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Abstract

Multiple Instance Learning (MIL) is a standard weakly supervised approach for
Whole Slide Image (WSI) classification, where performance hinges on both feature
representation and MIL pooling strategies. Recent research has predominantly
focused on Transformer-based architectures adapted for WSIs. However, we
argue that this trend faces a fundamental limitation: data scarcity. In typical set-
tings, Transformer models yield only marginal gains without access to large-scale
datasets—resources that are virtually inaccessible to all but a few well-funded
research labs. Motivated by this, we revisit simple, non-attention MIL with unsu-
pervised slide features and analyze temperature-β-controlled log-sum-exp (LSE)
pooling. For slides partitioned into N patches, we theoretically show that LSE
has a smooth transition at a critical βcrit = O(logN) threshold, interpolating
between mean-like aggregation (stable, better generalization but less sensitive) and
max-like aggregation (more sensitive but looser generalization bounds). Grounded
in this analysis, we introduce Maxsoft—a novel MIL pooling function that en-
ables flexible control over this trade-off, allowing adaptation to specific tasks and
datasets. To further tackle real-world deployment challenges such as specimen het-
erogeneity, we propose PerPatch augmentation—a simple yet effective technique
that enhances model robustness. Empirically, Maxsoft achieves state-of-the-art
performance in low-data regimes across four major benchmarks (CAMELYON16,
CAMELYON17, TCGA-Lung, and SICAP-MIL), often matching or surpassing
large-scale foundation models. When combined with PerPatch augmentation, this
performance is further improved through increased robustness. Code is available at
https://github.com/jafarinia/maxsoft

1 Introduction

Whole Slide Image (WSI) analysis using machine learning holds significant promise for supporting
the complex and labor-intensive workflow of pathologists [1–3]. However, the extremely large
and variable size of WSIs—typically on the order of 150,000× 150,000 pixels—renders the direct
application of standard computer vision models, such as Vision Transformers (ViTs) [4], infeasible.
The prevailing solution is to divide WSIs into smaller patches and apply a weakly supervised
framework known as Multiple Instance Learning (MIL). MIL enables joint modeling of slide-level
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and patch-level predictions by decomposing the task into a patch-level representation encoder followed
by a pooling function that aggregates patch features for WSI-level classification [5, 6].

Following the success of the attention mechanism [7] and the introduction of the Transformer
architecture [8], attention-based methods such as ABMIL were adopted in the context of pathology
MIL, leading to modest performance gains [5]. In parallel, the introduction of self-supervised learning
(SSL)—beginning with SimCLR [9] and its application in DSMIL [10]—enabled training of encoders
from scratch on domain-specific patches, resulting in substantial improvements. Since then, much
of the research has centered on pairing powerful SSL-trained encoders with increasingly complex
Transformer-based architectures to push state-of-the-art (SoTA). However, these works often lack
thorough analysis of performance attribution and frequently credit improvements to architectural
complexity without sufficient empirical justification [11–16].

In this paper, we demonstrate that Transformer-based MIL methods yield only marginal gains in
low-data settings (Figure 3), and once a strong representation encoder is in place, Transformer
architectures offer little to no added benefit (see Tables 1 and 3 when the Encoder is Prov-GigaPath
[17]). Drawing on our comprehensive encoder experiments in Tables 1 and 3 and the data-quality
analysis in Appendix N, we attribute this effect to their well-documented reliance on large-scale
training data [4, 15, 18–31]. Unfortunately, most publicly available WSI datasets are relatively
small [18, 19], comprising only a few hundred to a few tens of thousands of slides—insufficient for
Transformer training (WSI-level, not patch-level). To our knowledge, the largest existing dataset
contains approximately 200,000 WSIs [17], is not publicly accessible, and is still arguably too small
for training Transformer models. Moreover, the computational resources required to process such
datasets are concentrated in a few well-resourced laboratories, making this direction impractical for
most groups working on WSI classification.

This motivates a reconsideration of classical (non-attention-based) MIL pooling strategies such
as max pooling and mean pooling. In particular, we analyze log-sum-exp (LSE) pooling, a
temperature–parameterized function:

LSEβ(q1, . . . , qN ) ≜
1

β
log

(
1

N

N∑
i=1

eβqi

)
,

defined for real-valued inputs q1, . . . , qN with an adjustable parameter β ≥ 0 (inverse temperature).
The LSE function smoothly interpolates between mean and max behavior: when β ≪ 1, it approxi-
mates the mean; when β ≫ 1, it approaches the maximum. Through a combination of theoretical
and empirical analyses, we observe smooth phase transitions in model behavior as β crosses a critical
threshold of order O(logN), where N denotes the number of patches. In the small-β regime (i.e.,
β ≪ O(logN)), the model exhibits improved generalization but reduced sensitivity (see Theorem
1). In contrast, in the large-β regime (i.e., β ≫ O(logN)), sensitivity increases at the cost of looser
generalization bounds (see Theorem 2) and less stable training. This trade-off reveals a form of
Pareto optimality in the temperature parameter, enabling task-specific tuning to balance generaliza-
tion and sensitivity. Additionally, while max pooling aligns well with the MIL inductive bias, its
non-differentiability and high gradient variance make it challenging to optimize, often resulting in
unwanted test-time performance fluctuations (see Tables 1 and 3).

Motivated by these observations and insights from Backward Pass Differentiable Approximation
(BPDA) [32], we propose Maxsoft pooling—a novel MIL pooling strategy that applies LSE with
β =∞ (i.e., max) during the forward pass, and the gradient of LSE with a moderate β during the
backward pass. Conceptually, this hard-forward/soft-backward design is closely related to straight-
through estimators [33] (e.g., Straight-Through Gumbel-Softmax) [34]. This design improves
optimization stability, generalization, and inference-time sensitivity. Across four major pathology
datasets and five standard MIL benchmarks, Maxsoft consistently demonstrates strong performance.
On the challenging CAMELYON17 dataset [35], we achieve a WSI-level AUC of 1.0 and a patch-level
AUC of 0.99—to our knowledge, the best reported results to date in WSI classification.

From a different perspective, real-world deployment presents challenges such as staining variability,
artifacts introduced during slide preparation, and acquisition noise. To enhance robustness under these
conditions, we explored data augmentation strategies that reflect such clinically relevant variations.
We found that previously proposed WSI-specific augmentations offer negligible or no benefit, as they
fail to introduce meaningful or diverse transformations. To address this, we also introduce PerPatch
augmentation—a simple yet previously unexplored technique that leverages the inherent patch-level
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granularity of WSIs to increase training diversity in MIL. We observed that combining PerPatch with
existing methodologies further improves results in a measurable and consistent manner, and also
reduces performance fluctuations.

In summary, our main contributions are:

• A theoretical and empirical analysis of LSE pooling, motivated by its ability to interpolate
between max and mean behaviors through a tunable temperature parameter. In particular,
we establish several smooth and competing phase transitions in model behavior, revealing
trade-offs between generalization and sensitivity.

• The introduction of Maxsoft, a novel MIL pooling method derived from our analysis, which
demonstrates strong performance, especially in low-data regimes.

• The proposal of PerPatch augmentation, a simple yet effective data augmentation strategy
that leverages the patch-level structure of WSIs to substantially increase data diversity and
yield measurable performance improvements.

2 Related Work

2.1 Transformer-based Architectures

Motivated by the success of the attention mechanism [7], the Transformer architecture [8], and
biological insights suggesting that spatial relationships between regions in a WSI influence diagnostic
outcomes, recent work has predominantly focused on Transformer-based MIL pooling architectures
to capture inter-patch dependencies. WSIs typically consist of a large number of patches (e.g.,
around 20,000 per slide), making the naive application of self-attention—with its O(N2) complex-
ity—infeasible due to prohibitive GPU memory requirements. Among these approaches, ABMIL [5]
was the first to introduce attention mechanisms in this context, while DSMIL [10] and Snuffy [15]
proposed sparse self-attention variants. Notably, Snuffy provided theoretical justification that their
sparse attention mechanism can approximate full self-attention under certain conditions [15].

Beyond Transformers, there are graph-based methods, which are hampered by graph construction
and nucleus segmentation, and many graph–ViT hybrids collapse to self-attention—effectively
Transformer MIL (e.g., GTP) [13, 36–39] and prototype-based approaches, which are also emerging
and are sometimes not strictly MIL (e.g., PANTHER) [40, 41].

2.2 Classical MIL Pooling Functions

In addition to max and mean, several other pooling functions have been used, such as noisy-or [42]
(any single cause), noisy-and [43] (sufficient proportion of causes), Integrated Segmentation and
Recognition (ISR) [44] (a smooth OR with evidence accumulation), and smooth approximations to
max/mean such as LSE [45], generalized mean (GM), and smoothmax [46].

2.3 Pathology Foundation Models

Recent efforts to develop Foundation Models for pathology [17, 47–49] have largely focused on
training representation encoders using massive numbers of patches extracted from as many WSIs as
possible. For instance, UNI [47] is trained on 100 million patches, while Prov-GigaPath [17] uses
1.3 billion patches from 200,000 WSIs—both based on DINOv2 [50]. These approaches yield highly
robust encoders that can boost performance across various MIL pooling strategies. However, building
such models faces key challenges: limited public data, high computational cost, lack of flexibility
compared to generative foundation models like LLMs [51, 52], and sensitivity to training errors such
as poor hyperparameter choices. Consequently, progress remains confined to a few well-resourced
labs. Complementing these efforts, the recently proposed R2T-MIL targets foundation model-level
performance in low-data regimes via online feature re-embedding during MIL pooling training.

2.4 Augmentation Methods

WSI-level Augmentation modifies slide-level representations by selecting a fixed number of repre-
sentative patches, inspired by Mixup [53] and Mask Augmentation [54]. Methods such as ReMix
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[55], RankMix [56], PseMix [19], MixupMIL [57], and Attention-Guided Mixup [58] apply vari-
ous mixing strategies after aggressive patch downsampling (e.g., using centroids, ranked attention
scores, or pseudo-bags). This leads to substantial information loss and degraded performance, often
requiring teacher-student distillation for limited gains (see Tables 2 and 4). Additionally, many such
augmentations lack realism.

Patch-level Augmentation methods apply standard image transformations—such as random rotation,
color jitter, and Hematoxylin-Eosin-DAB (HED) jitter—directly to patches prior to feature extraction.
These augmentations are typically inspired by patch classification research [59, 60]. To increase
efficiency, EMBAUGMENTER [61] and AugDiff [62] employ latent generative models to simulate
augmented patch representations during MIL training. SSRDL [63] builds on this by introducing a
DINO-based [64] framework that performs online sampling from a learned distribution of augmented
features and reuses parts of the model during MIL pooling training. While these methods improve
efficiency and robustness, they often suffer from limited diversity—e.g., applying the same aug-
mentation uniformly across patches (EMBAUGMENTER, AugDiff)—and reduced interpretability,
especially in SSRDL, where the specific form of augmentation is not directly observable.

3 Background: MIL Formulation

In a binary image classification setting, the dataset D = {(I1, y1), . . . , (In, yn)} consists of im-
ages (or equivalently bags of patches) Ii, where each bag Ii = {X(i)

1 , . . . ,X
(i)
N } contains N

corresponding instances. Each bag label yi ∈ {0, 1} is determined by its individual instance la-
bels {y(i)1 , . . . , y

(i)
N }, where y(i)j ∈ {0, 1} are unknown during training. Under the standard MIL

assumption, we have

yi =

({
0, if

∑N
j=1 y

(i)
j = 0,

1, otherwise,

)
= max

j=1,...,N
{y(i)j } ∀i = 1, . . . , n.

Thus, a bag Ii is labeled positive if at least one of its instances is labeled positive; otherwise, it is
labeled negative. The MIL model is trained by optimizing the log-likelihood function:

P (y|I) = ϕ(I)y(1− ϕ(I))1−y,

where ϕ(I) = ϕ(X1, . . . ,XN ) ∈ [0, 1] represents the predicted probability of (y = 1) given the
bag I . Since MIL assumes no ordering or dependency among instances, ϕ(I) must be a permutation-
invariant function. This is ensured by the fundamental theorem of symmetric functions with monomials
[65] and a similar result by [66], which states that for any permutation-invariant function ϕ satisfying
Hausdorff continuity, there exist functions ψ and Φ : R→ R, and a permutation-invariant function
π : RN → R such that

ϕ(I) = Φ(π(ψ(X1), . . . , ψ(XN ))). (1)
Here, ψ and Φ are continuous transformations, and π is a permutation-invariant function (such as sum
or max). MIL methods typically follow two primary approaches: i) Instance-level approach, where
ψ is an instance classifier and Φ is the identity function. ii) Embedding-level approach, where ψ is
a feature extractor, and Φ maps the extracted features to a bag classification score.

In Deep MIL, ψ typically uses pre-trained vision backbones to extract features from bag instances
[10–12, 15, 18, 67, 68]. The aggregation function π ranges from non-parametric methods like max
pooling to parametric ones like attention mechanisms, as detailed in Section 2.1. For multi-class and
multi-task classification, Φ’s output dimension is adjusted to the number of classes [69–71].

4 Our Method

While SoTA MIL pooling architectures focus on embedding-level methods, this work emphasizes
instance-level approaches. In clinical practice, pathologists prioritize patch-level predictions as they
allow validation of the model’s reasoning. As a result, instance-level methods offer full interpretability.
Although max pooling and mean pooling can be applied at both embedding and instance levels, we
focus exclusively on their instance-level variants throughout this work (i.e., Φ in (1) is identity).

We begin by following the standard MIL pooling procedure: each image in D is divided into N
non-overlapping patches X1, . . . ,XN . We model the function ψ(·) in (1) by passing each patch
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through a fixed, pre-trained ViT, followed by a trainable fully-connected MLP, and concluding with a
sigmoid function in order to compute qi ≜ ψ(Xi) ∈ [0, 1] for i = 1, . . . , N (see Section 5 for more
details). The next subsection establishes a theoretical foundation for the trade-offs associated with
the choice of aggregation function π(·).

4.1 Theoretical Analysis

Assume, instead of the standard max/mean pooling, we choose a soft LSEβ function for π(·) in (1).
We theoretically demonstrate that smaller values of β generally lead to better generalization and a
more stable training process. Conversely, larger values of β are more suitable for reducing training
error and increasing the model’s sensitivity in real-world scenarios, where only a few patches may
contain malignant patterns, and the model must detect and respond to them effectively. A full version
of this section is provided in Appendix A, with a summary of informal results here:

Theorem 1 ((Informal) Effect of β on Generalization Error). Assuming mild conditions—such as
Lipschitz continuity of the loss function, i.i.d. sampling of images in dataset D, and local statistical
dependence among image patches—we show that the generalization error undergoes a smooth phase
transition as β increases from below O(logN) to above. In the small-β regime, the generalization
gap can be bounded as O

(
(nN)−1/2 + n−1

)
, while in the large-β regime, it can be as large as

Ω
(
n−1/2

)
.

