

000 001 UNCRITICAL TOKENS ARE ‘CRITICAL’ IN PRETRAIN- 002 ING: THE IMPLICIT REGULARIZATION EFFECT OF 003 NEXT TOKEN PREDICTION 004 005

006 **Anonymous authors**

007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Next Token Prediction (NTP) is the prevailing pre-training approach for large lan-
014 guage models, which have demonstrated remarkable reasoning capabilities. A key
015 characteristic of NTP is its objective to predict every token in a sequence, includ-
016 ing tokens that are not directly relevant to the final answer or core logic—often
017 considered training noise. While such “noise” from uncritical tokens is tradition-
018 ally thought to impair learning by introducing irrelevant information, our research
019 reveals a counterintuitive positive effect. To isolate this phenomenon, we contrast
020 NTP with Critical Token Prediction (CTP), a training paradigm that focuses ex-
021 clusively on specific tokens such as the final answer. Our findings show that NTP
022 consistently surpasses CTP in reasoning ability. We hypothesize and substantiate
023 through theoretical analysis that the learning objective on uncritical tokens acts as
024 an implicit regularizer, analogous to explicit L^2 regularization. Further empirical
025 analysis across various benchmark reasoning datasets confirms that NTP-trained
026 models exhibit enhanced generalization and robustness, demonstrating greater re-
027 silience to perturbations and achieving flatter loss minima. These findings reveal
028 that uncritical tokens are, in fact, ‘critical’ for developing robust reasoning during
029 pre-training, offering valuable insights into optimizing training strategies for LLM
030 development.
031

1 INTRODUCTION

032 As transformer-based Large Language Models (LLMs) continue to fuel enthusiasm for Artificial
033 General Intelligence (AGI), numerous techniques are emerging to advance this trend, fostering a
034 highly optimistic outlook for the eventual realization of AGI. A central challenge since the inception
035 of LLMs has been how to efficiently train these models to achieve superior reasoning capabilities.
036 Over time, a series of training techniques have revolutionized the performance of LLMs, each con-
037 tributing to significant milestones in the field.
038

039 The success of natural language processing (NLP) has been significantly driven by the widespread
040 adoption of next token prediction (NTP), a self-supervised learning approach popularized by the
041 GPT series (Radford & Narasimhan, 2018; Radford et al., 2019; Brown et al., 2020). Unlike super-
042 vised methods that depend on costly labeled data, NTP enables models to learn from vast amounts
043 of unlabeled text by predicting subsequent tokens, allowing for zero-shot generalization and elimi-
044 nating the need for task-specific fine-tuning. This framework has established NTP as a cornerstone
045 of modern NLP.
046

047 In contrast to NTP, supervised training only on labels can be regarded as critical token prediction
048 (CTP), illustrated in Fig. 1. Although NTP has been successfully applied in LLMs, it still leaves
049 room for speculation: Given the availability of labeled data, should CTP be reconsidered as a vi-
050 able alternative? For instance, in training a model for arithmetic addition, employing NTP to learn
051 problem formulations seems inherently flawed, as the subsequent components cannot and should
052 not be inferred from preceding ones in math problems. Furthermore, recent advancements have in-
053 creasingly focused on the strategic selection of important tokens for training. For example, RHO-1
054 (Lin et al., 2025a) utilizes a model to score each token and trains only on samples with high scores.
055 Phi-4 (Abdin et al., 2024) has made significant strides in enhancing reasoning capabilities through
056

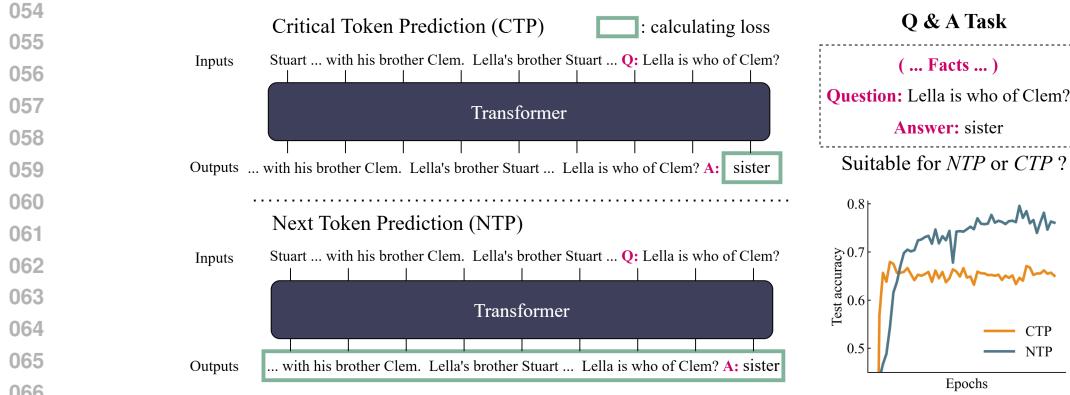


Figure 1: Schematic illustration and test performance comparison of NTP and CTP on the CLUTRR task. Regarding their training objectives, especially for tasks like arithmetic addition, CTP’s loss function exclusively focuses on the answer, while NTP’s loss encompasses the entire sequence. This difference introduces implicit noise during NTP’s optimization process.

an emphasis on data quality. One key technique involves synthesizing a large number of question and answer (Q&A) data pairs, even during the pretraining phase with NTP. This raises a natural question: since the answer portion of Q&A data can be seen as a form of label, should CTP be used for Q&A pairs instead?

In this study, we conduct a systematic comparison between NTP and CTP using composition tasks and generalizing to more realistic reasoning tasks. **Our empirical and theoretical findings reveal that NTP, in specific circumstance, is a variance of weight decay regularization, due to the noise inherent in training set.** To further investigate this bias, we employ series of realistic tasks, especially for multi-hop reasoning task PrOntoQA, providing additional empirical evidence. Beyond the regularization, we observe that models trained with NTP demonstrate greater robustness and flatness than those trained with CTP.

2 RELATED WORK

Next-Token Prediction and Other Training Methods. Next token prediction (NTP) is a widely used method for training LLMs. Recent studies analyze NTP from various angles, investigating geometric properties in logits space (Zhao et al., 2024; Thrampoulidis, 2024), theoretical capacity in transformers (Madden et al., 2024), mechanistic insights (Li et al., 2024), and empirical scaling laws (He & Su, 2024). Recognizing NTP’s limitations, alternative training paradigms have emerged (Bachmann & Nagarajan, 2024; Gloeckle et al., 2024; Lin et al., 2025b; Havrilla & Iyer, 2024). For example, RHO-1 (Lin et al., 2025a) introduces a token-level scoring mechanism, selectively training on high-scoring samples to improve efficiency. Similarly, Phi-4 (Abdin et al., 2024) demonstrates significant advancements in reasoning capabilities by prioritizing high-quality data during training, and (Huerta-Enochian & Ko, 2024) presents the study analyzing the effects of various prompt loss token weights for supervised finetuning. Despite these advances, the link between diverse training methods and generalization remains underexplored. A deeper understanding of this relationship is crucial for advancing the field and developing more robust and efficient LLMs.

Implicit Bias for Noise-Induced Regularization Techniques. Implicit bias from noise-induced regularization is widely studied, with different noise forms impacting training and performance (Zhu et al., 2019). Stochastic gradient descent (SGD) noise is a key example, shown to improve generalization by promoting flatter loss landscapes (Wu et al., 2020; Feng & Tu, 2021; Xie et al., 2020), with its magnitude depending on the landscape (Mori et al., 2021) and linked to dynamical stability (Wu et al., 2018; Ma & Ying, 2021). Dropout is another common technique enhancing generalization (Zhang et al., 2022; Zehui et al., 2019; Zhou et al., 2020; Li et al., 2023; Fan et al., 2019; Wu et al., 2021; He et al., 2024), with studies showing its noise improves generalization from various perspectives (Mianjy et al., 2018; Bank & Giryes, 2020; Lengerich et al., 2022; Cavazza

108 et al., 2018; Wei et al., 2020; Zhang et al., 2023b), including fostering condensation and improving
 109 loss landscape flatness (Zhang & Xu, 2024). In this work, we draw an analogy between NTP and
 110 noise-induced training methods to explore NTP’s impact on model reasoning capabilities.
 111

112 3 PRELIMINARIES

114 In this section, we introduce some key definitions of the training methods (NTP & CTP) and the
 115 synthetic task setup. The detailed definition could be referred to Appendix D.
 116

117 3.1 DEFINITION OF NTP AND CTP

119 We note the input sequence with length T in the token format $\{x_k\}_{k=1}^T$, and without loss of
 120 generality, the critical token is set as the end token x_T . We also denote $P_{\theta}(x_{t+1}|x_{\leq t}) =$
 121 $P_{\theta}(x_{t+1}|x_1, \dots, x_t)$ as the model output logits at the t -token. Training loss of NTP and CTP are
 122 defined as follows:
 123

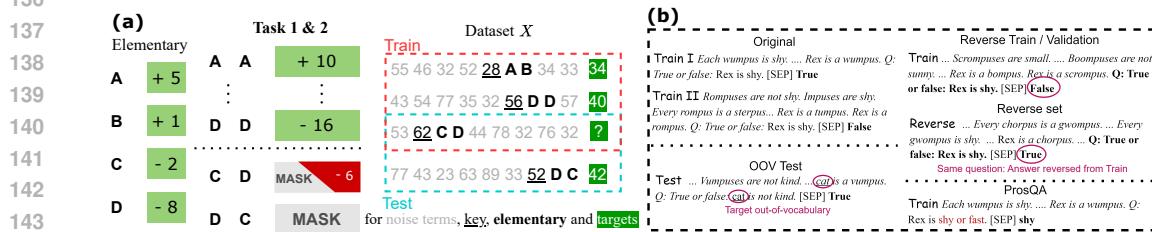
$$\mathcal{L}_N = -\frac{1}{T} \sum_{t=1}^{T-1} 1\{x_{t+1}\} \log(P_{\theta}(x_{t+1}|x_{\leq t})), \quad (1)$$

$$\mathcal{L}_C = -1\{x_T\} \log(P_{\theta}(x_T|x_{\leq T-1})). \quad (2)$$

127 Not hard to see that the CTP loss \mathcal{L}_C is the critical part of the NTP loss \mathcal{L}_N , only calculated on the
 128 critical token x_T . We use the original GPT-2 structure and denote Attn and MLP as the attention
 129 and fully connected block separately.
 130

131 3.2 THE ANCHOR FUNCTION TASK SETUP

133 The anchor function (Zhang et al., 2024b) is designed to cook synthetic dataset that can mimic
 134 language tasks but provides a clear examination of the model’s performance and mechanisms on
 135 compositional functions.
 136



144 Figure 2: Illustration of the two primary tasks discussed in this work. (a) the Anchor Function task
 145 and (b) the PrOntoQA tasks. (a): The Anchor Function task setup. The composition (C, D) is used
 146 as a test example in Task 1 and as a training example with a misleading $x - 6$ operation in Task 2.
 147 We focus on the model preference on the symmetric pair (D, C) , which is excluded from training. A
 148 prediction matching the elementary anchor composition rule (i.e., $x - 10$) is considered a reasoning
 149 solution; otherwise non-reasoning solution. (b): The description of different PrOntoQA tasks used
 150 in this work: Original, reverse, OOV test and its variation ProsQA (Hao et al., 2024).
 151

153 **Definition of anchor function** Consider a function $g(\mathbf{x}) : \mathbb{R}^{s \times d} \rightarrow \mathbb{R}^C$, where s represents
 154 for sequence length while C for vocabulary size. The input X consists of two parts: anchor set
 155 $\mathcal{A} = \{A, B, C, D\}$ and the definition domain of function f , $\mathcal{D} = \{20, \dots, 100\}$. The function is
 156 defined as:
 157

$$g(\dots, x_i, a, x_{i+2}, \dots) := a(x_i), \quad \text{while } a \in \mathcal{A}; x_i \in \mathcal{D} \quad (3)$$

$$g(\dots, x_i, a, b, x_{i+3}, \dots) = (a, b)(x_i) := b(a(x_i)), \quad \text{while } a, b \in \mathcal{A}; x_i \in \mathcal{D}. \quad (4)$$

158 The latter setting is also called a composition task. In this work, we set the specific elementary
 159 functions f_a, f_b as:
 160

$$A(x) = x + 5, \quad B(x) = x + 1, \quad C(x) = x - 2, \quad D(x) = x - 8.$$

162 The anchor function operates solely on the position preceding the anchor a , which is denoted as the
 163 key item, and is independent of the input at other positions.
 164

