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ABSTRACT

Next Token Prediction (NTP) is the prevailing pre-training approach for large lan-
guage models, which have demonstrated remarkable reasoning capabilities. A key
characteristic of NTP is its objective to predict every token in a sequence, includ-
ing tokens that are not directly relevant to the final answer or core logic—often
considered training noise. While such "noise" from uncritical tokens is tradition-
ally thought to impair learning by introducing irrelevant information, our research
reveals a counterintuitive positive effect. To isolate this phenomenon, we contrast
NTP with Critical Token Prediction (CTP), a training paradigm that focuses ex-
clusively on specific tokens such as the final answer. Our findings show that NTP
consistently surpasses CTP in reasoning ability. We hypothesize and substantiate
through theoretical analysis that the learning objective on uncritical tokens acts as
an implicit regularizer, analogous to explicit L2 regularization. Further empirical
analysis across various benchmark reasoning datasets confirms that NTP-trained
models exhibit enhanced generalization and robustness, demonstrating greater re-
silience to perturbations and achieving flatter loss minima. These findings reveal
that uncritical tokens are, in fact, ‘critical’ for developing robust reasoning during
pre-training, offering valuable insights into optimizing training strategies for LLM
development.

1 INTRODUCTION

As transformer-based Large Language Models (LLMs) continue to fuel enthusiasm for Artificial
General Intelligence (AGI), numerous techniques are emerging to advance this trend, fostering a
highly optimistic outlook for the eventual realization of AGI. A central challenge since the inception
of LLMs has been how to efficiently train these models to achieve superior reasoning capabilities.
Over time, a series of training techniques have revolutionized the performance of LLMs, each con-
tributing to significant milestones in the field.

The success of natural language processing (NLP) has been significantly driven by the widespread
adoption of next token prediction (NTP), a self-supervised learning approach popularized by the
GPT series (Radford & Narasimhan, 2018; Radford et al., 2019; Brown et al., 2020). Unlike super-
vised methods that depend on costly labeled data, NTP enables models to learn from vast amounts
of unlabeled text by predicting subsequent tokens, allowing for zero-shot generalization and elimi-
nating the need for task-specific fine-tuning. This framework has established NTP as a cornerstone
of modern NLP.

In contrast to NTP, supervised training only on labels can be regarded as critical token prediction
(CTP), illustrated in Fig. 1. Although NTP has been successfully applied in LLMs, it still leaves
room for speculation: Given the availability of labeled data, should CTP be reconsidered as a vi-
able alternative? For instance, in training a model for arithmetic addition, employing NTP to learn
problem formulations seems inherently flawed, as the subsequent components cannot and should
not be inferred from preceding ones in math problems. Furthermore, recent advancements have in-
creasingly focused on the strategic selection of important tokens for training. For example, RHO-1
(Lin et al., 2025a) utilizes a model to score each token and trains only on samples with high scores.
Phi-4 (Abdin et al., 2024) has made significant strides in enhancing reasoning capabilities through
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Figure 1: Schematic illustration and test performance comparison of NTP and CTP on the CLUTRR
task. Regarding their training objectives, especially for tasks like arithmetic addition, CTP’s loss
function exclusively focuses on the answer, while NTP’s loss encompasses the entire sequence.
This difference introduces implicit noise during NTP’s optimization process.

an emphasis on data quality. One key technique involves synthesizing a large number of question
and answer (Q&A) data pairs, even during the pretraining phase with NTP. This raises a natural
question: since the answer portion of Q&A data can be seen as a form of label, should CTP be used
for Q&A pairs instead?

In this study, we conduct a systematic comparison between NTP and CTP using composition tasks
and generalizing to more realistic reasoning tasks. Our empirical and theoretical findings reveal
that NTP, in specific circumstance, is a variance of weight decay regularization, due to the
noise inherent in training set. To further investigate this bias, we employ series of realistic tasks,
especially for multi-hop reasoning task PrOntoQA, providing additional empirical evidence. Beyond
the regularization, we observe that models trained with NTP demonstrate greater robustness and
flatness than those trained with CTP.

2 RELATED WORK

Next-Token Prediction and Other Training Methods. Next token prediction (NTP) is a widely
used method for training LLMs. Recent studies analyze NTP from various angles, investigating
geometric properties in logits space (Zhao et al., 2024; Thrampoulidis, 2024), theoretical capacity
in transformers (Madden et al., 2024), mechanistic insights (Li et al., 2024), and empirical scaling
laws (He & Su, 2024). Recognizing NTP’s limitations, alternative training paradigms have emerged
(Bachmann & Nagarajan, 2024; Gloeckle et al., 2024; Lin et al., 2025b; Havrilla & Iyer, 2024). For
example, RHO-1 (Lin et al., 2025a) introduces a token-level scoring mechanism, selectively training
on high-scoring samples to improve efficiency. Similarly, Phi-4 (Abdin et al., 2024) demonstrates
significant advancements in reasoning capabilities by prioritizing high-quality data during training,
and (Huerta-Enochian & Ko, 2024) presents the study analyzing the effects of various prompt loss
token weights for supervised finetuning. Despite these advances, the link between diverse training
methods and generalization remains underexplored. A deeper understanding of this relationship is
crucial for advancing the field and developing more robust and efficient LLMs.

Implicit Bias for Noise-Induced Regularization Techniques. Implicit bias from noise-induced
regularization is widely studied, with different noise forms impacting training and performance
(Zhu et al., 2019). Stochastic gradient descent (SGD) noise is a key example, shown to improve
generalization by promoting flatter loss landscapes (Wu et al., 2020; Feng & Tu, 2021; Xie et al.,
2020), with its magnitude depending on the landscape (Mori et al., 2021) and linked to dynamical
stability (Wu et al., 2018; Ma & Ying, 2021). Dropout is another common technique enhancing
generalization (Zhang et al., 2022; Zehui et al., 2019; Zhou et al., 2020; Li et al., 2023; Fan et al.,
2019; Wu et al., 2021; He et al., 2024), with studies showing its noise improves generalization from
various perspectives (Mianjy et al., 2018; Bank & Giryes, 2020; Lengerich et al., 2022; Cavazza
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et al., 2018; Wei et al., 2020; Zhang et al., 2023b), including fostering condensation and improving
loss landscape flatness (Zhang & Xu, 2024). In this work, we draw an analogy between NTP and
noise-induced training methods to explore NTP’s impact on model reasoning capabilities.

3 PRELIMINARIES

In this section, we introduce some key definitions of the training methods (NTP & CTP) and the
synthetic task setup. The detailed definition could be referred to Appendix D.

3.1 DEFINITION OF NTP AND CTP

We note the input sequence with length T in the token format {xk}Tk=1, and without loss of
generality, the critical token is set as the end token xT . We also denote Pθ(xt+1|x≤t) =
Pθ(xt+1|x1, . . . , xt) as the model output logits at the t-token. Training loss of NTP and CTP are
defined as follows:

LN = − 1

T

T−1∑
t=1

1{xt+1} log(Pθ(xt+1|x≤t)), (1)

LC = −1{xT } log(Pθ(xT |x≤T−1)). (2)

Not hard to see that the CTP loss LC is the critical part of the NTP loss LN , only calculated on the
critical token xT . We use the original GPT-2 structure and denote Attn and MLP as the attention
and fully connected block separately.

3.2 THE ANCHOR FUNCTION TASK SETUP

The anchor function (Zhang et al., 2024b) is designed to cook synthetic dataset that can mimic
language tasks but provides a clear examination of the model’s performance and mechanisms on
compositional functions.
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Figure 2: Illustration of the two primary tasks discussed in this work. (a) the Anchor Function task
and (b) the PrOntoQA tasks. (a): The Anchor Function task setup. The composition (C,D) is used
as a test example in Task 1 and as a training example with a misleading x − 6 operation in Task 2.
We focus on the model preference on the symmetric pair (D,C), which is excluded from training. A
prediction matching the elementary anchor composition rule (i.e., x− 10) is considered a reasoning
solution; otherwise non-reasoning solution. (b): The description of different PrOntoQA tasks used
in this work: Original, reverse, OOV test and its variation ProsQA (Hao et al., 2024).