The formal version of this theorem (Theorem 4), including precise bounds, threshold conditions, and
constants, is provided in Appendix A, along with a complete proof. Next, we focus on sensitivity
analysis. Notably, in contrast to generalization—which favors smaller values of β—high sensitivity
in noisy regimes requires sufficiently large β.

Theorem 2 ((Informal) Effect of β on True Positive / False Negative Rate). Assume a general
statistical model for the distribution of ψ(Xi)s on each patch, and suppose the number of cancer-
indicative patches (i.e., patches exhibiting malignant patterns) is, with high probability, substantially
smaller than N . Then, for any α ∈ (0, 1), if β ≥ O (log (N/α)) , the true positive rate of classifier
LSEβ(ψ(X1), . . . , ψ(XN )) is at least 1− α. Conversely, if β remains O(1) with respect to N , the
false negative rate is at least 1/2.

Again, the formal version of this theorem (Theorem 6), along with a complete proof and further
explanations, is provided in Appendix A. Specifically, we show that choosing β ≫ O(logN) is both
necessary and sufficient to achieve a high true positive rate and to mitigate false negatives. The key
conclusion of this section is that all values of β ∈ (0,+∞) are Pareto-optimal: depending on which
aspect—generalization or sensitivity—is prioritized, and how the trade-off is weighted, the optimal
choice of β will vary. This insight supports the central idea behind our method: using smaller values
of β during training to promote generalization, while selecting larger values (possibly even∞) at
inference time to enhance sensitivity.

4.2 Maxsoft pooling

High gradient variance can lead to instability during training, slowing convergence and requiring more
iterations to reach a desired accuracy [72–74]. Thus, reducing variance improves stability, enhances
generalization, and promotes more reliable learning dynamics [75–77]. This underscores the need to
regulate gradient variance to balance stability with effective optimization. max pooling and mean
pooling, the two dominant MIL pooling strategies, represent opposite ends of this spectrum: max
pooling excels in instance discrimination but suffers from instability and worse generalization due
to its non-smooth, non-differentiable nature, while mean pooling is stable, fully differentiable, and
robust for bag classification but weaker at distinguishing instances. We provide a unified theoretical
explanation for these trade-offs in Section 4.1.

Leveraging this insight, we introduce Maxsoft pooling (see Figure 1), a novel strategy that combines
the stability and smoothness of mean pooling with the discriminative power of max pooling. In
the forward pass, we use LSE∞(q1:N ) = maxi qi, while in the backward pass we approximate the
gradient of the max operator by ∇LSEβ(q1:N ) for some moderate β <∞. For more details on the
learning procedure, see Algorithm 1. Maxsoft pooling retains the exact behavior of max pooling
during the forward pass, but it employs a differentiable function in the backward pass by replacing
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(b) MIL Pooling
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Figure 1: Overview of MIL (a) The WSIs are segmented into patches, followed by embedding
extraction via a pre-trained encoder. (b) Embeddings are fed into MIL pooling for patch. (c) mean,
max, LSE, and Maxsoft with their respective forward and backward behaviors.

the max operator with the LSE. This ensures smoother gradient computation, improved stability, and
reduced generalization gap (see [32], and Theorem 1).

4.3 PerPatch Augmentation

Existing WSI-level augmentation methods, as outlined in Section 2.4, often yield marginal gains or
even degrade performance [19, 55, 62, 63]. Therefore, we shift focus to patch-level augmentation,
which introduces more meaningful variability. Latent generative models [61, 62] add computational
overhead without consistent benefits (Tables 2, 4). Instead, we precompute multiple augmented
versions of each patch and employ the PerPatch sampling strategy, enabling a substantial increase in
WSI diversity during MIL pooling training.

PerPatch augmentation differs from PerSlide by sampling each patch independently—either from
its original version or one of its augmented variants—instead of applying the same augmentation
transformation across all patches in a single WSI (see Figure 5). Specifically, given a WSI I , we
generate multiple augmented variants I(k) = {X(k)

1 , ...,X
(k)
N }, k = 0, 1, . . . ,m, where I(0) = I

is the original WSI and m denotes the number of augmentations. We then construct an augmented
WSI Î by independently sampling each patch from its available versions: Î = {X̂1, . . . , X̂N}
with X̂j = X

(k)
j , k ∼ Uniform({0, 1, 2, ...,m}). Thus, each patch X̂j is independently sampled

from either the original version (k = 0) or one of its m augmented variants (1 ≤ k ≤ m). For a
visual and procedural comparison between PerSlide and PerPatch augmentations, refer to Figure 5
and Algorithms 2 and 3. We argue that PerPatch creates significantly more diverse augmentations
during MIL pooling training compared to PerSlide, and this may explain why the method consistently
improves results, as shown in Tables 2 and 4.

5 Experiments and Results

Our major experiments are on major WSI classification datasets. Analyses of classical MIL pooling
functions are in Appendix O. Although out-of-distribution (OOD) generalization is beyond our
scope, we include such experiments in Appendix Q. We also evaluate on five canonical MIL datasets,
reported in Appendix R.

5.1 Datasets

We evaluate on four large-scale pathology WSI datasets—CAMELYON16, CAMELYON17, TCGA-
Lung and SICAP-MIL [78, 35, 79, 80]. CAMELYON16 contains 270 training / 129 test slides;
CAMELYON17 has 1,000 slides across four tumor-type labels (normal, macro, micro, ITC); TCGA-
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Lung spans 1,042 slides split between LUAD and LUSC; SICAP-MIL comprises 349 slides with
normal/abnormal labels and primary/secondary Gleason grades. Further dataset statistics and split
protocols are given in Appendix E.

5.2 Experimental Setup

All WSIs are tiled into 256× 256 patches at 20× magnification, discarding background. For CAME-
LYON16 we use the official split; CAMELYON17, TCGA-Lung and SICAP-MIL are each partitioned
into 60% train, 15% val, 25% test (with SICAP-MIL’s official split). Details on train/val/test alloca-
tions and tiling thresholds appear in Appendix F.

5.3 Evaluation Metrics

We report slide-level AUC and accuracy, patch-level AUC and F1 (omitting patch accuracy due to
class imbalance), plus F1 and Expected Calibration Error (ECE) to assess confidence calibration in
cancer detection. Formal definitions and details for ECE are in Appendix G.

5.4 Models and Implementation Details

Encoders: We compare domain-specific and natural-image backbones including DINO Domain
(ViT-S/16) trained on around a few million in-domain patches, DINO Natural (ViT-S/16) [64] pre-
trained on ImageNet-1K, UNI (ViT-L/16) [47] with 100 million pathology patches, Prov-GigaPath
(ViT-G/14) [17] with 1.3 billion patches, ResNet-50 [81] pre-trained on ImageNet-1K, PLIP [82],
a CLIP-based model fine-tuned on around 208 thousand text-annotated pathology patches, and
SSRDL-trained ViTs [63] via its Representation Augmentation Module on domain patches.

MIL-Pooling: We evaluate max, mean, LSE, ABMIL [5], DSMIL [10], Snuffy [15], R2T-MIL [16]
and our Maxsoft.

Miscellaneous: For completeness, we also evaluate GTP [37] and PANTHER [41] as non-MIL WSI
classifiers.

Augmentations: We compare standard WSI-level baselines—with basic augmentations and simple
per-slide transforms (Random Rotation, Gaussian Blur, and Color Jitter; see Appendix I)—and prior
augmentation strategies (ReMix [55], RankMix [56], AugDiff [62], and SSRDL’s latent augmenta-
tions [63]) against PerPatch, our patch-level method. Hyperparameters, optimizer settings, learning
rates, and batch sizes are provided in Appendix H.

5.5 Results and Analysis

Across all datasets, stronger encoders yield better performance: DINO Natural < DINO Domain <
UNI < Prov-GigaPath. With Prov-GigaPath, every MIL pooling strategy attains high scores (Tables 1
and 3). For visualizations of the resulting representations, see Appendix K.

Max pooling shows high variability, whereas mean pooling offers lower variance and on average
better generalization. Guided by our theoretical analysis, we select β via validation: β = 5 for
CAMELYON16/17, β = 10 for TCGA-Lung, and β = 3.5 for SICAP-MIL. This choice reflects the
datasets’ characteristics—sparser positives in CAMELYON demand higher sensitivity, while more
frequent positives in TCGA-Lung and SICAP-MIL favor generalization.

LSE matches or outperforms both Transformer-based and non-Transformer-based methods (ABMIL,
DSMIL, Snuffy, R2T-MIL, GTP, and PANTHER) despite its simplicity. Maxsoft attains the highest
overall performance and substantially lower variance than max pooling, validating the use of β =∞
in the forward pass with a moderate β for gradients. These results indicate that, at current WSI
dataset sizes, encoder quality dominates architectural complexity and attention-based pooling yields
limited gains.

On augmentation (Tables 2 and 4), PerSlide yields inconsistent or negative effects, whereas PerPatch
uniformly reduces variance and often improves accuracy, indicating robustness. WSI-level methods
like ReMix and RankMix underperform due to aggressive patch downsampling and because DINO
[64] embeddings lack augmentation–interpolation consistency between the image and feature spaces.
Among prior approaches, only AugDiff and, at times, SSRDL show improvements—likely because,
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(a) (b) (c) (d)

Figure 2: Overview of ROIs through patch classification on (a) a sample WSI from CAMELYON17
by (b) max pooling, (c) mean pooling, and (d) Maxsoft pooling. The cancerous area is specified with
a black border. Mean pooling is classifying most of the WSI as cancerous incorrectly.

despite the issues above, they still produce diverse, non-redundant feature augmentations. SSRDL
[63] offers some gains on TCGA-Lung but at high cost, since each new augmentation requires
retraining a self-supervised model from scratch. Overall, PerPatch delivers the largest gains through
richer, more varied augmentations. For analysis of special cases, see Appendix L.2.

Notably, Maxsoft with DINO Domain surpasses Prov-GigaPath in accuracy while requiring 0.001×
less computation and having 0.0026× fewer parameters. In terms of augmentation speed, AugDiff is
prohibitively slow due to its multi-step diffusion, a limitation not addressed in the original work. For
a detailed analysis of special cases, see Appendix L.1.

Finally, for patch-level classification and localization, simple instance-level pooling methods outper-
form SoTA embedding-level architectures—except Snuffy—underscoring the advantage of direct
patch-wise aggregation. For qualitative comparison, see Figures 2 and 8.

Table 1: Results of MIL pooling methods on CAMELYON16 and CAMELYON17 [78, 35], reported
as mean.std for performance metrics. Times are given as pre-training (days) / MIL training (minutes).

E
nc

od
er

Method CAMELYON16 CAMELYON17

Slide Patch Resource Slide Patch Resource

AUC ACC F1 ECE AUC F1 Time #Params AUC ACC F1 ECE AUC F1 Time #Params

D
IN

O
N

at
ur

al

max pooling 0.588.029 0.620.015 0.483.077 0.287.010 0.586.216 0.001.002 16.66/1.56 385 0.513.216 0.433.189 0.514.288 0.244.129 0.527.350 0.206.357 16.66/2.35 385

mean pooling 0.569.015 0.585.008 0.513.039 0.057.014 0.688.016 0.175.001 16.66/1.452 385 0.510.000 0.450.000 0.642.000 0.157.000 0.513.001 0.027.000 16.66/2.179 385

ABMIL 0.710.129 0.716.137 0.649.085 0.251.106 0.697.151 0.224.175 16.66/121.06 99074 0.673.111 0.600.100 0.622.143 0.348.086 0.822.040 0.347.125 16.66/181.596 99074

DSMIL 0.594.024 0.646.004 0.531.027 0.187.021 0.440.065 0.096.026 16.66/124.3 66562 0.580.026 0.517.029 0.546.073 0.455.047 0.767.127 0.184.153 16.66/186.45 66562

Snuffy 0.550.072 0.550.022 0.420.035 0.196.004 0.534.456 0.097.138 16.66/3.1 1776002 0.540.014 0.550.071 0.492.090 0.246.045 0.273.090 0.000.000 16.66/4.654 1776002

GTP 0.690.046 0.620.021 0.576.061 0.342.019 / / 16.66/80.0 131365 0.773.067 0.583.104 0.799.033 0.409.090 / / 16.66/85.4 131365

LSE pooling 0.710.080 0.733.104 0.627.123 0.202.068 0.835.000 0.210.148 16.66/1.691 74113 0.683.093 0.600.087 0.654.070 0.361.075 0.168.291 0.040.069 16.66/2.537 74113

Maxsoft pooling 0.754.017 0.822.000 0.715.006 0.167.004 0.839.028 0.265.026 16.66/3.27 74113 0.710.010 0.650.050 0.658.083 0.345.040 0.312.024 0.000.000 16.66/4.908 74113

D
IN

O
D

om
ai

n

max pooling 0.873.178 0.844.173 0.864.186 0.089.102 0.888.131 0.394.220 1.10/1.508 385 0.767.361 0.800.260 0.862.149 0.242.093 0.838.106 0.426.369 1.57/2.262 385

mean pooling 0.511.012 0.513.011 0.248.064 0.189.019 0.754.033 0.193.007 1.10/1.39 385 0.897.006 0.700.000 0.892.030 0.237.011 0.695.002 0.041.000 1.57/2.09 385

ABMIL 0.819.059 0.762.060 0.715.064 0.215.064 0.817.046 0.302.033 1.10/136.16 99074 0.750.151 0.683.116 0.737.041 0.308.117 0.689.215 0.133.177 1.57/204.24 99074

DSMIL 0.910.071 0.780.078 0.824.064 0.114.043 0.278.185 0.058.031 1.10/140.09 66562 0.833.108 0.800.132 0.838.088 0.204.124 0.834.084 0.160.085 1.57/210.14 66562

Snuffy 0.754.001 0.589.022 0.636.080 0.195.028 0.334.006 0.142.006 1.10/4.55 1776002 0.775.191 0.650.000 0.839.086 0.260.033 0.765.115 0.013.018 1.57/6.832 1776002

GTP 0.599.177 0.615.135 0.559.162 0.358.114 / / 1.57/80.0 131365 0.627.049 0.583.076 0.679.115 0.385.082 / / 1.57/85.4 131365

LSE pooling 0.919.019 0.853.012 0.848.009 0.093.002 0.926.005 0.455.023 1.10d/1.629 74113 0.850.070 0.800.050 0.833.021 0.185.066 0.836.026 0.499.113 1.57/2.444 74113

