
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FREEZE, PROMPT, AND ADAPT: A FRAMEWORK FOR
SOURCE-FREE UNSUPERVISED GNN PROMPTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt tuning has become a key mechanism for adapting pre-trained Graph Neu-
ral Networks (GNNs) to new downstream tasks. However, existing approaches
are predominantly supervised, relying on labeled data to optimize the prompting
parameters and typically fine-tuning a task-specific prediction head—practices
that undermine the promise of parameter-efficient adaptation. We propose Un-
supervised Graph Prompting Problem (UGPP), a challenging new setting where
the pre-trained GNN is kept entirely frozen, labels on the target domain are un-
available, the source data is inaccessible, and the target distribution exhibits co-
variate shift. To address this, we propose UGPROMPT, the first fully unsuper-
vised GNN prompting framework. UGPROMPT leverages consistency regular-
ization and pseudo-labeling to train a prompting function, complemented with
diversity and domain regularization to mitigate class imbalance and distribution
mismatch. Our extensive experiments demonstrate that UGPROMPT consistently
outperforms state-of-the-art supervised prompting methods with access to labeled
data, demonstrating the viability of unsupervised prompting as a practical adapta-
tion paradigm for GNNs.

1 INTRODUCTION AND RELATED WORK

Prompt tuning Li & Liang (2021); Lester et al. (2021) has driven many recent developments for
Large Language Models (LLMs). These methods optimize external prompting parameters to guide
a model’s responses. The goal is to avoid fine-tuning the model’s vast number of internal parameters
for adaptation to new downstream tasks, keeping the core pre-trained knowledge intact Zheng et al.
(2025); Han et al. (2024); Liu et al. (2023a). However, prompting becomes more challenging for
graphs because: First, there is a wide range of graph tasks; thus, unlike general language tasks Devlin
et al. (2019); Radford & Narasimhan (2018), task unification is difficult in graphs. Subsequently, it
restricts the opportunities of collecting large amounts of data easily from available resources such as
the internet Radford et al. (2019) and causes bottlenecks to pre-train large Graph Neural Networks
(GNNs) for general purposes. Second, because of the limited reasoning capabilities of GNNs Morris
et al. (2024); Mao et al. (2024a) it is non-trivial to constitute instructive graph prompts by the human
(natural) language Fatemi et al. (2024).

A few recent studies have adopted prompting for GNNs to align the objectives of pre-training on
source data and fine-tuning on target data, mostly following the “pre-train, prompt, fine-tune”
pipeline Sun et al. (2022). These works design unified tasks that allow optimizing a GNN with
semantically similar objectives on the pretext and downstream tasks Huang et al. (2023); Liu et al.
(2023b); Fang et al. (2023); Sun et al. (2023); Yu et al. (2024b); Chen et al. (2025). However, the
current GNN prompting paradigm suffers from two key limitations that hinder its efficiency com-
pared to its LLM counterparts. First, the existing methods rely heavily on labeled data—which is
costly to obtain—to achieve competitive performance. Second, they require training new projection
heads for each downstream task, a form of lightweight fine-tuning Li & Liang (2021). These depen-
dencies on additional parameters and labeled data (especially in scenarios where the original source
data is inaccessible, e.g., due to privacy) prevent GNNs from being used as truly frozen models. This
gap motivates our work to establish a more practical and efficient prompting paradigm for GNNs.

To directly address these limitations, we first introduce the Unsupervised Graph Prompting Problem
(UGPP), a rigorous novel problem formulation. The UGPP setup evaluates a method under four key
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conditions: the GNN’s parameters are frozen, there is a covariate shift in the target data distribution,
no target labels are available for adaptation, and the source data is inaccessible. While this setup
shares similarities with Unsupervised Source-Free Domain Adaptation (SFDA) Li et al. (2024), it
differs in a crucial aspect: UGPP requires the entire pre-trained GNN to be frozen, whereas SFDA
methods Mao et al. (2024b); Zhang et al. (2024) rely on fine-tuning the model’s parameters. This
setting firmly places our work within the paradigm of parameter-efficient prompting, rather than full
model adaptation.

Within this challenging setup, we propose UGPROMPT, the first fully unsupervised GNN prompting
framework. UGPROMPT trains a prompting function using consistency regularization and confident
pseudo-labeling, enabling the frozen GNN to adapt its knowledge to the new target distribution. To
ensure robustness, we introduce two additional regularization techniques: one to counteract predic-
tion bias from class imbalance and another to make the prompted graphs close to the original data
distribution. Our extensive experiments show that UGPROMPT, despite being fully unsupervised,
consistently outperforms state-of-the-art (SOTA) prompting methods that have the advantage of full
access to labeled data. Our major contributions are summarized as follows.

• Problem formulation. We propose UGPP, a challenging problem setup that isolates the
true effectiveness of a prompting function by disallowing any updates to the pre-trained
GNN’s parameters.

• Novel unsupervised methodology. We propose UGPROMPT, the first fully unsupervised
GNN prompting method that leverages consistency regularization and pseudo-labeling to
adapt a frozen GNN to new data distributions.

• Empirical analysis. We demonstrate that UGPROMPT substantially outperforms super-
vised SOTA methods on node and graph classification tasks, validating the effectiveness of
unsupervised adaptation in this novel and more practical setting.

2 BACKGROUND & PROBLEM FORMULATION

Previous studies on adapting prompt tuning for GNNs use lightweight fine-tuning Li & Liang (2021);
Lester et al. (2021) with supervision which has been addressed widely in different domains such as
computer vision van den Oord et al. (2018); Chen et al. (2020); Zhuang et al. (2021) and NLP Devlin
et al. (2019); Ruder et al. (2019). Specifically, recent works have followed the “pre-train, prompt,
fine-tune” setup Sun et al. (2022); Liu et al. (2023b); Sun et al. (2023); Fang et al. (2023). In this
section, we first introduce this setting and discuss its limitations, then we introduce our proposed
problem setting which addresses these limitations.

2.1 PRE-TRAIN, PROMPT, FINE-TUNING

This pipeline aims to bridge the generalization gap of pre-trained GNNs being applied to the down-
stream tasks that semantically differ from the pretext tasks. Unlike the traditional supervised and
“pre-training, fine-tuning” methods, this pipeline employs a task unification step before pre-training
and fine-tuning. This is essential as it helps align the pretext and downstream objectives to optimize
a pre-trained model on new datasets. The steps are as follows.

(1) Pre-train. Formally, given a set of tuples S = {(Ti,Di)}Ns
i=1, with Ns samples, from pretext task

Ti and dataset Di, first all the tasks are unified to task Tu and the corresponding changes apply for
their associated datasets to make a new set Su = {(T i

u ,Di
u)}

Ns
i=1. Then a GNN encoder g(.; θg) is

pre-trained on Su using a unsupervised approach such as contrastive learning You et al. (2020); Xia
et al. (2022). For downstream tasks, by adding a projection head h(.; θh) after the encoder, a model
ψ = h◦g is formed of which the encoder parameters θg are frozen, and only the head parameters θh
will be trained. (2) Prompting. At this stage, a prompting function f(., θf ) is employed to construct
a prediction model φ. The prompting function is either a prefix module, i.e., φ = h ◦ g ◦ f , or a
postfix one, i.e., φ = f ◦ h ◦ g. (3) Fine-tuning. In the final step, the set of parameters {θh, θf} of
φ are optimized for every unified downstream task Tu with the new labeled samples.

Limitations. A deeper look at the “pre-train, prompt, fine-tune” pipeline reveals that although the
current methods impose less trainable parameters compared to full fine-tuning (fine-tuning both pre-
trained feature encoder and decoder), they involve partial (lightweight) fine-tuning Han et al. (2024);
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Figure 1: Overview of UGPROMPT. A) A non-parametric algorithm generates a weak augmentation
Gw and a strong augmentation Gs from an unlabeled graph G. B) The learnable prompting function
f generates a prompted graph Gp from Gs. C) The base GNN with frozen parameters scores Gp and
Gw. A discriminator taking input from the latent representation (zGa for Gw and zGp for Gp) of the
GNN’s encoder regularizes the model to adapt to the input distribution.

Li & Liang (2021); Lester et al. (2021), as they also train the GNN’s decoder (projection head)
along with the new parameters of the prompting function. Subsequently, labels become essential
for this partial fine-tuning, and they are unable to leverage unlabeled data from large datasets when
collecting labeled data is challenging Radford et al. (2019). Also, fine-tuning a large model that is
pre-trained on large datasets may inject noisy information when the labeled downstream datasets are
small Bousquet et al. (2004); Shalev-Shwartz & Ben-David (2014). Therefore, it reduces the model
generalization when it comes to diverse applications Brown et al. (2020).