Definition of anchor function Consider a function g(x) : Rs×d → RC , where s represents
for sequence length while C for vocabulary size. The input X consists of two parts: anchor set
A = {A,B,C,D} and the definition domain of function f , D = {20, . . . , 100}. The function is
defined as:

g(. . . , xi, a, xi+2, . . .) := a(xi), while a ∈ A;xi ∈ D (3)
g(. . . , xi, a, b, xi+3, . . .) = (a, b)(xi) := b(a(xi)), while a, b ∈ A;xi ∈ D. (4)

The latter setting is also called a composition task. In this work, we set the specific elementary
functions fa, fb as:

A(x) = x+ 5, B(x) = x+ 1, C(x) = x− 2, D(x) = x− 8.

3
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The anchor function operates solely on the position preceding the anchor a, which is denoted as the
key item, and is independent of the input at other positions.

Two versions of the composition task To rigorously assess the reasoning capabilities of models,
we have designed two composition tasks with escalating levels of difficulty.

Task 1: We remove the pairs (C,D) and (D,C) from a set of 16 possible combinations of anchor
pairs, thereby withholding direct information about these specific compositions from the model.

Task 2: We remove the pair (D,C) and introduce misleading information by presenting (C,D)(x)
as x− 6, despite the correct operation being (C,D)(x) = x− 10.

Here we define that the reasoning solution as the model that can learn the function of D and C
respectively. If the model fails to identify elementary functions, we call it a non-reasoning solution.
For both tasks, we evaluate the model’s reasoning ability by measuring its accuracy in determin-
ing that (D,C)(x) = x − 10. This assessment is critical because it requires the model to discern
the roles of the elementary anchors A and correctly compose their operations. Only by accurately
identifying the functions of these elementary anchors can the model successfully address the com-
position problem, analogous to human reasoning processes. See Appendix D.1 for details on model
architecture and data generation.

4 REGULARIZATION: IMPLICIT REGULARIZATION FROM NTP

An interesting question is, whether the transformer could learn the elementary functions only with
composite functions. In this section, we analyze the NTP-trained and CTP-trained models on com-
position tasks. We also provide a comparison with CTP + large weight decay experiments.

4.1 EFFECTS OF NTP TRAINING
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Figure 3: Accuracy of masked pair (D,C) of composition task. The NTP and CTP represent the
normal setting (γ = 0.5,WD = 0) . (a): 3-layer 1-head GPT-2 model performance on task 1, NTP
achieves similar reasoning ability compared with regularization methods like small initialization or
weight decay, which theoretically discussed in Theorem 1. (b & c): The information flow of the
composition pair (B,C) of the NTP-trained model and CTP-trained model in (a). The NTP-trained
model treats the anchors one by one, while the CTP-trained model merges the anchors in Layer
0 and finishes it in Layer 3. This is a shortcut learning pattern and indicates the CTP’s failure in
Task 2. (d): The non-reasoning and reasoning solution of task 2 with different layers. The NTP
could stably switch the non-reasoning solution to the reasoning solution. The error bars represent
the standard deviation across 3-time runs on GPT-2.

In the (Zhang et al., 2024a; 2025), authors have figured out that the initialization scale will affect the
preference of the model. They initialize the layer in a normal distribution N

(
0, (d1)

−2γ
)

with d1
input neurons and initialization scale γ. The smaller initialization (large γ) of parameters contributes
to a more generalized model, while the large initialization (small γ) will lead to poor performance in
both ID (in distribution,like (A,B)) and OOD tasks (out of distribution, like (D,C)). The authors
find that the watershed of reasoning and non-reasoning is the γ = 0.5, which is similar to default
Kaiming normal initialization. However, the authors only focus on CTP training.
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Here we establish that, with the Kaiming normal scale in which transformer should select the non-
reasoning solution, which will be shifted to a reasoning solution using NTP rather than CTP. From
Fig. 3, for task 1, NTP-trained models could learn pairs (C,D) and (D,C) from the rest, however,
CTP-trained models cannot figure out, but mistakenly induce (D,C) as the same of (D,D). For
task 2, after introducing the misleading (C,D), CTP remains focused on the unreasoning solution,
while NTP prefers reasoning solutions, and this tendency becomes increasingly evident as the depth
of the model increases.

We leverage the information flow analysis to reveal the mechanism behind the reasoning or non-
reasoning solutions. The information flow is about the NTP-trained and CTP-trained for a three-
layer model of GPT-2 with the same testing sample. The thickness of the line connecting the j-th
token in Layer l and the k-th token in Layer l + 1 represents attention score at position (k, j). For
reasoning solution, the model treats two anchors one-by-one, which aligns with the original intent
of the composition task design. In contrast, CTP selects a shortcut to fit the train set: Considering
the symmetric property of the data ((a, b)(x) = (b, a)(x) for all a, b ∈ A), it merges two anchors
in the first layer and then treats the combination of anchors as the new. This approach represents
a trade-off wherein the model learns the combination rather than elementary anchors, enabling it
to effectively fit the training set with only a two-layer network. However, the drawback is evident:
when faced with (C,D) combination that was absent from training, the model fails.

eight decay is another widely used regularization technique that aids generalization, and boosts the
reasoning ability shown in Fig. 3(a). In our settings, incorporating weight decay with CTP training
could prevent the model from exhibiting shortcut learning, a phenomenon observed in pure CTP
training. In next section, we will establish the theoretical analysis on the effect of NTP training.

4.2 THEORY ANALYSIS OF NTP TRAINING ON COMPOSITION TASK

To explore the different training results of NTP and CTP, we need to carefully analyze the loss LN

and LC . In this section, we start with general theory and then applies it to two training phases to
illustrate the regularization effect of NTP. First, we state the regularization effect in the initial stage
as follows.
Theorem 1 (NTP regularization). Suppose there exists a parameter vector θ0 such that, for every
uncritical position X = (x1, . . . , xt) with t < T − 1, such that Pθ0

(· | X) = 1
dvob

1dvob
. Then, for

θ in a neighborhood of θ0, the NTP loss admits following expansion as sample size tends to infinity,

LN (θ) =
1

T
LC(θ) +

1

2
(θ − θ0)

⊺Iθ0 (θ − θ0) +O
(
∥θ − θ0∥3

)
, (5)

where Iθ0 denotes the empirical Fisher information matrix at θ0 which is

Iθ0
=

1

T

T−2∑
t=1

EXt
Iθ0

(X) (6)

Next, we apply this theorem to the two training phases. To do so, we first introduce an abstraction of
the sequence model. Typically, in such models, an input sequence X undergoes various transforma-
tions before being mapped to logits via a projection matrix. We formalize this process as follows:

Definition 1. Let X be the embedded input sequence, the model generates the logit vector

ℓ(X) = Gθ̂(X)Wproj (7)

and the corresponding probabilities

Pθ(X) = softmax(ℓ(X)), (8)

where θ = (θ̂, vec(Wproj)).

Next, we give the explicit expression for regularization in the initial stage.
Proposition 1 (Regularization in initial stage). Consider sequence models defined as Def. 1, there
exists λ > 0 such that Eq. (5) has following reformulation at initialization:

LN =
1

T
LC +

1

2

λ

dvob
vec(Wproj)

⊺

(
I − 1

dvob
11T

)
⊗ I vec(Wproj) +O(∥θ∥3)

5
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This Proposition reveals the close relationship between NTP and L2 regularization. It proves that,
in the early stages of training, NTP can be considered a special type of L2 normalization, which
explains why models trained with NTP perform similarly to models trained with CTP and weight
decay, as shown in Fig. 3 (a). The proofs could be find at Appendix B.1.