165 **Two versions of the composition task** To rigorously assess the reasoning capabilities of models,
 166 we have designed two composition tasks with escalating levels of difficulty.
 167

168 Task 1: We remove the pairs (C, D) and (D, C) from a set of 16 possible combinations of anchor
 169 pairs, thereby withholding direct information about these specific compositions from the model.
 170

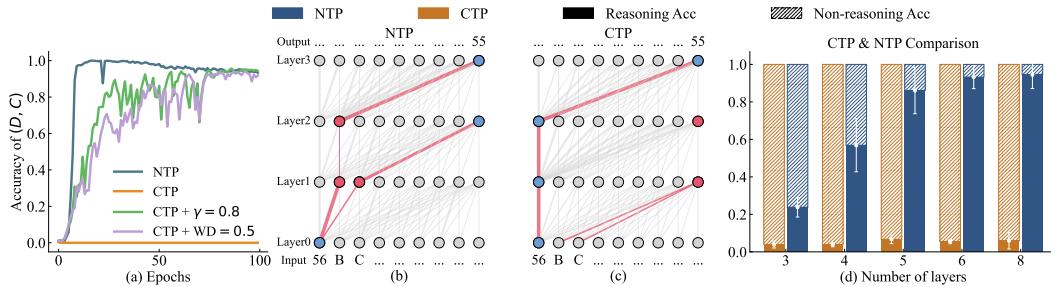
171 Task 2: We remove the pair (D, C) and introduce misleading information by presenting $(C, D)(x)$
 172 as $x - 6$, despite the correct operation being $(C, D)(x) = x - 10$.
 173

174 Here we define that the reasoning solution as the model that can learn the function of D and C
 175 respectively. If the model fails to identify elementary functions, we call it a non-reasoning solution.
 176 For both tasks, we evaluate the model’s reasoning ability by measuring its accuracy in determin-
 177 ing that $(D, C)(x) = x - 10$. This assessment is critical because it requires the model to discern
 178 the roles of the elementary anchors \mathcal{A} and correctly compose their operations. Only by accurately
 179 identifying the functions of these elementary anchors can the model successfully address the com-
 180 position problem, analogous to human reasoning processes. See Appendix D.1 for details on model
 181 architecture and data generation.
 182

183 4 REGULARIZATION: IMPLICIT REGULARIZATION FROM NTP

184 An interesting question is, whether the transformer could learn the elementary functions only with
 185 composite functions. In this section, we analyze the NTP-trained and CTP-trained models on com-
 186 position tasks. We also provide a comparison with CTP + large weight decay experiments.
 187

188 4.1 EFFECTS OF NTP TRAINING



200 Figure 3: Accuracy of masked pair (D, C) of composition task. The *NTP* and *CTP* represent the
 201 normal setting ($\gamma = 0.5$, $\text{WD} = 0$). **(a)**: 3-layer 1-head GPT-2 model performance on **task 1**, NTP
 202 achieves similar reasoning ability compared with regularization methods like small initialization or
 203 weight decay, which theoretically discussed in Theorem 1. **(b & c)**: The information flow of the
 204 composition pair (B, C) of the NTP-trained model and CTP-trained model in (a). The NTP-trained
 205 model treats the anchors one by one, while the CTP-trained model merges the anchors in Layer
 206 0 and finishes it in Layer 3. This is a shortcut learning pattern and indicates the CTP’s failure in
 207 Task 2. **(d)**: The non-reasoning and reasoning solution of **task 2** with different layers. The NTP
 208 could stably switch the non-reasoning solution to the reasoning solution. The error bars represent
 209 the standard deviation across 3-time runs on GPT-2.

210 In the (Zhang et al., 2024a; 2025), authors have figured out that the initialization scale will affect the
 211 preference of the model. They initialize the layer in a normal distribution $\mathcal{N}(0, (d_1)^{-2\gamma})$ with d_1
 212 input neurons and initialization scale γ . The smaller initialization (large γ) of parameters contributes
 213 to a more generalized model, while the large initialization (small γ) will lead to poor performance in
 214 both ID (in distribution, like (A, B)) and OOD tasks (out of distribution, like (D, C)). The authors
 215 find that the watershed of reasoning and non-reasoning is the $\gamma = 0.5$, which is similar to default
 Kaiming normal initialization. However, the authors only focus on CTP training.

216 Here we establish that, with the Kaiming normal scale in which transformer should select the non-
 217 reasoning solution, which will be shifted to a reasoning solution using NTP rather than CTP. From
 218 Fig. 3, for task 1, NTP-trained models could learn pairs (C, D) and (D, C) from the rest, however,
 219 CTP-trained models cannot figure out, but mistakenly induce (D, C) as the same of (D, D) . For
 220 task 2, after introducing the misleading (C, D) , CTP remains focused on the unreasoning solution,
 221 while NTP prefers reasoning solutions, and this tendency becomes increasingly evident as the depth
 222 of the model increases.

223 We leverage the information flow analysis to reveal the mechanism behind the reasoning or non-
 224 reasoning solutions. The information flow is about the NTP-trained and CTP-trained for a three-
 225 layer model of GPT-2 with the same testing sample. The thickness of the line connecting the j -th
 226 token in Layer l and the k -th token in Layer $l + 1$ represents attention score at position (k, j) . For
 227 reasoning solution, the model treats two anchors one-by-one, which aligns with the original intent
 228 of the composition task design. In contrast, CTP selects a shortcut to fit the train set: Considering
 229 the symmetric property of the data $((a, b)(x) = (b, a)(x)$ for all $a, b \in \mathcal{A}$), it merges two anchors
 230 in the first layer and then treats the combination of anchors as the new. This approach represents
 231 a trade-off wherein the model learns the combination rather than elementary anchors, enabling it
 232 to effectively fit the training set with only a two-layer network. However, the drawback is evident:
 233 when faced with (C, D) combination that was absent from training, the model fails.

234 eight decay is another widely used regularization technique that aids generalization, and boosts the
 235 reasoning ability shown in Fig. 3(a). In our settings, incorporating weight decay with CTP training
 236 could prevent the model from exhibiting shortcut learning, a phenomenon observed in pure CTP
 237 training. In next section, we will establish the theoretical analysis on the effect of NTP training.

238 4.2 THEORY ANALYSIS OF NTP TRAINING ON COMPOSITION TASK

240 To explore the different training results of NTP and CTP, we need to carefully analyze the loss \mathcal{L}_N
 241 and \mathcal{L}_C . In this section, we start with general theory and then applies it to two training phases to
 242 illustrate the regularization effect of NTP. First, we state the regularization effect in the initial stage
 243 as follows.

244 **Theorem 1** (NTP regularization). *Suppose there exists a parameter vector θ_0 such that, for every
 245 uncritical position $X = (x_1, \dots, x_t)$ with $t < T - 1$, such that $P_{\theta_0}(\cdot | X) = \frac{1}{d_{vob}} \mathbf{1}_{d_{vob}}$. Then, for
 246 θ in a neighborhood of θ_0 , the NTP loss admits following expansion as sample size tends to infinity,*

$$248 \mathcal{L}_N(\theta) = \frac{1}{T} \mathcal{L}_C(\theta) + \frac{1}{2} (\theta - \theta_0)^\top I_{\theta_0} (\theta - \theta_0) + \mathcal{O}(\|\theta - \theta_0\|^3), \quad (5)$$

249 where I_{θ_0} denotes the empirical Fisher information matrix at θ_0 which is

$$251 I_{\theta_0} = \frac{1}{T} \sum_{t=1}^{T-2} \mathbb{E}_{X_t} I_{\theta_0}(X) \quad (6)$$

254 Next, we apply this theorem to the two training phases. To do so, we first introduce an abstraction of
 255 the sequence model. Typically, in such models, an input sequence X undergoes various transforma-
 256 tions before being mapped to logits via a projection matrix. We formalize this process as follows:
 257

258 **Definition 1.** Let X be the embedded input sequence, the model generates the logit vector

$$260 \ell(X) = G_{\hat{\theta}}(X)W_{\text{proj}} \quad (7)$$

261 and the corresponding probabilities

$$262 P_{\theta}(X) = \text{softmax}(\ell(X)), \quad (8)$$

263 where $\theta = (\hat{\theta}, \text{vec}(W_{\text{proj}}))$.

265 Next, we give the explicit expression for regularization in the initial stage.

266 **Proposition 1** (Regularization in initial stage). *Consider sequence models defined as Def. 1, there
 267 exists $\lambda > 0$ such that Eq. (5) has following reformulation at initialization:*

$$269 \mathcal{L}_N = \frac{1}{T} \mathcal{L}_C + \frac{1}{2} \frac{\lambda}{d_{vob}} \text{vec}(W_{\text{proj}})^\top \left(I - \frac{1}{d_{vob}} \mathbf{1} \mathbf{1}^\top \right) \otimes I \text{vec}(W_{\text{proj}}) + \mathcal{O}(\|\theta\|^3)$$

270 This Proposition reveals the close relationship between NTP and L^2 regularization. It proves that,
 271 in the early stages of training, NTP can be considered a special type of L^2 normalization, which
 272 explains why models trained with NTP perform similarly to models trained with CTP and weight
 273 decay, as shown in Fig. 3 (a). The proofs could be find at Appendix B.1.

274 Finally, we conclude this section with a discussion of the final convergence phase. At the end of
 275 the training, since the rest of the sequence (excluded critical tokens) is uniform noise, the logits for
 276 non-critical tokens should converge to a uniform distribution. Based on the above insight, Theorem
 277 1 still applies to the analysis of the final state which suggests that NTP training will select a flatter
 278 solution.

279 **Remark 1. Distinction from Standard Label Noise and SGD.** *The fundamental difference from
 280 standard analyses of label noise or SGD lies in the structure of the noise. In CTP with label noise,
 281 perturbations are restricted solely to the critical token’s loss (affecting only $f_S(\theta, x)$). In contrast,
 282 NTP introduces noise across the entire sequence, affecting the function outputs at every token posi-
 283 tion ($f_s, \forall s \in [0, S]$).*

284 **Remark 2. Intuitive Sketch of the Quadratic Term in Thm.1** *Our derivation considers the local be-
 285 havior of a parametric model where both input and output distributions are assumed to be uniform.
 286 By strictly applying the Taylor expansion of the KL divergence, we have:*

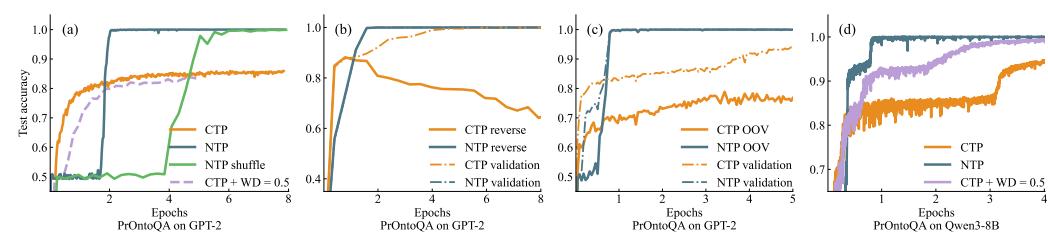
$$288 \text{KL}(P_{\theta_0} \| P_{\theta}) = \frac{1}{2}(\theta - \theta_0)^\top I_{\theta_0}(\theta - \theta_0) + \mathcal{O}(\|\theta - \theta_0\|^3),$$

290 where I_{θ_0} denotes the Fisher Information Matrix at θ_0 . A key insight here is that the first-order term
 291 vanishes automatically due to the fundamental property of the score function (i.e., $\mathbb{E}[\nabla \log p] = 0$),
 292 leaving the quadratic form as the dominant term. At initialization, expanding around the origin
 293 relates this term closely to standard L_2 regularization.

295 5 REALISTIC EXPERIMENTAL RESULTS

297 When discussing the reasoning capabilities of LLMs, language inference and multi-hop question
 298 answering tasks should be taken into consideration (Yu et al., 2024). As an example shown in Fig. 1,
 299 these tasks are typically structured in a question-answer format, making them particularly well-
 300 suited for training using CTP, where the loss is calculated only on the answer tokens. Alternatively,
 301 one can employ NTP and compute the loss for the entire sentence. To eliminate interference from
 302 pretrained models, all our experiments are conducted by **training the models from scratch**.