Maxsoft pooling 0.934.012 0.863.004 0.876.039 0.088.021 0.919.011 0.321.004 1.10/3.368 74113 0.983.055 0.867.076 0.935.072 0.121.051 0.839.019 0.386.237 1.57/5.052 74113

U
N

I

max pooling 0.903.197 0.890.173 0.898.183 0.090.146 0.853.266 0.376.212 −/1.81 1025 0.633.233 0.583.153 0.609.263 0.372.154 0.761.173 0.053.091 −/2.72 1025

mean pooling 0.557.053 0.564.010 0.429.073 0.367.012 0.702.071 0.181.023 −/1.68 1025 0.733.071 0.730.000 0.766.036 0.262.061 0.656.134 0.036.010 −/2.52 1025

ABMIL 0.935.072 0.886.043 0.884.088 0.102.035 0.959.011 0.548.264 −/125.2 263554 0.707.058 0.633.116 0.777.025 0.341.079 0.475.058 0.005.007 −/187.81 263554

DSMIL 0.910.016 0.822.056 0.802.043 0.060.046 0.500.000 0.125.000 −/128.42 149762 0.597.249 0.633.202 0.624.240 0.353.183 0.525.362 0.220.371 −/192.63 149762

Snuffy 0.787.230 0.779.137 0.682.286 0.148.094 0.911.074 0.274.386 −/5.98 12600322 0.685.035 0.675.035 0.718.026 0.192.037 0.664.051 0.000.000 −/8.98 12600322

GTP 0.644.250 0.721.174 0.300.520 0.056.018 / / −/90.2 172325 0.763.021 0.733.058 0.746.038 0.252.058 / / −/92.4 172325

LSE pooling 0.947.077 0.933.063 0.935.087 0.069.064 0.970.003 0.604.139 −/1.96 525313 0.603.351 0.617.247 0.628.400 0.386.230 0.709.213 0.210.364 −/2.942 525313

Maxsoft pooling 0.992.003 0.966.025 0.980.000 0.028.018 0.974.004 0.800.106 −/3.384 525313 0.753.071 0.750.205 0.779.040 0.238.172 0.786.255 0.476.429 −/5.076 525313

Pr
ov

-G
ig

aP
at

h

max pooling 0.930.043 0.876.067 0.860.085 0.098.062 0.935.014 0.416.125 162.56/1.87 1537 0.860.052 0.750.132 0.836.075 0.185.072 0.920.030 0.430.318 162.56/2.814 1537

mean pooling 0.542.022 0.526.017 0.399.143 0.407.012 0.860.009 0.244.002 162.56/1.74 1537 0.880.087 0.767.104 0.833.030 0.181.058 0.678.155 0.037.011 162.56/2.6 1537

ABMIL 0.952.034 0.894.076 0.890.054 0.103.075 0.939.013 0.632.139 162.56/161.5 395138 0.877.035 0.850.087 0.862.101 0.149.087 0.946.020 0.490.370 162.56/242.35 395138

DSMIL 0.940.049 0.845.075 0.886.064 0.043.035 0.500.000 0.125.000 162.56/166.39 216322 0.937.025 0.917.029 0.928.034 0.090.034 0.928.025 0.738.108 162.56/249.59 216322

Snuffy 0.896.050 0.806.066 0.798.068 0.073.012 0.962.013 0.490.193 162.56/10.21 28337666 0.885.035 0.750.071 0.856.019 0.158.039 0.940.002 0.694.135 162.56/15.326 28337666

GTP 0.787.092 0.721.064 0.680.075 0.253.061 / / NA/NA NA 0.442.170 0.500.000 0.232.402 0.000.000 / / NA/NA NA

LSE pooling 0.948.024 0.956.022 0.944.024 0.046.021 0.797.108 0.540.093 162.56/2.02 1181185 0.933.031 0.900.050 0.932.027 0.095.048 0.943.004 0.741.108 162.56/3.031 1181185

Maxsoft pooling 0.985.004 0.966.004 0.976.006 0.035.002 0.962.002 0.437.019 162.56/4.36 1181185 1.000.000 0.933.029 1.000.000 0.062.022 0.948.009 0.744.034 162.56/6.551 1181185

IN R2T-MIL 0.607.015 0.639.093 0.509.114 0.351.088 / / −/5.68 2696961 0.473.035 0.467.058 0.352.295 0.166.086 / / −/8.52 2696961

PL
IP R2T-MIL 0.886.007 0.798.000 0.791.007 0.178.002 / / −/4.76 2434817 0.677.067 0.650.050 0.598.152 0.352.056 / / −/7.14 2434817

U
N

I

PANTHER 0.832.002 0.757.013 0.735.018 0.110.009 / / −/34.44 65570 0.583.053 0.616.023 0.590.033 0.253.038 / / −/31.50 65570

6 Ablation Study

We first compare representative Transformer-based and classical methods across varying dataset sizes,
then analyze Maxsoft by isolating the contribution of its key components to WSI- and patch-level
performance.
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Table 2: Results of augmentation methods on CAMELYON16 and CAMELYON17 [78, 35], reported
as mean.std for performance metrics. Times are given as MIL training (hours).

M
et

ho
d Augmentation CAMELYON16 CAMELYON17

Slide Patch Resource Slide Patch Resource

AUC ACC F1 ECE AUC F1 Time AUC ACC F1 ECE AUC F1 Time
M

ax
so

ft
po

ol
in

g

No Aug 0.934.012 0.863.004 0.876.039 0.088.021 0.919.011 0.321.004 0.06h 0.983.055 0.867.076 0.935.072 0.121.051 0.839.019 0.386.237 0.08h

ReMix 0.883.023 0.806.008 0.807.023 0.150.012 0.875.012 0.204.007 0.52h 0.840.020 0.733.029 0.798.060 0.242.017 0.808.016 0.431.016 0.78h

RankMix 0.913.001 0.830.000 0.826.031 0.092.060 0.894.029 0.246.032 0.24h 0.855.191 0.775.247 0.849.140 0.197.156 0.881.035 0.359.366 0.32h

AugDiff 0.801.078 0.820.036 0.81.071 0.182.021 0.73.035 0.211.084 89h 0.894.069 0.840.103 0.830.030 0.161.110 0.882.012 0.441.023 126h

SSRDL 0.810.035 0.717.076 0.775.060 0.231.031 0.689.035 0.097.052 4.5h 0.859.040 0.806.013 0.790.030 0.061.030 0.894.008 0.462.060 7h

Base PerSlide 0.865.007 0.840.012 0.797.007 0.141.011 0.869.014 0.234.032 0.9h 0.907.021 0.800.087 0.846.084 0.176.060 0.904.015 0.544.030 1.31h

Base PerPatch 0.938.002 0.873.009 0.883.014 0.087.005 0.938.003 0.364.017 0.88h 0.950.011 0.910.055 0.908.039 0.122.016 0.862.017 0.489.035 1.40h

Table 3: Results of MIL pooling methods on TCGA-Lung and SICAP-MIL [79, 80], reported as
mean.std for performance metrics. Times are given as pre-training (days) / MIL training (minutes).

E
nc

od
er

Method TCGA-Lung SICAP-MIL

Slide Resource Slide Resource

AUC ACC F1 ECE Time #Params AUC ACC F1 ECE Time #Params

D
IN

O
N

at
ur

al

max pooling 0.881.008 0.794.010 0.813.008 0.107.010 16.66/9.22 385 0.829.005 0.798.016 0.770.013 0.101.013 16.66/1.156 1155

mean pooling 0.867.000 0.795.000 0.793.000 0.076.000 16.66/7.135 385 0.820.001 0.745.000 0.757.012 0.131.001 16.66/1.24 1155

ABMIL 0.855.050 0.796.085 0.831.042 0.185.068 16.66/619.64 99074 0.770.056 0.779.026 0.732.038 0.230.011 16.66/31.76 99332

DSMIL 0.879.014 0.784.006 0.801.011 0.069.013 16.66/652.48 66562 0.829.020 0.789.013 0.776.019 0.127.021 16.66/34.14 70406

Snuffy 0.885.013 0.785.021 0.782.009 0.172.012 16.66/23.328 1776002 0.812.013 0.745.011 0.781.022 0.105.015 16.66/3.361 1777542

GTP 0.805.008 0.747.022 0.774.022 0.252.017 16.66/300.1 131365 0.513.106 0.554.075 0.508.141 0.390.048 16.66/25.0 131495

LSE pooling 0.881.012 0.801.018 0.806.016 0.139.011 16.66/10.873 74113 0.825.001 0.785.010 0.781.029 0.123.011 16.66/1.721 74499

Maxsoft pooling 0.892.000 0.809.009 0.809.018 0.066.006 16.66/17.177 74113 0.834.007 0.802.009 0.781.014 0.158.009 16.66/2.868 74499

D
IN

O
D

om
ai

n

max pooling 0.937.002 0.879.014 0.891.009 0.080.000 7.13/9.202 385 0.775.078 0.770.073 0.740.073 0.219.044 0.54/1.195 1155

mean pooling 0.933.001 0.849.006 0.861.010 0.244.006 7.13/8.593 385 0.800.002 0.747.006 0.767.007 0.179.012 0.54/1.189 1155

ABMIL 0.910.002 0.870.002 0.886.003 0.090.002 7.13/631.5 99074 0.806.032 0.803.035 0.762.034 0.213.028 0.54/31.92 99332

DSMIL 0.937.004 0.864.010 0.883.006 0.033.013 7.13/650.92 66562 0.835.002 0.797.011 0.787.032 0.162.014 0.54/34.26 70406

Snuffy 0.921.007 0.868.000 0.882.005 0.108.011 7.13/23.204 1776002 0.827.035 0.750.004 0.792.029 0.191.011 0.54/3.375 1777542

GTP 0.727.134 0.669.115 0.687.122 0.321.110 7.13/300.1 131365 0.557.134 0.566.114 0.635.014 0.357.077 0.54/25.0 131495

LSE pooling 0.930.006 0.883.005 0.894.008 0.113.006 7.13/10.034 74113 0.840.006 0.806.005 0.783.027 0.223.012 0.54/1.667 74499

Maxsoft pooling 0.940.004 0.885.007 0.894.013 0.094.002 7.13/17.145 74113 0.850.011 0.808.005 0.796.014 0.211.011 0.54/2.919 74499

U
N

I

max pooling 0.931.006 0.868.024 0.883.013 0.123.017 −/11.915 1025 0.852.053 0.841.050 0.809.043 0.163.029 −/1.3 3075

mean pooling 0.930.004 0.855.007 0.882.009 0.140.004 −/12.162 1025 0.825.001 0.744.002 0.742.006 0.255.001 −/1.279 3075

ABMIL 0.864.042 0.864.043 0.864.043 0.137.043 −/1686.16 263554 0.807.044 0.823.032 0.770.049 0.229.034 −/63.18 263812

DSMIL 0.941.008 0.876.016 0.872.017 0.068.012 −/1635.3 149762 0.877.002 0.827.014 0.829.001 0.174.005 −/65.78 160006

Snuffy 0.927.004 0.878.009 0.845.007 0.067.015 −/41.466 12600322 0.844.004 0.814.007 0.796.028 0.181.019 −/4.181 12604422

GTP 0.926.038 0.834.044 0.876.039 0.168.069 −/380.1 172325 0.719.021 0.700.024 0.676.021 0.271.031 −/26.1 172455

LSE pooling 0.878.011 0.868.015 0.873.018 0.132.015 −/13.622 525313 0.879.011 0.874.013 0.838.009 0.145.006 −/1.749 526339

Maxsoft pooling 0.942.002 0.882.006 0.883.004 0.110.005 −/24.281 525313 0.891.002 0.877.011 0.841.008 0.142.004 −/3.123 526339

Pr
ov

-G
ig

aP
at

h

max pooling 0.950.005 0.900.007 0.905.004 0.062.008 162.56/18.696 1537 0.790.052 0.767.046 0.743.059 0.227.036 162.56/1.348 4611

mean pooling 0.947.006 0.886.002 0.897.004 0.110.003 162.56/19.393 1537 0.805.001 0.767.002 0.725.004 0.258.001 162.56/2.48 1537

ABMIL 0.956.001 0.892.008 0.907.016 0.106.006 162.56/2537.52 395138 0.701.113 0.722.029 0.663.122 0.283.023 162.56/88.44 395396

DSMIL 0.957.002 0.900.008 0.913.009 0.056.011 162.56/2629.860 216322 0.844.014 0.803.008 0.802.006 0.175.003 162.56/93.24 231686

Snuffy 0.954.005 0.895.006 0.904.007 0.087.009 162.56/61.587 28337666 0.786.018 0.779.002 0.725.034 0.223.001 162.56/7.442 28343814

GTP 0.891.052 0.786.049 0.841.031 0.209.046 162.56/390.8 205093 0.621.197 0.601.115 0.509.298 0.358.094 162.56/27.9 205223

LSE pooling 0.950.002 0.896.000 0.913.007 0.103.001 162.56/21.672 1181185 0.830.063 0.790.065 0.788.050 0.218.053 162.56/1.812 1182723

Maxsoft pooling 0.966.004 0.905.008 0.924.008 0.054.013 162.56/29.919 1181185 0.872.028 0.821.032 0.805.037 0.172.014 162.56/1.812 1182723

IN R2T-MIL 0.928.000 0.855.006 0.869.015 0.138.006 −/28.937 2696961 0.854.008 0.823.009 0.798.012 0.168.004 −/4.778 2697987

PL
IP R2T-MIL 0.945.006 0.881.003 0.886.004 0.100.005 −/24.252 2434817 0.832.011 0.793.007 0.794.004 0.222.021 −/4.601 2435843

U
N

I

PANTHER 0.902.013 0.884.005 0.884.005 0.115.005 −/50.13 65570 0.716.026 0.734.014 0.689.065 0.148.024 −/26.01 98355

Table 4: Results of augmentation methods on TCGA-Lung and SICAP-MIL [79, 80], reported as
mean.std for performance metrics. Times are given as MIL training (hours).