Finally, we conclude this section with a discussion of the final convergence phase. At the end of
the training, since the rest of the sequence (excluded critical tokens) is uniform noise, the logits for
non-critical tokens should converge to a uniform distribution. Based on the above insight, Theorem
1 still applies to the analysis of the final state which suggests that NTP training will select a flatter
solution.
Remark 1. Distinction from Standard Label Noise and SGD. The fundamental difference from
standard analyses of label noise or SGD lies in the structure of the noise. In CTP with label noise,
perturbations are restricted solely to the critical token’s loss (affecting only fS(θ, x)). In contrast,
NTP introduces noise across the entire sequence, affecting the function outputs at every token posi-
tion (fs,∀s ∈ [0, S]).

Remark 2. Intuitive Sketch of the Quadratic Term in Thm.1 Our derivation considers the local be-
havior of a parametric model where both input and output distributions are assumed to be uniform.
By strictly applying the Taylor expansion of the KL divergence, we have:

KL(Pθ0∥Pθ) =
1

2
(θ − θ0)

⊺Iθ0(θ − θ0) +O(∥θ − θ0∥3),

where Iθ0 denotes the Fisher Information Matrix at θ0. A key insight here is that the first-order term
vanishes automatically due to the fundamental property of the score function (i.e., E[∇ log p] = 0),
leaving the quadratic form as the dominant term. At initialization, expanding around the origin
relates this term closely to standard L2 regularization.

5 REALISTIC EXPERIMENTAL RESULTS

When discussing the reasoning capabilities of LLMs, language inference and multi-hop question
answering tasks should be taken into consideration (Yu et al., 2024). As an example shown in Fig. 1,
these tasks are typically structured in a question-answer format, making them particularly well-
suited for training using CTP, where the loss is calculated only on the answer tokens. Alternatively,
one can employ NTP and compute the loss for the entire sentence. To eliminate interference from
pretrained models, all our experiments are conducted by training the models from scratch.

5.1 PRONTOQA TASK
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Figure 4: NTP and CTP performance on PrOntoQA tasks. (a): Accuracy of NTP and CTP on
the original 2-hop PrOntoQA task over training epochs. NTP eventually achieves perfect accuracy,
while CTP plateaus around 80%. The NTP shuffle experiment destroys the language structure in
facts and query, which are mainly discussed in Appendix A.2. (b): 2-hop reverse PrOntoQA: NTP
maintains high reasoning accuracy both on validation and reverse test set, but CTP memorizes the
training data, leading to decreased accuracy on the reverse test set. (c): 1-hop OOV PrOntoQA:
NTP achieves nearly 100% accuracy, while CTP stabilizes around 70%. (d): The performance of
Qwen3-8B model on original 2-hop task.

We conducted comprehensive evaluations on PrOntoQA, a synthetic multi-hop inference dataset
with a 50% random guess accuracy. As illustrated with examples in Fig. 2(b), we also proposed two
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modified variants of this task specifically designed to better support research on model generalization
capabilities.

Table 1: Comparison of NTP and CTP Per-
formance on modern LLM.

Model NTP CTP

Qwen2.5-0.5B 1.00 0.87
TinyLlama-1.1B 0.99 0.84
OLMo-1B 1.00 0.91

Original PrOntoQA task Following the experi-
ment established in the (Saparov & He, 2023), we
implemented both NTP and CTP on the original
PrOntoQA dataset. Both training methods (NTP and
CTP) easily surpass the random guess accuracy of
50%. CTP initially learns the mappings effectively
but stagnates at around 80% accuracy. In contrast,
NTP learns more slowly due to the presence of nu-
merous noise terms but ultimately achieves 100%
accuracy, exhibiting an accuracy grokking phenomenon as shown in Fig. 4 (a). To assess the robust-
ness of these findings, we further validated this phenomenon on more realistic model architectures.
As presented in Table 1, consistent trends were observed across modern large language models
(including Qwen2.5, TinyLlama, and OLMo), confirming that the superiority of NTP generalizes
beyond the model scale.

Reverse PrOntoQA task In the original PrOntoQA dataset, answers are solely determined by
facts within each example; therefore, situations may arise where the same question in different
examples is paired with contradictory facts. To better assess the robustness differences between
NTP and CTP, we created reverse train, validation and test set: For the training and validation
sets, we ensured that identical questions have the same answers. For the test set, we modified the
facts so that the correct answers are the opposite of those in the training set, which is shown in
Fig. 2(b). Therefore during training process, the model has two possible learning paths: 1) learning
the reasoning from facts or 2) memorizing all question answers in train set.

On the test set, we observe that while CTP enables the network to achieve an accuracy close to 0.8
initially, it rapidly turns to path 2) and begins to memorize and gradually forgetting the underlying
reasoning rules. In contrast, NTP maintains an accuracy close to 1.0 over an extended period both
on validation and test, demonstrating strong resistance to overfitting, as illustrated in Fig. 4(b).

OOV PrOntoQA task Based on the original construction of PrOntoQA, we introduce an Out-Of-
Vocabulary (OOV) dataset, whose targets in queries are not present in the training set, so they are not
trained totally. We evaluated the performance differences between models trained using NTP and
CTP. Practically, NTP and CTP struggled with 2-hop reasoning on OOV data, we downgraded the
dataset to 1-hop reasoning and replicated the experiments. The results, shown in Fig. 4 (c), indicate
that CTP maintains an accuracy of approximately 70%, while NTP achieves nearly 100% accuracy
on the OOV dataset. This suggests that CTP is influenced by surface patterns in the data, whereas
NTP effectively captures the underlying reasoning rules.

NTP shuffle experiment We also design the NTP shuffle experiment (shown in Fig. 4(a)) to ad-
dress the advantage of NTP not due to the model beginning to develop a better language under-
standing than their CTP trained counterparts like (Zhang & Hashimoto, 2021) has mentioned. When
calculating NTP loss, we shuffle the token order in label of the fact + query part, which ensures that
the semantic information from the question does not influence the results. When question tokens are
shuffled, NTP requires more training time to recognize the irrelevance of noise. The model initially
exhibits prolonged "random guess" behavior in accuracy. However, the core conclusion remains
unchanged: After sufficient training, the accuracy of NTP shuffle still significantly surpasses CTP.
For the code implementation details, please refer to Appendix A.2.

Effects of weight decay We used the inclusion of weight decay as a control baseline to analyze
its differences from NTP. We found that while weight decay exhibits a strong regularization effect,
this is primarily limited to larger models (e.g., Qwen3-8B). For smaller models such as GPT-2, the
inclusion of weight decay has a negligible impact on final performance.
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5.2 OTHER NATURAL LANGUAGE REASONING TASKS

Except for PrOntoQA, we have meticulously curated a collection of reasoning datasets and imple-
mented necessary preprocessing procedures to ensure data quality and suitability: LogicInference
(Ontanon et al., 2022), CLUTRR (Sinha et al., 2019), Ruletaker (Clark et al., 2020), RobustLR
(Sanyal et al., 2022), SimpleLogic (Zhang et al., 2023a), PARARULE Plus (Bao et al., 2024),
StepGame (Shi et al., 2022) and LogicAsker (Wan et al., 2024). Additionally, text classification
tasks, including Yelp (Yelp Dataset) and DBpedia (Lehmann et al., 2015), as well as the SNLI
dataset (Bowman et al., 2015), are included in the comparison. The details of all these tasks could
refer to Appendix D.4.
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Figure 5: Performance comparison of NTP and CTP across various reasoning tasks. NTP consis-
tently outperforms CTP in reasoning tasks, while performance on text classification tasks is more
mixed. All the tasks are trained on the GPT-2 model (125M) from scratch to dismiss the effect of
NTP in the pretraining stage. The accuracy is reported when the learning process becomes stable.

The following findings are systematically presented and analyzed in Fig. 5, which provides a com-
prehensive comparison of both approaches across different task categories. Our experimental results
demonstrate that NTP exhibits superior performance compared to CTP across various reasoning-
intensive tasks, including PrOntoQA, LogicAsker, and Ruletaker. Particularly noteworthy is NTP’s
exceptional capability in handling the challenging RobustLR task, where it partially captures un-
derlying logical patterns, while CTP remains stagnant at random-guess levels. As evidenced in
Appendix D.4, NTP demonstrates accelerated learning speed for tasks requiring strong reasoning
capabilities. However, in text classification tasks that demand less sophisticated reasoning, the per-
formance disparity between NTP and CTP diminishes significantly. In these scenarios, CTP exhibits
a slight advantage in learning efficiency, as demonstrated by its comparable performance on SNLI
and marginally better convergence rate on the DBpedia dataset.