303 5.1 PRONTOQA TASK



314 Figure 4: NTP and CTP performance on PrOntoQA tasks. **(a):** Accuracy of NTP and CTP on
 315 the original 2-hop PrOntoQA task over training epochs. NTP eventually achieves perfect accuracy,
 316 while CTP plateaus around 80%. The NTP shuffle experiment destroys the language structure in
 317 facts and query, which are mainly discussed in Appendix A.2. **(b):** 2-hop reverse PrOntoQA: NTP
 318 maintains high reasoning accuracy both on validation and reverse test set, but CTP memorizes the
 319 training data, leading to decreased accuracy on the reverse test set. **(c):** 1-hop OOV PrOntoQA:
 320 NTP achieves nearly 100% accuracy, while CTP stabilizes around 70%. **(d):** The performance of
 321 Qwen3-8B model on original 2-hop task.

322 We conducted comprehensive evaluations on PrOntoQA, a synthetic multi-hop inference dataset
 323 with a 50% random guess accuracy. As illustrated with examples in Fig. 2(b), we also proposed two

324 modified variants of this task specifically designed to better support research on model generalization
 325 capabilities.
 326

327
 328 **Original PrOntoQA task** Following the exper-
 329 iment established in the (Saparov & He, 2023), we
 330 implemented both NTP and CTP on the original
 331 PrOntoQA dataset. Both training methods (NTP and
 332 CTP) easily surpass the random guess accuracy of
 333 50%. CTP initially learns the mappings effectively
 334 but stagnates at around 80% accuracy. In contrast,
 335 NTP learns more slowly due to the presence of nu-
 336 merous noise terms but ultimately achieves 100%
 337 accuracy, exhibiting an accuracy grokking phenome-
 338 non as shown in Fig. 4 (a). To assess the robust-
 339 ness of these findings, we further validated this phenome-
 340 non on more realistic model architectures.
 341 As presented in Table 1, consistent trends were ob-
 342 served across modern large language models
 343 (including Qwen2.5, TinyLlama, and OLMo), confirm-
 344 ing that the superiority of NTP generalizes
 345 beyond the model scale.

Table 1: Comparison of NTP and CTP Per-
 346 formance on modern LLM.

Model	NTP	CTP
Qwen2.5-0.5B	1.00	0.87
TinyLlama-1.1B	0.99	0.84
OLMo-1B	1.00	0.91

347
 348 **Reverse PrOntoQA task** In the original PrOntoQA dataset, answers are solely determined by
 349 facts within each example; therefore, situations may arise where the same question in different
 350 examples is paired with contradictory facts. To better assess the robustness differences between
 351 NTP and CTP, we created **reverse** train, validation and test set: For the training and validation
 352 sets, we ensured that identical questions have the same answers. For the test set, we modified the
 353 facts so that the correct answers are the opposite of those in the training set, which is shown in
 354 Fig. 2(b). Therefore during training process, the model has two possible learning paths: 1) learning
 355 the reasoning from facts or 2) memorizing all question answers in train set.

356 On the test set, we observe that while CTP enables the network to achieve an accuracy close to 0.8
 357 initially, it rapidly turns to path 2) and begins to memorize and gradually forgetting the underlying
 358 reasoning rules. In contrast, NTP maintains an accuracy close to 1.0 over an extended period both
 359 on validation and test, demonstrating strong resistance to overfitting, as illustrated in Fig. 4(b).

360
 361 **OOV PrOntoQA task** Based on the original construction of PrOntoQA, we introduce an Out-Of-
 362 Vocabulary (OOV) dataset, whose targets in queries are not present in the training set, so they are not
 363 trained totally. We evaluated the performance differences between models trained using NTP and
 364 CTP. Practically, NTP and CTP struggled with 2-hop reasoning on OOV data, we downgraded the
 365 dataset to 1-hop reasoning and replicated the experiments. The results, shown in Fig. 4 (c), indicate
 366 that CTP maintains an accuracy of approximately 70%, while NTP achieves nearly 100% accuracy
 367 on the OOV dataset. This suggests that CTP is influenced by surface patterns in the data, whereas
 368 NTP effectively captures the underlying reasoning rules.

369
 370 **NTP shuffle experiment** We also design the NTP shuffle experiment (shown in Fig. 4(a)) to ad-
 371 dress the advantage of NTP **not** due to the model beginning to develop a better language under-
 372 standing than their CTP trained counterparts like (Zhang & Hashimoto, 2021) has mentioned. When
 373 calculating NTP loss, we shuffle the token order in label of the fact + query part, which ensures that
 374 the semantic information from the question does not influence the results. When question tokens are
 375 shuffled, NTP requires more training time to recognize the irrelevance of noise. The model initially
 376 exhibits prolonged "random guess" behavior in accuracy. However, the core conclusion remains
 377 unchanged: After sufficient training, the accuracy of NTP shuffle still significantly surpasses CTP.
 378 For the code implementation details, please refer to Appendix A.2.

379
 380 **Effects of weight decay** We used the inclusion of weight decay as a control baseline to analyze
 381 its differences from NTP. We found that while weight decay exhibits a strong regularization effect,
 382 this is primarily limited to larger models (e.g., Qwen3-8B). For smaller models such as GPT-2, the
 383 inclusion of weight decay has a negligible impact on final performance.

378
379

5.2 OTHER NATURAL LANGUAGE REASONING TASKS

380
381
382
383
384
385
386
387

Except for PrOntoQA, we have meticulously curated a collection of reasoning datasets and implemented necessary preprocessing procedures to ensure data quality and suitability: LogicInference (Ontanon et al., 2022), CLUTRR (Sinha et al., 2019), RuleTaker (Clark et al., 2020), RobustLR (Sanyal et al., 2022), SimpleLogic (Zhang et al., 2023a), PARARULE Plus (Bao et al., 2024), StepGame (Shi et al., 2022) and LogicAsker (Wan et al., 2024). Additionally, text classification tasks, including Yelp (Yelp Dataset) and DBpedia (Lehmann et al., 2015), as well as the SNLI dataset (Bowman et al., 2015), are included in the comparison. The details of all these tasks could refer to Appendix D.4.

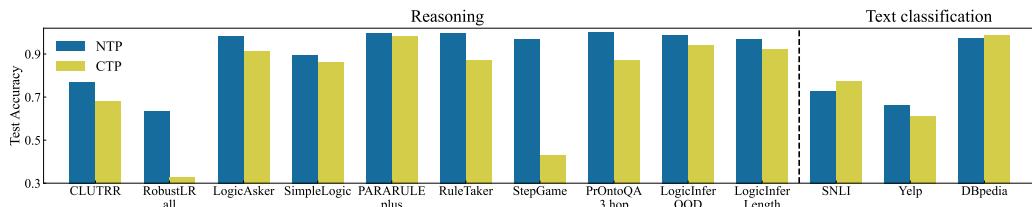
388
389
390
391
392
393
394
395396
397
398
399
400

Figure 5: Performance comparison of NTP and CTP across various reasoning tasks. NTP consistently outperforms CTP in reasoning tasks, while performance on text classification tasks is more mixed. All the tasks are trained on the GPT-2 model (125M) from scratch to dismiss the effect of NTP in the pretraining stage. The accuracy is reported when the learning process becomes stable.

401
402
403
404
405
406
407
408
409
410
411

The following findings are systematically presented and analyzed in Fig. 5, which provides a comprehensive comparison of both approaches across different task categories. Our experimental results demonstrate that NTP exhibits superior performance compared to CTP across various reasoning-intensive tasks, including PrOntoQA, LogicAsker, and RuleTaker. Particularly noteworthy is NTP’s exceptional capability in handling the challenging RobustLR task, where it partially captures underlying logical patterns, while CTP remains stagnant at random-guess levels. As evidenced in Appendix D.4, NTP demonstrates accelerated learning speed for tasks requiring strong reasoning capabilities. However, in text classification tasks that demand less sophisticated reasoning, the performance disparity between NTP and CTP diminishes significantly. In these scenarios, CTP exhibits a slight advantage in learning efficiency, as demonstrated by its comparable performance on SNLI and marginally better convergence rate on the DBpedia dataset.

412

6 ROBUSTNESS OF NEXT TOKEN PREDICTION

413
414
415
416
417
418
419
420
421

In this section, we investigate the robustness of NTP-trained models at both the input and parameter levels. Given that training procedures similar to CTP have been shown to negatively impact robustness (Wang et al., 2023), a specific analysis of NTP is warranted. We also explore the relationship between flatness and NTP’s generalization ability empirically. Due to space constraints, we defer to the Appendix A.5 a detailed analysis of model behavior in the presence of erroneous training data. Briefly, we find that NTP models exhibit greater resilience to such errors, whereas CTP exhibits the opposite behavior.

422
423

6.1 EMBEDDING NOISE

424
425
426
427

The most straightforward approach to evaluating model robustness involves introducing controlled noise perturbations to the input data and quantitatively measuring the corresponding degradation in model accuracy. Following the settings applied in NETFune (Jain et al., 2023), noise restricted by the sequence length and model hidden size is added after the embedding layer as follows:

$$\text{emb} \leftarrow \text{emb} + \frac{\alpha}{\sqrt{Sd}} \epsilon, \quad (9)$$

431

where the noise ϵ is uniformly sampled from the range $[-1, 1]$, and S, d represent for sequence length and embedding dimension separately.

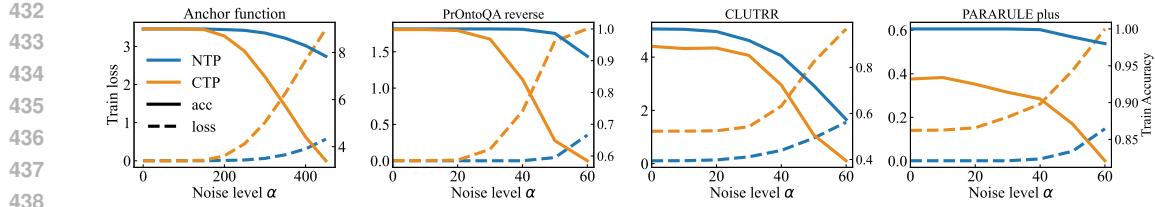


Figure 6: Effect of embedding noise on model performance in different reasoning tasks. The x-axis represents the perturbation strength α in Eq. equation 9 while the y-axis represents the influenced loss (left axis) and accuracy (right axis). NTP-trained models maintain higher accuracy under varying levels of input noise compared to CTP-trained models, which suffer from significant performance degradation in both accuracy and loss.

We have done a thorough analysis of the anchor function, as shown in Fig. 6(a), models trained with NTP are more stable under noise, while CTP-trained models exhibit high sensitivity. In contrast to CTP, the NTP helps the model maintain its learned reasoning solution not only on the embedding layer, but also on the output of different transformer blocks. With Fig. 6, on highly inference tasks like PrOntoQA and PARARULE plus, the performance patterns of NTP and CTP demonstrate remarkable similarity to their performance on the anchor function.

6.2 NTP REACHES FLATTER MINIMA

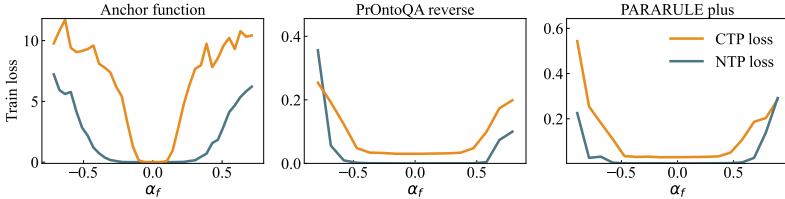


Figure 7: The flatness for task anchor function, PrOntoQA reverse, and PARARULE plus tasks. To alleviate the computational cost, the flatness is calculated on randomly sampled 20,000 instances from the training set.

Flatness, a concept introduced in (Hochreiter & Schmidhuber, 1997) and applied to neural networks in (Keskar et al., 2017), is commonly used to understand model generalization ability. The random direction method (Li et al., 2018) is a widely used approach to assess model flatness or robustness. This method perturbs the model parameters by adding a random vector scaled by the model’s norm and a perturbation intensity α_f . Let θ_N and θ_C denote the parameters of the NTP and CTP trained models, and let v be a random direction in the parameter space. The perturbed parameters are given by:

$$\theta'_N = \theta_N + \alpha_f \frac{\|\theta_N\|}{\|v\|} v, \quad \theta'_C = \theta_C + \alpha_f \frac{\|\theta_C\|}{\|v\|} v. \quad (10)$$

We tested the performance of NTP and CTP models under a moderate α_f , which is shown in Fig. 7. For the simple anchor function task, the solution of NTP is flatter than that of CTP significantly. The flatness disparity between the two training approaches becomes smaller in other tasks since in these tasks the model only needs to discriminate between *true* and *false* responses.