M
et

ho
d Augmentation TCGA-Lung SICAP-MIL

Slide Resource Slide Resource

AUC ACC F1 ECE Time AUC ACC F1 ECE Time

M
ax

so
ft

po
ol

in
g

No Aug 0.940.004 0.885.007 0.894.013 0.094.002 0.29h 0.850.011 0.808.005 0.796.014 0.211.011 0.05h

ReMix 0.930.003 0.865.006 0.890.001 0.081.002 8.25h 0.849.008 0.814.014 0.772.008 0.180.017 0.13h

RankMix 0.935.003 0.855.006 0.886.001 0.098.002 3.5h 0.845.008 0.816.014 0.782.008 0.280.017 0.07h

AugDiff 0.934.007 0.812.025 0.856.005 0.126.017 527h 0.818.019 0.787.011 0.778.017 0.180.005 5h

SSRDL 0.944.004 0.834.015 0.896.005 0.116.014 84.5h 0.838.009 0.798.009 0.788.016 0.161.005 4h

PerSlide 0.938.002 0.877.006 0.895.010 0.062.005 14h 0.857.008 0.795.006 0.802.019 0.198.012 0.23h

PerPatch 0.946.001 0.876.005 0.904.001 0.051.012 15h 0.827.002 0.795.004 0.767.011 0.223.018 0.21h

Dataset size. Figure 3 reports results on SICAP-MIL for both Transformer-based and classical MIL
pooling under different numbers of training WSIs. These findings indicate that, given current data
scales, Transformer architectures offer no clear benefit. Notably, fine-tuning the Transformer-based
Prov-GigaPath [17]—pretrained on roughly 200,000 WSIs—does not provide meaningful gains,
highlighting the data inefficiency and limited practicality of complex, data-hungry approaches in this
setting.
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Figure 3: Performance of major Transformer-based and classical MIL pooling methods on the
SICAP-MIL dataset across different training set sizes.
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Figure 4: The impact of β in Maxsoft architec-
ture on CAMELYON17 and SICAP datasets.

Augmentation Slide Patch

AUC ECE AUC

No Aug 0.983.055 0.121.051 0.839.019
Random Rotation 0.965.021 0.133.060 0.854.020
Random Elastic Deformation 0.890.028 0.193.003 0.861.031
Random Affine Transformation 0.900.113 0.193.102 0.822.020
Random Gaussian Blurring 0.995.007 0.081.002 0.882.011
Random Color Jitter 0.955.064 0.084.001 0.876.045
Random HED Jitter 0.955.050 0.156.047 0.874.039

Table 5: Result of each base augmentation on
the CAMELYON17 dataset [35], reported as
mean.std.

Effect of β in LSE pooling. We assess the sensitivity of the LSE pooling operation to the temperature
parameter β, evaluating values in the range {0.5, 1, 2, 3.5, 5, 7.5, 10}. As shown in Figure 4, lower β
values approximate mean pooling behavior, while higher values approach max pooling. The results
indicate a trade-off: smaller β values reduce variance but underemphasize salient features, whereas
larger values overly amplify them. We find that β = 5 offers the best compromise, yielding the
highest performance on both WSI and patch classification.

Impact of Base Augmentations. To evaluate the augmentations from Section 5.4, we ablated
them individually. We also examined the spatial transforms Random Elastic Deformation and
Random Affine Transformation. As shown in Table 5, these spatial operations consistently reduced
performance. We hypothesize that such transformations fail to capture clinical variability and
primarily inject noise rather than useful diversity.

7 Conclusion and Discussion

This work highlights the value of instance-level representation learning under current data constraints
in WSI diagnosis. In response, we present a theoretical and empirical analysis of classical MIL
pooling and introduce Maxsoft—a simple, resource-efficient pooling function with strong, adaptable
performance. A limitation is that, despite clinically acceptable visualizations, patch-level performance
lags behind WSI-level accuracy. Another weakness is that, while our theory offers numerical guidance
for selecting β in Maxsoft, a small dataset-specific search is still required; future work should make
this selection tuning-free and integrated into training. Moreover, standard augmentations (e.g.,
Random Affine, Elastic Deformation) do not capture real distribution shifts, underscoring the need
for more realistic techniques. Finally, we advocate studying cancer detection via anomaly detection
[83–88], especially in data-scarce regimes, since it naturally targets rare or novel abnormalities
without large labeled cancer sets [89–92].
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A Theoretical Analysis

In this section, we first provide a mathematical formulation of the multiple instance learning (MIL)
setting considered in this work. We begin by establishing the notation and then describe the main
problem setup, along with the data generation model. Specifically, we introduce a statistical model
that captures the generation process of images in the dataset, as well as the set (or bag) of patches
associated with each image. Our modeling approach is intentionally kept general, incorporating only
standard and widely accepted assumptions such as the local dependence of image patches and the i.i.d.
nature of images in the training set. Additionally, although our experiments use the cross-entropy
loss, the theoretical analysis accommodates any proper, continuous, Lipschitz loss function.

We then proceed to the theoretical analysis, starting with uniform convergence bounds that provide
generalization guarantees for our method. In particular, we study the role of the hyperparameter β in
the log-sum-exp formulation and its influence on generalization. Our main result in this part is stated
in Theorem 4.

Subsequently, we shift focus to the sensitivity analysis in Section A.4. Notably, in contrast to general-
ization—which favors smaller values of β—high sensitivity in noisy regimes requires sufficiently
large β. In Theorem 6, we show that choosing β ≫ O(logN) is both necessary and sufficient to
achieve a high true positive rate and to mitigate false negatives.

The key conclusion of this section is that all values of β ∈ (0,+∞) are Pareto-optimal: depending
on which aspect—generalization or sensitivity—is prioritized and how the trade-off is weighted, the
optimal choice of β will vary. This insight supports the central idea behind our method: using smaller
values of β during training to promote generalization, while selecting larger values (possibly even
∞) at inference time to enhance sensitivity.

A.1 Data Generation Model

Let n,N ∈ N. Assume we observe n i.i.d. images I1, . . . , In
i.i.d.∼ P0, where P0 ∈M(RD1×D2) is

an unknown distribution over images of size D1 ×D2, with D1, D2 ∈ N. Assume each image Ij for
j ∈ [n] is decomposed into N non-overlapping (or possibly overlapping) patches:

Patch(Ij) ≜
(
X

(j)
1 , . . . ,X

(j)
N

)
.

Each image patch X
(j)
i (for j ∈ [n], i ∈ [N ]) is passed through a fixed vision transformer model

network ViT(·) to produce a feature vector x(j)
i :

x
(j)
i ≜ ViT

(
X

(j)
i

)
∈ X , (2)

where X ⊆ Rd is the feature space, and d denotes the feature dimension. Define the bag of features
for image Ij as

Bag(Ij) ≜
(
x
(j)
1 , . . . ,x

(j)
N

)
, j ∈ [n].

Assumption 1 (Local Dependence of Image Patches). Let I ∼ P0, and consider the N feature
vectors (x1, . . . ,xN ) in Bag(I). Then, we assume they form a locally dependent stochastic process
such that:

xi ⊥ xj ∀i, j ∈ [N ] with |i− j| > B, (3)

where ⊥ indicates statistical independence according to P0, and 1 ≤ B ≪ N is a fixed parameter
independent of N .

This assumption has been widely validated empirically across a broad range of natural and medical
image datasets. Indeed, the statistical correlations among different patches of such images are
predominantly local: patches that are spatially distant—i.e., whose patch indices differ by more
than a certain bandwidth B = O(1)—are typically almost independent, even though they might be
identically or non-identically distributed.
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A.2 Model Training via SGD

Consider the class of Multi-Layer Perceptrons (MLPs) defined as

F ≜
{
fθ : X → R

∣∣ θ ∈ Θ
}
,

where Θ denotes the parameter space, i.e., the set of all possible weight configurations of the neural
networks. For each θ ∈ Θ, the function fθ represents an MLP that maps input feature vectors from
X to real-valued outputs.
Definition 3 (LSE Loss). Fix β ∈ (0,+∞) and a Lipschitz loss function L(y∥y′) : [0, 1]2 → R+

for (soft) labels y, y′ ∈ [0, 1]. For x ∈ X , define the log-sum-exp aggregation function:

A (x1, . . . ,xN ) ≜
1

β
log

(
1

N

N∑
i=1

exp (β · σ ◦ fθ(xi))

)
,

where σ ◦ fθ is the composition of a learned function fθ : X → R and an activation σ : R→ [0, 1].
The LSE-based loss function for parameters θ ∈ Θ for the empirical dataset {(Ij , yj)| j = 1, . . . , n}
is then given by:

LLSE(θ) ≜
1

n

n∑
j=1

L
(
yj

∥∥∥∥A(x(j)
1 , . . . ,x

(j)
N

))
. (4)

Note that we have

lim
β→0

A (x1, . . . ,xN ) =
1

N

N∑
i=1

σ ◦ fθ(xi),

while lim
β→∞

A (x1, . . . ,xN ) = max
i∈[N ]

σ ◦ fθ(xi). (5)

Consider the loss function defined in Definition 3, and suppose that an empirical risk minimization
(ERM) procedure yields the estimator θ̂ERM defined as

θ̂ERM ≜ argmin
θ∈Θ

LLSE(θ). (6)

The minimization problem is assumed to be solved using a standard Stochastic Gradient Descent
(SGD) algorithm with an arbitrary batch size. It is important to note that such optimization problems
are generally non-convex and, therefore, are not expected to be solved to global optimality. In
practice, due to early stopping and the inherent complexity of the loss landscape, the algorithm
typically converges to a local minimum or a stationary point. However, this does not impact the
validity of our subsequent analysis. Specifically, our generalization guarantees are stated as high-
probability uniform convergence bounds that hold for all θ ∈ Θ, regardless of the particular solution
returned by the optimization algorithm.

A.3 Generalization Bounds

Define the generalization error as

GE
(
θ̂ERM

)
≜ EP0

[
LLSE

(
θ̂ERM

)]
− LLSE

(
θ̂ERM

)
.

Theorem 4 (Effect of β on Generalization Error). Let Assumption 1 hold for some B, and define
qi,j ≜ σ ◦ fθ̂ERM

(xj
i ) for all images j ∈ [n] and patch ids i ∈ [N ]. Also let U ≜ 1

n

∑n
j=1 maxi qi,j

and M ≜ 1
n

∑n
j=1 median

i
qi,j . Then, having β ≪ log(N/2)

U−M , with high probability results into the

following bound:
GE(θ̂ERM) ≤ O

(
(nN)−1/2 + n−1

)
.

On the other hand, if β ≫ log(N/2)
U−M , then, depending on the tail behavior of the qi,j’s, the generaliza-

tion error may (again with high probability) satisfy

GE(θ̂ERM) ≍ O(n−1/2).
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Proof of Theorem 4. We first show that the LSE behaves similarly to an exponentially weighted
average, exhibiting a smooth phase transition as β increases from below to above the threshold

log N
2

U −M
.

In the small-β regime, the LSE behaves roughly like a simple average, and thus the variance of
the loss decreases with both n and N . In contrast, in the large-β regime, the LSE approximates
the maximum operator, which may exhibit weaker concentration properties depending on the tail
behavior of the variables σ ◦ fθ(x(j)

i ).

Lemma 1. For β ≥ 0, the log-sum-exp (LSE) and the exponentially weighted average of N values
q1, . . . , qN bound each other as follows:∣∣∣∣∣ 1β log

(
1

N

N∑
i=1

eβqi

)
−

N∑
i=1

qi ·
eβqi∑N
j=1 e

βqj

∣∣∣∣∣ ≤ C ·min

{
β,

logN

β

}
, (7)

where C is a constant independent of β, but dependent on the empirical distribution of the qis.

Proof. For β ≪ 1, we use the Taylor expansion of the exponential function: ex = 1+x+ x2

2 +O(x3).
Applying this to eβqi , we get

1

β
log

(
1

N

N∑
i=1

eβqi

)
=

1

β
log

(
1

N

N∑
i=1

(
1 + βqi +

β2q2i
2

+O(β3)

))

=
1

β
log

(
1 + βq̄ +

β2

2
q̄2 +O(β3)

)
= q̄ +

β

2

(
q̄2 − q̄2

)
+O(β2), (8)

where q̄ = 1
N

∑N
i=1 qi and q̄2 = 1

N

∑N
i=1 q

2
i . For the exponentially weighted average, we expand

the weights similarly:
N∑
i=1

qi ·
eβqi∑N
j=1 e

βqj
=

N∑
i=1

qi ·
1 + βqi +O(β2)

N (1 + βq̄ +O(β2))

= q̄ + β
(
q̄2 − q̄2

)
+O(β2). (9)

Thus, the absolute difference between the two expressions is

|A−B| ≤ β

2
·Var(q1, . . . , qN ) +O(β2).

For β ≫ 1, denote qmax = maxi qi and let i∗ be the index where this maximum is achieved. We
write

1

β
log

(
1

N

N∑
i=1

eβqi

)
=

1

β
log

 1

N
eβqmax

1 +∑
i̸=i∗

e−β(qmax−qi)


= qmax −

logN

β
+

1

β
log

1 +
∑
i ̸=i∗

e−β(qmax−qi)


= qmax −

logN

β
+O(β−2). (10)

For the exponentially weighted average,
N∑
i=1

qi ·
eβqi∑N
j=1 e

βqj
=
qmax +

∑
i ̸=i∗ qie

−β(qmax−qi)

1 +
∑

i ̸=i∗ e
−β(qmax−qi)

= qmax +O(β−2). (11)
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Therefore, the difference in this regime satisfies |A−B| ≤ logN
β +O(β−2). Combining both cases,

we obtain the claimed bound:∣∣∣∣∣ 1β log

(
1

N

N∑
i=1

eβqi

)
−

N∑
i=1

qi ·
eβqi∑N
j=1 e

βqj

∣∣∣∣∣ ≤ C ·min

{
β,

logN

β

}
.

Hence, the two formulations become asymptotically equivalent as β → 0+ and as β →∞. In these
limiting regimes—which are of primary interest in this analysis—we may treat the two expressions
interchangeably.

Lemma 2. Assume real values satisfying q1 ≤ q2 ≤ . . . ≤ qN and let β ≥ 0. Define:

∆ ≜ qN − q1, δ ≜ q⌈N/2⌉ − q1.
Then, for all j = 1, . . . , N , the exponentially weighted probabilities satisfy:

1

N
· 2

eβδ + eβ∆
≤ pj ≜ eβqj

(
N∑
i=1

eβqi

)−1

≤ 1

N
· 2eβ∆

1 + eβδ
. (12)

Proof. To prove the upper-bound, we can write

eβqj

(
N∑
i=1

eβqi

)−1

≤ eβqmax

(
N∑
i=1

eβqi

)−1

= eβ∆

(
N∑
i=1

eβ(qi−q1)

)−1

≤ eβ∆
(
N

2
+
N

2
eβδ
)−1

=
1

N
· 2eβ∆

1 + eβδ
. (13)

The lower-bound can be achieved in a similar fashion:

eβqj

(
N∑
i=1

eβqi

)−1

≥ eβq1
(

N∑
i=1

eβqi

)−1

=

(
N∑
i=1

eβ(qi−q1)

)−1

≥
(
N

2
eβ∆ +

N

2
eβδ
)−1

=
1

N
· 2

eβδ + eβ∆
. (14)

This completes the proof.

