

# 000 001 002 003 004 005 FUSECODEC: SEMANTIC-CONTEXTUAL FUSION 006 AND SUPERVISION FOR NEURAL CODECS 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032

## ABSTRACT

033 Speech tokenization enables discrete representation and facilitates speech lan-  
034 guage modeling. However, existing neural codecs capture low-level acoustic fea-  
035 tures, overlooking the semantic and contextual cues inherent to human speech.  
036 While recent efforts introduced semantic representations from self-supervised  
037 speech models or incorporated contextual representations from pre-trained lan-  
038 guage models, challenges remain in aligning and unifying the semantic and con-  
039 textual representations. We introduce FuseCodec, which unifies acoustic, seman-  
040 tic, and contextual representations through strong cross-modal alignment and  
041 globally informed supervision. We propose three complementary techniques: (i)  
042 Latent Representation Fusion, integrating semantic and contextual features di-  
043 rectly into the encoder latent space for robust and unified representation learning;  
044 (ii) Global Semantic-Contextual Supervision, supervising discrete tokens with  
045 globally pooled and broadcasted representations to enhance temporal consistency  
046 and cross-modal alignment; and (iii) Temporally Aligned Contextual Supervision,  
047 strengthening alignment by dynamically matching contextual and speech tokens  
048 within a local window for fine-grained token-level supervision. We further intro-  
049 duce FuseCodec-TTS, demonstrating our methodology’s applicability to zero-shot  
050 speech synthesis. Empirically, FuseCodec achieves state-of-the-art performance  
051 in LibriSpeech, surpassing EnCodec, SpeechTokenizer, and DAC in transcription  
052 accuracy, perceptual quality, intelligibility, and speaker similarity. Results high-  
053 light the effectiveness of contextually and semantically guided tokenization for  
054 speech tokenization and downstream tasks.

## 1 INTRODUCTION

035 Tokenization is a cornerstone of natural language processing (NLP), enabling language models to  
036 represent text in discrete units for efficient autoregressive modeling and scalable downstream ap-  
037 plications (Schmidt et al., 2024). Inspired by this paradigm, the speech domain has increasingly  
038 adopted neural codecs, popularized by EnCodec (Défossez et al., 2022) and SoundStream (Zeghi-  
039 dour et al., 2022). Neural codecs tokenize speech using an encoder, residual vector quantizer, and  
040 decoder architecture, enabling modeling discrete representations suitable for modular extension to  
041 downstream tasks such as speech synthesis (Wang et al., 2023).

042 However, learning discrete speech representations is more challenging than text due to the contin-  
043 uous and multidimensional nature of speech (Ju et al., 2024). While neural codecs learn *acoustic*  
044 *representations* (waveform and low-level signal characteristics), they struggle to capture high-level  
045 semantics, requiring downstream models to adopt additional self-supervised masked language ob-  
046 jectives to derive *semantic representations* (phonetic content and linguistic meaning) (Borsos et al.,  
047 2023). To bridge this gap, recent work incorporates semantic distillation from self-supervised speech  
048 models (Borsos et al., 2023; Zhang et al., 2024; Défossez et al., 2024), which improves both recon-  
049 struction quality and semantic awareness of learned tokens. Yet another fundamental aspect of hu-  
050 man speech remains missing: speech is inherently grounded in context and surrounding cues (Brown  
051 et al., 2022). Discrete speech representations, lacking contextual grounding, fall short of capturing  
052 this essential attribute Hallap et al. (2023). While language models have demonstrated strong ca-  
053 pabilities in modeling such contextual dependencies from text corpora (Devlin et al., 2019a; Peters  
054 et al., 2018), speech tokenizers have yet to fully leverage these capabilities. Although a recent neu-  
055 ral codec (Ahsan et al., 2024) explored matching discrete speech representations with contextual

representations from a pre-trained language model, it falls short in effective cross-modal alignment, constraining the model’s ability to fully unify semantic and contextual information.

Despite recent progress, three challenges remain. First, current approaches fail to jointly capture all three aspects of speech: acoustic (from neural codecs), semantic (from self-supervised speech models), and contextual (from language models). Prior work largely focuses on semantics, neglecting contextual grounding (Zhang et al., 2024; Défossez et al., 2024; Ye et al., 2024). Second, while a recent effort (Ahisan et al., 2024) attempts to integrate contextual representations, it lacks effective mechanisms for aligning text and speech modalities. Third, existing methods rely on similarity-based matching objectives, without directly integrating semantic and contextual information into the latent space, limiting coherence and downstream performance (Ji et al., 2025). Table 1 highlights these gaps, showing prior codecs are restricted to acoustic and partially semantic modeling, while our approach is the first to unify acoustic, semantic, and contextual aspects with direct integration and alignment.

To address these challenges, we propose three strategies that enrich discrete speech representations with unified semantic and contextual information: (i) **Latent Representation Fusion** (FuseCodec-Fusion) integrates semantic and contextual embeddings into the encoder’s latent space through cross-modal attention and additive fusion, yielding more coherent representations. (ii) **Global Semantic-Contextual Supervision** (FuseCodec-Distill) uses globally pooled and broadcasted modality vectors to supervise each quantized token across time, ensuring temporally consistent and globally informed learning. (iii) **Temporally Aligned Contextual Supervision** (FuseCodec-ContextAlign) dynamically matches contextual and speech tokens prior to time step-level similarity supervision, enabling fine-grained cross-modal alignment and enhancing representation quality.

FuseCodec establishes state-of-the-art performance on LibriSpeech test set, outperforming EnCodec, SpeechTokenizer, and DM-Codec in both intelligibility and perceptual quality. On Codec-SUPERB, it delivers the best signal-level and strong downstream task performance, surpassing recent codecs such as DAC, BigCodec, and X-Codec2 while operating at only 4 kbps. Moreover, FuseCodec extends effectively to zero-shot speech synthesis, underscoring the value of unified semantic and contextual grounding in discrete speech tokenization.

Therefore, our key contributions are:

- We introduce a unified speech tokenization framework with three codec variants: FuseCodec-Fusion, FuseCodec-Distill, and FuseCodec-ContextAlign, integrating semantic and contextual information via latent fusion, global supervision, and temporal alignment.
- Our approach substantially improves speech reconstruction and representation quality, establishing new state-of-the-art results on LibriSpeech and outperforming prior codecs on the Codec-SUPERB benchmark.
- We validate the effectiveness of each component through extensive ablations and demonstrate practical utility in downstream text-to-speech generation.

## 2 FUSECODEC

As shown in Figure 1, we first introduce the speech discretization pipeline (§2.1) and describe the extraction of semantic and contextual representations from pre-trained models (§2.2). We then present three strategies for integrating multimodal guidance into speech tokenization: (i) Latent Representation Fusion (§2.3.1), (ii) Global Semantic-Contextual Supervision (§2.3.2), and (iii) Temporally Aligned Contextual Supervision (§2.3.3). Finally, we outline the training objective (§2.4) and the extension to a text-to-speech task (§2.5).

| Model            | A | S | C | Sim. | Direct. | Align. |
|------------------|---|---|---|------|---------|--------|
| Encodec          | ✓ | ✗ | ✗ | ✗    | ✗       | ✗      |
| DAC              | ✓ | ✗ | ✗ | ✗    | ✗       | ✗      |
| FACodec          | ✓ | ✗ | ✗ | ✗    | ✗       | ✗      |
| BigCodec         | ✓ | ✗ | ✗ | ✗    | ✗       | ✗      |
| StableCodec      | ✓ | ✗ | ✗ | ✗    | ✗       | ✗      |
| WavTokenizer     | ✓ | ✓ | ✗ | ✗    | ✗       | ✗      |
| SpeechTokenizer  | ✓ | ✓ | ✗ | ✗    | ✗       | ✗      |
| Mimi             | ✓ | ✓ | ✗ | ✗    | ✗       | ✗      |
| DM-Codec         | ✓ | ✓ | ✓ | ✓    | ✗       | ✗      |
| <b>FuseCodec</b> | ✓ | ✓ | ✓ | ✓    | ✓       | ✓      |

Table 1: Codec comparison across key aspects. Most codecs capture only acoustic (A) and partially semantic (S) information with similarity-based supervision (Sim.), without contextual grounding (C), direct latent integration (Direct.), or modality alignment (Align.); our **FuseCodec** unifies all aspects.

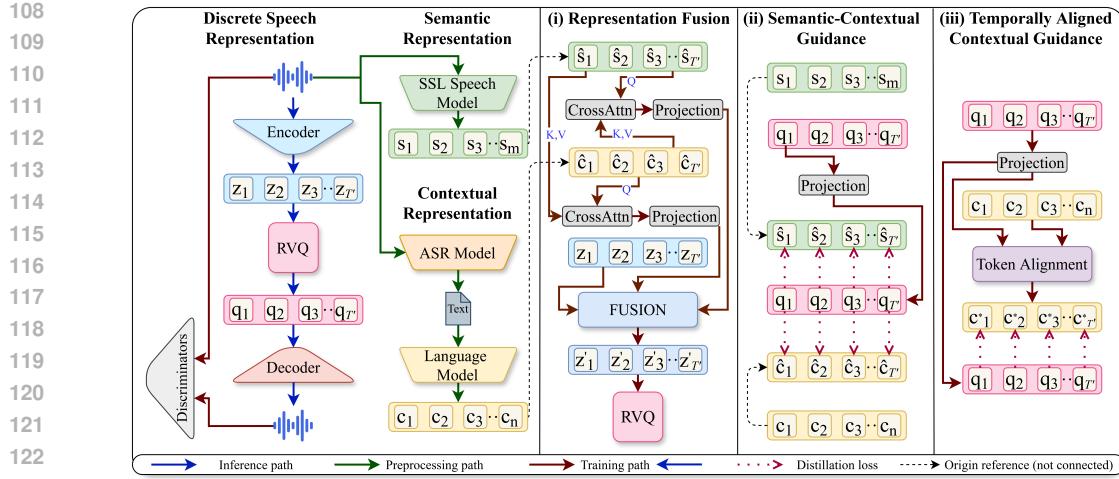


Figure 1: Overview of the FuseCodec speech tokenization framework. Input speech  $\mathbf{x}$  is encoded into latent features  $\mathbf{Z}$ , then quantized into discrete tokens  $\mathbf{Q}^{(1:K)}$  via residual vector quantization (RVQ). To enrich these tokens, we incorporate semantic ( $\mathbf{S}_i, \hat{\mathbf{S}}$ ) and contextual ( $\mathbf{C}_i, \hat{\mathbf{C}}, \mathbf{C}^*$ ) representations from frozen pre-trained models. Global vectors  $\hat{\mathbf{S}}$  and  $\hat{\mathbf{C}}$  are formed via mean pooling and [CLS] selection, respectively. We propose three strategies: (i) Latent Representation Fusion, injecting global vectors  $\hat{\mathbf{S}}, \hat{\mathbf{C}}$  with  $\mathbf{Z}$  to yield fused latent  $\mathbf{Z}'$ ; (ii) Global Semantic-Contextual Supervision, supervising  $\mathbf{Q}^{(1)}$  with global vectors; and (iii) Temporally Aligned Contextual Supervision, aligning full contextual embeddings  $\{\mathbf{C}_i\}$  to RVQ outputs via a windowed matching algorithm to form  $\mathbf{C}^*$ .

### 2.1 DISCRETE SPEECH REPRESENTATION

Discrete tokens serve as the foundation of neural codec-based speech-language models. Following established approaches (Défossez et al., 2022; Zhang et al., 2024; Ahasan et al., 2024), we discretize audio using an encoder-quantizer setup.

Given an input speech waveform  $\mathbf{x}$ , an encoder  $E$  compresses  $\mathbf{x}$  into a sequence of latent representations  $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^{T'}$ , where  $T'$  is the number of encoded frames. The encoder output  $\mathbf{Z}$  is then passed through a Residual Vector Quantization module (RVQ), consisting of  $K$  quantization layers. For layer  $k \in \{1, \dots, K\}$ , the RVQ produces a sequence of token indices  $\{q_i^{(k)}\}_{i=1}^{T'}$ . Each index  $q_i^{(k)}$  is then mapped to its embedding in the  $k$ -th codebook, yielding the sequence of quantized vectors  $\mathbf{Q}^{(k)} = \{\mathbf{q}_i^{(k)}\}_{i=1}^{T'}$ , where  $\mathbf{q}_i^{(k)} \in \mathbb{R}^D$  and  $D$  denotes the embedding dimensionality.

### 2.2 MULTIMODAL REPRESENTATION EXTRACTION

Concurrently, we extract representations from pre-trained models. Specifically, we obtain contextual representations from a pre-trained language model, which are dynamic, token-level embeddings that adapt to surrounding text (Devlin et al., 2019b; Peters et al., 2018). In parallel, we derive semantic representations from a pre-trained self-supervised speech model, which capture the high-level structure and meaning (Borsos et al., 2023).

**Contextual Representation.** The input speech waveform  $\mathbf{x}$  is transcribed into text  $\mathbf{x}'$  using a pre-trained Automatic Speech Recognition (ASR) model  $A$ , such that  $\mathbf{x}' = A(\mathbf{x})$ . The ASR model functions purely as a speech-to-text converter and remains detached during training. The transcribed text  $\mathbf{x}'$  is processed by a pre-trained language model  $B$ , which produces a token sequence  $\{c_i\}_{i=1}^n$ . For each token  $c_i$ , we extract hidden states from all  $L$  layers, represented as  $\{\mathbf{h}_i^{(l)}\}_{l=1}^L$ . These are averaged to produce contextual embeddings:  $\mathbf{C}_i = \frac{1}{L} \sum_{l=1}^L \mathbf{h}_i^{(l)}$ , where  $\mathbf{C}_i \in \mathbb{R}^{D'}$ , and  $D'$  denotes the hidden dimension of the language model.