2.2 OUR PROBLEM SETTING

To address the above limitations, we first need a suitable problem setting that offers insights into how
well a prompting method performs when there is lack of labeled data. It is also crucial to evaluate if
the method generalizes across tasks without fine-tuning the base GNN model parameters.

Unsupervised Graph Prompting Problem (UGPP). Suppose a GNN model φ(.; θg, θh) =
h(.; θh)◦g(.; θg) is given, where g and h are its encoder and decoder. Also, φ is pre-trained for task
T on a labeled source dataset Ds = {(xis, yis) : xis ∼ Ps

X , y
i
s ∼ Ps

Y |X}
Ns
i=1, where xis is a sample

(e.g., a graph or node), and yis is its associated label. The problem is to train a prompting module
f(.; θf ) on an unlabeled target dataset Dt = {xjt : xjt ∼ Pt

X}
Nt
j=1, s.t. Ps

X ̸= Pt
X , to enhance the

performance of φ for task T on Dt, assuming θg and θh are fixed and Ds is unobservable. Further,
assume Pt

Y |X is unobserved but Pt
Y |X = Ps

Y |X .

This problem, UGPP, focuses on prompting without labeled data. A prompting method performing
well in this setting has three advantages: First, it is model and task agnostic, i.e., this method works
for conventional GNNs (e.g., GCN, GAT) and tasks (e.g., node/graph classification). Second, it is
unsupervised, so a large number of datasets can be utilized to improve generalization. Third, this
setting does not depend on the source data. This is particularly beneficial when the source data is
inaccessible, e.g. due to privacy issues.

It is noteworthy that our setting fundamentally differs from conventional Unsupervised SFDA set-
tings. While SFDA typically involves fine-tuning the parameters of the source-trained model, our
setting mandates that the pre-trained GNN remains entirely frozen. All adaptation is achieved ex-
clusively by optimizing the external prompt parameters. Please find additional discussions on the
UGPP definition in Appendix A.4. Nevertheless, we compare our proposed method (described next)
against recent graph SFDA methods in Appendix A.7.4.

3 OUR METHOD: UGPROMPT

Here, we introduce UGPROMPT, an unsupervised GNN prompting method, to address UGPP.
Motivation. We aim to design an unsupervised prompting framework that helps a pre-trained GNN
make robust predictions while its parameters are frozen. To achieve this, we take advantage of
pseudo-labeling Lee (2013); Xie et al. (2020) and consistency regularization Sajjadi et al. (2016);
Laine & Aila (2017). To train a prompting function in a fully unsupervised manner, UGPROMPT
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first obtains randomly augmented graphs from the target dataset. Then we employ consistency
regularization Zhang et al. (2021); Wang et al. (2023), where certain predictions of the base GNN
are filtered by a confidence threshold and exploited as pseudo-labels for optimization. Indeed, the
knowledge learned from the source dataset is used to reduce prediction entropy and handle distribu-
tion shifts by relying on the GNN’s confident predictions for unlabeled target data. The prompting
module enhances target input samples by adding key information to make them more similar to
source samples. Empirical evidence to support this claim is in the Appendix A.7.5. We describe our
framework (Figure 1) for graph-level tasks. Note that it also generalizes to node-/edge-level tasks.

Overview of UGPROMPT.Our framework to address UGPP has a training and an inference step.
The training step involves two components: consistency-based prompting and prompt regulariza-
tion. Consistency-based prompting starts with augmenting each input graph twice, with one of them
being modified by a prompting function. Next, the GNN scores both samples. The objective is
to train the prompting function such that the GNN produces “consistent prediction scores” for both
samples of this pair with a certain confidence. In prompt regularization we introduce two regulariza-
tion techniques: one to tackle biased predictions caused by a class imbalance in the data and another
to prevent generating out-of-distribution (OOD) prompted graphs. During inference, a test graph is
fed to the prompting function without augmentation and its output goes to the GNN. We discuss a
task unification step to generalize on other graph tasks, e.g. node-classification, in Appendix A.5.3.

3.1 THE CONSISTENCY-BASED PROMPTING

Our prompting method is designed to reduce the discrepancy of the base GNN predictions over
random augmentations of the same input graphs. We achieve this without labels by utilizing an al-
gorithmic augmentation step, and then generating pseudo-labels out of the unlabeled augmentations
when their assigned scores by the GNN meet a certain confidence threshold. We provide the details
of these two stages below.

Algorithmic augmentation. Consistency regularization techniques Zhang et al. (2021) train strong
augmentations of samples using the pseudo-labels derived from their weak augmentations. Since
our focus is on optimizing the prompting module rather than fine-tuning the base GNN, we adopt
this technique as follows. We use a random non-parameterized augmentation algorithm (we use
random feature masking in our experiments). More specifically, we mask a group of features with a
certain probability. We augment an input graph G to create a weak augmentation Gw with masking
probability pw and also a strong augmentation Gs with probability ps, where ps > pw. We pass Gs
through a learnable prompting function f(.; θf ) to obtain a prompted graph Gp = f(Gs; θf ). We
keep Gw unchanged and call it a non-prompted augmentation graph.

Learnable prompting. We use a prefix prompting module to transform input samples for the base
GNN. Our approach is generic enough to allow the integration of different prompting functions.
For our experiments, we choose a function f that enriches the feature vectors of nodes since this
particular design aligns with our augmentation technique of random feature masking. This way of
adding learnable parameters is used in GPF-Plus Fang et al. (2023).

Specifically, we learn a prompting function f with parameter set θf = {t∗j : t∗j ∈ Rd}N∗

j=1. For input
graph G ofN nodes with nodes features setX = {xi : xi ∈ Rd}Ni=1, the function f makes prompted
graph Gp with feature set Xp = {xi + ti : xi ∈ X, xi, ti ∈ Rd}Ni=1 such that ti =

∑nt

j=1 αi,jt
∗
j and

αi,j =
exp(xT

i t∗j )∑nt
l=1 exp(xT

i t∗l )
.

Consistency-based Objective. We optimize θf to minimize the discrepancy between the GNN’s
prediction scores for the non-prompted augmented graph Gw and the prompted graph Gp. This would
lower the entropy of the GNN’s scores for the target unlabeled data. Intuitively, a well-trained frozen
GNN model φ makes accurate predictions for samples close to the source distribution. Therefore,
as training proceeds and φ scores different random perturbations of the same samples, we utilize its
confident predictions as pseudo-labels for optimization, as this helps f to capture the distribution
shift and make the predictions robust. We achieve this by passing Gp and Gw to φ for prediction as:

p̃Gφ(y) = δ(h(za; θh)) p̂Gφ(y) = δ(h(zp; θh)) (1)
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where zGa = g(Gw; θg) and zGp = g(Gp; θg), δ(.) denotes the softmax function, p̃Gφ(y), p̂
G
φ(y) ∈ RC ,

and C is the number of classes. Pseudo-labels are made as pG
φ(y) = argmax p̃Gφ(y), and finally, the

consistency loss is:

Lc =
1

|B|
∑
G∈B

1(max(p̃Gφ(y)) > τ)CE(pG
φ(y), p̂

G
φ(y)) (2)

where CE(.,.) is the cross-entropy function, B = {Gi}|B|
i=1 is a sample batch, and τ is a confidence

threshold. τ excludes low-certainty predictions (samples less aligned with the source data distribu-
tion) and can be fixed or class-dynamic (see Appendix A.5.3)

3.2 PROMPT REGULARIZATION

Diversity. Due to the class imbalance, only reducing the consistency loss may cause biased predic-
tions and trivial solutions such that every sample is assigned to the same class to reduce the overall
entropy. To mitigate this, inspired by Liang et al. (2020a), we regularize the model to maximize the
entropy of the scores’ expected value over a batch, and encourage diverse predictions.

Ldiv = −H(q̂) = 1⊤(q̂⊙ log q̂); q̂ =
1

|B|
∑
G∈B

p̂Gφ(y) (3)

Here H(.) is the entropy function, and ⊙ is the Hadamard product. Employing consistency regular-
ization with an adjusted confidence threshold (τ ) and integrating a diversity loss (Ldiv) to prevent
class collapse helps our framework address pseudo-label dependency and potential calibration risks.