Corollary 1. Under the setting of Lemma 2, for

β ≪ log(N/2)

∆− δ
,

we have pj ≤ c(β)/N for all j, where c(β) is a constant independent of N . Conversely, when

β ≫ log(N/2)

∆− δ
,

there exists an index j∗ ∈ [N ] such that pj∗ ≥ 1− c′(β) and pj ≤ c′(β) for all j ̸= j∗, with c′(β)
also independent of N . Moreover,

lim
β→0+

c(β) = 1, lim
β→∞

c′(β) = 0.
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Proof. The proof is straightforward. We only need to show that the quantity

β∗ ≜
log(N/2)

∆− δ
serves as the critical threshold such that, for all β < β∗, the upper bound in Lemma 2 drops below 1.
Specifically, we verify that

1

N
· 2eβ

∗∆

1 + eβ∗δ
≤ 1 =⇒ β∗ ≃

log N
2

∆− δ
.

For β ≪ β∗, the resulting distribution over the pj values is nearly uniform. In contrast, when β ≫ β∗,
the probability mass concentrates sharply on the index j corresponding to qj = qmax, with pj ≈ 1
and all other pj values approaching zero.

Lemma 3 (Uniform Convergence Bound in Eq. (2) of [93]). LetH = {hθ : X → R | θ ∈ Θ} be a
learnable class of functions, and let P0 be a probability measure over X . Suppose ℓ : X ×Θ→ R is
a loss function satisfying mild regularity conditions. Then, with high probability and uniformly over
all θ ∈ Θ, the following generalization bound holds:

EP0
[ℓ(X;θ)] ≤ 1

n

n∑
i=1

ℓ(Xi;θ) + C1

√
Var (ℓ(X;θ))

n
+
C2

n
, (15)

where X1, . . . ,Xn
i.i.d.∼ P0, and C1, C2 are constants depending on the model and confidence

parameters.

The proof can be found in [93], as well as in several other related works cited therein. To bound the
generalization gap, we must bound the variance Var (ℓ(I, y;θ)), where

ℓ(I, y;θ) = L

(
y

∥∥∥∥∥ 1β log

(
1

N

N∑
i=1

eβσ◦fθ(xi)

))
,

and (I, y) is a sample drawn from P0, with Bag(I) = (x1, . . . ,xN ).

Lemma 4. Assume that the function h 7→ L(y∥h) is L-Lipschitz for some L ≥ 0 and all y ∈ [0, 1].
Then, by the Efron-Stein inequality,

Var (ℓ(I, y;θ)) ≤ L2 · Var

(
1

β
log

(
1

N

N∑
i=1

eβσ◦fθ(xi)

))
.

The proof follows directly from the Lipschitz continuity of L. Recall that due to the statement of the
theorem we assume L : [0, 1]2 → R is smooth and Lipschitz. Define

U ≜
1

n

n∑
j=1

max
i=1,...,N

σ
(
fθ(x

(j)
i )
)
, M ≜

1

n

n∑
j=1

median
i=1,...,N

σ
(
fθ(x

(j)
i )
)
.

Analysis for small β: Assume that

β ≪ log(N/2)

U −M
.

Then, using Lemma 2 and related results, we obtain:

Var (ℓ(I, y;θ)) ≤ L2c2(β) · Var

(
1

N

N∑
i=1

σ ◦ fθ(xi)

)

=
L2c2(β)

N2

N∑
i,j=1

Cov (σ ◦ fθ(xi), σ ◦ fθ(xj))

(i)
=
L2c2(β)

N2

N∑
i,j=1

|i−j|≤B

Cov (σ ◦ fθ(xi), σ ◦ fθ(xj))

(ii)

≤ BL2c2(β)

4N
, (16)
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where (i) follows from a mixing or local-dependence assumption, and (ii) uses the fact that any
variable bounded in [0, 1] has variance at most 1/4.

Therefore, the generalization gap is bounded by:

C1

√
Var (ℓ(X;θ))

n
+
C2

n
≤ O

(
1√
Nn

+
1

n

)
,

where the constants are O(1) in the limit as n,N → ∞, assuming β is sufficiently small. These
constants may also depend on other complexity measures (e.g., Rademacher complexity or VC-
dimension in binary classification settings).

Analysis for large β: Assume that

β ≫ log(N/2)

U −M
.

Then, based on Corollary 1, we have

Var (ℓ(I, y;θ)) ≍ L2(1− c′(β)) · Var
(

max
i=1,...,N

σ ◦ fθ(xi)

)
.

The term above—i.e., the variance of the maximum of N weakly-dependent random variables—does
not, in general, admit a closed-form analytical expression. Moreover, depending on the tail behavior
of the variables σ ◦ fθ(xi), the variance of their maximum may not even decrease with N .

Lemma 5 (Var(maxi Zi) for exponentials). Assume Z1, . . . , ZN
i.i.d.∼ λe−λx for x ≥ 0 and some

λ > 0, and define MN ≜ maxi=1,...,N Zi. Then:

Var (MN ) =
1

λ2

N∑
k=1

1

k2
,

which converges to π2/(6λ2) as N →∞, and hence does not vanish as N grows.

The proof can be found in Chapter 8 of [94]. In general, unless one is dealing with degenerate cases
with sharply truncated support (e.g., a uniform distribution on [0, 1]), the variance of the mean decays
faster than that of the maximum of ⌈N/B⌉ random variables [94, 95]. This completes the proof.

A.4 Selection Sensitivity Analysis

In this section, we aim to theoretically analyze the effect of the parameter β on the sensitivity of the
inference-time performance of the model LSEβ (σ ◦ fθ(x1:N )) , where LSE ∗ β is defined as:

LSEβ(q1, . . . , qN ) ≜
1

β
log

(
1

N

N∑
i=1

eβqi

)
. (17)

A commonly accepted assumption in the analysis of whole-slide histopathology images is that often
only a small fraction of image patches may contain cancerous patterns—yet this is sufficient to label
the entire slide as cancerous. The remaining patches may contain entirely normal tissue.

Another widely accepted assumption is that the values of σ ◦ fθ(xi) across different patches of an
image I—i.e., for Bag(I) = (x1, . . . ,xN ) and some learned parameters θ ∈ Θ—exhibit statistical
variation. For instance, for "normal tissue" patches xi | i ∈ N , the outputs are distributed around a
mean value µ0, whereas for "abnormal" or "critical tissue" patches xi | i ∈ C, they are distributed
around a higher mean µc, with µc > µ0. Here, N , C ⊆ [N ] form a bipartition of the patch indices
corresponding to normal and abnormal regions, respectively (so that |N | = N − |C|). In real-world
scenarios, it is typically the case that |C| ≪ N .

The variances of the aforementioned class-conditional distributions, as well as the mean gap µc − µ0,
depend on how well the parameters θ have been learned during training.

In what follows, we argue that—independent of the training quality (as captured by the class-
conditional variances and the mean difference µc − µ0)—choosing a larger value of β leads to
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improved accuracy bias and higher sensitivity, especially in the regime where |C| ≪ N . Conversely,
when |C| ≥ |N |, selecting a smaller value of β is preferable. However, since the former condition
(|C| ≪ N ) is the one that arises in practice, our analysis supports choosing larger values of β for
better sensitivity.
Assumption 2. Let I ∼ P0 denote a random image, and let Bag(I) = (x1, . . . ,xN ) denote its
random patches. Let Q1 be a distribution supported over [N ] ∪ {0}. Then, suppose that Nc ∼ Q1

denotes the number of abnormal patches in the image, which can be zero upon being a “normal"
image. Then, there exist Nc unknown patches containing cancerous patterns, indexed by C ⊆ [N ]
if Nc > 0, and the remaining patches are normal, indexed by N = [N ] \ C. For these patches, we
assume:

σ ◦ fθ(xi) ∼ Qn for i ∈ N , (18)
σ ◦ fθ(xi) ∼ Qc for i ∈ C, (19)

where Qn and Qc are unknown distributions satisfying the following:

• EQc(X)− EQn(X) ≥ ∆ for some known ∆ > 0,

• Var(Qn),Var(Qc) ≤ V for some known V ≥ 0.

No further assumptions are made about the distributions Q1, Qn, or Qc, since they all depend on the
learned parameter θ ∈ Θ.

For simplicity, we threshold the value of LSEβ(σ ◦ fθ(x1:N )) for an image I at

T ≜
µc + µn

2
,

where values above this threshold are considered indicative of cancer, and values below it indicate a
normal image. While this threshold can be optimized in more complex settings, such refinements do
not affect the core analysis presented in this section. Also, consider the following standard definition
for performance measure:
Definition 5 (TP/FP/TN/FN Rates of θ). For a random image I ∼ P0 and corresponding bag of
patch features x1, . . . ,xN , and under Assumption 2, we define the true/false positive (TP/FP) and
true/false negative error rates of a given parameter θ ∈ Θ as follows:

• True Positive rate is the probability of LSEβ (σ ◦ fθ(x1:N )) ≥ T given Nc ≥ 1,

• False Positive rate is the probability of LSEβ (σ ◦ fθ(x1:N )) ≥ T given Nc = 0,

• True Negative rate is the probability of LSEβ (σ ◦ fθ(x1:N )) < T given Nc = 0,

• False Negative rate is the probability of LSEβ (σ ◦ fθ(x1:N )) < T given Nc ≥ 1.
Theorem 6 (Effect of β on Sensitivity). Let Assumption 2 hold for some unknown sub-Gaussian
distributions Q0, Q1, and Q2. For α ∈ (0, 1), assume

β ≥
2Cα E

[
log N

Nc

∣∣∣Nc ≥ 1
]

∆− 2C ′
α

√
V N−γ

c

= O
(

1

∆
E
[
log

N

Nc

∣∣∣∣Nc ≥ 1

])
,

where Cα and C ′
α have polylogarithmic dependence on α−1, and γ ∈ (0, 1) is a constant depending

on the tail properties of Q1 and Q2. Then, we have TP ≥ 1 − α. Conversely, conditioned on
1 ≤ Nc < N/2, assume that

β ≤ O
(
∆

(
1− 2Nc

N

))
,

where the constants only depend on Q1 and Q2. Then, we have FN ≥ 1/2 conditionally.

Proof of Theorem 6. According to Assumption 2 and based on the definition of log-sum-exp (LSE),
we have

LSEβ(σ ◦ fθ(x1:N )) =
1

β
log

(
1

N

N∑
i=1

exp (β σ ◦ fθ(xi))

)

=
1

β
log

(
Nc

N
eβΓc +

N −Nc

N
eβΓn

)
, (20)
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where

Γc
d
=

1

β
log

(
1

Nc

∑
i∈C

eβqi

)
, Γn

d
=

1

β
log

(
1

N −Nc

∑
i∈N

eβq
′
i

)
, (21)

with q1, . . . , qNc

i.i.d.∼ Qc and q′1, . . . , q
′
N−Nc

i.i.d.∼ Qn. Moreover,

Γc = µc +
1

β
log

(
1

Nc

Nc∑
i=1

eβ(qi−µc)

)
≜ µc +∆qc,

Γn = µn +
1

β
log

(
1

N −Nc

N−Nc∑
i=1

eβ(q
′
i−µn)

)
≜ µn +∆qn, (22)

where ∆qc and ∆qn are the β-LSE of Nc and N −Nc zero-mean sub-Gaussian random variables,
respectively. It is known that as β ranges from 0 to +∞, the expected values E[∆qc], E[∆qn] grow
from 0 to O(

√
V logNc) and O(

√
V log(N −Nc)), respectively [96]. Additionally, their variances

vanish at the rate {Nc, N −Nc}−γ for some γ ∈ (1/2, 1) depending on the tail behavior of Qc and
Qn. Therefore,

P
(
∆qc ≤ Cα

√
V (logNc +N−γ

c ), ∆qn ≤ Cα

√
V (log(N −Nc) + (N −Nc)

−γ)
)
≥ 1−α/2,

and
P
(
∆qc ≥ −Cα

√
V N−γ

c , ∆qn ≥ −Cα

√
V (N −Nc)

−γ
)
≥ 1− α/2,

for all α ∈ (0, 1), where Cα has polylogarithmic dependence on α−1.

Guarantee on TP rate: With probability at least 1− α given Nc, we have

LSEβ(σ ◦ fθ(x1:N )) = µn +∆− log(N/Nc)

β
+

1

β
log

(
eβ∆qc +

(
N −Nc

Nc

)
e−β∆eβ∆qn

)
≥ µn +∆− log(N/Nc)

β
+∆qc

≥ µn +∆− log(N/Nc)

β
− Cα

√
V N−γ

c . (23)

Thus, to ensure LSEβ(σ ◦ fθ(x1:N )) ≥ T, it suffices that

β ≥ log(N/Nc)
∆
2 − Cα

√
V N−γ

c

.

Taking expectation over Nc, it suffices that

β ≥ 2C ′
α E [log(N/Nc) |Nc ≥ 1]

∆− 2Cα

√
V N−γ

c

,

which implies TP ≥ 1− α. This proves the first part.

Guarantee on FN rate: Next, we show that small values of β can sharply degrade the TP rate,
leading to an increase in FN rate. When β is small, the distributions of ∆qc and ∆qn are nearly
symmetric. This directly implies that β-LSE value is symmetrically distributed around

1

β
log

(
Nc

N
eβµc +

N −Nc

N
eβµn

)
.

Therefore, conditioned on Nc ≥ 1, we consider the case where

1

β
log

(
Nc

N
eβµc +

N −Nc

N
eβµn

)
≤ µc + µn

2
,
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which implies FN ≥ 1/2. Using Taylor expansion for small β:
µc + µn

2
≥ 1

β
log

(
Nc

N
eβµc +

N −Nc

N
eβµn

)
=
Nc

N
µc +

Nc

2N
βµ2

c +
N −Nc

N
µn +

N −Nc

2N
βµ2

n +O(β2). (24)

Rearranging yields the sufficient condition:

β ≤
∆
(
1− 2Nc

N

)
µ2
n + Nc

N (∆2 + 2µn∆)
,

which guarantees a conditional FN rate of at least 1/2. This completes the proof.

Theorem 6 shows that selecting a sufficiently large value of β ensures an arbitrarily high true positive
(TP) rate. Specifically, setting β ≫ O( 1

∆ logN)—with constants depending only polylogarithmically
on the target confidence level—is sufficient to achieve any desired TP rate. Conversely, in the presence
of noise, choosing a small β leads to a substantial false negative (FN) rate, significantly degrading
performance. Therefore, the theorem recommends using large values of β to ensure robust sensitivity.

B Algorithms

B.1 Maxsoft

To avoid using complex notation, we explain our algorithm on a binary classification problem.
With simple modifications, our method can be extended to other MIL problems such as multiclass
classification or regression.