**Semantic Representation.** The input speech waveform  $\mathbf{x}$  is passed through a pre-trained self-supervised speech model  $H$ , which outputs a sequence of frame-level tokens  $\{s_i\}_{i=1}^m$ . For each frame  $s_i$ , we extract hidden states from all  $L$  layers:  $\{\mathbf{h}_i^{(l)}\}_{l=1}^L$ . These are averaged to obtain semantic embeddings:  $\mathbf{S}_i = \frac{1}{L} \sum_{l=1}^L \mathbf{h}_i^{(l)}$ , where  $\mathbf{S}_i \in \mathbb{R}^{D'}$ , and  $D'$  denotes the hidden dimension.

162 2.3 SEMANTIC-CONTEXTUAL GUIDANCE  
163

164 Our goal is to enrich discrete speech representations by integrating contextual and semantic information,  
165 enabling tighter alignment between acoustic structure and linguistic meaning. Prior work has  
166 explored similar directions: Zhang et al. (2024); Défossez et al. (2024) aligned HuBERT-based  
167 semantic features with the first RVQ layer using cosine similarity, while Ahasan et al. (2024) matched  
168 BERT-based embeddings to RVQ outputs via padded sequences and similarity loss. However, these  
169 methods either rely on a single modality (semantic in Zhang et al. (2024); Défossez et al. (2024)) or  
170 lack robust cross-modal alignment (misaligned context in Ahasan et al. (2024)).

171 In contrast, we unify semantic and contextual representations while ensuring robust alignment. For  
172 this, we propose three strategies: (i) Latent Representation Fusion (§2.3.1), (ii) Global Semantic-  
173 Contextual Supervision (§2.3.2), and (iii) Temporally Aligned Contextual Supervision (§2.3.3)

## 174 2.3.1 LATENT REPRESENTATION FUSION

175 We first propose to fuse semantic and contextual representations with the encoder’s latent represen-  
176 tations. The enhanced latents are then passed to the residual vector quantization (RVQ) module,  
177 enabling the learning of discrete codes enriched with semantic and contextual information.

178 Specifically, we apply mean pooling over the semantic embeddings  $\{\mathbf{S}_i\}_{i=1}^m$  to compute the global  
179 semantic vector  $\hat{\mathbf{S}} = \frac{1}{m} \sum_{i=1}^m \mathbf{S}_i$ . For the textual modality, we select the [CLS] token embed-  
180 ding from the contextual representations  $\{\mathbf{C}_i\}_{i=1}^n$ , yielding  $\hat{\mathbf{C}} = \mathbf{C}_{[\text{CLS}]}$ . We then broadcast each  
181 global vector across the discrete token sequence length  $T'$ , forming:  $\tilde{\mathbf{S}} = \{\hat{\mathbf{S}}\}_{t=1}^{T'}$ , and  $\tilde{\mathbf{C}} = \{\hat{\mathbf{C}}\}_{t=1}^{T'}$ .  
182 Broadcasting allows each token to inherit the full semantic or contextual knowledge of the sequence,  
183 ensuring every position is enriched with the most informative signal for cross-modal fusion or dis-  
184 tillation. Next, we apply multi-head cross-attention to enable cross-modal interaction, followed by  
185 an MLP projection to match the encoder dimension  $D$ :

$$186 \mathbf{S}' = \text{CrossAttention}(\tilde{\mathbf{S}}, \tilde{\mathbf{C}}, \tilde{\mathbf{C}}) \mathbf{W}_S, \quad \mathbf{C}' = \text{CrossAttention}(\tilde{\mathbf{C}}, \tilde{\mathbf{S}}, \tilde{\mathbf{S}}) \mathbf{W}_C, \quad (1)$$

187 where  $\mathbf{W}_S, \mathbf{W}_C \in \mathbb{R}^{D' \times D}$  are learned projection matrices and  $\text{CrossAttention}(\cdot)$  denotes multi-  
188 head cross-attention. Finally, we fuse the modality signals with the latent representation  $\mathbf{Z} \in \mathbb{R}^{T' \times D}$   
189 via additive fusion and modality dropout:

$$190 \mathbf{Z}' = \mathbf{Z} + (\mathbf{S}' \odot \mathcal{D}_S) + (\mathbf{C}' \odot \mathcal{D}_C), \quad (2)$$

191 where  $\mathcal{D}_S, \mathcal{D}_C \in \{0, 1\}^{T' \times D}$  are stochastic dropout masks applied during training. Dropout pro-  
192 motes robustness by preventing the quantized representations from over-relying on the fused modal-  
193 ities (Hussen Abdelaziz et al., 2020), and allows inference using only the encoder signal. The  
194 resulting fused representation  $\mathbf{Z}'$  is then passed to the RVQ module for discrete speech quantization.

## 195 2.3.2 GLOBAL SEMANTIC-CONTEXTUAL SUPERVISION

196 In addition to latent fusion, we introduce an alternative representation supervision strategy, moti-  
197 vated by its effectiveness of similarity matching in prior speech tokenization work (Zhang et al.,  
198 2024; Défossez et al., 2024; Ahasan et al., 2024). Existing methods typically constrain representa-  
199 tions along feature dimensions or through local frame-level alignment, which limits temporal con-  
200 sistency. In contrast, we propose a global-to-local time-axis distillation scheme: global semantic  
201 ( $\hat{\mathbf{S}}$ ) and contextual ( $\hat{\mathbf{C}}$ ) vectors directly supervise the RVQ outputs across time, enforcing consistent  
202 temporal guidance and pushing the quantized space to capture modality-aware temporal dynamics.

203 Together with our global semantic–contextual supervision, we redefine the combined distillation  
204 loss of Ahasan et al. (2024) to operate along the temporal rather than the feature axis. By em-  
205 bedding global signals into every timestep, our approach achieves stronger cross-modal coherence,  
206 temporally robust discrete codes, and richer unification of semantic and contextual structure.

207 Given the broadcasted global signals (see 2.3.1)  $\tilde{\mathbf{S}}, \tilde{\mathbf{C}} \in \mathbb{R}^{T' \times D'}$ , we apply a linear projection to  
208 the first-layer RVQ output  $\mathbf{Q}^{(1)} \in \mathbb{R}^{T' \times D}$  to align dimensionality:  $\mathbf{Q}'^{(1)} = \mathbf{Q}^{(1)} \mathbf{W}$ , where  $\mathbf{W} \in$   
209  $\mathbb{R}^{D \times D'}$ . We then apply the *semantic–contextual supervision loss*:

$$210 \mathcal{L}_{\text{distill}} = -\frac{1}{T'} \sum_{t=1}^{T'} \log \sigma \left( \frac{1}{2} [\cos(\mathbf{Q}'^{(1)}_t, \tilde{\mathbf{S}}_t) + \cos(\mathbf{Q}'^{(1)}_t, \tilde{\mathbf{C}}_t)] \right) \quad (3)$$

216 where  $\sigma(\cdot)$  is the sigmoid function and  $\cos(\cdot, \cdot)$  denotes cosine similarity. This formulation pro-  
 217 vides fine-grained temporal supervision using global modality signals, enhancing the representa-  
 218 tional quality of the learned discrete tokens.

### 219 2.3.3 TEMPORALLY ALIGNED CONTEXTUAL SUPERVISION

220 Building on our use of the global contextual vector  $\hat{\mathbf{C}}$  for supervision, we propose a finer-grained  
 221 approach that leverages the full sequence of contextual embeddings  $\{\mathbf{C}_i\}_{i=1}^n$  to supervise the RVQ  
 222 token sequence  $\{\mathbf{q}_t^{(1)}\}_{t=1}^{T'}$ , enabling richer, timestep-level guidance. A key challenge, however, is  
 223 the mismatch in sequence lengths between the contextual embeddings ( $n$ ) and the RVQ output ( $T'$ ).

224 To address this, we introduce a *dynamic window-based alignment strategy* (Algorithm 1). For each contextual embedding  $\mathbf{C}_i$ ,  
 225 the method defines a localized search window of RVQ tokens: either evenly divided across  
 226 the sequence or adaptively shifted based on  
 227 the previous match. Within this window, we  
 228 compute cosine similarities and assign  $\mathbf{C}_i$   
 229 to the token(s) with maximum similarity. If  
 230 multiple tokens achieve the maximum, the  
 231 embedding is broadcast to all of them, capturing  
 232 the frequent case where a single text token  
 233 corresponds to multiple acoustic frame tokens.  
 234 After each match, the search window shifts for-  
 235 ward, ensuring coverage of the entire sequence  
 236 without overlap or collapse. The resulting  
 237 sequence  $\mathbf{C}^* \in \mathbb{R}^{T' \times D'}$  serves as a temporally  
 238 aligned supervision signal matched to RVQ  
 239 tokens  $\{\mathbf{Q}_t^{(1)}\}_{t=1}^{T'}$  for the *aligned contextual*  
 240 *supervision loss*, applied as:

$$241 \mathcal{L}_{\text{distill}} = -\frac{1}{T'} \sum_{t=1}^{T'} \log \sigma \left( \cos \left( \mathbf{Q}_t^{(1)}, \mathbf{C}_t^* \right) \right) \quad (4)$$

242 where  $\mathbf{Q}'^{(1)} = \mathbf{Q}^{(1)} \mathbf{W} \in \mathbb{R}^{T' \times D'}$  is the linearly  
 243 projected RVQ output, and  $\sigma(\cdot)$  denotes the  
 244 sigmoid function. This loss enforces temporally  
 245 precise alignment between RVQ tokens and  
 246 their corresponding contextual representations.

### 247 2.4 ARCHITECTURE AND TRAINING OBJECTIVE

248 We build on widely adopted neural codec architectures and training objectives, following (Défossez  
 249 et al., 2022; Zhang et al., 2024; Ahasan et al., 2024), to establish a strong and reliable foundation.  
 250 We contribute to enhancing the learned representations through semantic and contextual supervision  
 251 and fusion without altering the model architecture.

252 **Architecture.** We use wav2vec 2.0 (base-960h) as the ASR model  $A$  (Baevski et al., 2020), BERT  
 253 (bert-base-uncased) as the language model  $B$  (Devlin et al., 2019a), and HuBERT (base-ls960) as  
 254 the self-supervised speech model  $H$  (Hsu et al., 2021). All pre-trained models are frozen during  
 255 training. The speech tokenizer consists of an encoder  $E$ , an RVQ module with 8 quantization layers  
 256 (codebooks) of size 1024, a decoder  $D$ , and three discriminators (multi-period, multi-scale, and  
 257 multi-scale STFT). Architectural details are provided in Sec. E.1. Quantization operates on 50 Hz  
 258 frame rates. The encoder and RVQ use an embedding dimension of  $D = 1024$ , while the pre-trained  
 259 language and speech model have  $D' = 768$ . Cross-Attentions are implemented using 8-heads. The  
 260 dropout masks  $\mathcal{D}_S$  and  $\mathcal{D}_C$  are applied at a rate of 10%.

261 **Training Objective.** We also adopt a multi-objective training setup grounded in established neural  
 262 codec practices. This includes time-domain reconstruction loss  $\mathcal{L}_{\text{time}}$ , frequency-domain reconstruc-  
 263 tion loss  $\mathcal{L}_{\text{freq}}$ , adversarial loss  $\mathcal{L}_{\text{gen}}$ , feature matching loss  $\mathcal{L}_{\text{feat}}$ , and RVQ commitment loss  $\mathcal{L}_{\text{commit}}$

---

Algorithm 1: Window-Based Token Alignment

---

**Require:** Contextual embeddings  $\{\mathbf{C}_i\}_{i=1}^n$ ,  
 RVQ tokens  $\{\mathbf{Q}_t^{(1)}\}_{t=1}^{T'}$ , optional window  
 size  $w$

- 1: **if**  $w$  not provided **then**
- 2:    $w \leftarrow \lfloor T'/n \rfloor$
- 3: **end if**
- 4: Initialize aligned output  $\mathbf{C}^* \in \mathbb{R}^{T' \times D'} \leftarrow 0$
- 5: Initialize  $\ell \leftarrow 0$  {last matched index}
- 6: **for**  $i = 1$  to  $n$  **do**
- 7:   **if** dynamic window **then**
- 8:      $s \leftarrow \ell + 1$  if  $i > 1$ , else 0 {start index}
- 9:      $e \leftarrow \min(s + w, T')$  {end index}
- 10:   **else**
- 11:      $s \leftarrow (i - 1) \cdot w$ ,  $e \leftarrow \min(s + w, T')$
- 12:   **end if**
- 13:   Compute cosine similarity  
 $\alpha_t = \cos(\mathbf{C}_i, \mathbf{Q}_t^{(1)})$  for  $t \in [s, e]$
- 14:   Let  $\tau \leftarrow \max_t \alpha_t$  {maximum similarity}
- 15:    $\mathcal{T}_i \leftarrow \{t \mid \alpha_t \geq \tau\}$
- 16:   **for** each  $t \in \mathcal{T}_i$  **do**
- 17:      $\mathbf{C}_t^* \leftarrow \mathbf{C}_i$
- 18:   **end for**
- 19:    $\ell \leftarrow \max(\mathcal{T}_i)$
- 20: **end for**
- 21: **return**  $\mathbf{C}^*$

---

(see Sec. E.2 for details). For our proposed semantic-contextual fusion and supervision, the applied loss depends on the model variant: when training FuseCodec-Distill we use the semantic–contextual supervision loss as  $\mathcal{L}_{\text{distill}}$  (Sec. 2.3.2); when training FuseCodec-ContextAlign we use the aligned contextual supervision loss as  $\mathcal{L}_{\text{distill}}$  (Sec. 2.3.3); and when training FuseCodec-Fusion (Sec. 2.3.1) both are disabled, with  $\mathcal{L}_{\text{distill}} = 0$ . The final training objective is a weighted sum:

$$\mathcal{L}_{\text{total}} = \lambda_{\text{time}} \mathcal{L}_{\text{time}} + \lambda_{\text{freq}} \mathcal{L}_{\text{freq}} + \lambda_{\text{gen}} \mathcal{L}_{\text{gen}} + \lambda_{\text{feat}} \mathcal{L}_{\text{feat}} + \lambda_{\text{commit}} \mathcal{L}_{\text{commit}} + (\lambda_{\text{distill}} \mathcal{L}_{\text{distill}} \text{ or } 0) \quad (5)$$

## 2.5 DOWNSTREAM EXTENSION TO TTS MODEL

We extend the learned discrete token representations to a downstream text-to-speech (TTS) task, following the neural codec language modeling framework and objective used in prior work (Wang et al., 2023; Zhang et al., 2024; Ahasan et al., 2024). In this paradigm, speech synthesis is performed by predicting quantized acoustic tokens produced by the RVQ and decoded by a neural codec. We extend the learned discrete tokens to TTS, with variants inheriting each fusion or supervision strategy, enabling synthesis from tokens that capture acoustic, semantic, and contextual information.