Domain Adaptation.While the prompting function f minimizes the discrepancy of predictions for
the same sample, it may also create OOD prompted graphs. However, even without access to the
source data samples, the knowledge learned from these samples is preserved in the frozen parameters
θφ. We utilize this information to mitigate the OOD issue. To achieve this, we train an adversarial
discriminator d(.; θd)—e.g. a simple feedforward network with trainable parameters θd—to distin-
guish a prompted graph Gp from a non-prompted augmented graph Gw. Formally, we optimize the
discriminator as follows:

θ⋆d = argmin
θd

− 1

2|B|
∑
G∈B

[log σ(d(zGa ; θd)) + log(1− σ(d(zGp , θd)))] (4)

where σ(.) is the sigmoid function. We normalize the sum by 1
2|B| since every graph has two

samples. Note that, Ld is only used to optimize the discriminator and does not appear in the final
objective. Nevertheless, we regularize f with the following objective to make g’s representations
for prompted graphs closer to the non-prompted augmented graphs.

Ladv = − 1

|B|
∑
G∈B

log σ(d(zGp ; θ
⋆
d)) (5)

3.3 FINAL OBJECTIVE & COMPLEXITY ANALYSIS

Our unsupervised objective approach involves three parts. Eq. 2 encourages consistency across GNN
predictions to handle distribution shift and exploit the GNN’s learned knowledge from source data.
Eq. 3 and Eq. 5 handle class imbalance and avoid generating OOD prompted graph respectively.
The final objective to optimize θf becomes:

θ⋆f = argmin
θf

L; L = Lc + λ1Ldiv + λ2Ladv (6)

where λ1, λ2 are hyper-parameters. We bring empirical evidence supporting the logic behind adding
each of the regularization objectives terms in the Appendix A.7.6.

During inference, the augmentation step is skipped, allowing the prompting module to produce a
prompted graph directly from an input graph to align it with the pre-trained model’s knowledge. This
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Table 1: Graph classification results on target datasets (for GCN and GAT base models) show our
unsupervised UGPROMPT largely outperforming competitors that use 25% labeled data.

Base
GNN Method %Label ENZYMES PROTEINS DHFR BBBP BACE

F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP

GCN

BaseModel 0 47.7±5.7 - 51.8±7.0 - 75.5±6.3 - 87.3±1.2 - 58.5±3.3 -

Fine-Tuning

25

46.4±0.1 -2.7 47.5±0.7 -8.3 76.8±0.1 1.7 88.3±1.2 1.1 64.0±0.7 1.1
GraphPrompt 38.1±1.4 -20.1 50.8±1.4 -1.9 71.7±1.1 -5.0 81.9±1.2 -6.2 64.3±0.7 9.9
GraphPrompt+ 23.5±2.5 -50.7 44.7±5.1 -13.7 64.9±6.2 -14.0 82.0±1.2 -6.1 61.0±3.1 8.4
All-In-One 45.8±1.9 -4.0 38.1±13.4 -26.4 79.1±0.6 4.6 85.7±1.2 -1.8 52.5±6.1 -10.3
GPF-Plus 48.3±1.8 1.3 53.8±2.6 3.9 76.9±0.3 1.9 88.0±1.2 0.8 63.4±1.2 8.4

UGPROMPT 0 49.1±0.6 2.9 56.0±1.5 8.1 77.0±2.4 2.0 88.3±0.2 1.1 64.6±1.9 10.4

GAT

BaseModel 0 44.1±6.4 - 51.5±8.1 - 77.3±3.5 - 87.7±1.2 - 46.4±1.2 -

Fine-Tuning

25

42.9±0.0 -2.7 50.2±0.8 -2.5 76.5±0.0 -1.0 88.4±0.1 0.8 46.4±0.7 -2.7
GraphPrompt 29.3±1.0 -33.6 49.5±1.1 -3.9 72.8±0.8 -5.8 83.4±0.3 -4.9 57.9±0.5 0.0
GraphPrompt+ 25.7±4.6 -41.7 48.7±7.7 -5.4 57.2±9.1 -26.0 82.4±2.0 -6.0 64.2±3.7 10.9
All-In-One 39.5±2.5 -10.4 31.5±14.8 -38.8 76.0±2.0 -1.7 86.5±0.4 -1.4 57.9±3.9 -9.8
GPF-Plus 42.9±2.0 -2.7 54.9±1.9 3.7 77.3±0.9 0.0 88.3±0.3 0.7 65.8±0.9 13.6

UGPROMPT 0 45.9±2.2 4.1 56.4±2.0 9.5 78.2±0.9 1.2 87.8±0.2 0.1 66.1±0.2 14.2

prompted graph is passed to the pre-trained GNN for prediction. The pseudocode of UGPROMPT for
both the training and inference are presented in Algorithms 1 and 2 respectively (see the Appendix).

The time complexity of a regular GNN (e.g. GCN), is O(NLd2 +L|E|d), where N ,E, L, and d are
the number of nodes, edges, GNN layers, and the dimensionality of node embeddings respectively.
A common graph augmentation algorithm like feature masking requires O(Nd) operations. The
complexity of the prompting method used in our experiments is NdN∗, where N∗ is the number of
trainable prompting vectors. Thus, the overall complexity isO(NLd2+L|E|d+NdN∗). We com-
pare our training and test times against the baselines in Appendix A.7.9 and show that UGPROMPT
is more efficient than average at the test time.

4 EXPERIMENTS

Datasets and Code. We experiment on six standard datasets for graph and node classification. We
use ENZYMES Schomburg et al. (2004), PROTEINS Borgwardt et al. (2005), DHFR Sutherland
et al. (2003), BBBP and BACE Wu et al. (2017) datasets for graph classification, which have con-
tinuous or discrete features. For node classification, we use Cora, CiteSeer, PubMed Yang et al.
(2016), Flickr Zeng et al. (2020), Cornell, Texas, Wisconsin Pei et al. (2020). Please find more
details in Appendix A.5.1. The code is available at https://anonymous.4open.science/
r/UGPrompt-6C3E.

Distribution Shift in Datasets. Our problem definition (UGPP) requires evaluating a pre-trained
GNN on target datasets that exhibit a covariate shift from the source data. To implement this, our
main experiments induce shifts based on fundamental graph properties. For graph classification,
we generate datasets with varying edge homophily ratios Zhu et al. (2020), a property known to
intrinsically affect GNN information aggregation Gilmer et al. (2017). For node classification, we
use PageRank Bazhenov et al. (2023) to create a popularity-based shift, which provides a challenging
evaluation scenario Bazhenov et al. (2023). Further details on the generation of these distributions
are in Appendix A.5.2, and additional experiments on other shifts (e.g., graph density, clustering
coefficient) are in Appendix A.7.2.

Evaluation Setting. All datasets are split in half to create source and target sets with shifted dis-
tributions. We train a base GNN on the source set and evaluate it on the target set. Since baseline
prompting methods rely on supervised training, we allow only the baselines to access labeled data
for training in four setups of 25%, 50%, 75%, and 100% (full supervision). Please find experi-
ments on 50%, 75% and 100% labeled data in Appendix A.7.12. We report F1-score, and F1-score
improvement, referred to as IMP, compared to the BaseModel baseline.
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Table 2: Node classification results on target datasets for GCN as the base model. Compared to
baselines given 25% of labeled data, UGPROMPT generally achieves better results without labels.

