epochs

× EEDI 200 1000
X EEDI 200 1000

× Pain1000 100 100
X Pain1000 100 100

× Pain5000 100 100
X Pain5000 100 100

× Synthetic 100 50
X Synthetic 100 50

X Lung Cancer 100 100

Table 3: Training parameters for our experimental evaluation.

For the experiments related to the model proposed by Morales-Alvarez et al. (2021), we utilized the
same parameters as for EEDI (in Table 3) to obtain the same privacy expenditure (ε).

D CAUSAL GRAPHS

SCM-1: SCM for the Pain dataset. X1 denotes the causes of a medical condition, and X2 denotes
the various conditions.

X2

X1 Z

SCM-2: SCM used by the EEDI. X2 denotes the answers to questions and X1 is the student meta
data such as the year group and school.

X2

X1 Z

VICause: We refer the reader to the work of Morales-Alvarez Morales-Alvarez et al. (2021), which
contains information about the causal graph used to obtain Figure 2.

Lung Cancer: The causal graph related to the Lung Cancer dataset can be found in https:
//www.bnlearn.com/bnrepository/discrete-small.html. The edge between tub
and ether was removed to simulate missing edges, and the edge between asia and smoke was
added to simulate new edges.

26



Under review as a conference paper at ICLR 2023

E UTILITY EVALUATION

E.1 ACCURACY ON ORIGINAL DATA

The results are detailed in Table 4.

Dataset Non Causal Causal

kernel svc logistic rf knn kernel svc logistic rf knn

EEDI 86.93 91.24 88.53 93.8 88.22 87.38 91.46 88.95 93.44 87.92
Pain1000 92.75 94.42 91.56 94.19 88.78 92.69 94.03 91.81 94.28 89.5
Pain5000 95.37 96.53 97.47 93.03 92.14 95.48 96.5 97.39 92.74 92.19

Table 4: Baseline Accuracy calculated on the original (and not synthetic) data. Results presented in Table 1 are
based on these values.

E.2 PAIRPLOTS

Observe that the pair-plots obtained from the models trained with causality and DP are comparable to
those obtained from models trained with causality and no DP; the utility of both these models should
be comparable.

(a) Original (b) Causal + No DP (c) Causal + DP

Figure 10: Pain5000 Dataset

F RESULTS ON PAIN1000 DATASET

As in the figures in the main body of the paper, we plot the average success of the MI attack Stadler
et al. (2020). From Figures 11 and 12, observe that the trends are the same as what we observed
earlier: causality in conjunction with DP reduces the advantage of the adversary. DP and causality in
isolation also reduce the MI adversary’s advantage.
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(a) DP (b) No DP

Figure 11: Impact of DP on MI resilience: Causality by itself is able to provide resilience to MI adversaries.
When combined with DP, the advantage is exacerbated.

(a) Causal (b) Non-Causal

Figure 12: Impact of Causality on MI resilience: Observe that the combination of DP and causality produces
more resilience to MI attacks.
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G MI RESULTS

PA denotes the ability of the classifier to correctly classify train samples. NA denotes the ability of
the classifier to correctly classify test samples. The Accuracy is a weighted combination of PA and
NA.

EEDI. Observe that when there is causal information, the difference between the DP and No DP
column is larger.

Extractor Attack Model Accuracy NA PA
DP No DP DP No DP DP No DP

Naive

kernel 47.33 47.33 100 100 0 0
svc 47.33 47.33 100 100 0 0

random forest 62.18 99.21 58.51 99.49 65.48 98.96
knn 54.79 96.48 55.19 98.85 54.43 94.36

Histogram

kernel 100 100 100 100 100 100
svc 100 100 100 100 100 100

random forest 100 100 100 100 100 100
knn 100 100 100 100 100 100

Table 5: Model trained using EEDI and partial causal information.

Extractor Attack Model Accuracy NA PA
DP No DP DP No DP DP No DP

Naive

kernel 49.85 81.23 100 100 0 62.58
svc 75.38 81.23 62.96 100 87.73 62.58

random forest 98.15 96.92 98.77 97.53 97.55 96.32
knn 98.15 94.46 99.38 95.06 96.93 93.87

Histogram

kernel 100 100 100 100 100 100
svc 100 100 100 100 100 100

random forest 100 100 100 100 100 100
knn 100 100 100 100 100 100

Table 6: Model trained using EEDI and causal information obtained from VICause Morales-Alvarez et al.
(2021).