6 ROBUSTNESS OF NEXT TOKEN PREDICTION

In this section, we investigate the robustness of NTP-trained models at both the input and parameter
levels. Given that training procedures similar to CTP have been shown to negatively impact robust-
ness (Wang et al., 2023), a specific analysis of NTP is warranted. We also explore the relationship
between flatness and NTP’s generalization ability empirically. Due to space constraints, we defer to
the Appendix A.5 a detailed analysis of model behavior in the presence of erroneous training data.
Briefly, we find that NTP models exhibit greater resilience to such errors, whereas CTP exhibits the
opposite behavior.

6.1 EMBEDDING NOISE

The most straightforward approach to evaluating model robustness involves introducing controlled
noise perturbations to the input data and quantitatively measuring the corresponding degradation in
model accuracy. Following the settings applied in NETFune (Jain et al., 2023), noise restricted by
the sequence length and model hidden size is added after the embedding layer as follows:

emb← emb +
α√
Sd

ϵ, (9)

where the noise ϵ is uniformly sampled from the range [−1, 1], and S, d represent for sequence
length and embedding dimension separately.
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Figure 6: Effect of embedding noise on model performance in different reasoning tasks. The x-axis
represents the perturbation strength α in Eq. equation 9 while the y-axis represents the influenced
loss (left axis) and accuracy (right axis). NTP-trained models maintain higher accuracy under vary-
ing levels of input noise compared to CTP-trained models, which suffer from significant perfor-
mance degradation in both accuracy and loss.

We have done a thorough analysis of the anchor function, as shown in Fig. 6(a), models trained with
NTP are more stable under noise, while CTP-trained models exhibit high sensitivity. In contrast
to CTP, the NTP helps the model maintain its learned reasoning solution not only on the embed-
ding layer, but also on the output of different transformer blocks. With Fig. 6, on highly inference
tasks like PrOntoQA and PARARULE plus, the performance patterns of NTP and CTP demonstrate
remarkable similarity to their performance on the anchor function.

6.2 NTP REACHES FLATTER MINIMA
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Figure 7: The flatness for task anchor function, PrOntoQA reverse, and PARARULE plus tasks. To
alleviate the computational cost, the flatness is calculated on randomly sampled 20,000 instances
from the training set.

Flatness, a concept introduced in (Hochreiter & Schmidhuber, 1997) and applied to neural networks
in (Keskar et al., 2017), is commonly used to understand model generalization ability. The random
direction method (Li et al., 2018) is a widely used approach to assess model flatness or robustness.
This method perturbs the model parameters by adding a random vector scaled by the model’s norm
and a perturbation intensity αf . Let θN and θC denote the parameters of the NTP and CTP trained
models, and let v be a random direction in the parameter space. The perturbed parameters are given
by:

θ′N = θN + αf
∥θN∥
∥v∥

v, θ′C = θC + αf
∥θC∥
∥v∥

v. (10)

We tested the performance of NTP and CTP models under a moderate αf , which is shown in Fig. 7.
For the simple anchor function task, the solution of NTP is flatter than that of CTP significantly. The
flatness disparity between the two training approaches becomes smaller in other tasks since in these
tasks the model only needs to discriminate between true and false responses.

To further investigate the regularization dynamics, we monitored the evolution of the Hessian matrix
and parameter norms using the anchor function task. As illustrated in Fig. 8, NTP exhibits a strong
regularization effect by significantly suppressing the maximum eigenvalue of the Hessian. This
drives the model towards flatter regions of the loss landscape. In contrast, CTP shows a continuous
increase in the maximum eigenvalue. This observation suggests that in the absence of regularization,
the network tends to converge to sharper solutions. Consequently, while CTP remains trapped in
sharp minima near the initialization, NTP successfully moves away from the starting point to locate
flatter minima.

9
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Figure 8: Evolution of the Hessian maximum eigenvalue and parameter norms during training. NTP
effectively reduces the maximum eigenvalue, indicating a flatter loss landscape, whereas CTP tends
to converge to sharper minima.

7 DISCUSSION

Conclusion This work systematically investigates the distinct impacts of next token prediction
(NTP) and critical token prediction (CTP) training on reasoning tasks, revealing an inherent regu-
larization in NTP-trained models as a key finding. We propose that implicit noise in the training
data induces an emergent regularization effect functionally analogous to explicit L2 regularization.
This hypothesis is rigorously validated theoretically and empirically through our proposed anchor
function composition task. Crucially, empirical validation across realistic tasks confirms that this
regularization persists in practical settings, mirroring the insights gained from the composition tasks.
Finally, our analysis further investigates the robustness and flatness of models trained with NTP and
CTP, demonstrating additional benefits of NTP training.

Fairness of Comparison between NTP and CTP We further address the fairness of comparing
NTP and CTP, particularly concerning the total training token assumption (for backpropagation).
With increased training data or training epochs allocated to CTP, our results show that the NTP-
trained model still achieves superior performance on the anchor function Task 2 and the star graph
task. This outcome is notable, especially considering that the star graph task has been shown to be
inherently challenging or potentially impossible for NTP to train perfectly (Bachmann & Nagara-
jan, 2024). The experimental evidence is presented in Fig. 9, and further details can be found in
Appendix A.2. In real-world scenarios, the significant length disparity between prompt and answer
tokens complicates a direct comparison. However, it is worth noting that CTP effectively holds the
advantage in the training setting: within the NTP objective, the loss contribution from the critical
token is heavily diluted by the numerous context tokens, whereas CTP focuses exclusively on the
target.

LLM USAGE

In this work, the LLMs are employed to correct grammatical errors and inappropriate words.
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A FURTHER DISCUSSION

A.1 MORE EXPLANATIONS ON NTP SHUFFLE EXPERIMENT IN SEC. 5.1

One might be concerned that the reason for NTP outperforming CTP is simply that CTP does not
process question tokens and thus fails to learn the QA dependencies properly. As we pointed out in
Sec. 5.1, while semantic information can boost NTP training, it is not the essential factor driving the
regularization.

To supplement the experimental details presented in Sec. 5.1, we highlight that the
NTP loss function was modified from its original form, typically written as L̃N =

− 1
T

∑T−1
t=1 1(xt+1) log(P (xt+1|x≤t)), to LN = − 1

T

∑T−1
t=1 1(x̃t+1) log(P (xt+1|x≤t)), where x̃

represents a random shuffle of the original sequence x. This adjustment was specifically designed
to disrupt the natural semantic continuity of the sequence, thereby preventing semantic information
from aiding NTP in learning the task dependencies and ensuring that the experiment isolates the
effect of the prediction objective itself. The corresponding change in code implementation was from

Listing 1: Before shuffle
1 shift_inputs = inputs[:-1]
2 outputs = model(shift_inputs)
3 shift_labels = inputs[1:]
4 NTP_loss = CE(outputs, shift_labels)

to

Listing 2: After shuffle
1 shift_inputs = inputs[:-1]
2 outputs = model(shift_inputs)
3 shift_labels = inputs[1:-1]
4 answer = inputs[-1]
5 random.shuffle(shift_labels)
6 shift_labels = shift_labels + answer
7 NTP_loss = CE(outputs, shift_labels)

A.2 DETAILS ON FAIR COMPARISON OF TOTAL TOKEN CONSUMPTION BETWEEN NTP AND
CTP

This section provides a detailed explanation of the comparison fairness experiments briefly discussed
in Sec. 7. The anchor function task and star graph task were chosen for this comparison due to their
suitability, characterized by short sequence lengths and the absence of semantic interference (e.g.,
the anchor function sequence has a fixed length of 9, in contrast to PrOntoQA where the length is
around 300 and variable).