To further investigate the regularization dynamics, we monitored the evolution of the Hessian matrix and parameter norms using the anchor function task. As illustrated in Fig. 8, NTP exhibits a strong regularization effect by significantly suppressing the maximum eigenvalue of the Hessian. This drives the model towards flatter regions of the loss landscape. In contrast, CTP shows a continuous increase in the maximum eigenvalue. This observation suggests that in the absence of regularization, the network tends to converge to sharper solutions. Consequently, while CTP remains trapped in sharp minima near the initialization, NTP successfully moves away from the starting point to locate flatter minima.

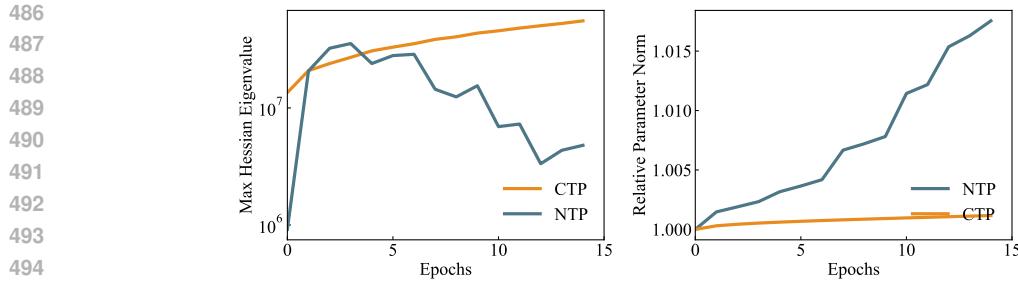


Figure 8: Evolution of the Hessian maximum eigenvalue and parameter norms during training. NTP effectively reduces the maximum eigenvalue, indicating a flatter loss landscape, whereas CTP tends to converge to sharper minima.

7 DISCUSSION

Conclusion This work systematically investigates the distinct impacts of next token prediction (NTP) and critical token prediction (CTP) training on reasoning tasks, revealing an inherent regularization in NTP-trained models as a key finding. We propose that implicit noise in the training data induces an emergent regularization effect functionally analogous to explicit L^2 regularization. This hypothesis is rigorously validated theoretically and empirically through our proposed anchor function composition task. Crucially, empirical validation across realistic tasks confirms that this regularization persists in practical settings, mirroring the insights gained from the composition tasks. Finally, our analysis further investigates the robustness and flatness of models trained with NTP and CTP, demonstrating additional benefits of NTP training.

Fairness of Comparison between NTP and CTP We further address the fairness of comparing NTP and CTP, particularly concerning the total training token assumption (for backpropagation). With increased training data or training epochs allocated to CTP, our results show that the NTP-trained model still achieves superior performance on the anchor function Task 2 and the star graph task. This outcome is notable, especially considering that the star graph task has been shown to be inherently challenging or potentially impossible for NTP to train perfectly (Bachmann & Nagarajan, 2024). The experimental evidence is presented in Fig. 9, and further details can be found in Appendix A.2. In real-world scenarios, the significant length disparity between prompt and answer tokens complicates a direct comparison. However, it is worth noting that CTP effectively holds the advantage in the training setting: within the NTP objective, the loss contribution from the critical token is heavily diluted by the numerous context tokens, whereas CTP focuses exclusively on the target.

LLM USAGE

In this work, the LLMs are employed to correct grammatical errors and inappropriate words.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. Phi-4 technical report, 2024. URL <https://arxiv.org/abs/2412.08905>.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 2296–2318. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/bachmann24a.html>.

540 Dor Bank and Raja Giryes. An etf view of dropout regularization. *British Machine Vision Conference*, 2020.

541

542

543 Qiming Bao, Alex Yuxuan Peng, Tim Hartill, Nesan Tan, Zhenyun Deng, Michael Witbrock, and

544 Jiamou Liu. Multi-step deductive reasoning over natural language: An empirical study on out-of-

545 distribution generalisation, 2024. URL <https://arxiv.org/abs/2207.14000>.

546 Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large anno-

547 tated corpus for learning natural language inference. In Lluís Márquez, Chris Callison-Burch, and

548 Jian Su (eds.), *Proceedings of the 2015 Conference on Empirical Methods in Natural Language*

549 *Processing*, pp. 632–642, Lisbon, Portugal, September 2015. Association for Computational Lin-

550 guistics. doi: 10.18653/v1/D15-1075. URL <https://aclanthology.org/D15-1075>.

551 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-

552 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,

553 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.

554 Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

555 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-

556 ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. *ArXiv*,

557 abs/2005.14165, 2020. URL <https://api.semanticscholar.org/CorpusID:218971783>.

558 Jacopo Cavazza, Pietro Morerio, Benjamin Haeffele, Connor Lane, Vittorio Murino, and Rene Vi-

559 dal. Dropout as a low-rank regularizer for matrix factorization. In *International Conference on*

560 *Artificial Intelligence and Statistics*, pp. 435–444. PMLR, 2018.

561

562 Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over language.

563 In Christian Bessiere (ed.), *Proceedings of the Twenty-Ninth International Joint Conference on*

564 *Artificial Intelligence*, IJCAI-20, pp. 3882–3890. International Joint Conferences on Artificial

565 Intelligence Organization, 7 2020. doi: 10.24963/ijcai.2020/537. URL <https://doi.org/10.24963/ijcai.2020/537>. Main track.

566

567 Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to inter-

568 nalize cot step by step, 2024. URL <https://arxiv.org/abs/2405.14838>.

569

570 Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with

571 structured dropout, 2019. URL <https://arxiv.org/abs/1909.11556>.

572

573 Yu Feng and Yuhai Tu. The inverse variance–flatness relation in stochastic gradient descent is critical

574 for finding flat minima. *Proceedings of the National Academy of Sciences*, 118(9), 2021.

575

576 Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve.

577 Better & faster large language models via multi-token prediction. In *Forty-first International Con-*

578 *ference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=pEWAcjejiU2>.

579

580 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong

581 Tian. Training large language models to reason in a continuous latent space, 2024. URL <https://arxiv.org/abs/2412.06769>.

582

583 Alex Havrilla and Maia Iyer. Understanding the effect of noise in llm training data with algorithmic

584 chains of thought, 2024. URL <https://arxiv.org/abs/2402.04004>.

585

586 Hangfeng He and Weijie J. Su. A law of next-token prediction in large language models, 2024. URL

587 <https://arxiv.org/abs/2408.13442>.

588

589 Shuai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention

590 is needed, 2024. URL <https://arxiv.org/abs/2406.15786>.

591

592 Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. *Neural computation*, 9(1):1–42, 1997.

593

594 Mathew Huerta-Enochian and Seung Yong Ko. Instruction fine-tuning: Does prompt loss matter? In

595 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference*

596 *on Empirical Methods in Natural Language Processing*, pp. 22771–22795, Miami, Florida, USA,

597 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.

598 1267. URL <https://aclanthology.org/2024.emnlp-main.1267>.

594 Neel Jain, Ping yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli,
 595 Brian R. Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, Micah Goldblum,
 596 Jonas Geiping, and Tom Goldstein. Neptune: Noisy embeddings improve instruction finetuning,
 597 2023. URL <https://arxiv.org/abs/2310.05914>.

598 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 599 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
 600 *International Conference on Learning Representations*, 2017. URL [https://openreview.net/](https://openreview.net/forum?id=H1oyR1Ygg)
 601 forum?id=H1oyR1Ygg.

602 Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
 603 Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al. Dbpedia—a large-
 604 scale, multilingual knowledge base extracted from wikipedia. *Semantic web*, 6(2):167–195, 2015.

605 Benjamin J Lengerich, Eric Xing, and Rich Caruana. Dropout as a regularizer of interaction effects.
 606 In *International Conference on Artificial Intelligence and Statistics*, pp. 7550–7564. PMLR, 2022.

607 Bonan Li, Yinhan Hu, Xuecheng Nie, Congying Han, Xiangjian Jiang, Tiande Guo, and Luoqi Liu.
 608 Dropkey, 2023. URL <https://arxiv.org/abs/2208.02646>.

609 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
 610 scape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
 611 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran
 612 Associates, Inc., 2018. URL [https://proceedings.mlr.press/v238/1i24f.html](https://proceedings.neurips.cc/paper_files/paper/2018/

 613 file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.</p>
<p>614 Yingcong Li, Yixiao Huang, Muhammed E. Ildiz, Ankit Singh Rawat, and Samet Oymak. Me-

 615 chanics of next token prediction with self-attention. In Sanjoy Dasgupta, Stephan Mandt, and

 616 Yingzhen Li (eds.), <i>Proceedings of The 27th International Conference on Artificial Intelligence

 617 and Statistics</i>, volume 238 of <i>Proceedings of Machine Learning Research</i>, pp. 685–693. PMLR,

 618 02–04 May 2024. URL <a href=).

619 Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
 620 Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not all tokens are what you need, 2025a.
 621 URL <https://arxiv.org/abs/2404.07965>.

622 Zicheng Lin, Tian Liang, Jiahao Xu, Qiuwei Lin, Xing Wang, Ruilin Luo, Chufan Shi, Siheng
 623 Li, Yujiu Yang, and Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation
 624 enhances llm’s reasoning capability, 2025b. URL <https://arxiv.org/abs/2411.19943>.

625 Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better down-
 626 stream: Implicit bias matters for language models. In *International Conference on Machine
 627 Learning*, pp. 22188–22214. PMLR, 2023.

628 Chao Ma and Lexing Ying. On linear stability of sgd and input-smoothness of neural networks.
 629 *Advances in Neural Information Processing Systems*, 34:16805–16817, 2021.

630 Liam Madden, Curtis Fox, and Christos Thrampoulidis. Next-token prediction capacity: general
 631 upper bounds and a lower bound for transformers, 2024. URL <https://arxiv.org/abs/2405.13718>.

632 Poorya Mianjy, Raman Arora, and Rene Vidal. On the implicit bias of dropout. In *International
 633 Conference on Machine Learning*, pp. 3540–3548. PMLR, 2018.

634 Takashi Mori, Liu Ziyin, Kangqiao Liu, and Masahito Ueda. Power-law escape rate of sgd. *arXiv
 635 preprint arXiv:2105.09557*, 2021.

636 Santiago Ontanon, Joshua Ainslie, Vaclav Cvcek, and Zachary Fisher. Logicinference: A new
 637 dataset for teaching logical inference to seq2seq models, 2022. URL <https://arxiv.org/abs/2203.15099>.

638 Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
 639 training. 2018. URL <https://api.semanticscholar.org/CorpusID:49313245>.

648 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 649 models are unsupervised multitask learners. 2019.

650

651 Soumya Sanyal, Zeyi Liao, and Xiang Ren. RobustLR: A diagnostic benchmark for evaluating
 652 logical robustness of deductive reasoners. In Yoav Goldberg, Zornitsa Kozareva, and
 653 Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-
 654 guage Processing*, pp. 9614–9631, Abu Dhabi, United Arab Emirates, December 2022. Association
 655 for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.653. URL <https://aclanthology.org/2022.emnlp-main.653>.

656

657 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 658 of chain-of-thought. In *The Eleventh International Conference on Learning Representations*,
 659 2023. URL <https://openreview.net/forum?id=qFVBzXxR2V>.

660

661 Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar.
 662 RI on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. In
 663 A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
 664 *Advances in Neural Information Processing Systems*, volume 37, pp. 43000–43031. Curran As-
 665 sociates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/4b77d5b896c321a29277524a98a50215-Paper-Conference.pdf.

666

667 Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. Stepgame: A new benchmark for robust multi-
 668 hop spatial reasoning in texts. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 669 volume 36, pp. 11321–11329, Jun. 2022. doi: 10.1609/aaai.v36i10.21383. URL <https://ojs.aaai.org/index.php/AAAI/article/view/21383>.

670

671 Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A
 672 diagnostic benchmark for inductive reasoning from text. In Kentaro Inui, Jing Jiang, Vincent Ng,
 673 and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural
 674 Language Processing and the 9th International Joint Conference on Natural Language Process-
 675 ing (EMNLP-IJCNLP)*, pp. 4506–4515, Hong Kong, China, November 2019. Association for
 676 Computational Linguistics. doi: 10.18653/v1/D19-1458. URL <https://aclanthology.org/D19-1458>.

677

678 Michael Tänzer, Sebastian Ruder, and Marek Rei. Memorisation versus generalisation in pre-trained
 679 language models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Pro-
 680 ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
 681 1: Long Papers)*, pp. 7564–7578, Dublin, Ireland, May 2022. Association for Computational
 682 Linguistics. doi: 10.18653/v1/2022.acl-long.521. URL <https://aclanthology.org/2022.acl-long.521>.