Base
GNN Method %Label Cora CiteSeer PubMed Flickr Cornell Texas Wisconsin

F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP

GCN

BaseModel 0 53.8±2.4 - 44.1±1.5 - 57.1±0.8 - 16.5±0.4 - 19.1±6.2 - 23.6±10.3 - 25.2±10.2 -

Fine-Tuning

25

51.7±0.5 -3.9 40.0±0.3 -9.3 54.3±3.4 -4.9 10.4±0.1 -37.0 19.1±0.0 0.0 26.4±0.0 11.9 27.1±0.1 7.5
GPPT 47.8±3.5 -11.2 38.4±0.5 -12.9 51.6±4.8 -9.6 13.5±0.5 -18.2 15.1±3.0 -20.9 25.6±8.6 8.5 23.4±0.1 -7.1
GraphPrompt 53.8±0.4 0.0 41.6±0.3 -5.7 56.9±0.1 -0.4 13.0±0.1 -21.2 10.9±1.4 -42.9 4.8±0.4 -79.7 10.5±0.1 -58.3
GraphPrompt+ 49.8±0.3 -7.4 39.9±0.3 -9.5 62.0±0.4 8.6 14.8±0.6 -10.3 11.5±2.1 -39.8 4.8±0.3 -79.9 12.0±0.1 -52.3
All-In-One 50.5±1.1 -6.1 38.3±1.0 -13.2 42.1±0.9 -26.3 13.8±0.3 -16.4 13.0±0.8 -31.9 21.7±1.6 -8.1 21.4±0.1 -15.1
GPF-Plus 56.5±0.6 5.0 45.6±0.6 3.4 59.1±0.4 3.5 13.3±0.3 -19.4 22.0±0.5 15.2 25.2±1.4 6.8 26.7±0.1 6.0

UGPROMPT 0 57.3±0.4 6.5 45.7±0.4 3.6 61.2±0.3 7.2 17.5±0.4 6.1 23.2
±0.5

21.5 26.8±0.8 13.6 28.0±0.1 11.1

GAT

BaseModel 0 47.7±1.3 - 41.2±2.4 - 60.0±1.1 - 17.0±0.2 - 18.6±0.2 - 28.1±0.2 - 19.9±6.9 -

Fine-Tuning

25

43.5±0.6 -8.8 38.8±0.3 -5.8 55.6±2.7 -7.3 10.9±0.2 -35.9 18.2±0.0 -2.2 21.2±0.0 -24.6 21.8±0.0 9.5
GPPT 31.5±3.9 -34.0 34.3±1.8 -16.7 51.7±4.6 -13.8 12.9±0.1 -24.1 17.2±4.5 -7.5 28.2±5.5 0.4 21.5±4.1 8.0
GraphPrompt 44.2±0.6 -7.3 39.2±0.4 -4.9 60.1±0.1 0.2 13.4±0.3 -21.1 14.3±1.3 -23.1 1.4±0.0 -95.0 15.4±1.5 -22.6
GraphPrompt+ 41.2±0.9 -13.6 37.8±0.7 -8.3 64.0±1.1 6.7 17.5±0.6 2.9 13.5±2.0 -27.4 1.4±0.0 -95.0 17.1±2.4 -14.1
All-In-One 34.3±2.1 -28.1 27.6±1.4 -33.0 22.7±3.2 -62.2 13.3±0.2 -21.8 13.5±0.2 -27.4 21.2±0.7 -24.6 16.9±0.9 -15.1
GPF-Plus 47.6±1.5 -0.2 42.1±0.6 2.2 60.1±0.3 0.2 13.8±0.2 -18.8 17.9±1.1 -3.8 30.4±0.7 8.2 21.7±1.2 9.0

UGPROMPT 0 48.8±0.9 2.3 42.3±0.5 2.7 60.2±0.1 0.3 17.6±0.3 3.5 21.8±1.5 17.2 29.5±1.0 5.0 22.2±1.1 11.6

Baselines. We consider several types of baselines.
(1) BaseModel. The base GNN without prompting and fine-tuning, which is expected to be out-
performed by prompting methods. We use GCN Kipf & Welling (2017) and GAT Veličković et al.
(2018) as the base GNN. More experiments with recent advanced GNNs are in Appendix A.7.3.
(2) Fine-Tuning. The base GNN model when we fix its encoder and just fine-tune its projection
head. The goal is to verify the claim that fine-tuning on new dataset with labels does not necessarily
improve performance Sun et al. (2022); Fang et al. (2023); Sun et al. (2023).
(3) GNN Prompting Methods. Our work is the first attempt for graph prompting without labels and
updating the base GNN’s parameters. Thus, we compare with all the SOTA GNN prompting methods
used in the recent benchmark Zi et al. (2024), namely All-In-One Sun et al. (2023) and GPF-Plus
Fang et al. (2023), GraphPrompt Liu et al. (2023b), GraphPrompt+ Yu et al. (2024a), and GPPT
Sun et al. (2022). We do not allow these methods to update the GNN’s parameters and only their
prompting modules are supposed to be learned on the target dataset. We use the codebases from the
corresponding papers.

4.1 RESULTS ON GRAPH CLASSIFICATION

For graph classification, 50% of graphs are randomly sampled as the source dataset, with graphs of
higher homophily having a greater chance of selection; the remaining 50% form the target dataset.
Please see experiments with graph density distribution shift in Table 11 (see the Appendix). The
base GNN is trained on the source dataset. We repeat the experiments for two base GNNs (GCN and
GAT) to show how the models generalize over different architectures. Note that GPPT is limited to
node classification so we exclude it from this experiment.

Table 1 presents graph classification results, where baselines use 25% labeled data, while our
method, UGPROMPT, uses 0%. Two key observations highlight UGPROMPT’s contribution: first, it
consistently surpasses the BaseModel, validating it as a reliable, non-detrimental prompting method.
Second, and most notably, UGPROMPT’s use of no labels offers broad applicability to diverse un-
labeled datasets, marking a step towards graph foundation models. Interestingly, evaluations with
UGPP setting reveal that baselines often fail to improve performance and sometimes make it worse.
Most of the graph prompting methods, except for GPF-Plus, perform poorly with both GNN archi-
tectures. Although GPF-Plus has the same prompting function as UGPROMPT’s, it struggles with
adapting to distribution shifts. Conversely, UGPROMPT leverages source data knowledge and gener-
ates pseudo-labels from highly confident predictions, learning effectively from samples that closely
match the source distribution. This ensures consistent improvement across all cases.

4.2 RESULTS ON NODE CLASSIFICATION

First, we compute PageRank (PR) for all nodes of each dataset. We sample 50% of nodes for the
source dataset according to the normalized PR such that graphs with higher PR are more likely
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Table 3: UGPROMPT performance on under different augmentation rates ps for the prompted aug-
mented graph. Higher values of ps provide more variation in masked feature groups and generally
helping with capturing distribution shifts better.

ps
ENZYMES PROTEINS DHFR Cora CiteSeer PubMed

F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP

0.0 47.7 - 55.7 - 76.8 - 56.3 - 44.9 - 57.2 -

0.1 49.1 2.9 55.7 0.0 77.0 0.3 56.7 0.7 44.9 0.0 58.6 2.4
0.2 48.9 2.5 55.9 0.4 76.8 0.0 56.8 0.9 45.0 0.2 59.7 4.4
0.3 48.1 0.8 56.0 0.5 76.2 -0.8 57.1 1.4 45.2 0.7 60.4 5.6
0.4 46.9 -1.7 55.6 -0.2 75.7 -1.4 57.3 1.8 45.7 1.8 61.2 7.0

included in the source dataset. The rest are assigned to the target dataset. A 2-hop neighborhood
of each node is extracted as a subgraph for task unification to graph classification and it inherits
the main node’s label. More experiments with distribution shift of type clustering coefficient are
provided in Table 12 (see the Appendix).

Node classification results are in Table 2. UGPROMPT outperforms on all datasets except PubMed
(where it is second-best) and, notably, uses no labeled data, unlike the baselines. Additionally, the
GNN’s performance degrades on target data across all datasets after fine-tuning its projection head
(the Fine-Tuning baseline) with 25% of labels. This verifies that fine-tuning a model on a small-
sized labeled dataset may introduce noisy information when the downstream data distribution does
not align with the model’s learned knowledge Bousquet et al. (2004); Shalev-Shwartz & Ben-David
(2014); Brown et al. (2020). We also verify UGPROMPT maintains high performance on the source
domain, and does not impose forgetting the learned knowledge, unlike the other baselines; please
find the experiments in Appendix A.7.7. An important advantage of an unsupervised method—
such as ours—is that it allows utilizing large-scale unlabeled datasets. It is important to emphasize
that UGPROMPT achieves the best results on Flickr, the largest dataset, and second best with high
margins from other baselines on PubMed, the second largest dataset, which indicates UGPROMPT
can perform well on large data.

4.3 ABLATION STUDY

4.3.1 THE EFFECT OF REGULARIZATION

To evaluate the regularization effect, UGPROMPT is trained in four scenarios: (1) without regular-
ization (“w/o”), (2) with only domain adaptation regularization (“domain”), (3) with only diversity
regularization (“diversity”), and (4) with both regularizations (“domain + diversity”). Settings (2),
(3), and (4) are compared to (1), with Figure 2 showing IMP improvements. If a regularization term
fails to enhance the model, IMP is set to zero meaning it can be neutralized (setting λ1 or λ2 to
zero) in Equation 6. Results show that both regularization factors have positive effects across the
majority of datasets; however, their combination is not always superior to individual application.
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Figure 2: The effect of regularization objectives on UG-
PROMPT with GCN as the base model.