Given a phoneme sequence  $\mathbf{p}$  and an acoustic prompt  $\mathbf{A} \in \mathbb{R}^{\tau \times K}$  extracted from a reference utterance using FuseCodec, we predict discrete token indices  $q^{(1)}, \dots, q^{(K)}$  for the  $K$  RVQ layers.

To model coarse content and prosody, the first-layer tokens  $q^{(1)}$  are predicted autoregressively with a decoder-only Transformer conditioned on  $\mathbf{p}$ , using the objective:

$$\mathcal{L}_{\text{AR}} = -\log \prod_{i=1}^{T'} p(q_i^{(1)} \mid q_{<i}^{(1)}, \mathbf{p}; \theta_{\text{AR}}) \quad (6)$$

For fine-grained acoustic details, higher-layer tokens  $q^{(k)}$  ( $k = 2, \dots, K$ ) are predicted non-autoregressively conditioned on  $q^{(<k)}$ ,  $\mathbf{p}$ , and  $\mathbf{A}$ :

$$\mathcal{L}_{\text{NAR}} = -\log \prod_{k=2}^K p(q^{(k)} \mid q^{(<k)}, \mathbf{p}, \mathbf{A}; \theta_{\text{NAR}}) \quad (7)$$

Both AR and NAR models use 12-layer Transformers with 16 attention heads, 1024-dim embeddings, 4096-dim feed-forward layers, and 0.1 dropout. Predicted tokens are mapped to embeddings  $\mathbf{Q}^{(k)}$  and decoded by FuseCodec to synthesize speech.

## 3 EXPERIMENTS

We describe our experimental setup (§3.1) and present main results and ablation studies (§3.2–§3.3).

### 3.1 EXPERIMENTAL SETUP

**Training.** Following prior work in speech tokenization (Zhang et al., 2024; Ahasan et al., 2024), we train FuseCodec on the LibriSpeech (Panayotov et al., 2015) train-clean-100 subset, which contains 100 hours of English speech from 251 speakers, sampled at 16 kHz. During training, we randomly crop 3-second audio segments and reserve 100 samples for validation. For FuseCodec-TTS, we combine the train and dev subsets of LibriTTS (Zen et al., 2019), comprising 570 hours of speech. FuseCodec is trained for 100 epochs on two A40 GPUs with a batch size of 6, using the Adam optimizer with a learning rate of  $1 \times 10^{-4}$  and exponential decay factor 0.98. FuseCodec-TTS is trained on A100 and L40S GPUs. The AR model is trained for 200 epochs, and the NAR model for 150 epochs. Training employs dynamic batching, with each batch containing up to 550 seconds of audio for AR and 100–200 seconds for NAR. We use the ScaledAdam optimizer with a learning rate of  $5 \times 10^{-2}$  and 200 warm-up steps.

**Baselines.** We compare FuseCodec against both established and recent strong baseline speech tokenizers, including EnCodec (Défossez et al., 2022) and SpeechTokenizer (Zhang et al., 2024), BigCodec (Xin et al., 2024), DAC (Kumar et al., 2023), DM-Codec (LM+SM) (Ahasan et al., 2024) FCodec (NaturalSpeech 3) (Ju et al., 2024), Moshi (Défossez et al., 2024), StableCodec (Parker et al., 2025), WavTokenize (Ji et al., 2025), and X-codec2 (Ye et al., 2025). All baseline results are obtained using official released checkpoints. For FuseCodec-TTS, we compare with neural codec language models that incorporate external representation guidance. Specifically, we compare against USLM (from SpeechTokenizer) (Zhang et al., 2024) and DM-Codec-TTS (Ahasan et al., 2024), using their official released LibriTTS trained checkpoints.

324 **Metrics.** We evaluate FuseCodec on: *Content Preservation* and *Speech Naturalness*. For *Content*  
 325 *Preservation*, generated speech is transcribed with Whisper (medium) (Radford et al., 2023) and  
 326 compared to the reference. We report *Word Error Rate (WER)*:  $WER = \frac{S+D+I}{N}$ , with  $S, D, I$  as  
 327 substitutions, deletions, insertions, and  $N$  the reference word count. *Word Information Lost (WIL)*  
 328 is  $WIL = 1 - \frac{C}{N} + \frac{C}{P}$ , where  $C$  is correct words and  $P$  predicted words. *Short-Time Objective Intel-*  
 329 *ligibility (STOI)* estimates intelligibility via short-time spectral similarity. For *Speech Naturalness*,  
 330 we assess perceptual and acoustic fidelity using reference-based and learned metrics. *ViSQOL* and  
 331 *PESQ* model auditory similarity and signal distortion, respectively. *UTMOS* predicts human-judged  
 332 naturalness, and *Similarity* computes cosine similarity between L2-normalized WavLM-TDNN em-  
 333 beddings (Chen et al., 2022) to measure speaker or content consistency. For FuseCodec-TTS,  
 334 reference-based metrics (STOI, ViSQOL, PESQ) are omitted since references are unavailable.  
 335

### 3.2 MAIN RESULTS

336 We evaluate FuseCodec variants on speech reconstruction (§3.2.1), representation quality (§3.2.2),  
 337 and downstream speech generation (§3.2.3).  
 338

#### 339 3.2.1 SPEECH RECONSTRUCTION EVALUATION

340 Table 2: **Speech reconstruction results** on content preservation and naturalness metrics using vari-  
 341 ous codecs. **Bold** highlights best scores, and underline indicates our second-best scores. Bw = band-  
 342 width in kbps, Nq = number of quantizers, FR = frame rate in Hz. Overall, **FuseCodec variants**  
 343 **consistently achieve strong reconstruction performance by unifying semantic and contextual**  
 344 **information in discrete representations.**

| 346 <b>Model</b>       | 347 Config (Bw/Nq/FR) | Content Preservation |                  |                   | Speech Naturalness  |                   |                    |                         |
|------------------------|-----------------------|----------------------|------------------|-------------------|---------------------|-------------------|--------------------|-------------------------|
|                        |                       | 348 <u>WER</u> ↓     | 349 <u>WIL</u> ↓ | 350 <u>STOI</u> ↑ | 351 <u>ViSQOL</u> ↑ | 352 <u>PESQ</u> ↑ | 353 <u>UTMOS</u> ↑ | 354 <u>Similarity</u> ↑ |
| BigCodec               | 1.04 / 8 / 50         | 4.58                 | 7.45             | 0.93              | 3.02                | 2.68              | 3.44               | 0.996                   |
| DAC                    | 6 / 12 / 50           | 4.09                 | 6.54             | 0.94              | 3.36                | 2.72              | 3.33               | 0.996                   |
| DM-Codec               | 4 / 8 / 50            | 4.09                 | 6.75             | 0.93              | 3.20                | 2.77              | 3.45               | 0.994                   |
| EnCodec                | 6 / 8 / 75            | 4.04                 | 6.58             | 0.92              | 3.06                | 2.31              | 2.41               | 0.980                   |
| FACodec                | 4.8 / 6 / 80          | 4.11                 | 6.58             | <b>0.95</b>       | 3.11                | 2.89              | 3.45               | 0.996                   |
| Mimi                   | 1.1 / 8 / 12.5        | 11.61                | 18.05            | 0.85              | 2.49                | 1.69              | 2.28               | 0.934                   |
| SpeechTokenizer        | 4 / 8 / 50            | 4.16                 | 6.71             | 0.92              | 3.08                | 2.60              | 3.41               | 0.996                   |
| StableCodec            | 0.625 / 6 / 25        | 10.32                | 15.87            | 0.88              | 2.51                | 1.95              | 3.58               | 0.984                   |
| WavTokenizer           | 0.9 / 1 / 75          | 6.28                 | 10.11            | 0.89              | 2.59                | 2.13              | 3.36               | 0.993                   |
| X-codec2               | 0.8 / 1 / 50          | 4.46                 | 7.20             | 0.92              | 2.87                | 2.43              | 3.55               | <b>0.997</b>            |
| FuseCodec (Baseline)   | 6 / 8 / 50            | 4.62                 | 7.44             | 0.93              | 2.95                | 2.54              | 3.18               | 0.990                   |
| FuseCodec-ContextAlign | 4 / 8 / 50            | 4.15                 | 6.70             | 0.93              | 3.18                | 2.85              | <b>3.65</b>        | 0.995                   |
| FuseCodec-Distill      | 4 / 8 / 50            | 4.09                 | 6.60             | <u>0.94</u>       | <u>3.43</u>         | <u>3.06</u>       | <b>3.65</b>        | <u>0.996</u>            |
| FuseCodec-Fusion       | 4 / 8 / 50            | <b>3.99</b>          | <b>6.45</b>      | <b>0.95</b>       | <b>3.47</b>         | <b>3.13</b>       | <u>3.63</u>        | 0.995                   |

355 This evaluation measures how well FuseCodec preserves both linguistic content and perceptual quality  
 356 in speech reconstruction. We compare against widely used and trending codecs, selecting model  
 357 configurations that closely match ours for fairness. Consistent with established practice, we evaluate  
 358 on the LibriSpeech test-clean subset (2620 utterances), which has been the standard and exclusive  
 359 benchmark in prior neural codec studies (Zhang et al., 2024; Ahasan et al., 2024; Xin et al., 2024;  
 360 Défossez et al., 2024; Parker et al., 2025; Ye et al., 2024; 2025). Table 2 reports the results, revealing:  
 361

362 *(i) Best overall. FuseCodec-Fusion consistently achieves the strongest reconstruction perfor-*  
 363 *mance.* It records the lowest WER (3.99) and WIL (6.45), along with the highest STOI (0.95),  
 364 ViSQOL (3.47), and PESQ (3.13). Compared to EnCodec, which models only acoustics, and FA-  
 365 Codec, which separates attributes without unifying them, FuseCodec-Fusion integrates both semantic  
 366 and contextual signals directly into the encoder’s latent space. This unified representation im-  
 367 proves intelligibility and perceptual quality, also outperforming compression-focused models such  
 368 as DAC, BigCodec, StableCodec, WavTokenizer, and X-Codec2.

369 *(ii) Naturalness and speaker consistency. FuseCodec-Distill excels in perceptual quality and*  
 370 *speaker similarity*, achieving the top UTMOS (3.65) and Similarity (0.996), while ranking second  
 371 in STOI (0.94), ViSQOL (3.43), and PESQ (3.06). It surpasses models such as SpeechTokenizer,  
 372 X-Codec2, and Mimi, which capture only semantic signals, as well as codecs lacking supervision:  
 373 EnCodec, DAC, StableCodec, and WavTokenizer. By supervising the quantized space with global  
 374 semantic and contextual signals, FuseCodec-Distill aligns discrete tokens with both linguistic and  
 375 acoustic content, yielding natural and consistent speech.

376 *(iii) Interpretable local alignment. FuseCodec-ContextAlign delivers competitive performance*  
 377 *with aligned token-level supervision.* It matches the top UTMOS (3.65) and improves over the

baseline FuseCodec (Baseline) across all metrics, outperforming BigCodec, Mimi, SpeechTokenizer, StableCodec, WavTokenizer, and X-Codec2 with lower WER (6.70), WIL (4.15), and higher STOI (0.94), ViSQOL (3.18), and PESQ (2.85). These gains show that aligning discrete tokens with contextual information strengthens local content preservation and enhances intelligibility. Although its constrained alignment limits global contextual guidance, yielding slightly lower performance than FuseCodec-Fusion and FuseCodec-Distill. Taken together, these results show that integrating semantic and contextual signals in the latent space substantially improves speech reconstruction.