683

684 Christos Thrampoulidis. Implicit optimization bias of next-token prediction in linear models. In *The
 685 Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

686

687 Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang Jiao,
 688 and Michael Lyu. LogicAsker: Evaluating and improving the logical reasoning ability of large
 689 language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings
 690 of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 2124–2155,
 691 Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.
 692 18653/v1/2024.emnlp-main.128. URL <https://aclanthology.org/2024.emnlp-main.128>.

693

694 Haoyu Wang, Guozheng Ma, Cong Yu, Ning Gui, Linrui Zhang, Zhiqi Huang, Suwei Ma, Yongzhe
 695 Chang, Sen Zhang, Li Shen, Xueqian Wang, Peilin Zhao, and Dacheng Tao. Are large language
 696 models really robust to word-level perturbations? In *Socially Responsible Language Modelling
 697 Research*, 2023. URL <https://openreview.net/forum?id=mVh0Ko62Q2>.

698

699 Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of
 700 dropout. In *International Conference on Machine Learning*, pp. 10181–10192. PMLR, 2020.

701

702 Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand
 703 Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
 704 tasks, 2015. URL <https://arxiv.org/abs/1502.05698>.

702 Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu. On the
 703 noisy gradient descent that generalizes as sgd. In *International Conference on Machine Learning*,
 704 pp. 10367–10376. PMLR, 2020.

705

706 Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
 707 dynamical stability perspective. *Advances in Neural Information Processing Systems*, 31, 2018.

708

709 Zhen Wu, Lijun Wu, Qi Meng, Yingce Xia, Shufang Xie, Tao Qin, Xinyu Dai, and Tie-Yan Liu.
 710 Unidrop: A simple yet effective technique to improve transformer without extra cost, 2021. URL
 711 <https://arxiv.org/abs/2104.04946>.

712

713 Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
 714 Stochastic gradient descent exponentially favors flat minima. *arXiv preprint arXiv:2002.03495*,
 715 2020.

716

717 Yelp Dataset, 2014. URL http://www.yelp.com/dataset_challenge.

718

719 Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
 720 Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
 721 Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
 722 and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning,
 723 2024. URL <https://arxiv.org/abs/2402.06332>.

724

725 Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
 726 *ACM Comput. Surv.*, 56(12), October 2024. ISSN 0360-0300. doi: 10.1145/3664194. URL
 727 <https://doi.org/10.1145/3664194>.

728

729 Lin Zehui, Pengfei Liu, Luyao Huang, Junkun Chen, Xipeng Qiu, and Xuanjing Huang. Dropat-
 730 tention: A regularization method for fully-connected self-attention networks, 2019. URL <https://arxiv.org/abs/1907.11065>.

731

732 Hao Zhang, Dan Qu, Keji Shao, and Xukui Yang. Dropdim: A regularization method for transformer
 733 networks. *IEEE Signal Processing Letters*, 29:474–478, 2022. doi: 10.1109/LSP.2022.3140693.

734

735 Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
 736 paradox of learning to reason from data. In Edith Elkind (ed.), *Proceedings of the Thirty-Second
 737 International Joint Conference on Artificial Intelligence, IJCAI-23*, pp. 3365–3373. International
 738 Joint Conferences on Artificial Intelligence Organization, 8 2023a. doi: 10.24963/ijcai.2023/375.
 739 URL <https://doi.org/10.24963/ijcai.2023/375>. Main Track.

740

741 Tiansi Zhang and Tatsunori B. Hashimoto. On the inductive bias of masked language modeling:
 742 From statistical to syntactic dependencies. In Kristina Toutanova, Anna Rumshisky, Luke Zettle-
 743 moyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and
 744 Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the As-
 745 sociation for Computational Linguistics: Human Language Technologies*, pp. 5131–5146, Online,
 746 June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.404.
 747 URL <https://aclanthology.org/2021.naacl-main.404/>.

748

749 Zhongwang Zhang and Zhi-Qin John Xu. Implicit regularization of dropout. *IEEE Transactions on
 750 Pattern Analysis and Machine Intelligence*, 2024.

751

752 Zhongwang Zhang, Yuqing Li, Tao Luo, and Zhi-Qin John Xu. Stochastic modified equations and
 753 dynamics of dropout algorithm. *arXiv preprint arXiv:2305.15850*, 2023b.

754

755 Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Initialization
 756 is critical to whether transformers fit composite functions by inference or memorizing, 2024a.
 757 URL <https://arxiv.org/abs/2405.05409>.

758

759 Zhongwang Zhang, Zhiwei Wang, Junjie Yao, Zhangchen Zhou, Xiaolong Li, Weinan E, and Zhi-
 760 Qin John Xu. Anchor function: a type of benchmark functions for studying language models,
 761 2024b. URL <https://arxiv.org/abs/2401.08309>.

756 Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Complexity
757 control facilitates reasoning-based compositional generalization in transformers, 2025. URL
758 <https://arxiv.org/abs/2501.08537>.

759
760 Yize Zhao, Tina Behnia, Vala Vakilian, and Christos Thrampoulidis. Implicit geometry of next-
761 token prediction: From language sparsity patterns to model representations. In *First Conference
762 on Language Modeling*, 2024. URL <https://openreview.net/forum?id=qyil0nIRHI>.

763 Wangchunshu Zhou, Tao Ge, Furu Wei, Ming Zhou, and Ke Xu. Scheduled DropHead: A regular-
764 ization method for transformer models. In Trevor Cohn, Yulan He, and Yang Liu (eds.), *Findings
765 of the Association for Computational Linguistics: EMNLP 2020*, pp. 1971–1980, Online, November
766 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.178.
767 URL <https://aclanthology.org/2020.findings-emnlp.178>.

768 Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochas-
769 tic gradient descent: Its behavior of escaping from sharp minima and regularization effects. In
770 *International Conference on Machine Learning*, pp. 7654–7663. PMLR, 2019.
771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A FURTHER DISCUSSION
811812 A.1 MORE EXPLANATIONS ON NTP SHUFFLE EXPERIMENT IN SEC. 5.1
813

814 One might be concerned that the reason for NTP outperforming CTP is simply that CTP does not
815 process question tokens and thus fails to learn the QA dependencies properly. As we pointed out in
816 Sec. 5.1, while semantic information can boost NTP training, it is not the essential factor driving the
817 regularization.

818 To supplement the experimental details presented in Sec. 5.1, we highlight that the
819 NTP loss function was modified from its original form, typically written as $\widetilde{\mathcal{L}_N} =$
820 $-\frac{1}{T} \sum_{t=1}^{T-1} 1(x_{t+1} \log(P(x_{t+1}|x_{\leq t})))$, to $\mathcal{L}_N = -\frac{1}{T} \sum_{t=1}^{T-1} 1(\tilde{x}_{t+1} \log(P(x_{t+1}|x_{\leq t})))$, where \tilde{x}
821 represents a random shuffle of the original sequence x . This adjustment was specifically designed
822 to disrupt the natural semantic continuity of the sequence, thereby preventing semantic information
823 from aiding NTP in learning the task dependencies and ensuring that the experiment isolates the
824 effect of the prediction objective itself. The corresponding change in code implementation was from
825

826 Listing 1: Before shuffle

```
827 1 shift_inputs = inputs[:-1]
828 2 outputs = model(shift_inputs)
829 3 shift_labels = inputs[1:]
830 4 NTP_loss = CE(outputs, shift_labels)
```

831 to

832 Listing 2: After shuffle

```
833 1 shift_inputs = inputs[:-1]
834 2 outputs = model(shift_inputs)
835 3 shift_labels = inputs[1:-1]
836 4 answer = inputs[-1]
837 5 random.shuffle(shift_labels)
838 6 shift_labels = shift_labels + answer
839 7 NTP_loss = CE(outputs, shift_labels)
```

840 A.2 DETAILS ON FAIR COMPARISON OF TOTAL TOKEN CONSUMPTION BETWEEN NTP AND
841 CTP

842 This section provides a detailed explanation of the comparison fairness experiments briefly discussed
843 in Sec. 7. The anchor function task and star graph task were chosen for this comparison due to their
844 suitability, characterized by short sequence lengths and the absence of semantic interference (e.g.,
845 the anchor function sequence has a fixed length of 9, in contrast to PrOntoQA where the length is
846 around 300 and variable).

847 **Equalizing Token Consumption via Increased CTP Training Data Volume** As mentioned in
848 Sec. 7, to ensure fair token consumption between NTP and CTP, we conducted experiments on
849 anchor function Task 2 where CTP’s training dataset volume was scaled to more than $9 \times$ that of
850 NTP, thereby matching the total token usage. The results are presented in Fig. 9, with the x-axis
851 indicating the volume of training data used for CTP relative to NTP. For completeness, results from
852 the NTP-shuffle experiment and a PrefixLM (GPT) baseline are also included. As shown in Fig. 9,
853 increasing CTP’s data volume resulted in only a slight improvement in its ability to learn inferential
854 solutions, and it consistently underperformed NTP.

855 **Equalizing Token Consumption via Extended CTP Training Epochs** For the star graph task,
856 utilizing the publicly available dataset, we extended CTP’s training time until its token usage
857 matched that of NTP. The results, presented in Fig. 10, demonstrate that NTP consistently out-
858 performed CTP on the star graph $G_{3,3}$ task under these equalized token conditions (edge list 50,
859 reverse set to False).

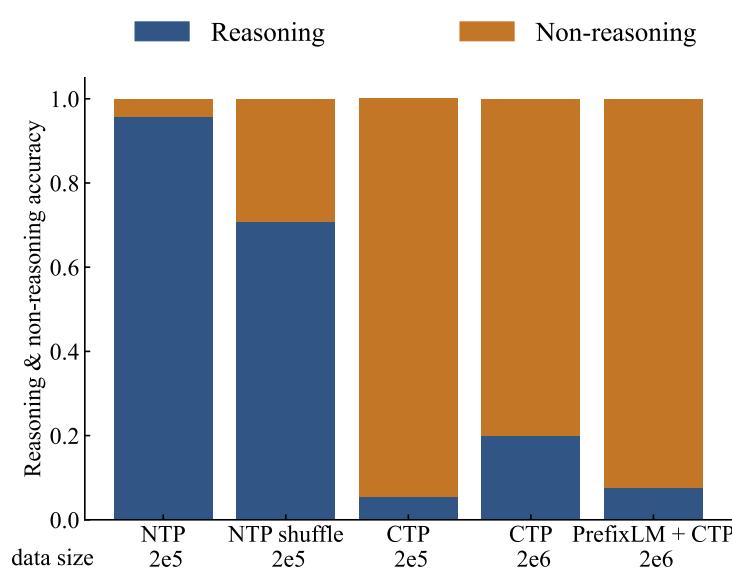


Figure 9: Column 1: NTP trained on 200,000 samples. Column 4: CTP trained on 2,000,000 samples (to match NTP’s token usage). Additional experiments: Column 2: NTP with shuffled question tokens (as in PrOntoQA). Column 5: PrefixLM (GPT) baseline.

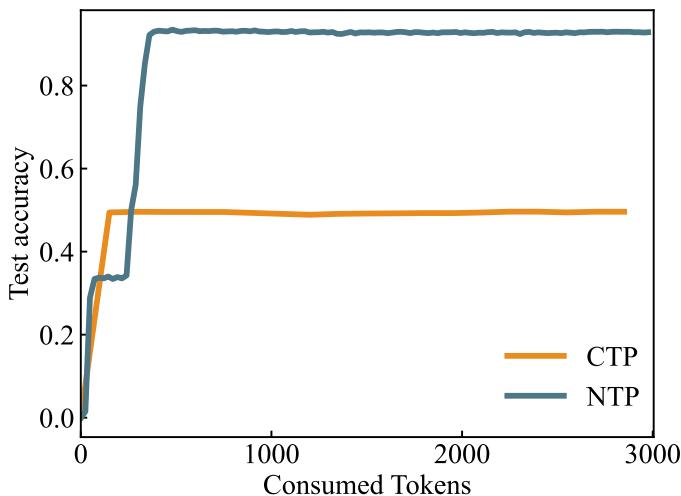


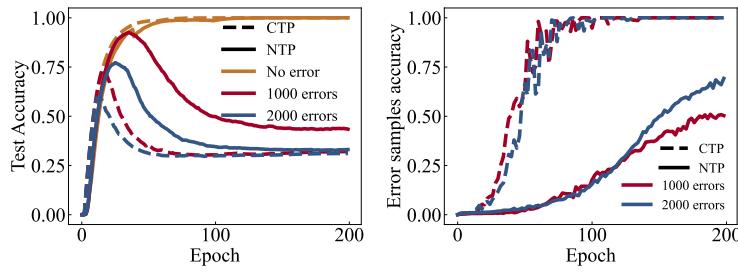
Figure 10: Star graph $G_{3,3}$ task, which is detailed in (Bachmann & Nagarajan, 2024; Setlur et al., 2024), where it was shown that NTP is unable to complete the task, yet the training performance of NTP remains superior to that of direct CTP.