Domain adaptation regularization is
beneficial across all graph classifica-
tion datasets. We conjecture that the
distributions of node classification
datasets are more likely to be densely
populated, whereas graph datasets of-
ten exhibit scattered hollow spaces
in the latent space between classes,
increasing the likelihood of generat-
ing OOD-prompted graphs. There-
fore, domain adaptation regulariza-
tion would be more beneficial. More-
over, a key finding of this experiment
is the importance of adding diversity regularization. More specifically, when we have severe class
imbalance for example in PROTEINS, Cora, and CiteSeer, “diversity” empowers the base GNN sig-
nificantly, which supports our claims. Appendix A.7.6 provides more discussion on the effect of
these objectives.
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Table 4: Evaluation of UGPROMPT ’s performance in a few-shot setting using GCN as the base
GNN under homophily and PR distribution shifts. Results indicate considerable gains with labeled
data, particularly in node classification tasks.

Method %Label ENZYMES PROTEINS DHFR Cora CiteSeer PubMed

F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP

BaseModel 47.7 - 51.8 - 75.5 - 53.8 - 44.1 - 57.1 -

UGPROMPT
(ours)

25 49.1 2.9 56.2 8.5 77.2 2.3 58.2 8.2 47.0 6.6 63.5 11.2
10 49.0 2.7 56.1 8.3 77.0 2.0 57.6 7.1 46.2 4.8 62.1 8.8
5 49.1 2.9 56.1 8.3 77.1 2.1 57.5 6.9 46.0 4.3 62.1 8.8
0 49.1 2.9 56.0 8.1 77.0 2.0 57.3 6.5 45.7 3.6 61.2 7.2

Table 5: Scaling with homophily shift across four target sets. UGPROMPT is better in most cases.

Target set Method ENZYMES PROTEINS DHFR BACE Cora CiteSeer

Set 1 GPF-Plus -3.6 11.5 -3.2 20.7 -1.8 0.2
UGPrompt 0.9 19.6 -0.6 40.1 0.7 2.0

Set 2 GPF-Plus -5.4 57.6 -1.9 106.1 2.4 0.2
UGPrompt 1.0 62.0 2.0 155.6 2.6 0.7

Set 3 GPF-Plus 27.1 85.7 10.2 108.8 2.2 2.1
UGPrompt 3.0 89.2 7.3 124.7 0.2 0.5

Set 4 GPF-Plus -7.8 44.4 3.7 97.3 -2.6 1.3
UGPrompt 1.9 46.4 2.7 113.7 3.5 1.9

4.3.2 THE EFFECT OF AUGMENTATION

We mask node features in weakly augmented graphs (Gw) for pseudo-labeling with probability pw
and in strongly augmented graphs Gs for prompting with probability ps. Since Gs resembles a distri-
bution shift from Gw, a higher ps allows learning from distribution shifts across more feature groups
offering potentially more robustness. Here, we fix pw = 0.1 and evaluate the impact of varying ps.
The IMP for all ps values is compared to no augmentation ps = 0. The results in Table 3 support
our intuition that augmenting, confidence pseudo-labeling, and consistency training are advanta-
geous. Higher ps yields better performance, over PROTEINS, Cora, CireSeer, and PubMed because
augmentation by feature masking—replacing a group of feature values with 0.0—is semantically
more aligned with the discrete and binary features of these datasets; however, for ENZYMES and
DHFR with continuous features, this augmentation is not as effective and higher values of ps may
be detrimental and cause learning from noise. Additional experiments on evaluating the effect of
augmentation type (e.g. modifying graph structure) are in Appendix A.7.11. Besides, we show the
versatility and generalization of our framework in Appendix A.7.10 using All-In-One’s prompting
function as a choice of function f (see Section 3.1).

4.3.3 THE EFFECT OF HOMOPHILY SHIFT

To evaluate how performance scales with the increase in covariate shift (or difficulty), we extend
our experiment by constructing explicit degrees of shift. Instead of a random 50–50 split (as in
the original setting), we sort all samples by homophily (for the graph classification dataset) and
PageRank (for node classification datasets). The top 50% (highest homophily) are used as the source
dataset. The remaining 50% are divided into four target sets with increasing difficulty (amount
of covariate shift with respect to source set): (i) Set 1: 50–67.5 (closest to source), (ii) Set 2:
67.5–75, (iii) Set 3: 75–87.5, and (iv) Set 4: 87.5–100 (lowest homophily). Table 5 shows the
results. UGPROMPT maintains strong gains on the easier shifts (Sets 1 & 2) and continues to deliver
improvements even under severe distribution shift (Sets 3 & 4). In contrast, GPF-Plus is worse and
frequently induces negative transfer (negative IMP%).

4.4 FEW-SHOT LEARNING FOR UGPROMPT

UGPROMPT is an unsupervised GNN prompting method. However, it can potentially utilize la-
beled data efficiently when it is available. Assuming every batch B is composed of a set of labeled
samples Sl and unlabeled samples Su s.t. B = Sl ∪ Su, we can replace Lc in Equation 2 by
Lc = 1

|B| (Ll + λ3Lu) in which Ll =
∑

G∈Sl
CE(yG , p̂Gφ(y)) is the supervised objective term and

Lu =
∑

G∈B 1(max(p̃Gφ(y)) ≥ τ)CE(pG
φ(y), p̂

G
φ(y)) is the unsupervised term.
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Table 7: Cross-dataset transfer results. All values are IMP%. UGPROMPT consistently delivers
positive transfer. C, T and W denote is Cornell, Texas, and Wisconsin respectively.

C→T C→W T→C T→W W→C W→T

GPF-Plus -3.4 81.1 -5.0 61.9 33.0 209.8
UGPrompt 11.1 10.4 6.2 1.2 41.5 123.5

Here we evaluate UGPROMPT in a few-shot setting. Table 4 presents the results using GCN as
the base GNN under homophily and PR distribution shifts. UGPROMPT significantly performs
better when labels are provided. For node classification datasets, IMP of the 25% labels setting
is notably more than that of the unsupervised case (0% labels), while improvements on PROTEINS
and DHFR are smaller. Meanwhile, performance on ENZYMES remains comparable in the absence
of labels, likely due to a significant covariate shift, which makes learning from highly heterophilic
data challenging even with labels. The key takeaway emerges by comparing Table 4 with Tables
1 and 2, showing that with 25% of labeled data, UGPROMPT outperforms all baselines on most
datasets except DHFR. Notably, its superiority is also evident in the 0% label setting.

4.5 ROBUSTNESS UNDER REAL-WORLD SHIFTS

Table 6: Evaluation under label distribution shift
with disjoint labels for source and target datasets.
Upper panel: the BaseModel’s F1-score on the
source and target domains (showing the severity
of the shift). Lower panel: prompting methods’
improvements (IMP %) on the target domain.

Method Cornell Texas Wisconsin

BaseModel Performance (F1-score)

Source 46.7 79.8 60.1
Target 15.3 13.1 13.9

Target Domain Improvement (IMP%)

GPF-Plus 30.1 -1.5 5.4
UGPrompt 36.6 9.9 28.1

To test robustness beyond simulated covariate
shift, we design two experiments. We use the
Cornell, Texas, and Wisconsin datasets, which
share the same feature dimensionality and num-
ber of classes. In the first experiment, we evalu-
ate a setting where the source and target datasets
have different class distributions. For each of
the datasets, the base GNN is pre-trained on
classes {0, 1, 2}—each dataset has 5 classes.
Then the base is frozen, prompted, and evalu-
ated on classes {2, 3, 4} (reindexed to {0, 1, 2}).
Table 6 summarizes the findings. The Base-
Model collapses under this strong semantic/label
shift, whereas UGPROMPT recovers substan-
tial performance across all datasets, outperform-
ing GPF-Plus (the baseline), which occasionally
leads to negative transfer.

Our second experiment is designed to evaluate robustness to real-world covariate shift. We consider
a more extreme scenario compared to the simulated covariate shift as discussed before. This setting
is standard (particularly in transfer learning) and more challenging. Here, we train the base GNN on
a source dataset, such as Cornell, and then prompt and evaluate it on another dataset, such as Texas,
which is denoted as Cornell→ Texas. Results are shown in Table 7. UGPROMPT consistently de-
livers positive transfer, whereas GPF-Plus potentially produces negative transfer. This demonstrates
UGPROMPT’s robustness even under severe shifts.