As defined, LSEβ is an aggregation function in form of

LSEβ(q1, . . . , qN ) ≜
1

β
log

(
1

N

N∑
i=1

eβqi

)
, (25)

represents a scalar instance value in the range [0, 1]. For simplicity, we denote LSEβ(q1:N ) as
LSEβ(q1, . . . , qN ). We can see that

∂LSEβ

∂qi
(q1:N ) =

eβqi∑N
j=1 e

βqj
.

which is simply the Softmax function when applied to q1, . . . , qN .

In multiple instance learning of WSI we aim to train a model to reduce LLSE(θ) with respect to θ
(see Definition 3). Let us introduce likelihood probability with

pj = P (yj = 1|Ij) = P (yj = 1|q(j)1 , . . . , q
(j)
N ), (26)

rephrasing LLSE(θ) as 1
n

∑n
j=1 L

(
yj
∥∥pj). We specifically use the cross entropy loss function for L.

In Maxsoft, we perform the forward pass with pj = maxi(q
(j)
1 , ...q

(j)
N ). Afterward, in the backward

step, we approximate LLSE(θ) by replacing the max aggregation operator with LSEβ . More precisely,
we approximate ∇θLLSE as:

∇θLLSE ≈
1

n

n∑
j=1

∂L
∂pj

(
max(qj1:N )

)
· Softmax(qj1:N ) · Jqj1:N (θ). (27)

where J is the Jacobian matrix. Notice that in case we calculated the original gradients, the Softmax
term would be replaced with the max gradient (which due to non-differentiability has instable
behavior) and in case we initially used LSE in the forward pass, ∂L

∂pj

(
max

(
q
(j)
1:N

))
would be

replaced with ∂L
∂pj

(
LSEβ

(
q
(j)
1:N

))
.

For cases with multiple classes we simply modify MLP’s linear head to have multiple heads for each
class (or in the worst case for architectures which differ from MLP, multiple classification head and
Maxsoft per class), extending equation 26 for cases with y = k. To further facilitate the usage of our
Maxsoft aggregation function, we provide a simple Python implementation of it in the paper. It can
be easily integrated into any code like other Pytorch [97] layers.
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Algorithm 1 Multiple Instance Learning of WSI with Maxsoft

1: Input: WSI Dataset D =
{
(I1, y1), . . . , (In, yn)

}
2: Input: β: Hyperparameter for LSEβ

3: Input: ViT: Frozen Vision Transformer feature extractor
4: Input: fθ: Trainable MIL classification head
5: Input: α: Step size (learning rate)
6: Output: fθ∗ : Trained model

7: for each training epoch do
8: for j = 1 to n do
9: Extract patches {X(j)

1 , . . . ,X
(j)
N } from image Ij

10: Obtain features {x(j)
i = ViT(X

(j)
i )}Ni=1

11: Compute instance-level scores q(j)i = σ(fθ(x
(j)
i )) for i = 1, . . . , N

12: Compute bag-level prediction: pj = max(q
(j)
1:N ) (which is also test time prediction)

13: Compute loss L(yj∥pj)
14: end for
15: Compute gradient approximation:

∇θLLSE ≈
1

n

n∑
j=1

∂L
∂pj

(
Yj∥max(q

(j)
1:N )

)
· Softmax(q

(j)
1:N ) · J

q
(j)
1:N

(θ)

16: Update model parameters: θ ← θ − α · ∇θLLSE
17: end for
18: Return trained model: θ∗ ← θ
19: return fθ∗

Algorithm 2 PerSlide Augmentation for WSI Tasks

1: Input: WSI Dataset D =
{
(I1, y1), . . . , (In, yn)

}
, Augmentation functions T = {τ1, . . . , τm},

Epochs E, Number of instances per data point N
2: Output: Trained model

3: for epoch t = 1 to E do
4: Initialize augmented dataset Daug

t ← ∅
5: for each Ii ∈ D do
6: Sample augmentation τ ∼ Uniform(T )
7: Apply τ to the whole image Ii to get Îi
8: Add (Îi, yi) to Daug

t
9: end for

10: TrainOneEpoch( Daug
t , t )

11: end for
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Algorithm 3 PerPatch Augmentation

1: Input: WSI Dataset D =
{
(I1, y1), . . . , (In, yn)

}
, Augmentation functions T = {τ1, . . . , τm},

Epochs E, Number of instances per data point N , ViT Frozen Vision Transformer feature
extractor

2: Output: Trained model

3: Precompute Stage:
4: for each image Ii ∈ D do
5: Set first augmented image variant as the original I(0)i ← Ii
6: for each augmentation τk ∈ T , where k = 1, . . . ,m do
7: Initialize augmented image variant I(k)i ← ∅
8: for each patch Xj ∈ Ii where j = 1, 2, . . . , N do
9: Apply augmentation: X(k)

j = τk(X
i
j)

10: Compute embedding for further optimization: x(k)j = ViT(X
(k)
j )

11: Add x(k)j to I(k)i

12: end for
13: end for
14: end for

15: Training Stage:
16: for epoch t = 1 to E do
17: Initialize augmented dataset Daug

t ← ∅
18: for each image Ii ∈ D do
19: Initialize empty set Îi ← ∅
20: for each patch Xj ∈ Ii where j = 1, 2, . . . , N do
21: Sample augmentation index k ∼ Uniform({0, . . . ,m})
22: Retrieve embedding x(k)j from I

(k)
i

23: Add x(k)j to Îi
24: end for
25: Add (Îi, yi) to Daug

t
26: end for
27: TrainOneEpoch( Daug

t , t )
28: end for
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C PyTorch Implementation of Maxsoft Pooling

Listing 1 presents the PyTorch-style implementation of Maxsoft pooling.

Listing 1: Pytorch-style implementation for Maxsoft
class MaxSoftmaxSTE(torch.autograd.Function ):

@staticmethod
def forward(ctx , input , beta):

# Save the input tensor for backward pass
ctx.save_for_backward(input)
ctx.beta = beta

# Perform the forward pass (select maximum value)
max_val , _ = torch.max(input , dim=0)

return max_val

@staticmethod
def backward(ctx , grad_output ):

# Retrieve the saved input tensor
input , = ctx.saved_tensors
beta = ctx.beta

# Compute the Softmax over the input for gradient
Softmax_grad = torch.Softmax(input * beta , dim=0)

# Multiply the incoming gradient (grad_output) by
# the Softmax weights
grad = grad_output * Softmax_grad

return grad , None

D PerSlide vs. PerPatch Figure

Figure 5 contains a visual comparison of the difference between PerSlide and PerPatch augmentations.

Figure 5: Comparison of PerSlide and PerPatch augmentations: PerSlide applies a single augmenta-
tion uniformly across all patches in a WSI, whereas PerPatch independently selects an augmentation
for each patch from multiple variants, resulting in substantially higher diversity during MIL pooling
training.
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E Datasets

CAMELYON16 and CAMELYON17 are large-scale WSI datasets introduced for benchmarking
automated methods in detecting metastatic breast cancer in lymph nodes. Developed for challenging
settings, they serve as standards for evaluating tumor detection algorithms in histopathology. Au-
tomating this task can reduce pathologist workload, improve diagnostic consistency, and mitigate
subjectivity [78, 35]. CAMELYON16 includes two classes—normal and tumor—while CAME-
LYON17 includes four: normal, macro, micro, and ITC. The ITC class (isolated tumor cells) is
especially challenging due to its sparse, small tumor clusters (<0.2 mm or <200 cells). Both datasets
are difficult because tumor regions occupy only a small area in positive WSIs. CAMELYON16 pro-
vides an official labeled test split and pixel-level annotations for all WSIs, whereas CAMELYON17
lacks test labels and includes pixel-level annotations for only 100 of its 500 training WSIs.

TCGA-Lung is a subset of The Cancer Genome Atlas (TCGA) comprising WSIs from two lung
cancer subtypes: Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC).
After filtering out low-quality slides, the dataset includes 1,042 WSIs—530 LUAD and 512 LUSC. A
key characteristic is that tumor regions occupy the majority of each slide. Additionally, most patients
contribute multiple WSIs [79]. Pixel-level annotations are not available.

SICAP-MIL is a publicly available dataset designed to benchmark MIL-based approaches for
prostate cancer grading in WSIs. It includes biopsy slides from 271 patients, scanned at 40× and
tiled into overlapping 512× 512 patches at 10× resolution. Each slide is globally labeled by expert
pathologists with primary and secondary Gleason grades, reflecting the dominant tumor patterns.
The dataset also introduces proportional constraints that represent the relative occurrence of each
grade, supporting the development of constrained MIL methods that can rival fully supervised models.
Slides are labeled as normal or abnormal and further annotated with Gleason grades (GG3, GG4,
GG5). In abnormal WSIs, tumor-associated regions are present in a significant portion, though not
the majority of the slide. Exact pixel-level annotations are not provided [80].

F Additional Experimental Setup

CAMELYON16 and CAMELYON17: WSIs are tiled into 256× 256 non-overlapping patches at
20× magnification, with background regions excluded following [67]. For CAMELYON16, we use
the official test split. As CAMELYON17 lacks an official labeled test set and includes one low-quality
slide, we discard that slide and randomly split the remaining data into approximately 60% training,
15% validation, and 25% testing, using the balanced splitting protocol from [78, 35, 98]. Specifically,
we ensure each split has a roughly equal number of Normal, Macro, Micro, and ITC samples.

For CAMELYON16, we train on 50 WSIs and evaluate on the full test set. For CAMELYON17, we use
the 99 high-quality annotated WSIs, as region-level annotation is clinically most relevant. This limited-
WSI setup emulates extreme low-data regimes typical of rare cancers (≈70 WSIs/type [99]). The
CAMELYON16 patching yields ≈1.5M patches, averaging ≈7,900 per WSI. For CAMELYON17,
we obtain ≈800k patches, about 8,000 per WSI on average. Patches overlapping annotated tumor
regions are labeled tumor; all others are labeled normal. Each model is trained from scratch five
times, and we report means and standard deviations for all metrics. We binarize CAMELYON17
following [14], treating ITC-labeled WSIs as tumorous. This is the most challenging setting, as some
ITC slides contain only one or two tumor patches. For experiments using the complete versions of
these two datasets, see Appendix P.

TCGA-Lung: WSIs are tiled into non-overlapping 256×256 patches at 20×magnification, excluding
background regions. This results in approximately 3.5 million patches, averaging around 3,500
patches per WSI. The dataset is roughly split into training (60%), validation (15%), and test (25%)
sets and enforce patient-level grouping, whereby all slides from a patient are assigned to a single split
(no cross-split leakage) [79].

SICAP-MIL: Each 512× 512 patch is divided into four 256× 256 patches, yielding approximately
34,000 patches in total, with each WSI containing around 100 patches on average. Each model is
trained from scratch five times independently, and we report the mean and standard deviation for all
performance metrics [80].
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G Calibration Metric ECE

Let Bm denote the set of indices for samples with prediction confidence in the interval Im =(
m−1
M , m

M

]
. The accuracy within bin Bm is defined as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), (28)

where ŷi is the predicted label and yi is the ground-truth label for sample i. The average confidence
in bin Bm is:

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i, (29)

where p̂i denotes the predicted confidence for sample i.

The Expected Calibration Error (ECE) is computed as:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| , (30)

where n is the number of samples.

A perfectly calibrated model satisfies acc(Bm) = conf(Bm) for all m, resulting in an ECE of 0 [100].
For instance, both p̂i = 1 with ŷi = yi and p̂i = 0 with ŷi ̸= yi contribute to lower ECE [15].

H Implementation Details

H.1 MIL Models

For DINO Domain [64] on CAMELYON16, CAMELYON17, and TCGA-Lung [78, 35, 79], we
train a ViT-S/16 from scratch on all patches from training WSIs using the default hyperparameters
from the official DINO repository [64]. For SICAP-MIL [80], we apply the same default settings for
ViT-S/16.

For all MIL methods, including Maxsoft pooling, we tune learning rate, weight decay, and weight
initialization using the validation set. The best configuration is selected based on validation per-
formance. No early stopping is applied. All models are trained for 500 epochs using the AdamW
optimizer [101] with default parameters unless otherwise specified.

CAMELYON16. DINO Domain (LR 0.1, WD 0.05, truncated-normal init); DINO Natural (LR
0.002, WD 0.05, Xavier-uniform); UNI (LR 0.02, WD 0.05, Xavier-uniform); Prov-GigaPath (LR
0.02, WD 0.05, Xavier-uniform).

CAMELYON17. DINO Domain (LR 0.1, WD 0.05, truncated-normal); DINO Natural (LR 0.002,
WD 0.0005, orthogonal); UNI (LR 0.02, WD 0.0005, Xavier-uniform); Prov-GigaPath (LR 0.02, WD
0.05, Xavier-uniform).

TCGA-Lung. DINO Domain (LR 0.002, WD 0.005, truncated-normal); DINO Natural (LR 0.02,
WD 0.05, Xavier-uniform); UNI (LR 0.002, WD 0.05, Xavier-uniform); Prov-GigaPath (LR 0.1, WD
0.05, orthogonal).

SICAP-MIL. DINO Domain (LR 0.002, WD 0.005, Xavier-uniform); DINO Natural (LR 0.02, WD
0.05, orthogonal); UNI (LR 0.002, WD 0.05, truncated-normal); Prov-GigaPath (LR 0.1, WD 0.05,
truncated-normal).

H.2 Augmentations

Base PerPatch augmentations comprise Random Rotation, Random Gaussian Blur, and Random
Color Jitter, selected per our analyses in Appendix J and Table 4; hyperparameters are dataset-
specific: CAMELYON16—LR 0.1, WD 0.05, Xavier-uniform; CAMELYON17—LR 0.1, WD 0.05,
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orthogonal; TCGA-Lung—LR 0.1, WD 0.05, orthogonal; SICAP-MIL—LR 0.1, WD 0.05, truncated-
normal. All MIL models are trained with bag-level labels only. Experiments use PyTorch 2.1 and
scikit-learn on an RTX 4090 [97].

H.3 Augmentations and Architectures

We further extend our range of experiments to assess the effect of different augmentation methods
on various MIL pooling architectures on the CAMELYON17 and SICAP-MIL datasets [80]. As
shown in Table 6, our PerPatch augmentation method demonstrates AUC improvements in most
setups. Among the previous methods, AugDiff [62] shows performance stability across multiple
architectures, whereas MixUp methods [55, 56] exhibit poor performance in some settings.

Table 6: The effect of various augmentation methods across MIL architectures on the Camelyon17
and SICAP datasets.