A.3 RELATIONS BETWEEN CTP AND SFT

When adapting pretrained models for the downstream tasks, CTP (or SFT) is typically preferred over NTP. We evaluated the performance of NTP and CTP on the PrOntoQA dataset using a pretrained GPT-2 model. The results, depicted in Fig. 11(a), show that CTP significantly outperforms NTP in terms of learning speed. This can be attributed to two factors: first, the pretrained model initialized through NTP already resides in a region of the loss landscape that is more amenable to generalization; second, pretraining endows the model with a certain level of reasoning capabil-

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586
180587
180588
180589
180590
180591
180592
180593
180594
180595
180596
180597
180598
180599
180600
180601
180602
180603
180604
180605
180606
180607
180608
180609
180610
180611
180612
180613
180614
180615
180616
180617
180618
180619
180620
180621
180622
180623
180624
180625
180626
180627
180628
180629
180630
180631
180632
180633
180634
180635
180636
180637
180638
180639
180640
180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654
180655
180656
180657
180658
180659
180660
180661
180662
180663
180664
180665
180666
180667
180668
180669
180670
180671
180672
180673
180674
180675
180676
180677
180678
180679
180680
180681
180682
180683
180684
180685
180686
180687
180688
180689
180690
180691
180692
180693
180694
180695
180696
180697
180698
180699
180700
180701
180702
180703
180704
180705
180706
180707
180708
180709
180710
180711
180712
180713
180714
180715
180716
180717
180718
180719
180720
180721
180722
180723
180724
180725
180726
180727
180728
180729
180730
180731
180732
180733
180734
180735
180736
180737
180738
180739
180740
180741
180742
180743
180744
180745
180746
180747
180748
180749
180750
180751
180752
180753
180754
180755
180756
180757
180758
180759
180760
180761
180762
180763
180764
180765
180766
180767
180768
180769
1

972 by its higher peak test accuracy and delayed accuracy degradation compared to CTP. From Fig. 12
 973 (b), meanwhile, CTP is trapped in memorizing poisoned samples at a faster speed than NTP.
 974



984
 985 Figure 12: Comparison of NTP and CTP on the addition task with varying poisoned samples. The
 986 1000 errors and 2000 errors denote training scenarios where an 800,000-sample dataset was
 987 deliberately contaminated with precisely 1,000 or 2,000 erroneous data points, respectively. (a) Test
 988 accuracy (on $H \setminus D_e$) (b) the memorizing speed of the poisoned samples D_e . The CTP could easily
 989 fit the errors before 100 epochs whereas NTP fits at a lower speed.
 990

B THEORETICAL PROOFS

993 We follow the definition of Fisher information matrix in (Liu et al., 2023) and restate it as:

994 **Definition 2.** For a parameterized random variable X , let $p(X; \theta)$ be the probability density function
 995 for X . Then the fisher information matrix has typical element

$$996 \quad [I(\theta)]_{i,j} = \mathbb{E} \left[\left(\frac{\partial}{\partial \theta_i} \log p(X; \theta) \right) \left(\frac{\partial}{\partial \theta_j} \log p(X; \theta) \right) \right]$$

B.1 PROOF OF THEOREM. 1

1001 For the convenience of notation we set $\mathcal{L}_C \leftarrow \frac{1}{T} \mathcal{L}_C$ in the following proof.
 1002

1003 *Proof.* By definition of NTP and CTP loss, the following equation holds after proper normalization:

$$1004 \quad \mathcal{L}_N = \mathcal{L}_C - \frac{1}{NT} \sum_{i=1}^n \sum_{t=1}^T \mathbb{1}_{\{x_{t+1}^i\}} \log P_{\theta}(x_{t+1}^i | x_{\leq t}^i),$$

1007 where each token is uniformly sampled from the vocabulary set \mathcal{V} . The indicator
 1008 function can be equivalently expressed using Dirac delta notation for the second term:
 1009

$$1010 \quad -\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \mathbb{1}_{\{x_{t+1}^i\}} \log P_{\theta}(x_{t+1}^i | x_{\leq t}^i) = -\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \sum_{s=1}^V \delta(s, x_{t+1}^i) \log P_{\theta}(s | x_{\leq t}^i)$$

1012 Since each token is uniformly sampled, the second term could be decomposed into two parts:
 1013

$$1014 \quad -\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \sum_{s=1}^V \delta(s, x_{t+1}^i) \log P_{\theta}(s | x_{\leq t}^i) = -\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \sum_{s=1}^V \frac{1}{V} \log P_{\theta}(s | x_{\leq t}^i) \\ 1017 \quad -\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \sum_{s=1}^V (\delta(s, x_{t+1}^i) - \frac{1}{V}) \log P_{\theta}(s | x_{\leq t}^i)$$

1020 By discarding constants independent of the parameters θ , we have

$$1021 \quad -\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \sum_{s=1}^V \delta(s, x_{t+1}^i) \log P_{\theta}(s | x_{\leq t}^i) = \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \text{KL}(\text{Unif}(\mathcal{V}), P_{\theta}(\cdot | x_{\leq t}^i)) \\ 1023 \quad -\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \sum_{s=1}^V (\delta(s, x_{t+1}^i) - \frac{1}{V}) \log P_{\theta}(s | x_{\leq t}^i).$$

1026 Based on the assumption, we have $\text{Unif}(\mathcal{V}) = P_{\theta_0}(s|x_{\leq t}^i)$ for all i, t . So the first term can be
 1027 rewritten as

$$1028 \quad 1029 \quad \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \text{KL}(\text{Unif}(\mathcal{V}), P_{\theta}(\cdot|x_{\leq t}^i)) = \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \text{KL}(P_{\theta_0}(\cdot|x_{\leq t}^i), P_{\theta}(\cdot|x_{\leq t}^i))$$

1031 By expanding the KL divergence, we derive the implicit regularization term

$$1032 \quad 1033 \quad \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \text{KL}(P_{\theta_0}(s|x_{\leq t}^i), P_{\theta}(s|x_{\leq t}^i)) = \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \frac{1}{2} (\theta - \theta_0)^{\top} I_{\theta_0}(x_{\leq t}^i) (\theta - \theta_0) + \mathcal{O}(\|\theta\|^3). \quad (11)$$

1036 To control for the residual term, we change the order of summation.

$$1037 \quad 1038 \quad -\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \sum_{s=1}^V (\delta(s, x_{t+1}^i) - \frac{1}{V}) \log P_{\theta}(s|x_{\leq t}^i) = -\frac{1}{NT} \sum_{t=1}^T \sum_{s=1}^V \sum_{i=1}^N (\delta(s, x_{t+1}^i) - \frac{1}{V}) \log P_{\theta}(s|x_{\leq t}^i).$$

1040 Using Chebyshev's Inequality, there exists C independent of parameters such that

$$1041 \quad 1042 \quad \mathbb{P} \left(\bigcup_{s=1}^V \left| \frac{1}{N} \sum_{i=1}^N (\delta(s, x_{t+1}^i) - \frac{1}{V}) \right| > \delta \right) \leq \frac{C}{\delta^2 N}.$$

1044 As a result, for any $\varepsilon > 0$, let $\frac{C}{\delta^2 N} = \varepsilon$, we obtain $\delta = \frac{C}{\sqrt{\varepsilon N}}$. Then, the asymptotic probabilistic
 1045 bound holds

$$1046 \quad 1047 \quad \mathbb{P} \left(\bigcup_{s=1}^V \left| \frac{1}{N} \sum_{i=1}^N (\delta(s, x_{t+1}^i) - \frac{1}{V}) \right| > \frac{C}{\sqrt{\varepsilon N}} \right) \leq \varepsilon$$

1049 As a result, we finish the proof by

$$1050 \quad 1051 \quad \left| \frac{1}{NT} \sum_{t=1}^T \sum_{s=1}^V \sum_{i=1}^n (\delta(s, x_{t+1}^i) - \frac{1}{V}) \log P_{\theta}(s|x_{\leq t}^i) \right| = \mathcal{O}(\frac{1}{\sqrt{\varepsilon N}})$$

1053 \square

1054

B.2 PROOF OF PROPOSITION 1

1057 In this section, we focus on the empirical fisher information matrix: $\frac{1}{T} \sum_{t=1}^{T-2} \mathbb{E}_{X_t} I_{\theta_0}(X)$. For the
 1058 models defined like Def. 1, we only need to consider $\nabla_{W_{\text{proj}}} \log P_{\theta}$ because $\nabla_{\hat{\theta}} P_{\theta} = 0$ at origin.

1059 So we take $\hat{\theta} = 0$ and the logit is

$$1060 \quad 1061 \quad \sum_{t'=1}^t \lambda_{t,t'} x_{t'} W_{\text{proj}}. \quad (12)$$

1063 For logit vector ℓ , we have

$$1064 \quad 1065 \quad \frac{\partial \log P_s}{\partial \ell_k} = \delta_{ks} - P_k.$$

1066 Then, we get

$$1067 \quad 1068 \quad \nabla_{W_{\text{proj}}} \log P_s = \sum_{k=1}^{d_{\text{vob}}} (\delta_{ks} - P_k) \left(x_t + \frac{1}{t} \sum_{t'=1}^t x_{t'} \right) e_k^{\top}$$

$$1069 \quad 1070 \quad = \left(\sum_{t'=1}^t \lambda_{t,t'} x_{t'} \right) \left(e_s - \frac{1}{d_{\text{vob}}} \mathbf{1} \right)^{\top}$$

1073 Let $u_t := \sum_{t'=1}^t \lambda_{t,t'} x_{t'}$ and $v_s := e_s - \frac{1}{d_{\text{vob}}} \mathbf{1}$, we get $\nabla_{W_{\text{proj}}} \log P_s = u_t v_s$. Using the identity
 1074 $\text{vec}(uv^{\top}) = v \otimes u$, we have $\text{vec}(\nabla_{W_{\text{proj}}} \log P_s) = v_s \otimes u_t$. Then,

$$1075 \quad 1076 \quad I_0(x_{\leq t}^i) = \frac{1}{d_{\text{vob}}} \sum_{s=1}^{d_{\text{vob}}} (v_s \otimes u_t) (v_s \otimes u_t)^{\top}$$

$$1077 \quad 1078 \quad = \frac{1}{d_{\text{vob}}} \sum_{s=1}^{d_{\text{vob}}} (v_s v_s^{\top}) \otimes (u_t u_t^{\top}), \quad (13)$$

1080 where the term $\frac{1}{d_{\text{vob}}}$ comes from the uniform distribution. Since u_t is independent of s , we take the
 1081 sum for s first and get

$$1082 \quad 1083 \quad I_0(x_{\leq t}^i) = \frac{1}{d_{\text{vob}}} \left(I - \frac{1}{d_{\text{vob}}} \mathbf{1} \mathbf{1}^T \right) \otimes (u_t u_t^T). \quad (14)$$

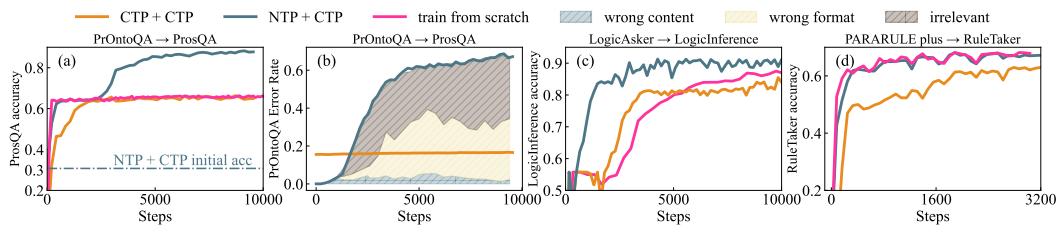
1084 Finally, due to the uniformity of noise, there exists $\lambda > 0$ such that the empirical fisher information
 1085 matrix can be approximated by

$$1087 \quad 1088 \quad \frac{\lambda}{d_{\text{vob}}} \left(I - \frac{1}{d_{\text{vob}}} \mathbf{1} \mathbf{1}^T \right) \otimes I, \quad (15)$$

1089 which finish the proof.