5 CONCLUSIONS

In conclusion, we have introduced UGPROMPT,
a novel unsupervised prompting framework for GNNs that overcomes the limitations of existing
prompting methods, particularly in scenarios where labeled data is unavailable. UGPROMPT elimi-
nates the need for updating the base GNN’s parameters on new downstream tasks. UGPROMPT also
enhances the generalization of the base pre-trained GNNs without supervision. Experimental results
over various datasets validate the effectiveness of UGPROMPT which outperforms the state-of-the-
art prompting methods that rely on labeled data on both graph and node classification tasks in many
settings.

Limitations & Future Work. Since we do not
involve training the projection head of the pre-trained GNN for the downstream tasks, UGPROMPT
is unable to handle label distribution shift. Consequently, our framework is also unable to employ
multi-task/meta learning unless we allow the projection head to be optimized—which necessitates
labeled data. Another interesting future direction would be to design a method that selects high-
quality pseudolabels in case of a severe covariate distribution shift.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have made our code and experimental procedures
fully accessible. All experiments were conducted over 50 iterations, comprising 10 dataset pertur-
bations with 5 distinct model initializations each, to ensure robust results. In Appendix A.1, we
provide a link to an anonymous repository containing the complete source code, environmental con-
figurations, and the specific setups required to replicate our results across all datasets. Further details
on our dataset selection, experimental design, and implementation are available in Appendix A.5.
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Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Sav-
vides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, and Xing Xie. Freematch: Self-adaptive
thresholding for semi-supervised learning. In The Eleventh International Conference on Learning
Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In Advances in Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran
Associates, Inc., 2022.

Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In International Conference on Learning Representations,
2022.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical Science, 9:513 – 530, 2017.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM Web Confer-
ence 2022, pp. 1070–1079, 2022.

Qizhe Xie, Eduard H. Hovy, Minh-Thang Luong, and Quoc V. Le. Self-training with noisy stu-
dent improves imagenet classification. Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10684–10695, 2020.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024a.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. Int. J. Comput. Vision, 132(12):5635–5662, 2024b. ISSN 0920-5691.

Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, and Shangling Jui. Generalized
source-free domain adaptation. In 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 8958–8967, 2021.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, pp. 40–48, 2016.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In Advances in Neural Information Process-
ing Systems, volume 32, 2019.

Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Universal
domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Advances in Neural Information Processing Systems,
volume 33, pp. 5812–5823, 2020.

Xingtong Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, and Xinming Zhang. General-
ized graph prompt: Toward a unification of pre-training and downstream tasks on graphs. IEEE
Transactions on Knowledge and Data Engineering, 36(11):6237–6250, 2024a.

Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Multigprompt for multi-task pre-
training and prompting on graphs. In Proceedings of the ACM Web Conference 2024, pp. 515–526.
Association for Computing Machinery, 2024b. ISBN 9798400701719.

Xingtong Yu, Zhenghao Liu, Xinming Zhang, and Yuan Fang. Node-time conditional prompt learn-
ing in dynamic graphs. In The Thirteenth International Conference on Learning Representations,
2025a.

Xingtong Yu, Jie Zhang, Yuan Fang, and Renhe Jiang. Non-homophilic graph pre-training and
prompt learning. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery
and Data Mining V.1, KDD ’25, pp. 1844–1854. Association for Computing Machinery, 2025b.
ISBN 9798400712456.

H. Yuan, H. Yu, S. Gui, and S. Ji. Explainability in graph neural networks: A taxonomic survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(05):5782–5799, 2023.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020.

Bowen Zhang, Yidong Wang, Wenxin Hou, HAO WU, Jindong Wang, Manabu Okumura, and
Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo la-
beling. In Advances in Neural Information Processing Systems, volume 34, pp. 18408–18419,
2021.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Zhen Zhang, Meihan Liu, Anhui Wang, Hongyang Chen, Zhao Li, Jiajun Bu, and Bingsheng He.
Collaborate to adapt: Source-free graph domain adaptation via bi-directional adaptation. In Pro-
ceedings of the ACM Web Conference 2024, pp. 664–675, 2024.

Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li, Liang Lin, and Guanbin Li. Divide and
contrast: source-free domain adaptation via adaptive contrastive learning. In Proceedings of the
36th International Conference on Neural Information Processing Systems, NIPS ’22, 2022. ISBN
9781713871088.

Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. All in one and one for
all: A simple yet effective method towards cross-domain graph pretraining. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24, pp.
4443–4454. Association for Computing Machinery, 2024. ISBN 9798400704901.

Hongling Zheng, Li Shen, Anke Tang, Yong Luo, Han Hu, Bo Du, Yonggang Wen, and Dacheng
Tao. Learning from models beyond fine-tuning. Nature Machine Intelligence, 7(1):6–17, 2025.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=92gvk82DE-.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In Advances in
Neural Information Processing Systems, volume 33, pp. 7793–7804, 2020.

Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming the
limitations of localized graph training data. Advances in Neural Information Processing Systems,
34, 2021.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109:43–76,
2021.

Chenyi Zi, Haihong Zhao, Xiangguo Sun, Yiqing Lin, Hong Cheng, and Jia Li. Prog: A graph
prompt learning benchmark. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024.

16

https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Appendices
APPENDIX CONTENTS

A Appendix 18

A.1 Reproducibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.4 Remark on UGPP definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.5 Additional Details on Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 20

A.5.1 Datasets Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.5.2 Details on the Distribution Shift . . . . . . . . . . . . . . . . . . . . . . . 20

A.5.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.6 Theoretical Analysis of UGPROMPT . . . . . . . . . . . . . . . . . . . . . . . . 22

A.6.1 Generalization Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.6.2 The Generalization Bound and The UGPROMPT’s Objectives . . . . . . . 22

A.6.3 The Necessity of Universal Prompting . . . . . . . . . . . . . . . . . . . . 23

A.7 Additional Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.7.1 Comparison with More baselines . . . . . . . . . . . . . . . . . . . . . . . 23

A.7.2 Effectiveness across Different Distribution Shifts. . . . . . . . . . . . . . . 24

A.7.3 Generalization to Advanced GNN Backbones . . . . . . . . . . . . . . . . 24

A.7.4 Comparison with Source-Free Domain Adaptation Methods . . . . . . . . 25

A.7.5 Embedding distribution analysis under distribution shift . . . . . . . . . . 26

A.7.6 Effect of regularization methods . . . . . . . . . . . . . . . . . . . . . . . 27

A.7.7 Effectiveness under no distribution shift . . . . . . . . . . . . . . . . . . . 28

A.7.8 Effect of the number of trainable prompting vectors . . . . . . . . . . . . . 29

A.7.9 Analysis of Computational Cost . . . . . . . . . . . . . . . . . . . . . . . 29

A.7.10 Effect of changing the prompting function . . . . . . . . . . . . . . . . . . 29

A.7.11 Effect of types of augmentation . . . . . . . . . . . . . . . . . . . . . . . 30

A.7.12 Unsupervised Prompting vs Fully Supervised Prompting . . . . . . . . . . 30

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 REPRODUCIBILITY.

We have made the codebase and other implementation details available in this anonymous link:
https://anonymous.4open.science/r/UGPrompt-6C3E

A.2 ADDITIONAL RELATED WORK

Prompting for LLMs. The promising results of early LLMs Radford & Narasimhan (2018); De-
vlin et al. (2019) have inspired prompt tuning approaches to benefit from LLMs’s reasoning capabil-
ity with minimal parameter tuning. These modular methods Li & Liang (2021); Lester et al. (2021)
integrate trainable prompting prefixes with LLMs, while their parameters are frozen, offering re-
markable performance across various tasks and reducing complexity. Besides, Radford et al. (2019)
suggested pre-training on a large and diverse corpus (WebText), demonstrating strong zero-shot
performance across various tasks. Following that, Brown et al. (2020) coined the term in-context
learning, which is the effort to help models, particularly LLMs, generalize to new tasks without any
parameter training and only by constructing informative prompts with task descriptions, examples,
and instructions. The approaches propose specific language hints to guide the reasoning process,
for example, by providing fine-grained and conditioning instructions Mishra et al. (2022) or en-
couraging the LLM to sequential reasoning with Wei et al. (2022) or without Kojima et al. (2022)
examples. Additionally, some methods iteratively score, evaluate, and update prompts in refinement
loops Zhou et al. (2023); Yang et al. (2024a).