Extractor Attack Model Accuracy NA PA
DP No DP DP No DP DP No DP

Naive

kernel 47.33 47.33 100 100 0 0
svc 53.21 60.85 60.44 57.62 46.72 63.75

random forest 99.76 100 99.74 100 99.77 100
knn 99.76 99.82 99.87 99.62 99.65 100

Histogram

kernel 52.67 100 0 100 100 100
svc 47.33 95.7 100 95.39 0 95.97

random forest 59.39 100 100 100 22.9 100
knn 59.39 100 100 100 22.9 100

Table 7: Model trained using EEDI and no causal information.
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Pain 1000. Observe that when there is causal information, the difference between the DP and No
DP column is larger.

Extractor Attack Model Accuracy NA PA
DP No DP DP No DP DP No DP

Naive

kernel 47.33 47.33 100 100 0 0
svc 47.33 47.33 100 100 0 0

random forest 57.7 99.58 60.44 99.74 55.24 99.42
knn 55.94 96.76 60.44 96.16 51.9 95.4

Histogram

kernel 48.3 57.82 78.36 100 21.29 19.91
svc 47.33 47.33 100 100 0 0

random forest 57.82 57.82 100 100 19.91 19.91
knn 59.7 59.7 81.82 81.82 39.82 39.82

Correlated

kernel 99.7 98.24 100 99.62 99.42 97.01
svc 51.09 62.12 83.99 50.58 21.52 72.5

random forest 97.39 100 95.52 100 99.08 100
knn 41.52 60.61 42.64 60.95 40.51 60.3

Ensemble

kernel 61.76 61.7 20.49 72.23 98.85 51.78
svc 47.33 47.33 100 100 0 0

random forest 97.94 100 96.93 100 98.85 100
knn 81.09 82.12 86.3 83.99 76.41 80.44

Table 8: Model trained using Pain1000 and partial causal information.

Extractor Attack Model Accuracy NA PA
DP No DP DP No DP DP No DP

Naive

kernel 47.33 47.33 100 100 0 0
svc 47.33 47.33 100 100 0 0

random forest 79.82 99.7 82.33 100 77.56 99.42
knn 80.85 85.76 82.71 88.6 79.17 83.2

Histogram

kernel 96.36 96.79 96.41 90.14 96.32 83.77
svc 47.33 47.33 100 100 0 0

random forest 100 100 100 100 100 100
knn 100 94.91 100 94.88 100 94.94

Correlated

kernel 100 100 100 100 100 100
svc 94.12 100 92.83 100 95.28 100

random forest 78 100 79 100 77.1 100
knn 53.82 73.88 74.9 72.73 34.87 74.91

Ensemble

kernel 98.55 98.3 98.46 99.49 96.82 97.24
svc 47.33 47.33 100 100 0 0

random forest 94.85 100 93.98 100 95.63 100
knn 100 88.79 100 90.27 100 87.46

Table 9: Model trained using Pain1000 and no causal information.
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Pain 5000. Observe that when there is causal information, the difference between the DP and No
DP column is larger.

Extractor Attack Model Accuracy NA PA
DP No DP DP No DP DP No DP

Naive

kernel 47.33 47.33 100 100 0 0
svc 47.33 47.33 100 100 0 0

random forest 76.85 98.85 78.36 97.7 75.49 99.88
knn 76.79 96.12 78.36 93.98 75.37 98.04

Histogram

kernel 47.33 60.24 100 38.16 0 80.09
svc 47.33 47.33 100 100 0 0

random forest 57.82 57.82 100 100 19.91 19.91
knn 58.7 59.7 81.82 81.82 39.82 38.82

Correlated

kernel 92.61 100 94.88 100 90.56 100
svc 47.33 97.64 100 100 0 95.51

random forest 100 100 100 100 100 100
knn 36.48 100 45.07 100 28.77 100

Ensemble

kernel 47.33 62.18 100 46.73 0 76.06
svc 47.33 47.33 100 100 0 0

random forest 100 100 100 100 100 100
knn 74.85 100 81.56 100 68.81 100

Table 10: Model trained using Pain5000 and partial causal information.

Extractor Attack Model Accuracy NA PA
DP No DP DP No DP DP No DP

Naive

kernel 47.33 47.33 100 100 0 0
svc 64.61 47.33 60.18 100 68.58 0

random forest 99.94 100 99.87 100 100 100
knn 100 99.82 100 99.62 100 100

Histogram

kernel 100 100 100 100 100 100
svc 65.03 47.33 91.55 100 41.2 0

random forest 100 100 100 100 100 100
knn 100 100 100 100 100 100

Correlated

kernel 100 100 100 100 100 100
svc 100 100 100 100 100 100

random forest 99.76 100 99.62 100 99.88 100
knn 53.09 100 80.41 100 28.54 100

Ensemble

kernel 100 100 100 100 100 100
svc 48.85 47.33 100 100 0 0

random forest 100 100 100 100 100 100
knn 100 100 100 100 100 100

Table 11: Model trained using Pain5000 and no causal information.
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