1092 C NTP ENHANCES EARLY TRANSFER GENERALIZATION

1094 When the available data for a specific task is insufficient for training a model from scratch, trans-
 1095 fer learning typically serves as an effective solution by finetuning a pretrained model with existing
 1096 knowledge. In this section, we conduct transfer learning experiments between models trained using
 1097 NTP and CTP across diverse downstream tasks. Our investigation yielded two results: (1) Models
 1098 trained with NTP demonstrate accelerated generalization during the early stages of finetuning, al-
 1099 though both approaches ultimately converge to comparable accuracy levels; (2) NTP-trained models
 1100 exhibit a higher propensity for catastrophic forgetting during the finetuning process.



1101 Figure 13: Finetuning results with multiple tasks. *NTP+CTP* means the model is NTP-trained on
 1102 previous task and CTP-finetuned on post task; *CTP+CTP* means the model is CTP-trained on pre-
 1103 vious task and CTP-finetuned on post task. *train from scratch* means the model is trained from scratch
 1104 with the same configuration of CTP-finetuning. (a, b) 2-hop PrOntoQA models continue to train on
 1105 ProsQA. (a) The accuracy of ProsQA test data with the CTP finetuning process. (b) The accuracy of
 1106 PrOntoQA test data and the proportion of three error types of *NTP+CTP* during finetuning. The
 1107 *wrong content*, *wrong format* and *irrelevant* represent incorrect answer content, improper answer
 1108 formatting, and irrelevant responses. Regarding the omitted *CTP+CTP* error types visualization, its
 1109 *wrong content* metric consistently maintains at 1.0, which demonstrates its immunity to finetuning
 1110 perturbations. (c, d) More examples of transfer learning capability difference between NTP and
 1111 CTP.

1120 The ProsQA dataset, proposed in (Hao et al., 2024), represents an enhanced version of PrOntoQA,
 1121 featuring more explicit reasoning graph structures. However, its limited scale precludes its use for
 1122 training models from scratch. In this section, we primarily leverage its advantage of providing
 1123 answer contrastive pairs to conduct finetuning experiments on models initially trained using both
 1124 NTP and LTP on the 2-hop original PrOntoQA dataset.

1126 We employed a relatively low learning rate (2e-6) to meticulously capture the accuracy transitions
 1127 between the original PrOntoQA 2-hop task and the new ProsQA task. The experimental results
 1128 in Fig. 13 (a) demonstrate that the NTP model successfully predicts a portion of the validation set
 1129 at the beginning, consistently outperforming CTP throughout the training process. This empirical
 1130 evidence strongly suggests that NTP-trained models have inherent advantages for transfer learning
 1131 applications.

1132 However, in Fig. 13 (b), our empirical findings indicate that NTP-trained models are potentially
 1133 more susceptible to catastrophic forgetting compared to their CTP counterparts. Through systematic
 1134 evaluation, we observed a pronounced accuracy degradation on the original PrOntoQA dataset for

1134 NTP models as finetuning progressed, whereas CTP models showed only marginal performance
 1135 decline, consistently maintaining a superior accuracy level.

1136 Furthermore, We conducted an in-depth analysis of prediction errors, categorizing them into three
 1137 distinct types: (1) Wrong content: instances where the model incorrectly predicts ‘False’ when the
 1138 ground truth is ‘True’; (2) Wrong format: cases such as responding with ‘shy’ instead of the required
 1139 ‘True/False’ format to the question “Is Rex shy?”; and (3) Irrelevant responses: The responses
 1140 contains unrelated words from the input sentence. Our finding suggests the NTP-trained models
 1141 are more willing to transfer the answer from PrOntoQA into new formats, ProsQA, while CTP-
 1142 trained models demonstrate more consistent performance on PrOntoQA, even when the ProsQA
 1143 task semantics remain identical. It treats the tasks separately and, as a consequence, shows weaker
 1144 transfer ability.

1145 Given the scale limitations of the dataset, we conducted additional experiments with multiple data
 1146 groups to evaluate the transfer capabilities of NTP and CTP. Across various experimental settings,
 1147 NTP consistently demonstrated superior transfer characteristics, even when the tasks were not di-
 1148 rectly related but shared similar reasoning patterns, as Fig. 13 (c, d) shows.

1150 D EXPERIMENTAL FRAMEWORK AND IMPLEMENTATION DETAILS

1151 This section provides a detailed description on the experimental implementations.

1154 D.1 MORE EXPLANATION ON PROBLEM SETUP OF ANCHOR FUNCTION

1156 **Model architecture** For self-attention block Attn we have

$$1158 \text{Attn}(X) = \text{softmax} \left(\frac{XW_Q W_K^T X^T}{\sqrt{d_k}} \right) XW_V. \quad (16)$$

1160 And the fully connected block is

$$1161 \text{MLP}(X) = \text{ReLU}(XW_1)W_2. \quad (17)$$

1162 For realistic reasoning tasks, we initialize the weight with zero-mean normal distribution with a
 1163 standard deviation of 0.02 default by Hugging Face.

1165 **Data Generation** Since we have fixed the anchor set \mathcal{A} , then for composition task shown in
 1166 Eq. equation 4, 16 anchor pairs exist in total. We generate 900,000 samples in total and partition it
 1167 into training and testing subsets with a 9:1 ratio. Each anchor pair (a, b) shares the equal number of
 1168 samples. Then we generate the dataset X : The position of anchor and key are randomly selected in
 1169 the fixed-length sequence, and the other positions are filled with random number from \mathcal{D} . The last
 1170 token is replaced by the function solution of the sequence, i.e.

$$1171 X = \{x_i \in \mathcal{D}, a, b \in \mathcal{A} \mid [x_1, \dots, x_i, a, b, \dots, x_n, (a, b)(x_i)]\}. \quad (18)$$

1173 For anchor function and realistic tasks, we use vallina GPT-2 model with 12 layers and 12 heads,
 1174 embedding dimension is set as 768. We forbid dropout in the residual, embedding and attention
 1175 branch, to avoid effect of regularization methods. We set the learning rate is 5e-5 with linear warmup
 1176 scheduler (warmup ratio = 0.1). The batch size of anchor function is 2000 and for realistic tasks, is
 1177 set to 160. Without any mention, the weight decay is set as 0 and we use seed 42 by default.

1178 D.2 DETAILS ON REALISTIC TASKS

1180 To construct the dataset for CTP training, we equipped the answer with a separation mark, use the
 1181 PrOntoQA for example, we turn the sequence into:

1183 Gwompuses are zhorpuses. Every chorpus is transparent. Each gerpus is a boom-
 1184 pus. Bompuses are sweet. Each bompus is a felpus. Bompuses are yerpuses.
 1185 Felpuses are not fast. Each felpus is a terpus. Each timpus is fast. Felpuses are
 1186 quimpuses. Every zhorpus is brown. Every kerpus is earthy. Kerpuses are ror-
 1187 puses. Fae is a felpus. Fae is a kerpus. Question: True or false: Fae is fast. [SEP]
 1188 False [SEP]

1188 Like SFT, the loss of CTP is only calculated tokens between the [SEP] symbols.
 1189

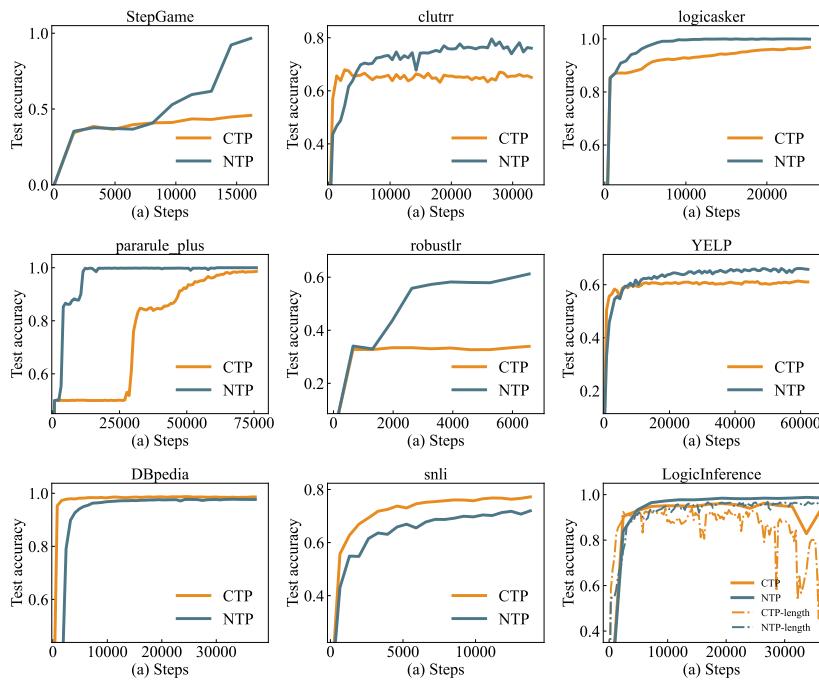
1190 D.3 ADDITION TASK 1191

1192 The addition task is designed to show the robustness of NTP training. We borrow the reverse ad-
 1193 ddition settings, like $314 + 518 = 832$, changed into $413 + 815 = 238$. Given the pure addition
 1194 doesn't contain any noise in the corpus, We intentionally introduce noise tokens into the dataset.
 1195 The reconstructed sequence is, for example,

1196 $7, 9, 1, 1, [\text{SEP_R}], 5, 5, 4, 0, +, 3, 5, 4, 0, [\text{SEP_R}], 4, [\text{SEP}] 8, 0, 9, 0 [\text{SEP}]$
 1197

1198 The symbol [SEP_R] is used to remind the model of the start and end in equation, and the first [SEP]
 1199 could be regarded as the equal symbol '='. Outside the symbol [SEP_R], we add 5 noise terms to
 1200 help simulate the noise in anchor function. The training configurations follow the anchor function
 1201 with a 8 layers 4 heads prenorm model.

1202 D.4 THE REASONING TASK DATASETS OVERVIEW 1203



1228 Figure 14: The NTP and CTP training process of reasoning tasks and text classification tasks. CTP
 1229 outperforms NTP on tasks that involve shorter texts and require less extensive reasoning like DBPe-
 1230 dia or SNLI but NTP outperforms CTP on reasoning data, such as PrOntoQA, RobustLR etc. The
 1231 first figure PrOntoQA-2hop cloze means the accuracy of cloze version about PrOntoQA.

1232
 1233 **PrOntoQA & ProsQA** Every sequence in PrOntoQA dataset consists of three parts: fact, question
 1234 and answer. Some noise disturbance terms are mixed in the fact part. An example of 1-hop reasoning
 1235 is below:
 1236

1237 Fact:

1238 Every gwompus is not amenable. Every gwompus is a chorpus. Gwompuses are
 1239 zhorpuses. Every chorpus is transparent. Chorpuses are gerpuses. Every chorpus
 1240 is a storpus. Gerpuses are not hot. Gerpuses are bompuses. Each gerpus is a
 1241 boompus. Bompuses are sweet. Each bompus is a felpus. Bompuses are yerpuses.
 Felpuses are not fast. Each felpus is a terpus. Each timpus is fast. Felpuses are

1242 quimpuses. Quimpuses are nervous. Each yerpus is not discordant. Each boompus
 1243 is sunny. Storpuses are wooden. Every zhorpus is brown. Every kerpus is earthy.
 1244 Kerpuses are rorpuses. Fae is a felpus. Fae is a kerpus.
 1245 Question:
 1246 True or false: Fae is fast.
 1247 Answer:
 1248 False

1249 We could see that the question’s answer only depends on the fact, where the inference chain is
 1250 underlined. So it’s possible that the different fact causes the same queries share different answer. In
 1251 the PrOntoQA reverse dataset, we harmonized the answers to the same questions in the train dataset.
 1252 In each sequence, the question could be referred to the form ’A is B?’. We define the OOV dataset as
 1253 the A and B have never appeared in the train dataset. The accuracy on OOV dataset reflects whether
 1254 the model learned the rule behind PrOntoQA. These could refer to Fig. 2(b).

1255 Two new versions are involved in the paper, ProsQA and PrOntoQA cloze. The cloze-style version
 1256 transforms the question ‘Question: True or false: Fae is fast. Answer: False’ into ‘Question: Fae is
 1257 _____ Answer: fast.’ The ProsQA version comes from (Hao et al., 2024), prepares a disturbance
 1258 options on the result:
 1259

1260 Question: Fae is fast or shy? Answer: fast.
 1261

1262 We used 500,000 samples for training and 5,000 samples for validation or testing with respect to
 1263 every PrOntoQA experiment (original, cloze, and reverse). We applied all the data in ProsQA,
 1264 where there are 18,186 samples for train and 500 for test.