Equalizing Token Consumption via Increased CTP Training Data Volume As mentioned in
Sec. 7, to ensure fair token consumption between NTP and CTP, we conducted experiments on
anchor function Task 2 where CTP’s training dataset volume was scaled to more than 9 × that of
NTP, thereby matching the total token usage. The results are presented in Fig. 9, with the x-axis
indicating the volume of training data used for CTP relative to NTP. For completeness, results from
the NTP-shuffle experiment and a PrefixLM (GPT) baseline are also included. As shown in Fig. 9,
increasing CTP’s data volume resulted in only a slight improvement in its ability to learn inferential
solutions, and it consistently underperformed NTP.

Equalizing Token Consumption via Extended CTP Training Epochs For the star graph task,
utilizing the publicly available dataset, we extended CTP’s training time until its token usage
matched that of NTP. The results, presented in Fig. 10, demonstrate that NTP consistently out-
performed CTP on the star graph G3,3 task under these equalized token conditions (edge list 50,
reverse set to False).
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Figure 9: Column 1: NTP trained on 200,000 samples. Column 4: CTP trained on 2,000,000
samples (to match NTP’s token usage). Additional experiments: Column 2: NTP with shuffled
question tokens (as in PrOntoQA). Column 5: PrefixLM (GPT) baseline.
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Figure 10: Star graph G3,3 task, which is detailed in (Bachmann & Nagarajan, 2024; Setlur et al.,
2024), where it was shown that NTP is unable to complete the task, yet the training performance of
NTP remains superior to that of direct CTP.

A.3 RELATIONS BETWEEN CTP AND SFT

When adapting pretrained models for the downstream tasks, CTP (or SFT) is typically preferred
over NTP. We evaluated the performance of NTP and CTP on the PrOntoQA dataset using a pre-
trained GPT-2 model. The results, depicted in Fig. 11(a), show that CTP significantly outperforms
NTP in terms of learning speed. This can be attributed to two factors: first, the pretrained model
initialized through NTP already resides in a region of the loss landscape that is more amenable
to generalization; second, pretraining endows the model with a certain level of reasoning capabil-
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ity. Consequently, additional noise in the corpus is unnecessary for aiding generalization, and the
absence of noise allows the network to learn the mapping relationships more rapidly.

To our knowledge, the NTP loss function incorporates a component from CTP. We can isolate the
CTP portion within the NTP loss and refer to the remaining part as the “noise loss". Subsequently,
we experimented with pretraining on both the anchor function task and PrOntoQA using this noise
loss, followed by continued training with the CTP loss. This approach demonstrated improved gen-
eralization capability compared to directly training with CTP, evidenced by the reasoning solution
obtained in the test accuracy reaching 100% on PrOntoQA.
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Figure 11: (a) The original 2-hop PrOntoQA task trained on the pretrained models. The legend
entry GPT-2 denotes the pretrained GPT-2 model parameters, and the Noise denotes the model is
pretrained on the noise term in PrOntoQA by NTP. (b) The ratio of gradient norm on random token
position t = T − 1 and critical token position t = T of output in Eq. equation 2. The flatting stage
and fitting stage are annotated, which corresponds with the reasoning accuracy raise.

A.4 WHY MODELS ARE NOT MISLED BY NOISE

Inspired by research on the performance of the BERT pretrained model with noisy data (Tänzer
et al., 2022), we noticed some phenomena associated with why NTP-trained models are not misled
by noise terms. Using the clean anchor function as example, we discover that the gradient norm
of the noise terms significantly decreased compared to the critical token (in Fig. 11 (b)), indicating
that the network temporarily shifts its focus away from the noise during the learning process. The
NTP learning process could be decomposed into two distinguishable stages: The flatting stage, the
transformer trying to learn the distribution of the whole sequence. Fitting stage, after the Lnoise

reaches the lower bound entropy loss of NTP, the transformer notices the regularity of ‘key’ item
and gradually it turns to reasoning solution.

A.5 MORE EVIDENCE ON THE ROBUSTNESS OF NTP

Another prevalent methodology for robustness evaluation involves deliberately introducing a pro-
portion of noised samples into the training set, subsequently assessing the model’s resilience to
poisoned data. The addition is a tiny inference task widely used as a test set in the construction of
new reasoning techniques of LLM (Deng et al., 2024) and is the basic part of math reasoning steps
(Ying et al., 2024).

Our addition dataset consists of addition problems bounded by 1000 and includes several random
tokens corresponding to the random xi in the anchor function. When the length of the random token
sequence is n, we denote it as Addition-Rn. The numbers are padded to 4 digits and split into
individual digits by the tokenizer. The total number of samples is D = [0, 1000]2.

In the error addition task, we remove a square region from the center of D with side length 100,
denoted as H = [400, 600]2. We randomly select 1000 or 2000 samples in H and add noise ±50 to
the labels, denoted them as poisoned samples De. The training set consists of D\H ∪ De, which
includes the error samples, and the test dataset is H\De. Drawing insights from our experience with
anchor functions, we utilize an 8-layer transformer and observe the influence of poisoned samples.

Fig. 12 shows both NTP and CTP could easily learn addition without any poisoned samples. When
the noise is introduced in the training data, NTP demonstrates superior performance, as evidenced
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by its higher peak test accuracy and delayed accuracy degradation compared to CTP. From Fig. 12
(b), meanwhile, CTP is trapped in memorizing poisoned samples at a faster speed than NTP.
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Figure 12: Comparison of NTP and CTP on the addition task with varying poisoned samples. The
1000 errors and 2000 errors denote training scenarios where an 800,000-sample dataset was de-
liberately contaminated with precisely 1,000 or 2,000 erroneous data points, respectively. (a) Test
accuracy (on H\De) (b) the memorizing speed of the poisoned samples De. The CTP could easily
fit the errors before 100 epochs whereas NTP fits at a lower speed.

B THEORETICAL PROOFS

We follow the definition of Fisher information matrix in (Liu et al., 2023) and restate it as:
Definition 2. For a parameterized random variable X , let p(X;θ) be the probability density func-
tion for X. Then the fisher information matrix has typical element

[I(θ)]i,j = E
[(

∂

∂θi
log p(X;θ)

)(
∂

∂θj
log p(X;θ)

)]
B.1 PROOF OF THEOREM. 1

For the convenience of notation we set LC ← 1
T LC in the following proof.

Proof. By definition of NTP and CTP loss, the following equation holds after proper normalization:

LN = LC −
1

NT

n∑
i=1

T∑
t=1

1{xi
t+1} logPθ(x

i
t+1|xi

≤t),

where each token is where each token is uniformly sampled from the vocabulary set V . The indicator
function can be equivalently expressed using Dirac delta notation for the second term:

− 1

NT

N∑
i=1

T∑
t=1

1{xi
t+1} logPθ(x

i
t+1|xi

≤t) = −
1

NT

N∑
i=1

T∑
t=1

V∑
s=1

δ(s, xi
t+1) logPθ(s|xi

≤t)

Since each token is uniformly sampled, the second term could be decomposed into two parts:

− 1

NT

N∑
i=1

T∑
t=1

V∑
s=1

δ(s, xi
t+1) logPθ(s|xi

≤t) = −
1

NT

N∑
i=1

T∑
t=1

V∑
s=1

1

V
logPθ(s|xi

≤t)

− 1

NT

N∑
i=1

T∑
t=1

V∑
s=1

(δ(s, xi
t+1)−

1

V
) logPθ(s|xi

≤t)

By discarding constants independent of the parameters θ, we have

− 1

NT

N∑
i=1

T∑
t=1

V∑
s=1

δ(s, xi
t+1) logPθ(s|xi

≤t) =
1

NT

N∑
i=1

T∑
t=1

KL(Unif(V), Pθ(·|xi
≤t))

− 1

NT

N∑
i=1

T∑
t=1

V∑
s=1

(δ(s, xi
t+1)−

1

V
) logPθ(s|xi

≤t).
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Based on the assumption, we have Unif(V) = Pθ0
(s|xi

≤t) for all i, t. So the first term can be
rewritten as

1

NT

N∑
i=1

T∑
t=1

KL(Unif(V), Pθ(·|xi
≤t)) =

1

NT

N∑
i=1

T∑
t=1

KL(Pθ0
(·|xi

≤t), Pθ(·|xi
≤t))

By expanding the KL divergence , we derive the implicit regularization term

1

NT

n∑
i=1

T∑
t=1

KL(Pθ0
(s|xi

≤t), Pθ(s|xi
≤t)) =

1

NT

n∑
i=1

T∑
t=1

1

2
(θ−θ0)⊺Iθ0(x

i
≤t)(θ−θ0)+O(∥θ∥3).