CAMELYON17
Augmentation max pooling mean pooling ABMIL DSMIL Snuffy LSE pooling Maxsoft pooling

AUC ECE AUC ECE AUC ECE AUC ECE AUC ECE AUC ECE AUC ECE

ReMix (MixUp) 0.743.385 0.245.169 0.823.006 0.118.030 0.833.038 0.193.038 0.723.324 0.162.026 0.688.176 0.179.044 0.777.186 0.212.046 0.840.020 0.242.017
RankMix (MixUp) 0.812.253 0.144.157 0.842.004 0.107.026 0.823.045 0.192.048 0.764.123 0.092.018 0.751.182 0.182.034 0.833.170 0.202.040 0.855.191 0.197.156

AugDiff 0.842.180 0.163.093 0.863.005 0.147.053 0.855.035 0.189.033 0.801.102 0.067.028 0.886.041 0.189.004 0.882.069 0.222.058 0.894.069 0.161.110
SSRDL 0.833.040 0.289.095 0.767.040 0.239.027 0.793.015 0.263.015 0.807.135 0.085.003 0.818.028 0.176.002 0.817.015 0.237.048 0.859.040 0.061.030
PerPatch 0.923.076 0.131.021 0.870.001 0.126.000 0.893.110 0.183.055 0.920.107 0.250.013 0.980.014 0.174.024 0.965.024 0.232.012 0.980.014 0.052.013

SICAP-MIL
Augmentation max pooling mean pooling ABMIL DSMIL Snuffy LSE pooling Maxsoft pooling

AUC ECE AUC ECE AUC ECE AUC ECE AUC ECE AUC ECE AUC ECE

ReMix (MixUp) 0.850.005 0.162.004 0.787.002 0.047.002 0.648.001 0.388.001 0.852.005 0.119.012 0.845.003 0.221.028 0.855.005 0.201.006 0.849.008 0.180.017
RankMix (MixUp) 0.846.013 0.157.009 0.808.002 0.042.002 0.683.001 0.381.001 0.849.004 0.133.022 0.855.002 0.193.011 0.836.002 0.220.022 0.845.008 0.280.017

AugDiff 0.861.029 0.155.005 0.809.008 0.041.003 0.724.005 0.260.009 0.856.005 0.129.008 0.860.007 0.191.004 0.863.002 0.188.021 0.818.019 0.180.005
SSRDL 0.806.008 0.160.022 0.803.007 0.224.023 0.657.002 0.406.004 0.840.004 0.125.012 0.806.019 0.259.008 0.812.005 0.182.008 0.838.009 0.161.005

PerPatch 0.870.001 0.155.003 0.810.001 0.142.002 0.831.010 0.219.021 0.862.006 0.118.008 0.866.003 0.186.003 0.869.000 0.176.002 0.827.002 0.223.018

I Augmentations Descriptions and Samples

Figure 6 presents examples of four CAMELYON17 [35] patches augmented with Random Rotation,
Random Elastic Deformation, Random Affine Transformation, Random Gaussian Blurring, Random
Color Jitter, and Random Hematoxylin-Eosin-DAB (HED) Jitter [59, 62]. The augmentations are
defined as follows: Random Rotation: Rotates the image by a random angle within a predefined
range. Random Elastic Deformation: Applies spatially varying smooth deformations to simulate
elastic distortions. Random Affine Transformation: Combines translation, rotation, scaling, and
shearing. Random Gaussian Blurring: Convolves the image with a Gaussian kernel to reduce
high-frequency noise. Random Color Jitter: Randomly modifies brightness, contrast, saturation,
and hue. Random HED Jitter: Perturbs the HED color space representation to simulate staining
variations [59, 62].

J Augmentation Quality and Complexity

In this section, we evaluate the effectiveness of Base augmentations using four key metrics: FID,
Density, and Coverage.

FID (Fréchet Inception Distance): FID is a widely used metric that quantitatively compares the
distribution of generated images against real images in a deep feature space. In the context of
image augmentation, FID helps assess how well the augmented images capture the underlying data
distribution of the real dataset. A lower FID score indicates that the augmented images are closer
in distribution to the original images, which implies that the generative model produces realistic
and coherent augmentations. A good FID score suggests that the additional images maintain the
essential visual characteristics of the real-world data, thereby potentially improving the downstream
performance of learning algorithms [102].

Density: The density metric measures how densely the generated images occupy the feature space
relative to the real images. In image augmentation, high density implies that the synthetic images
generated by the model are not only realistic but also well-aligned with the clusters of real images in
the feature space. This alignment is critical, as it suggests that the augmented images reinforce the
intrinsic patterns found in the data rather than creating spurious or outlier representations. Evaluating
density helps to understand whether the augmentation process is introducing variations that are

32



Original Random
Rotation

Random
Gaussian
blurring

Random
Color Jitter

Random Affine
Transformation

Random
Elastic

Deformation

Random
Hematoxylin-
Eosin-DAB

(a) (b)

Figure 6: Augmentation schemes (a) sample CAMELYON17 patches (b) augmented versions of the
same patches.

plausible and beneficial for training robust models, ensuring that the augmentation enriches the
dataset with high-quality, representative samples [103].

Coverage: Coverage evaluates the diversity of the generated images by determining the proportion
of the real image distribution that is covered by the synthetic samples. In the realm of image
augmentation, high coverage indicates that the method is capable of producing a wide range of
variations that collectively span the real data manifold. This is particularly important when the
goal is to enhance a dataset by introducing new variations that help prevent overfitting and improve
generalization in downstream tasks. A model with good coverage ensures that the augmented dataset
is not biased toward a narrow subset of the data distribution, thereby providing a more comprehensive
training set that captures the full spectrum of variability present in real-world images [103].

Table 7 shows that Random Hematoxylin–Eosin–DAB (HED) Jitter exhibits the lowest Density
and Coverage and the highest FID. Despite its pathology-specific design, this augmentation neither
reduces slide-level AUC variance nor improves ECE, indicating that the transformations it introduces
do not reflect realistic imaging variability. In general, augmentations with higher Density and
Coverage and lower FID perform better, as illustrated by the strong results of Random Rotation,
Random Gaussian Blur, and Random Color Jitter, and the poor performance of Random Elastic
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Deformation and Random Affine Transformation (see Table 5). We attribute the latter two failures to
their limited relevance to real-world slide variations. Collectively, these findings indicate that the
most effective strategy remains PerPatch combined with Random Rotation, Random Gaussian Blur,
and Random Color Jitter.

Table 7: Quality Metrics for different augmentations on the CAMELYON17 dataset. The results are
reported in the form of mean.std.

Augmentation FID Density Coverage

Random Rotation 73.80146.799 0.7850.066 0.9990.001
Random Elastic Deformation 274.585139.951 0.3530.162 0.6360.185
Random Affine Transformation 135.42270.692 0.4340.124 0.8580.108
Random Gaussian Blurring 6.8421.197 0.9860.030 0.9990.000
Random Color Jitter 30.0857.697 0.6720.053 0.9970.004
Random Hematoxylin-Eosin-DAB (HED) Jitter 2395.841286.359 0.0000.001 0.0010.001

K UMAP of Patch Embeddings Based on Encoder

Figure 7 presents UMAP visualizations of patch representations obtained from DINO Natural, DINO
Domain, UNI, and Prov-GigaPath on four test samples from the CAMELYON17 dataset. In general,
as the strength of the representation encoder increases, the embeddings exhibit improved clustering
by both label and patient, reflecting higher feature discriminability and domain alignment.

WSI #0
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Tumor

(a)
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Figure 7: UMAP of representations. (a) with Dino Natural (b) Dino Domain (c) UNI (d) Prov-
GigaPath.

L Error Analysis

L.1 Error Analysis on UNI for CAMELYON17

As we can see in Table 1, the results of UNI on the CAMEYON17 dataset are low. This is an
exception to our finding that the better the representation encoder (in particular the more data it has
been trained on) the better the perofrmance of the MIL pooling. Through an error analysis we found
that the problem with UNI comes from the fact that it cannot generalize well in WISs with extremely
low tumor regions (mostly ITC and then Micro subgroups). This only happens in CAMELYON17
since only this dataset has such small tumor regions and probably comes from the fact that UNI’s
autopsy WSIs do not provide such samples. The results can be found at Table 8.

L.2 Error Analysis for Augmentations and ECE on CAMELYON

When Per-Patch augmentation is applied to the sparsely annotated CAMELYON17 WSIs, the network
is repeatedly exposed to heavily transformed, minute tumorous regions. This increased morphological
diversity strengthens its ability to recognise genuinely positive tissue and, as a result, raises accuracy
on slides that contain tumour (Table 9). The same shift, however, slightly erodes performance on the
overwhelmingly abundant tumour-free slides: features that were previously dismissed as benign are
now more readily interpreted as malignant, leading to a higher false-positive rate.

From a calibration standpoint, the effect is likewise inverted relative to our original claim. The model
becomes better calibrated on the rare, hard positives—confidence scores now align closely with their
improved correctness—but it grows over-confident on negatives, which dominate the data distribution
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Table 8: Accuracy results for each subgroup in CAMELYON17 on UNI representaton encoder.

Method Slide

ITC ACC Micro ACC Macro ACC Negative ACC

max pooling 0.531.183 0.604.433 0.535.399 0.787.217
mean pooling 0.484.080 0.667.337 0.514.168 0.758.162
ABMIL 0.417.358 0.583.448 0.542.405 0.681.350
DSMIL 0.521.177 0.604.422 0.535.393 0.821.149
Maxsoft pooling 0.713.184 0.308.335 0.753.343 0.816.129

yet see a fall in accuracy. Consequently, the overall ECE still increases, though the underlying driver
is the miscalibration of negative patches rather than of positives.

In short, Per-Patch augmentation sharpens decision boundaries around the scarce tumour class,
boosting sensitivity and reducing inter-run variance for positive findings, while sacrificing a portion of
specificity on normal tissue. Post-hoc calibration targeted at the negative majority—e.g. temperature
scaling on a validation set enriched for benign slides—offers a principled way to retain the newfound
robustness to tumour heterogeneity without compromising probabilistic reliability.

Table 9: Accuracy results for each subgroup in CAMELYON17 with DINO Domain representation
encoder with and without Augmentation.

Method Slide

ITC ACC Micro ACC Macro ACC Negative ACC

Maxsoft pooling No Aug 0.713.184 0.308.335 0.753.343 0.816.129
Maxsoft pooling PerPatch 1.000.000 0.500.235 0.500.235 0.750.070

M Additional ROI Detection Images

Figure 8 shows additional examples of patch-level classification on the CAMELYON17 dataset
[78, 79]. Consistent with previous results, max pooling and Maxsoft pooling yield the most accurate
ROI detections, while mean pooling performs noticeably worse.

N Sensitivity to Data Quality

Although our datasets are high quality and processed under stringent protocols, a simple visual
inspection can verify their appearance; to test whether the underperformance of Transformer-based
models in current data regimes stems from data quality, we reran all CAMELYON17 experiments
under varied JPEG compression levels (50; 75—the common setting used in Tables 1; 100—the
highest) and with Gaussian blur as a quality corruption. The results in Table 10 replicate prior trends:
neither decreasing nor increasing quality alters Transformer behavior, rejecting data quality as the
cause of Transformer-based MIL deficiencies in current data regimes.

O Experiment on Classical MIL Pooling Functions

We evaluate major classical MIL pooling functions on CAMELYON17 [35] to assess their effective-
ness for WSI classification. As shown in Table 11, Maxsoft achieves the best slide- and patch-level
metrics (except patch-level on DINO Natural); noisy-or performs poorly [43], ISR excels on patches,
and smoothmax lies between LSE and Maxsoft. smoothmax remains without theoretical analysis;
intuitively, its weaker performance may arise because its gradient weights instances by deviation
from the current smoothmax value rather than Softmax-based importance, potentially hindering credit
assignment relative to Maxsoft’s direct Softmax path and motivating future theoretical study.
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Figure 8: Overview of additional ROIs identified on representative WSIs from the CAMELYON17
dataset [35], using (a) max pooling, (b) mean pooling, and (c) Maxsoft pooling.

Table 10: MIL pooling performance under varied JPEG compression levels and Gaussian blur
corruptions.

Method JPEG 50 JPEG 75 JPEG 100 Gaussian Blur

AUC ACC AUC ACC AUC ACC AUC ACC

max pooling 0.737 0.617 0.767 0.800 0.792 0.810 0.763 0.717
mean pooling 0.790 0.696 0.897 0.700 0.890 0.700 0.853 0.667
ABMIL 0.697 0.600 0.750 0.683 0.805 0.750 0.737 0.650
DSMIL 0.803 0.683 0.833 0.800 0.891 0.825 0.807 0.750
Snuffy 0.745 0.570 0.755 0.650 0.852 0.830 0.769 0.665
LSE pooling 0.857 0.783 0.850 0.800 0.923 0.817 0.863 0.800
Maxsoft pooling 0.970 0.883 0.983 0.867 0.987 0.950 0.963 0.883

P Full-Data Experiments on CAMELYON

For completeness, we report results from training on the full CAMELYON16 (80% train, 20%
validation) and CAMELYON17 (60% train, 20% validation, 20% test) with 5-fold cross-validation,
rather than the subsets in Appendix F, across MIL pooling architectures in Table 12 and augmentations
in Table 3. Even in this setting, while some gains appear, the overall trend holds, and Maxsoft
continues to surpass prior methods. Together with Tables 1 and 3, these results indicate that Maxsoft
improves generalization regardless of data availability, consistent with its inductive bias.

Q Out-of-Distribution Generalization (CAMELYON17 → CAMELYON16)

While our primary focus is in-distribution generalization, motivated by growing interest in out-of-
distribution (OOD) generalization, we report OOD generalization results by training on CAME-
LYON17 [35] and evaluating on CAMELYON16 [78] with no exposure to the latter during training.
As shown in Table 13, Maxsoft again overall surpasses prior methods, consistent with the established
observation that stronger in-distribution accuracy often correlates with improved OOD performance
[104–107]. A notable exception is DINO Domain, where mean pooling outperforms all methods—and
even its counterparts with other encoders. We hypothesize that because CAMELYON17 contains
positive slides with only a single malignant patch, many models (including Maxsoft) become overly

36



Table 11: Performance of major MIL pooling functions on CAMELYON17.