1265 **LogicInference** The LogicInference dataset primarily comprises propositional logic problems and a
 1266 curated subset of first-order logic formulations. We conducted a two-stage filtering process: initially
 1267 isolating the first-order logic instances, followed by selecting those containing well-formed yes/no
 1268 question-answer pairs that are particularly suited for CTP.
 1269

1270 Fact:
 1271 Consider the following premises. $\exists x15: R15(x15) \rightarrow U1(x15)$. $\forall x15: Q15(x15) \rightarrow Q10(x15)$.
 1272 $\forall x15: \neg P15(x15) \text{ or } R15(x15)$. $\forall x15: P15(x15) \text{ or } Q15(x15)$. $\forall x15: Q(x15)$.
 1273 $\forall x15: Q10(x15) \rightarrow U1(x15)$.
 1274 Question:
 1275 Can we infer $\exists x15: U1(x15) \text{ and } Q(x15)$ from them?
 1276 Answer: yes

1277 **CLUTRR** CLUTRR is a diagnostic benchmark designed to evaluate the robustness of natural
 1278 language understanding systems. It tasks models with inferring kinship relations from short stories,
 1279 requiring both relationship extraction and logical rule deduction. Each story features a complete
 1280 family structure and requires the model to infer the relationships between any two family members.
 1281

1282 Facts:
 1283 Stella’s husband, Albertus, surprised her with tickets to a football game for their
 1284 anniversary. Albertus rushed to the hospital to find out that his wife had already
 1285 given birth to a boy and had named him Pleasant. Frank told a secret to her
 1286 sister, Blanche. Blanche passed it along to her brother, Pleasant. Pleasant took
 1287 his Aunt Frank out for her favorite meal. Barnett is Frank’s older brother. He
 1288 has never liked any of her boyfriends. Blanche and her aunt, Frank, went to the
 1289 deli. They got half a pound of corned beef and two pounds of salami. Gina asked
 1290 her daughter, Frank, if she had fun at school that day. Frank answered that she
 1291 and her sister, Frank, had lots of fun together. Albertus went to the game with
 1292 his sister Frank. Albertus took his daughter Gertie to the park that afternoon to
 1293 play. Pleasant’s wife, Celestia, surprised him on his birthday. He couldn’t believe
 1294 she pulled it off. Florence and her son’s wife, Celestia, flew first class to see the
 1295 concert.

1296 Question: Blanche is who of Stella
 1297 Answer: daughter

1296 **LogicAsker** LogicAsker systematically assesses reasoning by employing atomic skills based on
 1297 propositional and predicate logic. The LogicAsker dataset features relatively low difficulty and
 1298 contains few distractors. We sampled 500,000 data for train and 12,000 data for test. An example is:
 1299

1300 Statement:

1301 For all x_{12} , x_{12} will go running. For all x_{12} , x_{12} is a police officer. There is at
 1302 least one x_{12} for which if x_{12} were a scientist, then x_{12} is not a police officer.

1303 Question:

1304 Can we infer the following from them? Answer yes or no: There is at least one
 1305 x_{12} for which x_{12} is not a scientist

1306 Answer: yes

1307 **PARARULE Plus** PARARULE Plus is a deep multi-step reasoning dataset over natural language
 1308 based on the closed-world assumption. It is derived from the PARARULE dataset and has deeper
 1309 samples. Similar with the PrOntoQA dataset, it also consists of facts, question and answer. However,
 1310 it surpasses PrOntoQA in terms of sentence complexity.

1311 However, there is an implicit unreasonable settings in the original dataset, is that all the queries with
 1312 the answer ‘true’ are end up with the format ‘A is B?’ and the queries with the answer ‘false’ are
 1313 end up with the format ‘A is not B?’ This causes the transformer learns a shortcut, mapping from
 1314 existence of ‘not’ in question to the binary answer true or false. From the original settings, both CTP
 1315 and NTP could easily reach accuracy 1.

1316 We took a deep insight in the generalization rules of PARARULE plus, and rewrote some of them
 1317 to decouple the answers from the format of queries. We added 4 new rules and redo the same
 1318 experiments. We use depth-2 dataset for train (500,000 samples) and for test (5,000 samples).

1320 Fact:

1321 The wolf is tired. The wolf is dull. The wolf is rough. The wolf needs the
 1322 dog. The bear sees the rabbit. The bear is fierce. The bear is awful. The dog
 1323 is kind. The dog is smart. The dog is round. The rabbit is cute. The rab-
 1324 bit is lovely. The rabbit is furry. Kind animals are cute. If something is dull
 1325 then it visits the dog. If something visits the dog then it is slow. If some-
 1326 thing is tired and dull then it is rough. If something is cute and lovely then
 1327 it is adorable. If something is fierce and awful then it is obese. If something is
 1328 rough then it is lazy. All lazy animals are sleepy. If something is cute then
 1329 it is lovely. All lovely animals are furry. If something is obese then it is strong.
 1330 All strong animals are heavy. If something is adorable then it is beautiful. All
 1331 beautiful animals are small. All slow animals are big.

1332 Question:

1333 The bear is not heavy

1334 Answer: false

1335 **RobustLR** The authors propose RobustLR for diagnose the robustness to logical variations in
 1336 language models. Compared to PrOntoQA, this dataset is more comprehensive and specific, while
 1337 also encompassing a variety of different relations. As a consequence, both NTP and LTP face
 1338 difficulties learning this problem. The LTP’s accuracy is stagnated at the random guessing accuracy.
 1339 The train and test dataset consist of 210,865 and 8,000 samples separately.

1340 Statements:

1341 Fiona is white. Dave is blue. Anne is the uncle of Bob. Charlie is white if Dave
 1342 is blue. Charlie is white and Dave is not quiet if Fiona is white or Anne is the
 1343 uncle of Bob. If Fiona is white or Anne is Bob’s uncle then Charlie is white and
 1344 The uncle of Anne is not Gary. If Charlie is white then Anne is big. Bob is nice
 1345 if Dave is not quiet and Anne is the uncle of Bob. Bob is not nice if Anne is the
 1346 uncle of Bob and Gary is the mother of Harry. If Dave is blue or Anne is big then
 1347 Dave is not nice and Bob is nice. If Dave is not quiet and Gary is the mother of
 1348 Harry then Dave is nice. If Bob is nice or Dave is not nice then Fiona is the aunt
 1349 of Bob. If Dave is not nice then Bob is not Anne’s brother. Bob is Anne’s brother
 1349 if The mother of Harry is Gary. Harry is furry if The brother of Anne is not Bob or

1350 Gary is not the uncle of Anne. If Charlie is white and Gary is the mother of Harry
 1351 then Harry is not fury. Anne is not the wife of Dave if Bob is nice and Anne is
 1352 Bob's uncle.

1353 Question:

1354 The mother of Harry is not Gary.

1355 Answer: True

1356

1357 The statement is confusing and we split it into several parts: **Facts**, 2-hop **Inference** and **contradiction**.

1359

1360 **RuleTaker** The authors developed the RuleTaker dataset through a systematic transformation of
 1361 natural language into structured reasoning processes, establishing an emulation framework for soft
 1362 reasoning. For example, we have following sample like:

1363

1364 Statement:

1365 Cow sees mouse. Cow likes tiger. Bear is cold. Cow is big. If X visits bald eagle
 1366 and X is kind then X is nice.

1367 Question:

1368 Cow sees bear?

1369 Answer: False

1370

1371 We use 29,000 samples for training and 1000 for testing.

1372

1373 **SimpleLogic** Aiming to discover the logic capability in BERT models, especially for its OOD
 1374 generalization ability, the authors constructed the SimpleLogic dataset, with rule-priority and label-
 1375 priority. We introduce 192,000 training dataset and 1,0000 testing dataset for this task. The example
 1376 is attached below:

1377

1378 Assumptions:

1379 If messy and reserved, then worrisome. If messy and reserved and tender, then
 1380 weary. If tender, then friendly. If frightened and worrisome, then tender. If re-
 1381 served, then tender. If weary, then messy. If lonely and weary and tender, then
 1382 reserved. If tender, then messy. If worrisome and tender and lonely, then messy. If
 1383 lonely and frightened and friendly, then messy. If reserved and messy and friendly,
 1384 then worrisome. If reserved, then frightened. If lonely and friendly and messy,
 1385 then tender. If frightened, then tender. If lonely, then frightened. If lonely, then
 1386 worrisome. If messy and friendly, then lonely. If weary, then reserved. If reserved
 1387 and frightened and weary, then tender. If worrisome and reserved and weary, then
 1388 frightened. If reserved and friendly, then worrisome. If worrisome, then lonely.
 1389 If messy and worrisome, then lonely. If frightened, then messy. If lonely, then
 1390 friendly. If weary, then lonely.

1389

1390 Question: weary worrisome reserved lonely to messy

1391

1392 Answer: true

1393

1394 **StepGame** StepGame is inspired from bAbl-17/19 benchmarks (Weston et al., 2015) and to mit-
 1395 iate bAbl's limitations, such as fixed expressions, small number of reasoning hops and the lack of
 1396 noise for robustness test. Each data instance in the dataset describes a set of spatial relationships
 1397 among multiple objects and requires the model to deduce the relative position between two speci-
 1398 fied objects based on the given relational information. Similar to PrOntoQA, we generate 500,000
 1399 synthetic training dataset and 5,000 testing dataset.

1400

1401 The object Z is positioned directly above the object K. Object G is above object
 1402 I and to the right of it, too. N is diagonally to the bottom left of J. A is to the
 1403 bottom-left of N. K is positioned below and to the right of Y. O is at the lower side
 1404 of G. Z is to the right of Y. S is placed in the left direction of K. O is directly south
 1405 east of H. G is to the right of Q. H is placed at the lower right of K.

1406

1407 Question: What is the relation of the agent O to the agent G?

1408

1409 Answer: below

1404 **SNLI** The Stanford Natural Language Inference (SNLI) corpus collects of 570k human-written
 1405 English sentence pairs for entailment examination. There are 550,152 and 1,000 samples in training
 1406 and testing dataset. A typical example of SNLI is
 1407

1408 Text: A man inspects the uniform of a figure in some East Asian country.
 1409 Hypothesis: The man is sleeping
 1410 Answer: contradiction

1411 **Yelp** The Yelp Dataset is a comprehensive collection of data related to reviews of businesses, and
 1412 is widely used to predicting positive or negative reviews. We use all the 650,000 sequences for
 1413 training and 50,000 for testing. The format of reviews like:
 1414

1415 Text: To keep it short and sweet: Save yourself \$100. Buy a good board game,
 1416 your alcohol of choice, order a pizza, and invite your friends over. nWhat an
 1417 incredible disappointment. After seeing the enticing commercials so many times,
 1418 we decided to give this place a try on a double date. I understand the prices of
 1419 the play cards and won't dispute them; however, the food was incredibly over-
 1420 priced, came out COLD (as in, sat on a counter without warmers for a minimum
 1421 of 30 minutes) and I literally had to ask the bartender if there was any vodka in
 1422 my drink. It was pure juice. \$38 for three shots that had little-no alcohol in them.
 1423 (Not to mention, my glass was dirty, and I saw the bartender scoop the glass into
 1424 the ice basin because she was too lazy to use the sanitary scoop. I know the Food
 1425 and Beverage Commission would be as disappointed as I was.) The service was
 1426 terrible. Don't ask for anything from your waiter, as they are a little too busy
 1427 on their cell phones or conversing amongst themselves. Was it fun to be in an
 1428 adult-themed arcade? Yes. If you're looking for a good atmosphere to go with
 1429 friends to play games, I suppose I would advise you give it a shot. I would never
 1430 recommend their food, customer service, or drinks. Save yourself the money and
 1431 stay home, or go for a traditional bowling, figure skating, roller-blading, rock
 1432 climbing, basically any other physically-entertaining themed date instead.
 1433 Answer: Negative

1434 **DBpedia** The DBpedia dataset is designed to evaluate a model's capability to accurately classify
 1435 news articles into predefined categories based solely on their titles and concise summaries, thereby
 1436 testing both the model's comprehension of textual semantics and its ability to perform hierarchical
 1437 classification tasks. The size of training and testing set are 560,000 and 70,000 separately.

1438 Title: Export-Import Bank of Romania
 1439 Content: Exim Bank is The Export-Import Bank of Romania based in Bucharest.
 1440 Answer: 0

1441 D.5 EXPERIMENTS COMPUTE RESOURCES

1442 The experiments were conducted on a server with the following configuration:
 1443

- 1444 • 48 AMD EPYC 7352 24-Core Processors, each with 512KB of cache
- 1445 • 251GB of total system memory
- 1446 • 8 NVIDIA GeForce RTX 4080 GPUs with 16GB of video memory each
- 1447 • The experiments were run using Ubuntu 22.04 LTS operating system

1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457