Prompting for GNNs. A few studies have also adopted prompt tuning for GNNs. Specifically, the
main track of these works starts with the “pre-train, prompt, fine-tune” paradigm proposed by Sun
et al. (2022); they addressed the common issue of discrepancy between train and test objectives that
causes performance drop on the downstream application. They design a pre-training task, specifi-
cally edge prediction, that can align with the downstream task. Nonetheless, their approach is only
applicable to node classification. Later, GraphPrompt Liu et al. (2023b) and GraphPrompt+ Yu et al.
(2024a) propose subgraph similarity detection as a more general task unification for different graph
tasks to pre-train a GNN encoder. Their prompting method involves task-specific trainable readout
functions. Similarly, PRODIGY Huang et al. (2023) makes prompts as a combination of example
subgraphs, which are connected to label nodes, and query subgraphs, which are waiting to be con-
nected to label nodes, and they pre-train with a neighborhood matching task. Unification to subgraph
classification is also proposed by GPF-Plus Fang et al. (2023) and ALL-In-One Sun et al. (2023).
However, these methods resemble LLM prompting methods more from the perspective that they
prompt input graphs before a frozen GNN encoder. Specifically, the former adds trainable prompt-
ing parameters to the feature matrix of an input graph, and the latter combines a subgraph with a
trainable feature matrix and structure with the input. More recently, GCOPE Zhao et al. (2024)
utilizes graph coordinators to align domain-shifted datasets and remedy negative transfer in cross-
domain pre-training. Also, DAGPrompt Chen et al. (2025) introduces distribution-aware prompting
by utilizing low-rank adaptation for heterophilic graphs. Similarly, to capture diverse node-specific
patterns in non-homophilic graphs, PRONOG Yu et al. (2025b) introduces a conditional prompting.
In addition, Prompting GNNs for dynamic graphs has also been studied lately Yu et al. (2025a).

There are two shortcomings with the above GNN prompting methods. First, all of them require
labeled data for training their prompting functions or at test time. Second, they mostly train a new
projection head/decoder for the pre-trained GNN along with the prompting parameters. However,
we propose a fully unsupervised prompting method that does not involve any fine-tuning and shows
its promising performance even when the competitors have access to a full or a portion of the labels.

Consistency Regularization and Pseudo-labeling. In the context of Semi-Supervised Learning
(SSL), pseudo-labeling Lee (2013); Xie et al. (2020) and consistency regularization Bachman et al.
(2014); Sajjadi et al. (2016); Laine & Aila (2017) for training neural network models when labeled
data are scarce. The first technique augments the labeled set of datasets with the model’s prediction
on the unlabeled set, and the second one aims to minimize the discrepancy of a model’s predictions
on random perturbations of the same samples, which are generated by augmentation and dropout
layers. Particularly, these methods have been applied for domain adaptation to mitigate the distri-
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bution shift between source and target datasets Liang et al. (2020b); Kim et al. (2021). A widely
studied approach to integrating pseudo-labeling and consistency regularization is to first generate
random weakly and strongly augmented instances from the same samples of a dataset and then
make pseudo-labels from the weakly augmented samples whenever the model makes confident pre-
dictions for them. Models are trained by these pseudo-labels as labels for the strongly augmented
samples, along with labeled data if available. To select confident samples, some methods use a fixed
certainty threshold Sohn et al. (2020) while others set dynamic class-wise thresholds Zhang et al.
(2021); Wang et al. (2023).

Unlike previous work utilizing consistency regularization and pseudo-labeling, we are not interested
in training a model or fine-tuning it. Therefore, our novelty is interpreting a prompted graph as
a strongly augmented instance and utilizing the pseudo-labels of weak augmentation to train the
prompting parameters.

A.3 ALGORITHM

Algorithm 1 presents our method’s prompting procedure at training time. In line 1, we initiate the
base GNN’s model with the pre-trained parameters tuned on the source dataset, the target dataset,
the augmentation and prompting functions, and the hyperparameters of the method. We initialize
the prompting parameter and fix the base GNN’s parameters in lines 3-4. Line 6 shows sampling of
a batch of graphs and in line 7 a strong and a weak augmentation is generated from each graph in
the batch. Next, the strongly augmented graph is prompted in line 8. This prompted graph, along
with the weakly augmented graph, is encoded by the GNNs encodes as in line 9. In line 10, the
representation of the prompted and weakly augmented graphs is used to optimize the discriminator.
Finally, in lines 9-10, the GNN’s projection head (decoder) decodes the representation, and the
diversity, domain adaptation, and consistency objective functions are used to optimize the prompting
parameters. Algorithm 2 shows the inference stage of our method. At inference time, a test sample is
passed directly to the prompting function without augmentation, and the GNN scores the prompted
graph.

Algorithm 1 UGPROMPT (Training)

1: Input: Target unlabeled dataset D = {Gi}Nt
i=1, confidence threshold τ , GNN model φ =

h(.; θh) ◦ g(.; θg), number of trainable prompting parameters np, augmentation function
aug(.; p), weak augmentation probability pw, and strong augmentation probability ps.

2: Output: Prompting function f(.; θf ) with optimized parameters θ⋆.

3: Initialize prompting parameters θf .
4: Freeze the parameters θg and θh of the base GNN.
5: while not converged do
6: Sample batch of graphs B = {Gi}|B|

i=1 ⊂ D.
7: For every graph G ∈ B make a weak augmentation Gw ← aug(G, pw) and a strong augmen-

tation Gs ← aug(G, ps).
8: Prompt every strongly augmented graph as Gp ← f(Gs; θf ).
9: Using encoder g, encode every weakly augmented graph as zGa = g(Gw; θg) and every

prompted graph as zGp = g(Gp; θg).
10: Pass all encodings zGa and zGp to domain discriminator and optimize its parameters θd by

Equation (4).
11: Using decoder h, compute prediction scores for all encodings zGa and zGp as in Equation (1).
12: Optimize for the prompting parameters θf by Equation (6).
13: end while
14: return f(.; θ⋆).

A.4 REMARK ON UGPP DEFINITION.

Firstly, our problem setting differs from out-of-distribution (OOD) generalization methods Li et al.
(2023); Fan et al. (2024); Yang et al. (2024b). In OOD generalization, given samples of dataset
D = {(xi, yi)}Ni=1 drawn from training distribution Ptrain(X,Y ), the goal is to train an opti-
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Algorithm 2 UGPROMPT (Inference)

1: Input: Target unlabeled dataset D = {Gi}Nt
i=1, confidence threshold τ , freezed pretrained GNN

φ = h(.; θh) ◦ g(.; θg), optimized prompting function f(.; θ⋆f )
2: Output: Prediction score set PREDD = {φ(f(Gi; θ⋆f ); θh, θg);Gi ∈ D}

Nt
i=1

3: Initialize empty set PRED = {}.
4: for Gi ∈ D do
5: Directly pass G to f and make a prompted graph as Gp ← f(G; θ⋆f ).
6: Score the prompted graph using the pre-trained GNN as pφ(y) = φ(Gp; θh, θg)
7: Add G’s score to the to the prediction set as PRED← PRED ∪ {pGφ(y)}
8: end for
9: return PRED.

mal model f(.; θ) to have the best generalization to the test samples drawn from the distribution
Ptest(X,Y ), where Ptrain(X,Y ) ̸= Ptest(X,Y ). This differs from our problem setting, as our goal
is to propose a prompting method for GNNs that follows the in-context learning setting of LLMs. As
discussed, LLM prompting methods commonly 1) do not retrain or fine-tune the LLM, 2) do not nec-
essarily use labeled data, and 3) do not assume access to the data used for training the LLM. UGPP
directly encourages these properties. We assume the GNN φ(.; θg, θh) is first trained on distribution
Ps
XPs

Y |X and Ds has the same train and test distributions, i.e. Pstrain

X,Y = Pstest
X,Y = Ps

XPs
Y |X , while

this model is aimed to be used onDt with unlabeled training distributionPttrain

X,Y and test distribution
Pttest
X,Y , such that Pttrain

X = Pttest
X ̸= Ps

X , but Pttrain

Y |X = Pttest
Y |X = Ps

Y |X and Pttrain

Y |X is not available.
So far, this assumption of UGPP makes it close to the unsupervised domain adaptation (UDA) prob-
lem You et al. (2019); Farahani et al. (2021) and satisfies unsupervised learning on Dt, the second
property of LLM in-context learning methods discussed above. For the third property, we assume
the source dataset Ds is unobservable after training, which is known as source-free domain adap-
tation (SFDA) Yang et al. (2021); Li et al. (2024). For the first property, we assume all the trained
GNN’s parameters (θg, θh) are fixed and we do not fine-tune them on dataset Dt, analogous to LLM
in-context learning. So, our work also differs from SFDA methods, which allow fine-tuning all or
a portion of the parameters on Dt. In summary, our problem setting differs from UDA, SFDA, and
OOD generalization, and it encourages evaluating and designing generalized prompting methods for
GNNs.