E
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er Method CAMELYON17

Slide Patch

AUC ACC F1 ECE AUC F1
D
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al

LSE pooling 0.683.093 0.600.087 0.654.070 0.361.075 0.168.291 0.040.069
GM pooling 0.670.017 0.700.000 0.700.000 0.166.023 0.643.002 0.034.000
ISR pooling 0.620.030 0.600.000 0.533.000 0.213.022 0.453.046 0.035.060
noisy-and pooling 0.667.005 0.583.028 0.625.000 0.095.003 0.655.002 0.049.000

noisy-or pooling 0.500.000 0.500.000 0.000.000 0.500.000 0.568.124 0.021.008
smoothmax pooling 0.643.040 0.583.104 0.714.031 0.248.055 0.505.015 0.000.001
Maxsoft pooling 0.710.010 0.650.050 0.658.083 0.345.040 0.312.024 0.000.000

D
IN

O
D

om
ai

n

LSE pooling 0.850.070 0.800.050 0.833.021 0.185.066 0.836.026 0.499.113

GM pooling 0.867.023 0.717.029 0.822.003 0.136.106 0.800.012 0.303.021
ISR pooling 0.863.031 0.683.029 0.812.041 0.198.018 0.796.011 0.206.022
noisy-and pooling 0.873.006 0.650.000 0.842.037 0.169.028 0.799.014 0.055.003
noisy-or pooling 0.500.000 0.500.000 0.000.000 0.500.000 0.646.121 0.029.011
smoothmax pooling 0.803.035 0.583.076 0.703.118 0.302.066 0.774.028 0.292.058
Maxsoft pooling 0.983.055 0.867.076 0.935.072 0.121.051 0.839.019 0.386.237

U
N

I

LSE pooling 0.603.351 0.617.247 0.628.400 0.386.230 0.709.213 0.210.364
GM pooling 0.730.121 0.667.144 0.744.097 0.114.014 0.700.168 0.030.012
ISR pooling 0.607.235 0.583.189 0.712.058 0.397.176 0.830.130 0.186.322
noisy-and pooling 0.727.138 0.633.126 0.769.069 0.191.033 0.616.154 0.036.014
noisy-or pooling 0.500.000 0.500.000 0.000.000 0.500.000 0.642.121 0.028.020
smoothmax pooling 0.537.319 0.533.104 0.573.343 0.346.143 0.650.263 0.204.352
Maxsoft pooling 0.753.071 0.750.205 0.779.040 0.238.172 0.786.255 0.476.429

Pr
ov

-G
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at

h

LSE pooling 0.933.031 0.900.050 0.932.027 0.095.048 0.943.004 0.741.108
GM pooling 0.900.050 0.767.058 0.825.107 0.135.029 0.915.011 0.374.037
ISR pooling 0.930.056 0.867.029 0.893.053 0.144.035 0.916.026 0.658.165
noisy-and pooling 0.893.006 0.783.029 0.881.033 0.150.070 0.836.016 0.138.008
noisy-or pooling 0.500.000 0.500.000 0.000.000 0.500.000 0.757.130 0.301.021
smoothmax pooling 0.917.025 0.700.050 0.889.000 0.245.021 0.930.004 0.704.035
Maxsoft pooling 1.000.000 0.933.029 1.000.000 0.062.022 0.948.009 0.744.034

sensitive, whereas mean pooling is less affected. This explains mean pooling’s advantage within
DINO Domain; its superiority over all encoders, however, warrants further analysis.

R MIL Datasets Out of Pathology Context

To evaluate the broader applicability of our approach beyond the pathology domain, we test our
proposed method—alongside prior pathology MIL methods—on classical MIL benchmark datasets.
These include MUSK1 and MUSK2, which model molecular binding: each molecule is represented
by multiple conformations and is labeled positive if at least one conformation binds to a target protein,
though the binding instance is not identified.

Animal-based datasets follow a similar MIL assumption. The Elephant dataset comprises 200 bags
(100 positive, 100 negative), where each bag contains instances derived from segmented image
features. A bag is labeled positive if it contains at least one elephant instance. The Tiger and Fox
datasets follow the same structure, with bags labeled positive if they contain at least one instance
of a tiger or fox, respectively. Instance-level labels are unavailable in all cases—only bag-level
supervision is provided [108, 109].

Following standard protocol [108, 109], we conduct 10-fold cross-validation with five runs per fold
and report the mean and standard deviation for each metric.
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Table 12: MIL pooling results on the full CAMELYON16 and CAMELYON17 datasets [78, 35].

E
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Method CAMELYON16 CAMELYON17

Slide Patch Slide

AUC ACC F1 ECE AUC F1 AUC ACC F1 ECE

D
IN

O
N
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al
max pooling 0.691.259 0.726.152 0.533.363 0.079.067 0.751.281 0.248.215 0.728.082 0.713.064 0.631.036 0.212.016
mean pooling 0.619.002 0.713.000 0.413.000 0.092.001 0.939.000 0.328.001 0.739.000 0.720.000 0.669.005 0.060.000

ABMIL 0.857.009 0.858.012 0.789.039 0.143.014 0.810.051 0.383.054 0.795.076 0.777.075 0.723.086 0.255.106
DSMIL 0.768.123 0.762.063 0.670.147 0.081.011 0.545.143 0.136.046 0.783.117 0.767.042 0.659.131 0.127.063
Snuffy 0.792.088 0.767.041 0.706.082 0.083.020 0.712.351 0.216.182 0.798.058 0.803.029 0.707.061 0.111.039
LSE pooling 0.884.004 0.837.008 0.826.014 0.049.006 0.894.004 0.432.007 0.816.046 0.793.025 0.707.013 0.135.043
Maxsoft pooling 0.911.018 0.886.004 0.849.013 0.110.002 0.899.004 0.363.018 0.883.011 0.827.015 0.749.008 0.207.029

D
IN

O
D

om
ai

n

max pooling 0.986.001 0.953.004 0.952.006 0.038.003 0.952.001 0.650.021 0.918.015 0.905.021 0.887.007 0.053.012
mean pooling 0.621.001 0.667.000 0.413.000 0.023.005 0.939.000 0.294.000 0.741.001 0.680.000 0.657.001 0.102.004
ABMIL 0.958.018 0.954.008 0.939.017 0.046.009 0.940.008 0.487.215 0.889.016 0.870.010 0.853.007 0.111.017
DSMIL 0.963.005 0.948.012 0.951.005 0.037.003 0.465.046 0.114.014 0.920.012 0.883.015 0.862.019 0.068.017
Snuffy 0.827.023 0.687.038 0.759.018 0.125.041 0.931.006 0.407.005 0.903.008 0.756.015 0.813.013 0.125.019
LSE pooling 0.978.000 0.952.000 0.951.000 0.038.004 0.948.000 0.731.000 0.931.022 0.897.011 0.882.009 0.034.001
Maxsoft pooling 0.993.002 0.961.000 0.958.000 0.037.002 0.953.001 0.664.030 0.954.013 0.927.011 0.904.009 0.027.006

U
N

I

max pooling 0.986.005 0.974.012 0.983.012 0.027.013 0.966.007 0.662.087 0.827.038 0.887.049 0.864.047 0.150.039
mean pooling 0.583.005 0.594.004 0.474.037 0.370.015 0.821.003 0.232.003 0.839.023 0.800.026 0.726.054 0.338.044
ABMIL 0.970.015 0.948.039 0.961.016 0.051.041 0.928.002 0.397.115 0.804.224 0.837.170 0.791.234 0.143.206
DSMIL 0.971.012 0.961.016 0.956.030 0.057.046 0.717.164 0.177.090 0.874.145 0.907.110 0.840.202 0.139.120
Snuffy 0.931.023 0.819.049 0.832.046 0.050.035 0.972.001 0.597.010 0.932.026 0.906.025 0.875.040 0.095.009
LSE pooling 0.983.005 0.969.008 0.965.022 0.032.009 0.967.003 0.558.105 0.846.196 0.840.176 0.784.235 0.183.156
Maxsoft pooling 0.998.001 0.974.009 0.990.000 0.026.007 0.973.001 0.595.008 0.982.006 0.957.006 0.943.002 0.038.0012

Pr
ov
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aP
at

h

max pooling 0.980.006 0.969.008 0.976.017 0.027.005 0.964.005 0.556.032 0.958.003 0.943.012 0.921.021 0.057.018
mean pooling 0.540.030 0.594.027 0.379.074 0.335.024 0.855.015 0.231.008 0.803.002 0.770.008 0.676.000 0.140.004
ABMIL 0.982.004 0.964.024 0.976.006 0.034.022 0.963.002 0.688.134 0.963.018 0.950.010 0.937.017 0.050.010
DSMIL 0.977.009 0.954.021 0.945.011 0.111.047 0.500.000 0.125.000 0.969.014 0.947.012 0.943.027 0.041.011
Snuffy 0.962.005 0.913.021 0.902.010 0.121.001 0.889.032 0.555.016 0.942.011 0.890.043 0.870.023 0.076.032
LSE pooling 0.980.011 0.972.012 0.976.012 0.028.011 0.952.020 0.602.071 0.968.007 0.956.013 0.866.025 0.271.006
Maxsoft pooling 0.988.003 0.974.004 0.979.010 0.025.004 0.965.003 0.556.016 0.996.007 0.975.007 0.971.000 0.030.002

IN R2T-MIL 0.913.007 0.869.006 0.852.020 0.117.013 / / 0.792.045 0.800.014 0.733.013 0.202.006

PL
IP R2T-MIL 0.946.011 0.891.016 0.879.015 0.095.020 / / 0.896.006 0.890.000 0.887.007 0.108.004

U
N

I

PANTHER 0.836.001 0.806.000 0.776.002 0.140.025 / / 0.880.004 0.845.007 0.825.009 0.083.021

As shown in Table 14, Maxsoft pooling outperforms all baselines on nearly every dataset, achieving
an AUC of 1.0 on MUSK1. The observed gap between AUC and accuracy is likely due to using a
fixed decision threshold rather than tuning per dataset. These results demonstrate the versatility and
strong generalization of Maxsoft pooling as a broadly applicable MIL aggregation method.

38



Table 13: OOD generalization results from models trained on CAMELYON17 and evaluated on
CAMELYON16.

E
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Method CAMELYON16

Slide Patch

AUC ACC F1 Score ECE AUC F1

D
IN

O
N

at
ur

al max 0.541.085 0.587.065 0.458.047 0.158.083 0.379.083 0.000.000
mean 0.504.002 0.442.000 0.409.000 0.189.001 0.388.002 0.093.001
DSMIL 0.527.101 0.550.047 0.391.241 0.235.089 0.577.127 0.154.050

LSE 0.579.018 0.558.013 0.507.053 0.149.033 0.297.028 0.006.003
Maxsoft 0.594.004 0.589.035 0.502.070 0.187.115 0.327.053 0.007.002

D
IN

O
D

om
ai

n max 0.477.053 0.390.009 0.413.204 0.397.061 0.003.004 0.321.129
mean 0.702.000 0.628.000 0.624.000 0.574.000 0.148.000 0.034.000
DSMIL 0.580.080 0.491.100 0.505.077 0.464.127 0.102.046 0.130.129
LSE 0.474.015 0.411.021 0.530.018 0.578.012 0.044.013 0.269.048
Maxsoft 0.530.074 0.437.056 0.499.036 0.407.048 0.001.001 0.441.097

U
N

I

max 0.653.204 0.548.199 0.532.202 0.165.122 0.682.236 0.253.388

mean 0.553.008 0.496.008 0.558.006 0.392.008 0.582.010 0.153.004
DSMIL 0.692.136 0.636.113 0.650.113 0.163.070 0.500.000 0.125.000
LSE 0.709.174 0.643.182 0.617.174 0.122.000 0.733.192 0.218.279
Maxsoft 0.778.180 0.765.126 0.700.203 0.120.000 0.869.119 0.157.147

Pr
ov

-G
ig

aP
at

h max 0.931.050 0.827.126 0.878.075 0.085.105 0.958.003 0.495.012
mean 0.506.004 0.491.009 0.537.003 0.390.009 0.550.003 0.141.001
DSMIL 0.897.022 0.716.031 0.793.017 0.161.064 0.500.000 0.125.000
LSE 0.969.009 0.938.048 0.959.027 0.110.052 0.944.024 0.561.051

Maxsoft 0.979.001 0.951.027 0.963.015 0.050.050 0.938.014 0.526.082

Table 14: Results of MIL pooling on MUSK1, MUSK2, ELEPHANT, TIGER, and FOX datasets.

Method MUSK1 MUSK2 ELEPHANT TIGER FOX

AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

max pooling 0.881.041 0.778.000 0.861.048 0.767.058 0.753.049 0.700.050 0.879.027 0.850.050 0.675.089 0.567.058
mean pooling 0.762.083 0.704.128 0.750.000 0.700.000 0.980.000 0.917.029 0.896.012 0.817.058 0.645.033 0.650.050
LSE pooling 0.976.041 0.815.128 0.931.024 0.750.116 0.957.059 0.900.050 0.909.027 0.883.058 0.720.093 0.625.106
ABMIL 0.976.041 0.870.111 0.833.072 0.800.173 0.973.021 0.933.029 0.892.067 0.850.100 0.698.104 0.617.029
DSMIL 0.929.000 0.889.000 0.875.042 0.733.058 0.947.015 0.925.007 0.919.030 0.833.029 0.730.079 0.617.029
Snuffy 0.893.051 0.833.079 0.917.000 0.800.141 0.955.007 0.825.035 0.899.057 0.850.071 0.756.059 0.625.035
Maxsoft pooling 1.000.000 0.889.000 0.954.024 0.767.058 0.958.036 0.950.050 0.950.011 0.900.029 0.760.033 0.650.029
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The scope of the effectiveness and main claims are clearly demonstrated in the
abstract and introduction
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we provided formal assumptions of our theoretical analysis in the Ap-
pendix A and made clear reasoning on why we consider them true and how general our
bounds are. We also discussed the limitations of our work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Refer to Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We talk about all models and datasets in Section 5, our method in the Section
4, extra details on hyperparameters, splits and training details are provided in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Codes and information of datasets that are constructed or reused in the paper
are included in the GitHub repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper clearly describes the datasets, models evaluated, and evaluation
metrics in Section 5.2 and Appendices E, F, and H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are calculated over 5 different random initializations
and their mean and std are reported.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes. We specified our compute resources in the supplementary materials.
Additionally we compared our compute time relative to previous methods in the main tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All authors read and confirm that the research in the paper conform with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Every asset that we utilized for our implementations have been appropriately
referenced, both within the paper itself and in the code (if needed). Although we did not
specify the names of their respective licenses, you can find these details on the webpages
we’ve cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper makes the code and our self-pretrained weights and embeddings
available through the external link.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study uses only publicly available, de-identified datasets: CAMELYON16,
CAMELYON17, TCGA-Lung, and SICAP-MIL. We performed no new data collection or
interaction with human participants and conducted no crowdsourcing. Data were used under
the datasets’ terms; to our knowledge, original providers obtained the necessary approvals
and/or consent. We made no attempt to re-identify individuals and followed dataset usage
policies.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The study uses only publicly available, de-identified datasets (CAMELYON16,
CAMELYON17, TCGA-Lung, SICAP-MIL). We conducted no new data collection or
interaction with human participants; thus, this work does not constitute human-subjects
research and IRB review was not required. We followed each dataset’s usage terms and
made no attempt to re-identify individuals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper only uses LLMs for text and code editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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