### 3.2.2 REPRESENTATION QUALITY EVALUATION

Table 3: **Representation quality results** on the Codec-SUPERB benchmark. Signal-level evaluation: **Audio** (Mel, STFT) and **Speech** (PESQ, STOI, F0CORR) metrics. Application-level evaluation: **ASR** = automatic speech recognition, **ASV** = speaker verification, **ER** = emotion recognition, **AEC** = audio event classification. **Bold** highlights the best scores, and underline indicates our second-best scores. Overall, **FuseCodec variants achieve top performance across both signal-level and downstream tasks, demonstrating effective latent representations at low bitrates.**

| Model                  | (a) Codec Information |                           | (b) Signal-level |              | (c) Application-level |             |              |              |
|------------------------|-----------------------|---------------------------|------------------|--------------|-----------------------|-------------|--------------|--------------|
|                        | kbps                  | Other Configuration       | Speech↑          | Audio↑       | ASR↓                  | ASV↓        | ER↑          | AEC↑         |
| None                   | -                     | -                         | -                | -            | 2.96                  | 0.86        | 69.84        | 45.68        |
| SpeechTokenizer        | 4                     | 16k                       | 0.644            | 0.581        | 4.02                  | 3.31        | 65.49        | 15.11        |
| AcademiCodec           | 2                     | 16k_320d                  | 0.610            | 0.574        | 4.94                  | 4.43        | 65.96        | 16.19        |
| AcademiCodec           | 2                     | 16k_320d_large_uni        | 0.617            | 0.574        | 6.26                  | 5.22        | 64.63        | 28.65        |
| AcademiCodec           | 3                     | 24k_320d                  | 0.611            | 0.592        | 4.49                  | 6.16        | 65.95        | 14.01        |
| AudioDec               | 6.4                   | 24k_320d                  | 0.596            | 0.602        | 3.94                  | 5.22        | 65.70        | 17.41        |
| DAC                    | 6                     | 16k                       | <b>0.798</b>     | 0.591        | <b>3.26</b>           | <b>1.59</b> | 68.81        | 41.08        |
| EnCodec                | 1.5                   | 24k                       | 0.579            | 0.594        | 9.21                  | 13.88       | 58.84        | 18.84        |
| EnCodec                | 3                     | 24k                       | 0.636            | 0.599        | 4.34                  | 6.85        | 63.54        | 26.63        |
| EnCodec                | 6                     | 24k                       | 0.697            | 0.602        | 3.49                  | 4.28        | 66.18        | 32.43        |
| FunCodec               | 8                     | en_librirts_16k_nq32ds640 | 0.678            | 0.578        | 3.43                  | 2.04        | 68.26        | 21.43        |
| FunCodec               | 8                     | zh_en_16k_nq32ds640       | 0.718            | 0.583        | 3.27                  | 1.60        | 69.55        | 33.59        |
| FuseCodec-ContextAlign | 4                     | 16k                       | 0.698            | 0.771        | 4.24                  | 3.40        | 73.19        | 57.20        |
| FuseCodec-Distill      | 4                     | 16k                       | 0.731            | 0.784        | 3.38                  | 3.12        | 73.82        | <b>57.25</b> |
| FuseCodec-Fusion       | 4                     | 16k                       | <u>0.744</u>     | <b>0.785</b> | 3.44                  | 3.85        | <b>73.96</b> | 55.35        |

To assess the representational quality of FuseCodec beyond reconstruction, we conduct experiments on the Codec-SUPERB benchmark (Wu et al., 2024). The benchmark comprises application-level tasks: *automatic speech recognition (ASR)*; *automatic speaker verification (ASV)*; *emotion recognition (ER)*; and *audio event classification (AEC)*. Signal-level evaluation is reported separately for *audio* (Mel, STFT) and *speech* (PESQ, STOI, F0CORR). For fair comparison, we report results from (Wu et al., 2024), selecting models with configurations aligned to ours (4 kbps, 16 kHz). Baselines with higher bandwidths ( $\geq 8$  kbps) or sampling rates ( $> 24$  kHz) are excluded, as their advantage comes from greater information capacity rather than method design. The music metric is omitted, as it lies outside our scope. Table 3 presents the evaluation results, highlighting:

- (i) *High-quality speech and audio signals.* **FuseCodec-Fusion achieves the highest signal-level performance**, with the top Audio score (0.785) and second-highest Speech score (0.744), outperforming SpeechTokenizer, AudioDec, FunCodec, EnCodec, and AcademiCodec. Additionally, **FuseCodec-Distill and FuseCodec-ContextAlign maintain strong signal-level quality**, with Distill at 0.784 Audio and 0.731 Speech, and ContextAlign at 0.771 Audio and 0.698 Speech, showing that FuseCodec improves signal quality through semantic and contextual information retention.
- (ii) *Downstream application generalization.* **FuseCodec variants excel on multiple downstream tasks**, showing strong generalization beyond speech reconstruction. Specifically, FuseCodec-Distill attains the best Audio Event Classification performance (57.25), while FuseCodec-Fusion achieves the highest Emotion Recognition accuracy (73.96). These results indicate that the representations learned by FuseCodec effectively capture task-relevant information, enabling superior performance on ER and AEC, despite FuseCodec being trained primarily for reconstruction.
- (iii) *Balanced performance at lower bitrate.* While DAC achieves a slightly lower ASR error (3.26) and FunCodec reaches the lowest ASV error (1.60), **FuseCodec variants provide consistently strong performance across all metrics at only 4 kbps**, substantially lower than DAC (6 kbps) and FunCodec (8 kbps). This efficiency makes FuseCodec particularly well-suited for real-world speech applications, where reduced bitrates allow faster streaming, lower latency, and high-quality audio.

432 Table 4: **Speech generation results** on LibriSpeech and VCTK using zero-shot TTS. FuseCodec-  
 433 TTS variants are compared with official neural codec-based TTS checkpoints trained on LibriTTS.  
 434 **Bold** highlights best scores, and underline indicates second-best scores. Overall, **FuseCodec-  
 435 Distill-TTS achieves the strongest intelligibility, FuseCodec-ContextAlign-TTS leads in natural-  
 436 ness, and FuseCodec-Fusion-TTS provides a well-rounded trade-off.**

| Model                      | WER ↓       |             | WIL ↓        |             | Similarity ↑ |             | UTMOS ↑     |             |
|----------------------------|-------------|-------------|--------------|-------------|--------------|-------------|-------------|-------------|
|                            | LibriSpeech | VCTK        | LibriSpeech  | VCTK        | LibriSpeech  | VCTK        | LibriSpeech | VCTK        |
| USLM                       | 16.72       | 14.79       | 25.65        | 23.24       | 0.80         | <u>0.78</u> | 2.93        | 3.01        |
| DM-Codec-TTS               | 10.26       | <u>5.02</u> | 13.79        | 8.21        | <u>0.82</u>  | <b>0.79</b> | <u>3.70</u> | <u>3.86</u> |
| FuseCodec-ContextAlign-TTS | 12.43       | 4.27        | 16.92        | <u>6.89</u> | <b>0.83</b>  | <b>0.79</b> | <b>3.86</b> | <b>3.96</b> |
| FuseCodec-Distill-TTS      | <b>8.55</b> | <b>3.66</b> | <b>12.07</b> | <b>6.02</b> | <u>0.82</u>  | <u>0.78</u> | 3.55        | 3.75        |
| FuseCodec-Fusion-TTS       | <u>9.67</u> | <u>4.07</u> | <u>13.23</u> | 7.18        | <b>0.83</b>  | <b>0.79</b> | 3.63        | 3.82        |

### 3.2.3 DOWNSTREAM SPEECH GENERATION EVALUATION

We further evaluate the downstream extensibility of all FuseCodec variants on zero-shot TTS. Our goal is not to build the strongest TTS model, which is beyond our scope and resources, but to train on the smaller LibriTTS dataset and compare fairly with open-source codec models (e.g., SpeechTokenizer, DM-Codec) distilling representation. For evaluation, we adopt two established benchmarks. On LibriSpeech, following Wang et al. (2023), we select utterances 4–10 seconds long from test set, using 3-second enrollment segment from a different utterance of the same speaker. On VCTK, following Zhang et al. (2024), we use 3-second prompts from one utterance with transcript of another utterance by the same speaker as target. Table 4 presents the results, demonstrating:

(i) *Linguistic precision.* **FuseCodec-Distill-TTS leads in content preservation and intelligibility**, achieving the lowest WER (8.55 / 3.66) and WIL (12.07 / 6.02) on LibriSpeech and VCTK, and second-best similarity (0.82 / 0.78). Unlike USLM, which lacks contextual grounding, and DM-Codec-TTS, with limited context alignment, it distills global semantic-contextual representations into quantized tokens, enhancing both semantic and acoustic information.

(ii) *Perceptual quality.* **FuseCodec-ContextAlign-TTS delivers the highest perceptual naturalness**, achieving the best UTMOS scores (3.86 / 3.96) while also tying for top speaker similarity (0.83 / 0.79). Its temporally aligned contextual supervision enhances prosody modeling and speaker identity retention, clearly outperforming DM-Codec-TTS and USLM.

(iii) *Balanced performance.* **FuseCodec-Fusion-TTS offers the most balanced trade-off**, attaining joint-best similarity (0.83 / 0.79), competitive UTMOS (3.63 / 3.82), and solid intelligibility with second-best WER/WIL. Unlike DM-Codec-TTS, which lacks alignment, and USLM, which relies only on semantic features, FuseCodec-Fusion jointly integrates both semantic and contextual signals directly in the latent space, enabling synthesis that is both accurate and natural.

### 3.3 ADDITIONAL AND ABLATION STUDY RESULTS

**Unseen Multilingual Speech Reconstruction Evaluation.** We test FuseCodec on speech reconstruction across seven unseen languages (Appendix C.1). **FuseCodec-Fusion achieves the strongest content and perceptual scores**, with Distill maintaining second-best performance. Results show that FuseCodec generalizes robustly through unified semantic and contextual signals.

**Ablation Study.** We validate the design of FuseCodec through ablations (Appendix D). Key insights: (i) *Attention-projection*: cross-before yields best intelligibility and perceptual quality (See D.1); (ii) *Semantic-contextual guidance*: distilling both signals stabilizes tokens (See D.2); (iii) *Temporal alignment*: dynamic alignment improves clarity and content (See D.3); (iv) *Dropout*: 10% balances robustness and informativeness (See D.4); (v) *Quantizer supervision*: first-layer supervision strengthens semantic-contextual grounding (See D.5).

## 4 CONCLUSION

We introduced FuseCodec, a unified speech tokenization framework that integrates acoustic, semantic, and contextual signals via multimodal representation fusion and supervision. Our methods enable fine-grained alignment and achieve state-of-the-art results on speech reconstruction, improving intelligibility, quality, and speaker similarity. These findings highlight the value of semantic and contextual grounding in discrete speech modeling.

486 5 REPRODUCIBILITY STATEMENT  
487488 We ensure the reproducibility of our proposed FuseCodec and experimental results. The experimen-  
489 tal setup, including datasets, training configurations, and hyperparameters, is described in Section  
490 3.1. To facilitate replication, we provide links to anonymized resources in Appendix A, including a  
491 Docker environment, the full codebase, and trained model checkpoints, and include Python scripts  
492 for preprocessing and training, along with all necessary dependencies.  
493494 REFERENCES  
495

496 Md Mubtasim Ahsan, Md Fahim, Tasnim Mohiuddin, A K M Mahbubur Rahman, Aman Chadha,  
497 Tariq Iqbal, M Ashraful Amin, Md Mofijul Islam, and Amin Ahsan Ali. Dm-codec: Distilling  
498 multimodal representations for speech tokenization, 2024. URL <https://arxiv.org/abs/2410.15017>.

500 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-  
501 work for self-supervised learning of speech representations, 2020. URL <https://arxiv.org/abs/2006.11477>.

504 Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients  
505 through stochastic neurons for conditional computation, 2013. URL <https://arxiv.org/abs/1308.3432>.

507 Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Shar-  
508 ifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, and Neil Zeghidour.  
509 Audiolfm: A language modeling approach to audio generation. *IEEE/ACM Trans. Audio, Speech  
510 and Lang. Proc.*, 31:2523–2533, June 2023. ISSN 2329-9290. doi: 10.1109/TASLP.2023.  
511 3288409. URL <https://doi.org/10.1109/TASLP.2023.3288409>.

513 Annemarie C. Brown, Eva Childers, Elijah F. W. Bowen, Gabriel A. Zuckerberg, and Richard  
514 Granger. Phonemes in continuous speech are better recognized in context than in isolation.  
515 *Frontiers in Communication*, Volume 7 - 2022, 2022. ISSN 2297-900X. doi: 10.3389/fcomm.  
516 2022.865587. URL <https://www.frontiersin.org/journals/communication/articles/10.3389/fcomm.2022.865587>.

518 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki  
519 Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian,  
520 Jian Wu, Michael Zeng, Xiangzhan Yu, and Furu Wei. Wavlm: Large-scale self-supervised pre-  
521 training for full stack speech processing. *IEEE Journal of Selected Topics in Signal Processing*,  
522 16(6):1505–1518, October 2022. ISSN 1941-0484. doi: 10.1109/jstsp.2022.3188113. URL  
523 <http://dx.doi.org/10.1109/JSTSP.2022.3188113>.

524 Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network  
525 learning by exponential linear units (elus), 2016. URL <https://arxiv.org/abs/1511.07289>.