(11)
To control for the residual term, we change the order of summation.

− 1

NT

N∑
i=1

T∑
t=1

V∑
s=1

(δ(s, xi
t+1)−

1

V
) logPθ(s|xi

≤t) = −
1

NT

T∑
t=1

V∑
s=1

N∑
i=1

(δ(s, xi
t+1)−

1

V
) logPθ(s|xi

≤t).

Using Chebyshev’s Inequality, there exists C independent of parameters such that

P

(
∪Vs=1

∣∣∣∣∣ 1N
N∑
i=1

(δ(s, xi
t+1)−

1

V
)

∣∣∣∣∣ > δ

)
≤ C

δ2N
.

As a result, for any ε > 0, let C
δ2N = ε, we obtain δ = C√

εN
. Then, the asymptotic probabilistic

bound holds

P

(
∪Vs=1

∣∣∣∣∣ 1N
N∑
i=1

(δ(s, xi
t+1)−

1

V
)

∣∣∣∣∣ > C√
εN

)
≤ ε

As a result, we finish the proof by∣∣∣∣∣ 1

NT

T∑
t=1

V∑
s=1

n∑
i=1

(δ(s, xi
t+1)−

1

V
) logPθ(s|xi

≤t)

∣∣∣∣∣ = O( 1√
εN

)

B.2 PROOF OF PROPOSITION 1

In this section, we focus on the empirical fisher information matrix: 1
T

∑T−2
t=1 EXt

Iθ0
(X). For the

models defined like Def. 1, we only need to consider ∇Wproj
logPθ because ∇θ̂Pθ = 0 at origin.

So we take θ̂ = 0 and the logit is
t∑

t′=1

λt,t′xt′Wproj. (12)

For logit vector ℓ, we have
∂ logPs

∂ℓk
= δks − Pk.

Then, we get

∇Wproj
logPs =

dvob∑
k=1

(δks − Pk)

(
xt +

1

t

t∑
t′

xt′

)
e⊺k

=

(
t∑

t′=1

λt,t′xt′

)(
es −

1

dvob
1

)⊺

Let ut :=
∑t

t′=1 λt,t′xt′ and vs := es − 1
dvob

1, we get ∇Wproj logPs = utvs. Using the identity
vec(uv⊺) = v ⊗ u, we have vec(∇Wproj

logPs) = vs ⊗ ut. Then,

I0(x
i
≤t) =

1

dvob

dvob∑
s=1

(vs ⊗ ut)(vs ⊗ ut)
⊺

=
1

dvob

dvob∑
s=1

(vsv
⊺
s )⊗ (utu

⊺
t ),

(13)
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where the term 1
dvob

comes from the uniform distribution. Since ut is independent of s, we take the
sum for s first and get

I0(x
i
≤t) =

1

dvob

(
I − 1

dvob
11T

)
⊗ (utu

⊺
t ). (14)

Finally, due the the uniformity of noise, there exists λ > 0 such that the empirical fisher information
matrix can be approximated by

λ

dvob

(
I − 1

dvob
11T

)
⊗ I, (15)

whish finish the proof.

C NTP ENHANCES EARLY TRANSFER GENERALIZATION

When the available data for a specific task is insufficient for training a model from scratch, trans-
fer learning typically serves as an effective solution by finetuning a pretrained model with existing
knowledge. In this section, we conduct transfer learning experiments between models trained using
NTP and CTP across diverse downstream tasks. Our investigation yielded two results: (1) Models
trained with NTP demonstrate accelerated generalization during the early stages of finetuning, al-
though both approaches ultimately converge to comparable accuracy levels; (2) NTP-trained models
exhibit a higher propensity for catastrophic forgetting during the finetuning process.
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Figure 13: Finetuning results with multiple tasks. NTP+CTP means the model is NTP-trained on
previous task and CTP-finetuned on post task; CTP+CTP means the model is CTP-trained on previ-
ous task and CTP-finetuned on post task. train from scratch means the model is trained from scratch
with the same configuration of CTP-funtuning. (a, b) 2-hop PrOntoQA models continue to train on
ProsQA. (a) The accuracy of ProsQA test data with the CTP finetuning process. (b) The accuracy of
PrOntoQA test data and and the proportion of three error types of NTP+CTP during finetuning. The
wrong content, wrong format and irrelevant represent incorrect answer content, improper answer
formatting, and irrelevant responses. Regarding the omitted CTP+CTP error types visualization, its
wrong content metric consistently maintains at 1.0, which demonstrates its immunity to finetuning
perturbations. (c, d) More examples of transfer learning capability difference between NTP and
CTP.

The ProsQA dataset, proposed in (Hao et al., 2024), represents an enhanced version of PrOntoQA,
featuring more explicit reasoning graph structures. However, its limited scale precludes its use for
training models from scratch. In this section, we primarily leverage its advantage of providing
answer contrastive pairs to conduct finetuning experiments on models initially trained using both
NTP and LTP on the 2-hop original PrOntoQA dataset.

We employed a relatively low learning rate (2e-6) to meticulously capture the accuracy transitions
between the original PrOntoQA 2-hop task and the new ProsQA task. The experimental results
in Fig. 13 (a) demonstrate that the NTP model successfully predicts a portion of the validation set
at the beginning, consistently outperforming CTP throughout the training process. This empirical
evidence strongly suggests that NTP-trained models have inherent advantages for transfer learning
applications.

However, in Fig. 13 (b), our empirical findings indicate that NTP-trained models are potentially
more susceptible to catastrophic forgetting compared to their CTP counterparts. Through systematic
evaluation, we observed a pronounced accuracy degradation on the original PrOntoQA dataset for
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NTP models as finetuning progressed, whereas CTP models showed only marginal performance
decline, consistently maintaining a superior accuracy level.

Furthermore, We conducted an in-depth analysis of prediction errors, categorizing them into three
distinct types: (1) Wrong content: instances where the model incorrectly predicts ‘False’ when the
ground truth is ‘True’; (2) Wrong format: cases such as responding with ‘shy’ instead of the required
‘True/False’ format to the question “Is Rex shy?"; and (3) Irrelevant responses: The responses
contains unrelated words from the input sentence. Our finding suggests the NTP-trained models
are more willing to transfer the answer from PrOntoQA into new formats, ProsQA, while CTP-
trained models demonstrate more consistent performance on PrOntoQA, even when the ProsQA
task semantics remain identical. It treats the tasks separately and, as a consequence, shows weaker
transfer ability.

Given the scale limitations of the dataset, we conducted additional experiments with multiple data
groups to evaluate the transfer capabilities of NTP and CTP. Across various experimental settings,
NTP consistently demonstrated superior transfer characteristics, even when the tasks were not di-
rectly related but shared similar reasoning patterns, as Fig. 13 (c, d) shows.

D EXPERIMENTAL FRAMEWORK AND IMPLEMENTATION DETAILS

This section provides a detailed description on the experimental implementations.

D.1 MORE EXPLANATION ON PROBLEM SETUP OF ANCHOR FUNCTION

Model architecture For self-attention block Attn we have

Attn(X) = softmax

(
XWQW

T
KXT

√
dk

)
XWV . (16)

And the fully connected block is
MLP(X) = ReLU(XW1)W2. (17)

For realistic reasoning tasks, we initialize the weight with zero-mean normal distribution with a
standard deviation of 0.02 default by Hugging Face.