528 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep  
529 bidirectional transformers for language understanding, 2019a. URL <https://arxiv.org/abs/1810.04805>.

531 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of  
532 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and  
533 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of  
534 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long  
535 and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019b. Association for Com-  
536 putational Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.

538 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio  
539 compression, 2022. URL <https://arxiv.org/abs/2210.13438>.

540 Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,  
 541 Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dia-  
 542 logue, 2024. URL <https://arxiv.org/abs/2410.00037>.

543

544 Mark Hallap, Emmanuel Dupoux, and Ewan Dunbar. Evaluating context-invariance in unsupervised  
 545 speech representations, 2023. URL <https://arxiv.org/abs/2210.15775>.

546

547 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhota, Ruslan Salakhutdinov,  
 548 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked  
 549 prediction of hidden units. *IEEE/ACM transactions on audio, speech, and language processing*,  
 29:3451–3460, 2021.

550

551 Ahmed Hussen Abdelaziz, Barry-John Theobald, Paul Dixon, Reinhard Knothe, Nicholas Apos-  
 552 tollof, and Sachin Kajareker. Modality dropout for improved performance-driven talking faces.  
 553 In *Proceedings of the 2020 International Conference on Multimodal Interaction*, ICMI '20,  
 554 pp. 378–386, New York, NY, USA, 2020. Association for Computing Machinery. ISBN  
 555 9781450375818. doi: 10.1145/3382507.3418840. URL <https://doi.org/10.1145/3382507.3418840>.

556

557 Shengpeng Ji, Ziyue Jiang, Wen Wang, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang, Xize  
 558 Cheng, Zehan Wang, Ruiqi Li, Ziang Zhang, Xiaoda Yang, Rongjie Huang, Yidi Jiang, Qian  
 559 Chen, Siqi Zheng, and Zhou Zhao. Wavtokenizer: an efficient acoustic discrete codec tokenizer  
 560 for audio language modeling. In *The Thirteenth International Conference on Learning Represen-  
 561 tations*, 2025. URL <https://openreview.net/forum?id=yB1V1S2Fd9>.

562

563 Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong  
 564 Leng, Kaitao Song, Siliang Tang, Zhizheng Wu, Tao Qin, Xiang-Yang Li, Wei Ye, Shikun Zhang,  
 565 Jiang Bian, Lei He, Jinyu Li, and Sheng Zhao. Naturalspeech 3: Zero-shot speech synthesis  
 566 with factorized codec and diffusion models, 2024. URL <https://arxiv.org/abs/2403.03100>.

567

568 Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: generative adversarial networks for effi-  
 569 cient and high fidelity speech synthesis. In *Proceedings of the 34th International Conference on  
 570 Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates  
 571 Inc. ISBN 9781713829546.

572

573 Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo,  
 574 Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. Melgan: Generative adversar-  
 575 ial networks for conditional waveform synthesis, 2019. URL <https://arxiv.org/abs/1910.06711>.

576

577 Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-  
 578 fidelity audio compression with improved rvqgan, 2023. URL <https://arxiv.org/abs/2306.06546>.

579

580 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus  
 581 based on public domain audio books. In *2015 IEEE International Conference on Acoustics,  
 582 Speech and Signal Processing (ICASSP)*, pp. 5206–5210, 2015. doi: 10.1109/ICASSP.2015.  
 583 7178964.

584

585 Julian D Parker, Anton Smirnov, Jordi Pons, CJ Carr, Zack Zukowski, Zach Evans, and Xubo Liu.  
 586 Scaling transformers for low-bitrate high-quality speech coding. In *The Thirteenth International  
 587 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4YpMrGfldX>.

588

589 Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,  
 590 and Luke Zettlemoyer. Deep contextualized word representations. In Marilyn Walker, Heng Ji,  
 591 and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of  
 592 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long  
 593 Papers)*, pp. 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational Lin-  
 guistics. doi: 10.18653/v1/N18-1202. URL <https://aclanthology.org/N18-1202/>.

594 Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert. Mls: A  
 595 large-scale multilingual dataset for speech research. *ArXiv*, abs/2012.03411, 2020.

596

597 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.  
 598 Robust speech recognition via large-scale weak supervision. In Andreas Krause, Emma Brun-  
 599 skill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Pro-  
 600 ceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceed-  
 601 ings of Machine Learning Research*, pp. 28492–28518. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/radford23a.html>.

602

603 Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pin-  
 604 ter, and Chris Tanner. Tokenization is more than compression. In Yaser Al-Onaizan, Mohit  
 605 Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods  
 606 in Natural Language Processing*, pp. 678–702, Miami, Florida, USA, November 2024. Asso-  
 607 ciation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.40. URL <https://aclanthology.org/2024.emnlp-main.40>.

608

609 Arnon Turetzky and Yossi Adi. Last: Language model aware speech tokenization, 2024. URL  
 610 <https://arxiv.org/abs/2409.03701>.

611 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-  
 612 ing, 2018. URL <https://arxiv.org/abs/1711.00937>.

613

614 Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing  
 615 Liu, Huaming Wang, Jinyu Li, Lei He, Sheng Zhao, and Furu Wei. Neural codec language models  
 616 are zero-shot text to speech synthesizers, 2023. URL <https://arxiv.org/abs/2301.02111>.

617

618 Haibin Wu, Ho-Lam Chung, Yi-Cheng Lin, Yuan-Kuei Wu, Xuanjun Chen, Yu-Chi Pai, Hsiu-Hsuan  
 619 Wang, Kai-Wei Chang, Alexander Liu, and Hung-yi Lee. Codec-SUPERB: An in-depth analysis  
 620 of sound codec models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of  
 621 the Association for Computational Linguistics: ACL 2024*, pp. 10330–10348, Bangkok, Thailand,  
 622 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.  
 623 616. URL <https://aclanthology.org/2024.findings-acl.616>.

624

625 Detai Xin, Xu Tan, Shinnosuke Takamichi, and Hiroshi Saruwatari. Bigcodec: Pushing the limits of  
 626 low-bitrate neural speech codec, 2024. URL <https://arxiv.org/abs/2409.05377>.

627

628 Dongchao Yang, Songxiang Liu, Rongjie Huang, Jinchuan Tian, Chao Weng, and Yuexian Zou.  
 629 Hifi-codec: Group-residual vector quantization for high fidelity audio codec, 2023. URL <https://arxiv.org/abs/2305.02765>.

630

631 Zhen Ye, Peiwen Sun, Jiahe Lei, Hongzhan Lin, Xu Tan, Zheqi Dai, Qiuqiang Kong, Jianyi Chen,  
 632 Jiahao Pan, Qifeng Liu, Yike Guo, and Wei Xue. Codec does matter: Exploring the semantic  
 633 shortcoming of codec for audio language model, 2024. URL <https://arxiv.org/abs/2408.17175>.

634

635 Zhen Ye, Xinfu Zhu, Chi-Min Chan, Xinsheng Wang, Xu Tan, Jiahe Lei, Yi Peng, Haohe Liu, Yizhu  
 636 Jin, Zheqi Dai, Hongzhan Lin, Jianyi Chen, Xingjian Du, Liumeng Xue, Yunlin Chen, Zhifei Li,  
 637 Lei Xie, Qiuqiang Kong, Yike Guo, and Wei Xue. Llasa: Scaling train-time and inference-time  
 638 compute for llama-based speech synthesis, 2025. URL <https://arxiv.org/abs/2502.04128>.

639

640 Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-  
 641 stream: An end-to-end neural audio codec. *IEEE/ACM Transactions on Audio, Speech, and  
 642 Language Processing*, 30:495–507, 2022. doi: 10.1109/TASLP.2021.3129994.

643

644 Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu.  
 645 Libritts: A corpus derived from librispeech for text-to-speech, 2019. URL <https://arxiv.org/abs/1904.02882>.

646

647 Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified  
 648 speech tokenizer for speech language models. In *The Twelfth International Conference on Learn-  
 649 ing Representations*, 2024. URL <https://openreview.net/forum?id=AF9Q8Vip84>.

## Technical Appendix

## A RESOURCES

We provide all necessary resources to ensure full reproducibility of our models and results. All links are anonymized for double-blind peer review.

- **Docker:** A containerized environment with all required Python packages for training. [LINK](#)
- **Code and Configuration:** Full codebase for preprocessing, training, and inference. [LINK](#)
- **Model Checkpoints:** Trained model weights. [LINK](#)

## B RELATED WORK

Recent progress in speech and audio generation has been largely driven by advances in discrete representation learning, neural audio codecs, and language model-based synthesis. VQ-VAE (van den Oord et al., 2018) introduced vector quantization in latent spaces to support symbolic modeling of audio, while HuBERT (Hsu et al., 2021) applied masked prediction over cluster-derived labels to learn speech features in a self-supervised manner. SoundStream (Zeghidour et al., 2022) proposed a causal adversarially trained codec with residual vector quantization (RVQ) and demonstrated scalable compression at low bitrates. HiFi-Codec (Yang et al., 2023) further improved efficiency by introducing group residual quantization, reducing the number of required codebooks while preserving audio fidelity. On the generative side, AudioLM (Borsos et al., 2023) modeled long-range dependencies in semantic and acoustic tokens using transformer-based language modeling. This approach was extended by VALL-E (Wang et al., 2023), which enabled zero-shot text-to-speech synthesis by conditioning on short acoustic prompts and leveraging codec token generation. To improve the suitability of tokenization for language modeling tasks, X-Codec (Ye et al., 2024) integrated speech embeddings from pretrained models into the quantization pipeline, while LAST (Turetzky & Adi, 2024) learned a tokenizer supervised by a language model to improve downstream ASR and speech generation performance. HiFi-GAN (Kong et al., 2020) introduced multi-period and multi-scale discriminators, enabling high-fidelity waveform synthesis with real-time efficiency.

In parallel, codec designs have evolved to improve training stability and perceptual quality. En-Codec (Défossez et al., 2022) introduced a GAN-based codec architecture with multi-loss balancing and spectrogram-based discrimination, setting a new benchmark for real-time low-bitrate synthesis. BigCodec (Xin et al., 2024) scaled the VQ-VAE framework and showed that a single large codebook could achieve near-human perceptual quality at 1 kbps. DAC (Kumar et al., 2023) proposed refinements to residual quantization, such as factorized and normalized codebooks, and introduced advanced discriminators to improve quality under bitrate constraints. More recent work has focused on improving token expressiveness for downstream tasks. SpeechTokenizer (Zhang et al., 2024) demonstrated that hierarchical quantization improves reconstruction and zero-shot TTS, while DM-Codec (Ahasan et al., 2024) matched quantization layer representations with pre-trained speech and text models to reduce WER and enhance contextual fidelity. Finally, NaturalSpeech 3 (Ju et al., 2024) introduced a factorized codec to disentangle prosodic and acoustic attributes in speech, and Moshi (Défossez et al., 2024) unified ASR and TTS in a streaming, full-duplex transformer model operating on jointly learned speech tokens.

## C ADDITIONAL RESULTS

We provide additional results on FuseCodec variants for multilingual speech reconstruction (§C.1).

## C.1 EXTENSION TO UNSEEN MULTILINGUAL SPEECH RECONSTRUCTION

This evaluation examines how well FuseCodec generalizes to unseen languages, testing whether integrating semantic and contextual signals in the latent space enables the codec to capture language-agnostic paralinguistic information. We use the Multilingual LibriSpeech test set (Pratap et al., 2020), covering German, Dutch, Spanish, French, Italian, Portuguese, and Polish. For fair comparison, we select baselines with multi-quantizer architectures, 16–24 kHz sampling, and 4–6 bit

702 **Table 5: Multilingual speech reconstruction results** across content preservation and perceptual  
 703 metrics for unseen languages. **Bold** highlights the best score per language/metric, and underline  
 704 indicates our second-best. Abbreviations: **nl** = Dutch, **fr** = French, **de** = German, **it** = Italian, **pl** =  
 705 Polish, **pt** = Portuguese, **es** = Spanish. Overall, **FuseCodec variants maintain high content fidelity**  
 706 and **perceptual quality across diverse languages by integrating semantic and contextual signals**  
 707 in the latent space.

| Model                  | WER ↓       |      |             |             |             |             |             | WIL ↓       |             |             |              |             |              |             | PESQ ↑      |             |             |             |             |             |             | ViSQOL ↑    |             |             |             |             |             |             |
|------------------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                        | nl          | fr   | de          | it          | pl          | pt          | es          | nl          | fr          | de          | it           | pl          | pt           | es          | nl          | fr          | de          | it          | pl          | pt          | es          | nl          | fr          | de          | it          | pl          | pt          | es          |
| SpeechTokenizer        | 7.89        | 7.96 | 7.19        | 12.24       | 9.09        | 13.29       | 5.47        | 13.47       | 12.95       | 11.65       | 19.35        | 15.03       | 19.29        | 8.56        | 2.53        | 2.42        | 2.37        | 2.36        | 2.36        | 2.18        | 2.36        | 3.03        | 2.96        | 2.96        | 3.01        | 2.92        | 2.88        | 2.98        |
| EnCodec                | 6.22        | 5.34 | 7.41        | 8.76        | 6.06        | 9.9         | <b>2.82</b> | 10.73       | 8.61        | 10.76       | 14.02        | 9.65        | 14.5         | <b>4.66</b> | 2.26        | 2.35        | 2.31        | 2.37        | 2.42        | 2.27        | 2.27        | 3.02        | 3.12        | 3.06        | 3.16        | 3.1         | 3.05        | 3.08        |
| DM-Codec               | 6.94        | 6.36 | 5.93        | 10.34       | 6.7         | 11.69       | 4.69        | 11.85       | 10.53       | 9.76        | 16.56        | 11.45       | 16.45        | 7.12        | 2.83        | 2.65        | 2.57        | 2.66        | 2.65        | 2.36        | 2.61        | 3.19        | 3.15        | 3.15        | 3.22        | 3.15        | 3.07        | 3.18        |
| FaCodec                | <b>5.34</b> | 5.98 | <b>4.82</b> | 8.89        | 5.22        | 9.84        | 3.26        | <b>9.23</b> | 9.87        | 8.16        | 14.09        | 8.9         | 14.57        | 5.5         | 2.80        | 2.68        | 2.63        | 2.76        | 2.46        | 2.62        | 3.13        | 2.99        | 3.01        | 3.02        | 3.05        | 2.94        | 3.03        |             |
| FuseCodec-Fusion       | 5.80        | 6.92 | <b>4.82</b> | <b>7.97</b> | <b>5.07</b> | 8.75        | 3.53        | 9.77        | 8.40        | <b>7.84</b> | <b>12.95</b> | <b>8.63</b> | 13.09        | 5.20        | <b>3.15</b> | <b>3.04</b> | <b>2.99</b> | <b>3.03</b> | <b>3.11</b> | <b>2.82</b> | <b>2.94</b> | <b>3.46</b> | <b>3.43</b> | <b>3.42</b> | <b>3.48</b> | <b>3.42</b> | <b>3.38</b> | <b>3.43</b> |
| FuseCodec-Distill      | <b>5.50</b> | 4.22 | 6.65        | 9.21        | 5.23        | <b>8.53</b> | 3.87        | <b>9.35</b> | <b>7.25</b> | 9.58        | 14.67        | 8.72        | <b>12.22</b> | 5.71        | <b>3.08</b> | <b>2.95</b> | <b>2.86</b> | <b>2.97</b> | <b>3.03</b> | <b>2.76</b> | <b>2.88</b> | <b>3.41</b> | <b>3.39</b> | <b>3.38</b> | <b>3.45</b> | <b>3.41</b> | <b>3.34</b> | <b>3.40</b> |
| FuseCodec-ContextAlign | 6.37        | 5.46 | 8.31        | 10.15       | 6.43        | 11.18       | 3.70        | 10.90       | 9.18        | 12.24       | 16.24        | 10.87       | 16.06        | 6.09        | 2.89        | 2.75        | 2.66        | 2.76        | 2.77        | 2.52        | 2.68        | 3.19        | 3.16        | 3.16        | 3.24        | 3.17        | 3.13        | 3.18        |

714 configurations, including SpeechTokenizer, EnCodec, DM-Codec, and FaCodec. Table 5 presents  
 715 the results, revealing:

717 *(i) Content preservation.* **FuseCodec-Fusion achieves the lowest WER and WIL in three languages and ties for best WER and WIL in Portuguese**, while FuseCodec-Distill attains the best  
 718 WER in French and Portuguese and second-best in Dutch. Across all seven languages, FuseC-  
 719 odec variants consistently rank first or second, whereas FaCodec and EnCodec win only in isolated  
 720 cases. These results indicate that FuseCodec effectively retains core linguistic content and general-  
 721 izes across diverse languages by unifying semantic and contextual signals.

723 *(ii) Perceptual quality.* **FuseCodec-Fusion delivers the highest PESQ and ViSQOL scores across all languages**, with Distill consistently second-best. Baselines trail by a substantial margin (Fusion improves PESQ by 0.3 or more over the next best model). This demonstrates that integrating semantic-contextual signals enhances perceptual naturalness and speech intelligibility, even in languages unseen during training.

727 *(iii) Cross-lingual robustness.* **FuseCodec-ContextAlign remains competitive, outperforming several baselines**, despite slightly lower performance than Fusion and Distill. It shows particular strengths on perceptual metrics (PESQ and ViSQOL) in Dutch, French, and Polish languages, often surpassing DM-Codec and SpeechTokenizer, which lack temporally aligned contextual supervision. Taken together, these results demonstrate that FuseCodec maintains high content accuracy and perceptual quality across unseen languages by unifying semantic and contextual representations.

## D ABLATION STUDIES

737 We ablate and investigate each design choice and the necessity of components in our proposed  
 738 methodology for FuseCodec. All model hyperparameters, training procedures, and configurations  
 739 are kept fixed, except for the specific changes introduced in each ablation setup.

### D.1 ABLATION: ATTENTION-PROJECTION CONFIGURATION IN REPRESENTATION FUSION

744 **Table 6: Ablation of attention-projection configurations in multimodal latent fusion.** **Cross** vari-  
 745 ants incorporate cross-modal attention between semantic and contextual signals, while **Self** variants  
 746 apply self-attention. **Before** applies attention prior to projection into the encoder’s latent space,  
 747 whereas **After** applies attention post-projection. **None** uses direct projection without attention.  
 748 *Applying cross-modal attention before projection consistently improves content preservation and*  
 749 *speech naturalness by enabling richer multimodal interactions in the original dimension.*

| Model Variant    | Attn-Proj Type | Content Preservation |             |             | Speech Naturalness |             |             |             |
|------------------|----------------|----------------------|-------------|-------------|--------------------|-------------|-------------|-------------|
|                  |                | WER↓                 | WIL↓        | STOI↑       | ViSQOL↑            | PESQ↑       | UTMOS↑      | Similarity↑ |
| FuseCodec-Fusion | None           | 4.10                 | 6.60        | 0.93        | 3.26               | 2.92        | <b>3.65</b> | 0.995       |
| FuseCodec-Fusion | Self-After     | 4.07                 | 6.61        | 0.93        | 3.26               | 2.95        | 3.63        | 0.995       |
| FuseCodec-Fusion | Self-Before    | <b>3.92</b>          | <b>6.36</b> | <b>0.94</b> | <u>3.43</u>        | <u>3.05</u> | 3.59        | 0.995       |
| FuseCodec-Fusion | Cross-After    | 4.17                 | 6.70        | 0.93        | 3.28               | 2.90        | 3.61        | 0.995       |
| FuseCodec-Fusion | Cross-Before   | <u>3.99</u>          | <u>6.45</u> | <b>0.95</b> | <b>3.47</b>        | <b>3.13</b> | <u>3.63</u> | 0.995       |

756 **Setup.** We investigate the impact of changing the attention-projection configuration in FuseCodec-  
 757 Fusion (Section 2.3.1). The selected method, **Cross-Before**, applies multi-head cross-attention prior  
 758 to projection:

$$\begin{aligned} 759 \quad \mathbf{S}' &= \text{CrossAttention}(\tilde{\mathbf{S}}, \tilde{\mathbf{C}}, \tilde{\mathbf{C}}) \mathbf{W}_S, \\ 760 \quad \mathbf{C}' &= \text{CrossAttention}(\tilde{\mathbf{C}}, \tilde{\mathbf{S}}, \tilde{\mathbf{S}}) \mathbf{W}_C, \end{aligned} \quad (8)$$

762 where  $\tilde{\mathbf{S}}, \tilde{\mathbf{C}} \in \mathbb{R}^{T' \times D'}$  are broadcasted global semantic and contextual vectors. We compare this  
 763 with the following ablated variants:

764 **None**, which skips attention and directly applies projection:

$$\begin{aligned} 766 \quad \mathbf{S}' &= \tilde{\mathbf{S}} \mathbf{W}_S, \\ 767 \quad \mathbf{C}' &= \tilde{\mathbf{C}} \mathbf{W}_C \end{aligned} \quad (9)$$

768 **Self-Before**, which applies self-attention before projection:

$$\begin{aligned} 770 \quad \mathbf{S}' &= \text{SelfAttention}(\tilde{\mathbf{S}}, \tilde{\mathbf{S}}, \tilde{\mathbf{S}}) \mathbf{W}_S, \\ 771 \quad \mathbf{C}' &= \text{SelfAttention}(\tilde{\mathbf{C}}, \tilde{\mathbf{C}}, \tilde{\mathbf{C}}) \mathbf{W}_C \end{aligned} \quad (10)$$

772 **Self-After**, which projects first and then applies self-attention:

$$\begin{aligned} 774 \quad \mathbf{S}' &= \text{SelfAttention}(\tilde{\mathbf{S}} \mathbf{W}_S), \\ 775 \quad \mathbf{C}' &= \text{SelfAttention}(\tilde{\mathbf{C}} \mathbf{W}_C) \end{aligned} \quad (11)$$

777 **Cross-After**, which applies projection before cross-attention:

$$\begin{aligned} 778 \quad \mathbf{S}' &= \text{CrossAttention}(\tilde{\mathbf{S}} \mathbf{W}_S, \tilde{\mathbf{C}} \mathbf{W}_C, \tilde{\mathbf{C}} \mathbf{W}_C), \\ 779 \quad \mathbf{C}' &= \text{CrossAttention}(\tilde{\mathbf{C}} \mathbf{W}_C, \tilde{\mathbf{S}} \mathbf{W}_S, \tilde{\mathbf{S}} \mathbf{W}_S) \end{aligned} \quad (12)$$

781 **Results.** Table 6 shows the results of five variants. The selected **Cross-Before** setup achieves the  
 782 highest performance on intelligibility STOI (0.95), and all naturalness metrics: ViSQOL (3.47),  
 783 PESQ (3.13), and second-best UTMOS (3.63). **Self-Before** yields the best WER (3.92) and WIL  
 784 (6.36), and second-best ViSQOL (3.43), PESQ (3.05), and STOI (0.94). The **None** and **Cross-After**  
 785 configurations perform comparatively worse across intelligibility and naturalness.

786 **Discussion.** These results demonstrate that the configuration of attention relative to projection sig-  
 787 nificantly impacts the effectiveness of representation fusion. The best-performing method, **Cross-**  
 788 **Before**, applies cross-modal attention in the original lower-dimensional space. This enables richer  
 789 semantic-contextual interactions to be captured before transformation into the higher-dimensional  
 790 encoder space, leading to improved intelligibility and perceptual quality.

792 **Self-Before** performs competitively by achieving the best WER and WIL, suggesting that intra-  
 793 modal structuring of global feature representations also benefits the fusion approach. However, the  
 794 absence of explicit cross-modal exchange limits its effectiveness on naturalness metrics such as  
 795 UTMOS and PESQ.

796 By contrast, **Cross-After** performs poorly, indicating that applying cross-attention after projection  
 797 diminishes its effectiveness. Suggesting that once projected into the higher-dimensional space, the  
 798 global vectors lose semantic coherence, resulting in less expressive fusion and lower audio quality.

800 Finally, removing attention (**None**) results in the weakest performance on intelligibility and percep-  
 801 tual scores, despite yielding the highest UTMOS. This indicates that even unstructured modality  
 802 signals can enhance naturalness, but without alignment through attention mechanisms, they fail to  
 803 deliver consistent semantic-contextual grounding.

805 Overall, these results confirm that performing attention prior to projection, especially cross-modal  
 806 attention, is essential for extracting the most benefit from semantic-contextual signals during fusion.

## 806 D.2 ABLATION: ATTENTION-GUIDANCE CONFIGURATION IN SEMANTIC-CONTEXTUAL 807 GUIDANCE

809 **Setup.** We study the impact of attention configuration and guidance modality used in the distillation  
 810 objective. Our method, FuseCodec-Distill, introduces timestep-aligned supervision using global

810  
 811 Table 7: Ablation of attention and guidance strategies in semantic-contextual distillation. **Cross**  
 812 variants apply cross-attention between contextual embeddings and discrete tokens, while **None** ap-  
 813 plies supervision directly. **Semantic-Contextual** combines both global semantic and contextual  
 814 signals. *Direct supervision using both signals achieves the best intelligibility and perceptual quality*  
 815 *by preserving global structure.*

| Model Variant     | Attention | Guidance            | Content Preservation |             |             | Speech Naturalness |             |             |
|-------------------|-----------|---------------------|----------------------|-------------|-------------|--------------------|-------------|-------------|
|                   |           |                     | WER↓                 | WIL↓        | STOI↑       | ViSQOL↑            | PESQ↑       | UTMOS↑      |
| FuseCodec-Distill | None      | Contextual          | 4.20                 | 6.77        | 0.93        | 3.13               | 2.74        | 3.60        |
| FuseCodec-Distill | Cross     | Contextual          | 4.18                 | 6.75        | 0.93        | 3.21               | 2.83        | 3.60        |
| FuseCodec-Distill | None      | Semantic-Contextual | <b>4.09</b>          | <b>6.60</b> | <b>0.94</b> | <b>3.43</b>        | <b>3.06</b> | <b>3.65</b> |
| FuseCodec-Distill | Cross     | Semantic-Contextual | 4.21                 | 6.82        | 0.93        | 3.18               | 2.84        | 3.62        |

816  
 817 contextual and semantic signals (Section 2.3.2). The selected configuration, **None + Semantic-Contextual**,  
 818 projects the first-layer RVQ tokens  $\mathbf{Q}^{(1)}$  and computes cosine similarity with both  
 819 semantic and contextual guidance vectors:

$$\mathcal{L}_{\text{distill}} = -\frac{1}{T'} \sum_{t=1}^{T'} \log \sigma \left( \frac{1}{2} \left[ \cos \left( \mathbf{Q}_t'^{(1)}, \tilde{\mathbf{S}}_t \right) \right. \right. \\ \left. \left. + \cos \left( \mathbf{Q}_t'^{(1)}, \tilde{\mathbf{C}}_t \right) \right] \right) \quad (13)$$

821  
 822 We compare this against three ablated variants:

823  
 824 **None + Contextual**, which excludes both attention and semantic guidance:

$$\mathcal{L}_{\text{distill}} = -\frac{1}{T'} \sum_{t=1}^{T'} \log \sigma \left( \cos \left( \mathbf{Q}_t'^{(1)}, \tilde{\mathbf{C}}_t \right) \right) \quad (14)$$

825  
 826 **Cross + Contextual**, which introduces cross-attention between contextual vectors and projected  
 827 RVQ tokens:

$$\tilde{\mathbf{C}} = \text{CrossAttention}(\tilde{\mathbf{C}}, \mathbf{Q}^{(1)}, \mathbf{Q}'^{(1)}) \quad (15)$$

828  
 829 **Cross + Semantic-Contextual**, which includes cross-attention but retains both guidance signals.