Data Generation Since we have fixed the anchor set A, then for composition task shown in
Eq. equation 4, 16 anchor pairs exist in total. We generate 900,000 samples in total and partition it
into training and testing subsets with a 9:1 ratio. Each anchor pair (a, b) shares the equal number of
samples. Then we generate the dataset X: The position of anchor and key are randomly selected in
the fixed-length sequence, and the other positions are filled with random number from D. The last
token is replaced by the function solution of the sequence, i.e.

X = {xi ∈ D, a, b ∈ A
∣∣∣[x1, . . . , xi, a, b, . . . , xn, (a, b)(xi)]}. (18)

For anchor function and realistic tasks, we use vallina GPT-2 model with 12 layers and 12 heads,
embedding dimension is set as 768. We forbid dropout in the residual, embedding and attention
branch, to avoid effect of regularization methods. We set the learning rate is 5e-5 with linear warmup
scheduler (warmup ratio = 0.1). The batch size of anchor function is 2000 and for realistic tasks, is
set to 160. Without any mention, the weight decay is set as 0 and we use seed 42 by default.

D.2 DETAILS ON REALISTIC TASKS

To construct the dataset for CTP training, we equipped the answer with a separation mark, use the
PrOntoQA for example, we turn the sequence into:

Gwompuses are zhorpuses. Every chorpus is transparent. Each gerpus is a boom-
pus. Bompuses are sweet. Each bompus is a felpus. Bompuses are yerpuses.
Felpuses are not fast. Each felpus is a terpus. Each timpus is fast. Felpuses are
quimpuses. Every zhorpus is brown. Every kerpus is earthy. Kerpuses are ror-
puses. Fae is a felpus. Fae is a kerpus. Question: True or false: Fae is fast. [SEP]
False [SEP]
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Like SFT, the loss of CTP is only calculated tokens between the [SEP] symbols.

D.3 ADDITION TASK

The addition task is designed to show the robustness of NTP training. We borrow the reverse ad-
dition settings, like 314 + 518 = 832, changed into 413 + 815 = 238. Given the pure addition
doesn’t contain any noise in the corpus, We intentionally introduce noise tokens into the dataset.
The reconstructed sequence is, for example,

7, 9, 1, 1, [SEP_R], 5, 5, 4, 0, +, 3, 5, 4, 0, [SEP_R], 4, [SEP] 8, 0, 9, 0 [SEP]

The symbol [SEP_R] is used to remind the model of the start and end in equation, and the first [SEP]
could be regarded as the equal symbol ‘=’. Outside the symbol [SEP_R], we add 5 noise terms to
help simulate the noise in anchor function. The training configurations follow the anchor function
with a 8 layers 4 heads prenorm model.

D.4 THE REASONING TASK DATASETS OVERVIEW
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Figure 14: The NTP and CTP training process of reasoning tasks and text classification tasks. CTP
outperforms NTP on tasks that involve shorter texts and require less extensive reasoning like DBpe-
dia or SNLI but NTP outperforms CTP on reasoning data, such as PrOntoQA, RobustLR etc. The
first figure PrOntoQA-2hop cloze means the accuracy of cloze version about PrOntoQA.

PrOntoQA & ProsQA Every sequence in PrOntoQA dataset consists of three parts: fact, question
and answer. Some noise disturbance terms are mixed in the fact part. An example of 1-hop reasoning
is below:

Fact:
Every gwompus is not amenable. Every gwompus is a chorpus. Gwompuses are
zhorpuses. Every chorpus is transparent. Chorpuses are gerpuses. Every chorpus
is a storpus. Gerpuses are not hot. Gerpuses are bompuses. Each gerpus is a
boompus. Bompuses are sweet. Each bompus is a felpus. Bompuses are yerpuses.
Felpuses are not fast. Each felpus is a terpus. Each timpus is fast. Felpuses are
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quimpuses. Quimpuses are nervous. Each yerpus is not discordant. Each boompus
is sunny. Storpuses are wooden. Every zhorpus is brown. Every kerpus is earthy.
Kerpuses are rorpuses. Fae is a felpus. Fae is a kerpus.
Question:
True or false: Fae is fast.
Answer:
False

We could see that the question’s answer only depends on the fact, where the inference chain is
underlined. So it’s possible that the different fact causes the same queries share different answer. In
the PrOntoQA reverse dataset, we harmonized the answers to the same questions in the train dataset.
In each sequence, the question could be referred to the form ’A is B?’. We define the OOV dataset as
the A and B have never appeared in the train dataset. The accuracy on OOV dataset reflects whether
the model learned the rule behind PrOntoQA. These could refer to Fig. 2(b).

Two new versions are involved in the paper, ProsQA and PrOntoQA cloze. The cloze-style version
transforms the question ‘Question: True or false: Fae is fast. Answer: False’ into ‘Question: Fae is

Answer: fast.’ The ProsQA version comes from (Hao et al., 2024), prepares a disturbance
options on the result:

Question: Fae is fast or shy? Answer: fast.

We used 500,000 samples for training and 5,000 samples for validation or testing with respect to
every PrOntoQA experiment (original, cloze, and reverse). We applied all the data in ProsQA,
where there are 18,186 samples for train and 500 for test.

LogicInference he LogicInference dataset primarily comprises propositional logic problems and a
curated subset of first-order logic formulations. We conducted a two-stage filtering process: initially
isolating the first-order logic instances, followed by selecting those containing well-formed yes/no
question-answer pairs that are particularly suited for CTP.

Fact:
Consider the following premises. exists x15: R15(x15) → U1(x15). forall x15:
Q15(x15)→ Q10(x15). forall x15: ~P15(x15) or R15(x15). forall x15: P15(x15)
or Q15(x15). forall x15: Q(x15). forall x15: Q10(x15)→ U1(x15).
Question:
Can we infer exists x15: U1(x15) and Q(x15) from them?
Answer: yes

CLUTRR CLUTRR is a diagnostic benchmark designed to evaluate the robustness of natural
language understanding systems. It tasks models with inferring kinship relations from short stories,
requiring both relationship extraction and logical rule deduction. Each story features a complete
family structure and requires the model to infer the relationships between any two family members.

Facts:
Stella’s husband, Albertus, surprised her with tickets to a football game for their
anniversary. Albertus rushed to the hospital to find out that his wife had already
given birth to a boy and had named him Pleasant. Frank told a secret to her
sister, Blanche. Blanche passed it along to her brother, Pleasant. Pleasant took
his Aunt Frank out for her favorite meal. Barnett is Frank’s older brother. He
has never liked any of her boyfriends. Blanche and her aunt, Frank, went to the
deli. They got half a pound of corned beef and two pounds of salami. Gina asked
her daughter, Frank, if she had fun at school that day. Frank answered that she
and her sister, Frank, had lots of fun together. Albertus went to the game with
his sister Frank. Albertus took his daughter Gertie to the park that afternoon to
play. Pleasant’s wife, Celestia, surprised him on his birthday. He couldn’t believe
she pulled it off. Florence and her son’s wife, Celestia, flew first class to see the
concert.
Question: Blanche is who of Stella
Answer: daughter
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LogicAsker LogicAsker systematically assesses reasoning by employing atomic skills based on
propositional and predicate logic. The LogicAsker dataset features relatively low difficulty and
contains few distractors. We sampled 500,000 data for train and 12,000 data for test. An example is:

Statement:
For all x12, x12 will go running. For all x12, x12 is a police officer. There is at
least one x12 for which if x12 were a scientist, then x12 is not a police officer.
Question:
Can we infer the following from them? Answer yes or no: There is at least one
x12 for which x12 is not a scientist
Answer: yes

PARARULE Plus PARARULE Plus is a deep multi-step reasoning dataset over natural language
based on the closed-world assumption. It is derived from the PARARULE dataset and has deeper
samples. Similar with the PrOntoQA dataset, it also consists of facts, question and answer. However,
it surpasses PrOntoQA in terms of sentence complexity.