830  
 831 **Results.** Table 7 reports the performance across four configurations. The best-performing variant  
 832 is **None + Semantic-Contextual**, achieving the lowest WER (4.09) and WIL (6.60), and highest  
 833 scores on STOI (0.940), ViSQOL (3.43), PESQ (3.06), UTMOS (3.65), and Similarity (0.996). The  
 834 second-best results are obtained by **Cross + Contextual**, but excluding semantic guidance or using  
 835 attention degrades performance across all metrics.

836  
 837 **Discussion.** These results show that including both semantic and contextual supervision is essential  
 838 for improving the quantization quality of the discrete tokens. The **None + Semantic-Contextual**  
 839 configuration outperforms all others, highlighting that cosine-based alignment with both modalities  
 840 provides the most stable and effective guidance during quantized representation learning.

841  
 842 Introducing cross-attention (**Cross**) reduces performance, suggesting that attention distorts the  
 843 global nature of the guidance signals and makes supervision less consistent across time. The **Cross +**  
 844 **Semantic-Contextual** variant also underperforms, despite having access to both guidance sources,  
 845 indicating that attention interferes with their inherent structure and alignment function.

846  
 847 The **Contextual-only** variants perform comparatively worse, confirming that semantic signals play  
 848 an important role in guiding the learned representations toward higher-level content fidelity and  
 849 improved intelligibility.

850  
 851 Overall, these findings support using both guidance signals in their original global forms and apply-  
 852 ing them directly, without attention, to ensure stable, timestep-aligned distillation.

864  
 865  
 866  
 867  
 868  
 869  
 870 Table 8: Ablation of windowing and guidance strategies in temporally aligned contextual supervision. **Dynamic** variants adapt the alignment window per token based on content similarity, while  
 871 **Fixed** variants use a uniform window. **Semantic-Contextual** combines semantic and contextual  
 872 signals for supervision. *Dynamic windowing consistently improves intelligibility and clarity by en-*  
 873 *abling finer temporal alignment of contextual embeddings.*

| 870 Model Variant      | 871 Window | 872 Guidance        | Content Preservation |             |             | Speech Naturalness |             |             |
|------------------------|------------|---------------------|----------------------|-------------|-------------|--------------------|-------------|-------------|
|                        |            |                     | 873 WER↓             | 874 WIL↓    | 875 STOI↑   | 876 ViSQOL↑        | 877 PESQ↑   | 878 UTMOS↑  |
| FuseCodec-ContextAlign | Fixed      | Contextual          | 4.26                 | 6.88        | 0.92        | <b>3.19</b>        | 2.71        | 3.58        |
| FuseCodec-ContextAlign | Dynamic    | Contextual          | <b>4.15</b>          | <b>6.70</b> | <b>0.93</b> | 3.18               | <b>2.85</b> | 3.65        |
| FuseCodec-ContextAlign | Fixed      | Semantic-Contextual | 4.30                 | 6.88        | 0.92        | 3.10               | 2.62        | <b>3.74</b> |
| FuseCodec-ContextAlign | Dynamic    | Semantic-Contextual | 4.21                 | <u>6.78</u> | <u>0.93</u> | 3.12               | <u>2.72</u> | <b>3.75</b> |

875  
 876 **D.3 ABLATION: FIXED VS. DYNAMIC WINDOW CONFIGURATION IN TEMPORAL**  
 877 **ALIGNMENT**

878  
 879 **Setup.** We investigate the effect of **fixed** versus **dynamic** windowing in the token alignment algo-  
 880 rithm (Algorithm 1). Our full method, FuseCodec-ContextAlign, aligns each contextual embedding  
 881  $\mathbf{C}_i \in \mathbb{R}^{D'}$  to a localized region of RVQ tokens  $\{\mathbf{Q}_t^{(1)}\}_{t=1}^{T'}$  based on cosine similarity. The selected  
 882 configuration, **Dynamic-window Contextual** (see Section 2.3.3), dynamically adjusts the align-  
 883 ment window for each  $\mathbf{C}_i$ , using the index of the previous match to guide the next search range.  
 884 This content-aware strategy produces a temporally aligned sequence  $\mathbf{C}^* \in \mathbb{R}^{T' \times D'}$ , which is used  
 885 to compute a timestep-level distillation loss:

$$886 \quad 887 \quad \mathcal{L}_{\text{align}} = -\frac{1}{T'} \sum_{t=1}^{T'} \log \sigma \left( \cos \left( \mathbf{Q}_t'^{(1)}, \mathbf{C}_t^* \right) \right) \quad (16)$$

888  
 889 We compare this setup against the following ablated variants:

890  
 891 **Fixed-window Contextual**, which uses a fixed alignment window of size  $w = \lfloor T'/n \rfloor$ , where  $T'$  is  
 892 the RVQ sequence length and  $n$  is the number of contextual embeddings. Each  $\mathbf{C}_i$  is aligned to the  
 893 most similar token  $\mathbf{Q}_t^{(1)}$  within its predefined window.

894  
 895 **Fixed-window Semantic-Contextual**, which adds semantic supervision using semantic represen-  
 896 tations  $\{\mathbf{S}_i\}_{i=1}^m$ , in addition to contextual representations aligned via a fixed-window token alignment.  
 897 Since both semantic and RVQ tokens are extracted at the same frame rate, they are inherently time-  
 898 aligned, requiring no additional alignment. The combined loss is:

$$899 \quad 900 \quad \mathcal{L}_{\text{align}} = -\frac{1}{T'} \sum_{t=1}^{T'} \log \sigma \left( \frac{1}{2} \left[ \cos \left( \mathbf{Q}_t'^{(1)}, \mathbf{C}_t^* \right) \right. \right. \\ 901 \quad 902 \quad \left. \left. + \cos \left( \mathbf{Q}_t'^{(1)}, \mathbf{S}_t \right) \right] \right) \quad (17)$$

903  
 904 **Dynamic-window Semantic-Contextual**, which replaces the fixed window with a dynamic align-  
 905 ment strategy, while also incorporating direct supervision from semantic embeddings  $\{\mathbf{S}_t\}$ .

906  
 907 **Results.** As shown in Table 8, the **Dynamic-window Contextual** configuration achieves the best  
 908 performance across content preservation metrics, achieving the lowest WER (4.15), WIL (6.70),  
 909 and highest STOI (0.93). It also performs strongly in terms of speech naturalness, with the best  
 910 PESQ (2.85), high ViSQOL (3.18), and top Similarity (0.995). The **Dynamic Semantic-Contextual**  
 911 variant achieves the best UTMOS (3.75), second-best WER (4.21) and WIL (6.78), and matches  
 912 the top Similarity. By contrast, both **Fixed-window** configurations obtain lower scores across  
 913 most metrics, particularly the **Fixed Semantic-Contextual** configuration, which scores the lowest  
 914 ViSQOL (3.10) and PESQ (2.62), despite a relatively high UTMOS (3.74).

915  
 916 **Discussion.** These results highlight the importance of the temporal alignment strategy in influen-  
 917 cing speech reconstruction quality. The superior performance of the **Dynamic-window Contextual**  
 918 variant demonstrates that token alignment using a dynamic window, where contextual embeddings

918 are adaptively aligned based on token similarity, achieves better semantic grounding and contextual  
 919 precision.  
 920

921 In contrast, the **Fixed-window** variants suffer from rigid alignment constraints. They fail to cap-  
 922 ture fine-grained temporal dependencies by enforcing a fixed windowing strategy, which results in  
 923 degraded speech clarity (lower ViSQOL and PESQ). This limitation is especially noticeable in the  
 924 **Fixed Semantic-Contextual** setup, where the addition of semantic supervision is insufficient to  
 925 compensate for the strictly aligned contextual embeddings as the fixed window does not account for  
 926 local content variations.  
 927

928 Both **Semantic-Contextual** variants improve UTMOS, indicating that semantic supervision con-  
 929 tributes positively to speech naturalness. However, this comes with a trade-off when not paired with  
 930 dynamically aligned contextual guidance, as the semantic-only supervision fails to improve content  
 931 accuracy.  
 932

933 Overall, these findings underscore that dynamic alignment is essential for effective contextual rep-  
 934 resentation guidance. They also highlight that while semantic supervision enhances fluency and  
 935 naturalness, it must be combined with flexible alignment mechanisms to avoid compromising con-  
 936 tent preservation.  
 937

#### 938 D.4 ABLATION: DROPOUT MASK CONFIGURATION IN REPRESENTATION FUSION

939 Table 9: Ablation of modality dropout probability during latent representation fusion in FuseCodec.  
 940 **Dropout** indicates the stochastic masking rate applied independently to semantic and contextual rep-  
 941 resentations during training. Moderate dropout prevents over-reliance on a single modality, while  
 942 higher rates degrade multimodal integration. *A 10% dropout rate achieves the best trade-off, maxi-  
 943 mizing intelligibility and perceptual quality.*

| 944 Model Variant | 945 Dropout | Content Preservation |             |             | Speech Naturalness |             |             |              |
|-------------------|-------------|----------------------|-------------|-------------|--------------------|-------------|-------------|--------------|
|                   |             | WER↓                 | WIL↓        | STOI↑       | ViSQOL↑            | PESQ↑       | UTMOS↑      | Similarity↑  |
| FuseCodec-Fusion  | 10%         | <b>3.99</b>          | <b>6.45</b> | <b>0.95</b> | <b>3.47</b>        | <b>3.13</b> | <b>3.63</b> | 0.995        |
| FuseCodec-Fusion  | 30%         | 4.10                 | 6.63        | 0.94        | 3.29               | 2.96        | 3.65        | 0.995        |
| FuseCodec-Fusion  | 50%         | <u>4.09</u>          | <u>6.58</u> | 0.94        | <u>3.33</u>        | <u>2.97</u> | <b>3.66</b> | <b>0.996</b> |
| FuseCodec-Fusion  | 70%         | 4.08                 | 6.64        | 0.93        | 3.26               | 2.91        | <u>3.63</u> | 0.995        |
| FuseCodec-Fusion  | 90%         | 4.15                 | 6.67        | <u>0.93</u> | 3.26               | 2.86        | 3.61        | 0.995        |

950 **Setup.** We investigate the effect of modality dropout rate on the quality of latent representation  
 951 fusion. As described in Section 2.3.1, we apply stochastic dropout masks  $\mathcal{D}_S, \mathcal{D}_C \in \{0, 1\}^{T' \times D}$   
 952 element-wise to the projected semantic ( $\mathbf{S}'$ ) and contextual ( $\mathbf{C}'$ ) vectors during training:  
 953

$$954 \mathbf{Z}' = \mathbf{Z} + (\mathbf{S}' \odot \mathcal{D}_S) + (\mathbf{C}' \odot \mathcal{D}_C) \quad (18)$$

955 This stochastic masking prevents FuseCodec from over-reliance on any single modality and encour-  
 956 ages the model to learn robust representations.  
 957

958 The selected configuration uses a **10%** dropout rate—i.e., each element in  $\mathcal{D}_S$  and  $\mathcal{D}_C$  has a 10%  
 959 chance of being masked to zero during training. We compare this against higher dropout rates: **30%**,  
 960 **50%**, **70%**, and **90%**.  
 961

962 **Results.** The best overall performance is achieved with the 10% dropout rate configuration, which  
 963 achieves the lowest WER (3.99) and WIL (6.45) and the highest STOI (0.95), ViSQOL (3.47),  
 964 and PESQ (3.13). Increasing the dropout rate to 30–90% leads to the worsening of the most content  
 965 preservation and speech naturalness metrics. While UTMOS and Similarity remain relatively stable,  
 966 50% dropout achieves minor gains in UTMOS (3.66) and Similarity (0.996).  
 967

968 **Discussion.** These results confirm the importance of carefully balancing modality dropout during  
 969 latent fusion and underscore the value of semantic-contextual representation integration. Preserving  
 970 a sufficient portion of the auxiliary representations by using a small 10% dropout rate achieves the  
 971 most effective use of semantic and contextual information.  
 972

973 As the dropout rate increases, the model receives increasingly less additional modality informa-  
 974 tion, reducing its ability to align latent tokens with multimodal supervision. This negatively affects  
 975 intelligibility (WER, WIL) and perceptual quality (ViSQOL, PESQ).  
 976

Interestingly, metrics such as UTMOS and Similarity remain relatively stable or improve at moderate dropout rates (50%), suggesting that prosodic and speaker characteristics are preserved within the base latent representations. However, the loss of some semantic-contextual information comes at the cost of worse content preservation.

Overall, the findings suggest that light dropout (10%) provides the best trade-off, ensuring robust yet expressive multimodal grounding during latent token fusion.

### D.5 ABLATION: QUINTIZER LAYER CONFIGURATION IN SEMANTIC-CONTEXTUAL GUIDANCE

Table 10: Ablation of RVQ supervision depth under global (Distill) and temporally aligned (ContextAlign) guidance. **First Layer** indicates supervision is applied only to the first-layer RVQ tokens, while **All Layers** averages representations from all eight RVQ layers before supervision. *Supervising the first-layer RVQ tokens leads to stronger semantic-contextual grounding and improved intelligibility compared to all-layer supervision.*

| Model Variant          | RVQ Layer   | Content Preservation |             |             | Speech Naturalness |             |             |              |
|------------------------|-------------|----------------------|-------------|-------------|--------------------|-------------|-------------|--------------|
|                        |             | WER↓                 | WIL↓        | STOI↑       | ViSQOL↑            | PESQ↑       | UTMOS↑      | Similarity↑  |
| FuseCodec-ContextAlign | First Layer | <b>4.15</b>          | <b>6.70</b> | 0.93        | <b>3.18</b>        | <b>2.85</b> | <b>3.65</b> | <b>0.995</b> |
| FuseCodec-ContextAlign | All Layers  | 4.34                 | 7.04        | 0.93        | 3.17               | 2.72        | 3.65        | 0.993        |
| FuseCodec-Distill      | First Layer | <b>4.09</b>          | <b>6.60</b> | <b>0.94</b> | <b>3.43</b>        | <b>3.06</b> | <b>3.65</b> | <b>0.996</b> |
| FuseCodec-Distill      | All Layers  | 4.23                 | 6.86        | 0.93        | 3.26               | 2.84        | 3.61        | 0.994        |

**Setup.** We study the impact of RVQ layer supervision depth in the distillation objective. Our method, FuseCodec-Distill, uses **first-layer supervision**, projecting the first-layer RVQ tokens  $\mathbf{Q}^{(1)}$  and computing cosine similarity (see Sections 2.3.2 and 2.3.3).

We compare this against an ablated variant, **all-layer supervision**, which averages the outputs from all eight RVQ layers. We define the averaged RVQ output as:

$$\mathbf{Q}^{(1:8)} = \frac{1}{8} \sum_{i=1}^8 \mathbf{Q}^{(i)} \in \mathbb{R}^{T' \times D}, \quad (19)$$

$$\mathbf{Q}'^{(1:8)} = \mathbf{Q}^{(1:8)} \mathbf{W}$$

In the **Global Semantic-Contextual Supervision** setting, we apply the **all-layer supervision** to the distillation loss as:

$$\mathcal{L}_{\text{distill}} = -\frac{1}{T'} \sum_{t=1}^{T'} \log \sigma \left( \frac{1}{2} \left[ \cos \left( \mathbf{Q}_t'^{(1:8)}, \tilde{\mathbf{S}}_t \right) \right. \right. \quad (20)$$

$$\left. \left. + \cos \left( \mathbf{Q}_t'^{(1:8)}, \tilde{\mathbf{C}}_t \right) \right] \right)$$

Similarly, for the **Temporally Aligned Contextual Supervision** setting, we apply the **all-layer supervision** to the distillation loss as:

$$\mathcal{L}_{\text{align}} = -\frac{1}{T'} \sum_{t=1}^{T'} \log \sigma \left( \cos \left( \mathbf{Q}_t'^{(1:8)}, \mathbf{C}_t^* \right) \right) \quad (21)$$

**Results.** Table 10 shows the effect of RVQ supervision depth across both distillation configurations. For FuseCodec (Distill), which uses Global Semantic-Contextual Supervision, first-layer supervision achieves the strongest performance across all content preservation and naturalness metrics, with the lowest WER (4.09), WIL (6.60), and highest STOI (0.94), ViSQOL (3.43), PESQ (3.06), UTMOS (3.65), and Similarity (0.996). Similarly, FuseCodec (ContextAlign), which uses Temporally Aligned Contextual Supervision, First-layer supervision again achieves stronger results in WER (4.15), WIL (6.70), ViSQOL (3.18), PESQ (2.85), and Similarity (0.995). In contrast, using all-layer supervision leads to consistent degradation across most metrics in both settings.

1026  
 1027 **Discussion.** The results highlight that the layer at which RVQ tokens are supervised significantly  
 1028 impacts the quality of semantic and contextual guidance during distillation. Supervising the first  
 1029 RVQ layer yields stronger performance, as these tokens encode high-level, abstract representations  
 1030 more aligned with semantic intent and global context. This leads to better linguistic grounding and  
 1031 intelligibility, reflected in improved WER, STOI, and ViSQOL scores.

1032 In contrast, deeper RVQ layers capture lower-level acoustic and residual details, which are less  
 1033 suitable for semantic or contextual alignment. Averaging supervision across all layers matches these  
 1034 fine-grained signals with global ones, impacting the alignment objective. This results in performance  
 1035 drop across content preservation and speech naturalness metrics.

1036 Some naturalness metrics, such as UTMOS and Similarity, remain relatively stable with all-layer  
 1037 supervision, suggesting that speaker identity and prosodic features are distributed throughout the  
 1038 RVQ layers. However, these are insufficient for guiding semantic alignment during distillation.

1039 Overall, applying supervision at the first RVQ layer provides a clearer, more semantically grounded  
 1040 signal, leading to better alignment and overall performance in speech reconstruction.

## 1042 E TOKENIZER DESIGN AND LOSS FUNCTIONS

1044 In this section, we provide additional details on our tokenizer backbone (§E.1) and the training  
 1045 objectives for the backbone neural codec (§E.2).

### 1047 E.1 MODEL DETAILS

1049 To implement a strong speech tokenizer baseline, we adopt a standard neural codec architecture and  
 1050 discriminator setup commonly used in prior work Défossez et al. (2022); Zeghidour et al. (2022).

1051 **Encoder and Decoder.** The Encoder consists of an initial 1D convolutional layer with 32 channels  
 1052 and a kernel size of 7, followed by 4 stacked residual blocks. Each block includes two dilated  
 1053 convolutions with a (3, 1) kernel and no dilation expansion (dilation = 1), a residual connection,  
 1054 and a strided convolutional layer for temporal downsampling. Stride values across the blocks are  
 1055 set to 2, 4, 5, and 8, with kernel sizes for the downsampling layers set to twice the corresponding  
 1056 stride. Channel dimensions double at each downsampling stage. The encoder then includes  
 1057 a two-layer BiLSTM, and concludes with a 1D convolution (kernel size 7) to project to the target  
 1058 embedding dimension. ELU (Clevert et al., 2016) is used as the activation function, and layer  
 1059 normalization or weight normalization is applied depending on the layer. The Decoder mirrors the  
 1060 encoder architecture, with the only difference being the use of transposed convolutions in place of  
 1061 strided convolutions to reverse the downsampling steps, and the inclusion of LSTM layers to restore  
 1062 temporal resolution.

1063 **Residual Vector Quantizer.** The Residual Vector Quantizer (RVQ) module discretizes the encoder’s continuous latent representations into a sequence of codebook indices. Specifically, we  
 1064 quantize the encoder latent tensor of shape  $[B, D, T]$  using 8 residual codebooks, each with 1024  
 1065 codebook entries. Each subsequent codebook quantizes the residual error of the previous one. Code-  
 1066 book entries are updated using an exponential moving average with a decay factor of 0.99. To  
 1067 prevent codebook collapse, unused entries are randomly resampled using vectors from the current  
 1068 batch. The RVQ output is a discrete tensor of shape  $[B, N_q, T]$ , where  $N_q$  is the number of active  
 1069 quantizers. The indices are mapped back to the original latent space by summing the corresponding  
 1070 codebook embeddings and are then fed into the decoder to reconstruct the input. A straight-through  
 1071 estimator (Bengio et al., 2013) is used to propagate gradients through the quantizer.

1072 **Discriminators.** We utilize discriminators to guide the generators (Encoder, RVQ, and Decoder)  
 1073 to reconstruct speech more closely to the original. We make use of three distinct discriminators:  
 1074 a Multi-Scale STFT (MS-STFT) discriminator, a Multi-Scale Discriminator (MSD), and a Multi-  
 1075 Period Discriminator (MPD). The MS-STFT discriminator, proposed by (Défossez et al., 2022),  
 1076 works on multiple resolutions of the complex-valued short-time Fourier transform (STFT). It treats  
 1077 the real and imaginary parts as concatenated and applies a sequence of 2D convolutional layers.  
 1078 The initial layer uses a kernel size of  $3 \times 8$  with 32 channels. This is followed by convolutions  
 1079 with increasing temporal dilation rates (1, 2, and 4) and a stride of 2 along the frequency axis. A  
 final  $3 \times 3$  convolution with stride 1 outputs the discriminator prediction. The MSD processes the

1080 raw waveform at various temporal scales using progressively downsampled versions of the input.  
 1081 We adopt the configuration from (Zeghidour et al., 2022), which was originally based on (Kumar  
 1082 et al., 2019). Similarly, the MPD, introduced by (Kong et al., 2020), models periodic structure in  
 1083 the waveform by reshaping it into a 2D input with unique periodic patterns. For consistency, we  
 1084 standardize the number of channels in both the MSD and MPD to match those in the MS-STFT  
 1085 discriminator.

1086

1087 

## E.2 TRAINING OBJECTIVE

1088

1089 To ensure that FuseCodec learns discrete speech representations, we ground our training objective  
 1090 on proven techniques, following (Défossez et al., 2022; Zhang et al., 2024; Ahsan et al., 2024).

1091

1092 **Reconstruction loss.** Let  $\mathbf{x}$  and  $\hat{\mathbf{x}}$  denote the original and reconstructed speech waveforms, re-  
 1093 spectively. For spectral comparisons, we define 64-bin Mel-spectrograms  $\mathbf{M}_i(\cdot)$  using STFTs with  
 1094 window size  $2^i$  and hop size  $2^i/4$ , where  $i \in \mathcal{E} = \{5, \dots, 11\}$  indexes different resolution scales.  
 1095 We compute the time-domain  $\mathcal{L}_{\text{time}}$  and frequency-domain  $\mathcal{L}_{\text{freq}}$  reconstruction losses as:

1096

$$\mathcal{L}_{\text{time}} = \|\mathbf{x} - \hat{\mathbf{x}}\|_1 \quad (22)$$

1097

$$\begin{aligned} \mathcal{L}_{\text{freq}} = \sum_{i \in \mathcal{E}} & \left( \|\mathbf{M}_i(\mathbf{x}) - \mathbf{M}_i(\hat{\mathbf{x}})\|_1 \right. \\ & \left. + \|\mathbf{M}_i(\mathbf{x}) - \mathbf{M}_i(\hat{\mathbf{x}})\|_2 \right) \end{aligned} \quad (23)$$

1098

1099 **Adversarial loss.** To reduce the discriminability of reconstructed speech, we adopt a GAN-based  
 1100 training objective with a set of discriminators  $\{D^{(i)}\}_{i=1}^d$ , including multi-period (MPD), multi-scale  
 1101 (MSD), and multi-scale STFT (MS-STFT) variants (see Sec. E for details). The generator  $\mathcal{L}_{\text{gen}}$  and  
 1102 discriminator  $\mathcal{L}_{\text{disc}}$  losses are computed as:

1103

$$\mathcal{L}_{\text{gen}} = \frac{1}{d} \sum_{i=1}^d \max \left( 0, 1 - D^{(i)}(\hat{\mathbf{x}}) \right) \quad (24)$$

1104

$$\begin{aligned} \mathcal{L}_{\text{disc}} = \frac{1}{d} \sum_{i=1}^d & \left[ \max(0, 1 - D^{(i)}(\mathbf{x})) \right. \\ & \left. + \max(0, 1 + D^{(i)}(\hat{\mathbf{x}})) \right] \end{aligned} \quad (25)$$

1105

1106 Let  $D_j^{(i)}(\cdot)$  denote the output of the  $j$ -th layer of  $D^{(i)}$ , with  $\ell$  total layers. We include a feature  $\mathcal{L}_{\text{feat}}$   
 1107 matching loss to stabilize training and align intermediate features as:

1108

$$\mathcal{L}_{\text{feat}} = \frac{1}{d\ell} \sum_{i=1}^d \sum_{j=1}^{\ell} \frac{\|D_j^{(i)}(\mathbf{x}) - D_j^{(i)}(\hat{\mathbf{x}})\|_1}{\text{mean} \left( \|D_j^{(i)}(\mathbf{x})\|_1 \right)} \quad (26)$$

1109

1110 **Commitment Loss.** To ensure encoder outputs align closely with their quantized representations,  
 1111 we apply a commitment penalty during residual vector quantization (RVQ). Let  $\mathbf{r}_j$  denote the residual  
 1112 vector at step  $j \in \{1, \dots, q\}$ , and  $\mathbf{c}_j$  be its corresponding nearest codebook entry, we calculate  
 1113 commitment loss  $\mathcal{L}_{\text{commit}}$  as:

1114

$$\mathcal{L}_{\text{commit}} = \sum_{j=1}^q \|\mathbf{r}_j - \mathbf{c}_j\|_2^2 \quad (27)$$