However, there is an implicit unreasonable settings in the original dataset, is that all the queries with
the answer ‘true’ are end up with the format ‘A is B?’ and the queries with the answer ‘false’ are
end up with the format ‘A is not B?’ This causes the transformer learns a shortcut, mapping from
existence of ‘not’ in question to the binary answer true or false. From the original settings, both CTP
and NTP could easily reach accuracy 1.

We took a deep insight in the generalization rules of PARARULE plus, and rewrote some of them
to decouple the answers from the format of queries. We added 4 new rules and redo the same
experiments. We use depth-2 dataset for train (500,000 samples) and for test (5,000 samples).

Fact:
The wolf is tired. The wolf is dull. The wolf is rough. The wolf needs the
dog. The bear sees the rabbit. The bear is fierce. The bear is awful. The dog
is kind. The dog is smart. The dog is round. The rabbit is cute. The rab-
bit is lovely. The rabbit is furry. Kind animals are cute. If something is dull
then it visits the dog. If something visits the dog then it is slow. If some-
thing is tired and dull then it is rough. If something is cute and lovely then
it is adorable. If something is fierce and awful then it is obese. If something is
rough then it is lazy. All lazy animals are sleepy. If something is cute then
it is lovely. All lovely animals are furry. If something is obese then it is strong.
All strong animals are heavy. If something is adorable then it is beautiful. All
beautiful animals are small. All slow animals are big.
Question:
The bear is not heavy
Answer: false

RobustLR The authors propose RobustLR for diagnose the robustness to logical variations in
language models. Compared to PrOntoQA, this dataset is more comprehensive and specific, while
also encompassing a variety of different relations. As a consequence, both NTP and LTP face
difficulties learning this problem. The LTP’s accuracy is stagnated at the random guessing accuracy.
The train and test dataset consist of 210,865 and 8,000 samples separately.

Statements:
Fiona is white. Dave is blue. Anne is the uncle of Bob. Charlie is white if Dave
is blue. Charlie is white and Dave is not quiet if Fiona is white or Anne is the
uncle of Bob. If Fiona is white or Anne is Bob’s uncle then Charlie is white and
The uncle of Anne is not Gary. If Charlie is white then Anne is big. Bob is nice
if Dave is not quiet and Anne is the uncle of Bob. Bob is not nice if Anne is the
uncle of Bob and Gary is the mother of Harry. If Dave is blue or Anne is big then
Dave is not nice and Bob is nice. If Dave is not quiet and Gary is the mother of
Harry then Dave is nice. If Bob is nice or Dave is not nice then Fiona is the aunt
of Bob. If Dave is not nice then Bob is not Anne’s brother. Bob is Anne’s brother
if The mother of Harry is Gary. Harry is furry if The brother of Anne is not Bob or
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Gary is not the uncle of Anne. If Charlie is white and Gary is the mother of Harry
then Harry is not furry. Anne is not the wife of Dave if Bob is nice and Anne is
Bob’s uncle.
Question:
The mother of Harry is not Gary.
Answer: True

The statement is confusing and we split it into several parts: Facts, 2-hop Inference and contradic-
tion.

RuleTaker The authors developed the RuleTaker dataset through a systematic transformation of
natural language into structured reasoning processes, establishing an emulation framework for soft
reasoning. For example, we have following sample like:

Statement:
Cow sees mouse. Cow likes tiger. Bear is cold. Cow is big. If X visits bald eagle
and X is kind then X is nice.
Question:
Cow sees bear?
Answer: False

We use 29,000 samples for training and 1000 for testing.

SimpleLogic Aiming to discover the logic capability in BERT models, especially for its OOD
generalization ability, the authors constructed the SimpleLogic dataset, with rule-priority and label-
priority. We introduce 192,000 training dataset and 1,0000 testing dataset for this task. The example
is attached below:

Assumptions:
If messy and reserved, then worrisome. If messy and reserved and tender, then
weary. If tender, then friendly. If frightened and worrisome, then tender. If re-
served, then tender. If weary, then messy. If lonely and weary and tender, then
reserved. If tender, then messy. If worrisome and tender and lonely, then messy. If
lonely and frightened and friendly, then messy. If reserved and messy and friendly,
then worrisome. If reserved, then frightened. If lonely and friendly and messy,
then tender. If frightened, then tender. If lonely, then frightened. If lonely, then
worrisome. If messy and friendly, then lonely. If weary, then reserved. If reserved
and frightened and weary, then tender. If worrisome and reserved and weary, then
frightened. If reserved and friendly, then worrisome. If worrisome, then lonely.
If messy and worrisome, then lonely. If frightened, then messy. If lonely, then
friendly. If weary, then lonely.
Question: weary worrisome reserved lonely to messy
Answer: true

StepGame StepGame is inspired from bAbl-17/19 benchmarks (Weston et al., 2015) and to mit-
igate bAbl’s limitations, such as fixed expressions, small number of reasoning hops and the lack of
noise for robustness test. Each data instance in the dataset describes a set of spatial relationships
among multiple objects and requires the model to deduce the relative position between two speci-
fied objects based on the given relational information. Similar to PrOntoQA, we generate 500,000
synthetic training dataset and 5,000 testing dataset.

The object Z is positioned directly above the object K. Object G is above object
I and to the right of it, too. N is diagonally to the bottom left of J. A is to the
bottom-left of N. K is positioned below and to the right of Y. O is at the lower side
of G. Z is to the right of Y. S is placed in the left direction of K. O is directly south
east of H. G is to the right of Q. H is placed at the lower right of K.
Question: What is the relation of the agent O to the agent G?
Answer: below
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SNLI The Stanford Natural Language Inference (SNLI) corpus collects of 570k human-written
English sentence pairs for entailment examination. There are 550,152 and 1,000 samples in training
and testing dataset. A typical example of SNLI is

Text: A man inspects the uniform of a figure in some East Asian country.
Hypothesis: The man is sleeping
Answer: contradiction

Yelp The Yelp Dataset is a comprehensive collection of data related to reviews of businesses, and
is widely used to predicting positive or negative reviews. We use all the 650,000 sequences for
training and 50,000 for testing. The format of reviews like:

Text: To keep it short and sweet: Save yourself $100. Buy a good board game,
your alcohol of choice, order a pizza, and invite your friends over. nWhat an
incredible disappointment. After seeing the enticing commercials so many times,
we decided to give this place a try on a double date. I understand the prices of
the play cards and won’t dispute them; however, the food was incredibly over-
priced, came out COLD (as in, sat on a counter without warmers for a minimum
of 30 minutes) and I literally had to ask the bartender if there was any vodka in
my drink. It was pure juice. $38 for three shots that had little-no alcohol in them.
(Not to mention, my glass was dirty, and I saw the bartender scoop the glass into
the ice basin because she was too lazy to use the sanitary scoop. I know the Food
and Beverage Commission would be as disappointed as I was.) The service was
terrible. Don’t ask for anything from your waiter, as they are a little too busy
on their cell phones or conversing amongst themselves. Was it fun to be in an
adult-themed arcade? Yes. If you’re looking for a good atmosphere to go with
friends to play games, I suppose I would advise you give it a shot. I would never
recommend their food, customer service, or drinks. Save yourself the money and
stay home, or go for a traditional bowling, figure skating, roller-blading, rock
climbing, basically any other physically-entertaining themed date instead.
Answer: Negative

DBpedia The DBpedia dataset is designed to evaluate a model’s capability to accurately classify
news articles into predefined categories based solely on their titles and concise summaries, thereby
testing both the model’s comprehension of textual semantics and its ability to perform hierarchical
classification tasks. The size of training and testing set are 560,000 and 70,000 separately.

Title: Export-Import Bank of Romania
Content: Exim Bank is The Export-Import Bank of Romania based in Bucharest.
Answer: 0

D.5 EXPERIMENTS COMPUTE RESOURCES

The experiments were conducted on a server with the following configuration:

• 48 AMD EPYC 7352 24-Core Processors, each with 512KB of cache
• 251GB of total system memory
• 8 NVIDIA GeForce RTX 4080 GPUs with 16GB of video memory each
• The experiments were run using Ubuntu 22.04 LTS operating system
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