A.5 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

A.5.1 DATASETS STATISTICS

In this work, we use datasets with different tasks and types of features. For graph classification,
we evaluate on bioinformatics and molecular datasets, specifically ENZYMES Schomburg et al.
(2004) for multi-class classification and DHFR Sutherland et al. (2003) for binary classification
(both with continuous features), PROTEINS Borgwardt et al. (2005) with discrete features for binary
classification, also on BBBP and BACE Wu et al. (2017). For node classification, we use common
citation networks Cora, CiteSeer, PubMed Yang et al. (2016), and Flickr Zeng et al. (2020) with
discrete features of online images for multi-class classification. We also experimented on Cornell,
Texas, and Wisconsin Pei et al. (2020) as semantic web datasets with discrete features. Table 8
shows the statistics of these datasets.

A.5.2 DETAILS ON THE DISTRIBUTION SHIFT

Introducing distribution shift to graphs is challenging. First, the position of nodes does not matter
in graphs, therefore, introducing distribution shift by geometric transformations is not an option.
Second, it is hard to find invariant features among all graphs for universal manipulations to inject
shift—like color manipulations in image domain since color channels are common features. More-
over, random perturbation to node features cannot be seen as a distribution shift because it may lead
to noisy datasets rather than a distribution shift with some patterns. We study different distribution
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Table 8: Statistic of the datasets used for experiments.

Dataset #Classes #Graphs #Nodes #Edges #Features Avg.
#Nodes

Avg.
#Edges

Continuous
Feature

Discrete
Feature

ENZYMES 6 600 - - 21 32.63 62.14 ✓ ✓
DHFR 2 756 - - 56 42.43 44.54 ✓ ✓
PROTEINS 2 1113 - - 4 39.06 72.82 ✗ ✓
BACE 2 1513 - - 9 34.1 73.7 ✗ ✓
BBBP 2 2050 - - 9 23.9 51.6 ✗ ✓
Cornell 5 1 183 298 1703 - - ✗ ✓
Texas 5 1 183 325 1703 - - ✗ ✓
Wisconsin 5 1 251 515 1703 - - ✗ ✓
Cora 7 1 2708 10556 1433 - - ✗ ✓
CiteSeer 6 1 3327 9104 3703 - - ✗ ✓
PubMed 3 1 19717 88648 500 - - ✗ ✓
Flickr 7 1 89250 899756 500 - - ✗ ✓

shifts in the graph domain to make a comprehensive evaluation for the setting of UGPP. Here is a
brief review of these distribution shifts.

Node-level. Previous works study two main categories of distribution shift for nodes: 1- based on
added random noise to node features Knyazev et al. (2019) 2- based on structural properties such
node degrees Gui et al. (2022); Yuan et al. (2023), clustering coefficient Bazhenov et al. (2023),
Page Rank (PR) Bazhenov et al. (2023), and Personalized Page Rank (PPR) Zhu et al. (2021);
Bazhenov et al. (2023). Because applying random noise to node features cannot necessarily repre-
sent distribution shifts, we use structural properties in our work. For that, we choose PR for main
experiments as a popularity-based property since it implies challenging distribution shift Zhu et al.
(2021); Bazhenov et al. (2023). We also study the clustering coefficient as a density-based property
and provide results.

Graph-level. Apart from datasets with inherently shifted distributions ?Ying et al. (2019); Hu et al.
(2020); Ding et al. (2021); Wu et al. (2022); Gui et al. (2022), number of nodes Sui et al. (2023);
Li et al. (2023), average node degrees Li et al. (2022) and other graph properties can be utilized for
introducing distribution shift for graph-level tasks. However, for main experiments, we choose edge
homophily ratio Zhu et al. (2020) for generating graph datasets with distribution shift because GNNs
are intrinsically affected by this property for information aggregation Gilmer et al. (2017); Zhu et al.
(2020); Pei et al. (2020); Lim et al. (2021), and also our experiments on common graph classification
datasets show higher variance of homophily ratio among graphs of these datasets. Additionally, we
evaluate our method against graph density as another distribution shift as well.

A.5.3 EXPERIMENTAL DETAILS

Task Unification. A common practice for prompt tuning and in-context learning methods in graph
domains is unification of different tasks Sun et al. (2022; 2023); Huang et al. (2023). However,
defining a unified task in the graph domain is more challenging than in text (e.g., using LLMs), for
two main reasons. First, proposing a unified task requires an enormous amount of data, labeled or
unlabeled, while, in contrast to text gathering, these large graph datasets are not feasible. Second,
there is a wide variety of downstream graph tasks. Nonetheless, we unify the tasks to graph classifi-
cation Sun et al. (2023), considering the message-passing intrinsic of GNN Gilmer et al. (2017).

To reduce node classification to graph classification, we select the induced subgraph of each ego
node within its k-hop neighborhood and assign the label of the ego node to this subgraph. One can
also reduce edge-level tasks by selecting the k-hop neighborhoods around the nodes lying on the
endpoints of each edge Sun et al. (2023).

Implementation Details. We have implemented our experiments in Pytorch Paszke et al. (2017)
and used a single GPU core NVIDIA GeForce RTX 3090. To make results reliable, we run each
experiment with 10 different random initializations of seeds before dataset creation and with 5 trials
of model parameter initialization for every seed, which sums up to a total of 50 runs for every
experiment.

We split all datasets based on properties to make a distribution shift to a 50% source dataset and a
50% target dataset. Since we split source and target datasets in the beginning in favor of making
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distribution shifts, we randomly make our own train, validation, and test splits for every trial, al-
though the node classification datasets have original splits. Therefore, the train, validation, and test
split is set to 0.6, 0.1, 0.3 for graph classification datasets and to 0.3, 0.1, 0.6 for node classification
datasets—to reflect more on their original splits as they have many more test examples compared to
train ones. Besides, for node classification, we find the induced graphs within nodes selected from
datasets after the source-target split.

We tune hyper-parameters based on the average F1 score on validation sets as follows. For
we select learning rate from {0.01, 0.001}, batch size from {16, 32, 64}, number of epochs
from {30, 50, 60}, loss function weights for domain adaptation and diversity (λ1, λ2) from
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5}, the L2 regularization factor (λ3) from {0.1, 0.2}, the augmentation
probability pu from {0.1, 0.2, 0.3, 0.4, 0.5} and for pw from {0.05, 0.1, 0.2}, the number of trainable
prompting parameter vectors np from {10, 20, 30, 50,ENG

} where ENG
is the average number of

nodes in graphs for the graph datasets. For the certainty threshold τ , we either chose a fixed thresh-
old following FixMatch Sohn et al. (2020) or a dynamic class-wise threshold following FlexMatch
Zhang et al. (2021), then we select the threshold from {0.1, 0.3, 0.5, 0.7}. The final selection of all
hyper-parameters for the GCN as base GNN and for main distribution shifts (edge homophily and
PR) is provided in the codes provided by the link before.

A.6 THEORETICAL ANALYSIS OF UGPROMPT

We formally present the theoretical grounding for UGPROMPT by adapting the generalization
bounds established by Dac in Zhang et al. (2022) for Source-Free Unsupervised Domain Adaptation
(SFUDA), which our problem setting, UGPP, fundamentally belongs to.

A.6.1 GENERALIZATION BOUND

We consider a pre-trained GNN φ = h ◦ g, where g is the feature encoder and h is the projection
head (classifier). Critically, φ is entirely frozen in our setting. Our goal is to minimize the expected
target risk (error) ϵDt

by optimizing only the prompt parameters θf :

ϵDt(hθf ) = PDt [hθf (x) ̸= h∗(x)] (7)

where hθf = φ ◦ fθf is the final prompting model, and h∗ is the optimal classifier. Dt denotes the
unlabeled target domain, and we assume no access to the source domain Ds.

We follow the findings of Theorem 3.2 of the DaC framework Zhang et al. (2022), which provides
an upper bound on the target risk ϵDt

(h) for adaptation methods that utilize pseudo-labeling and
consistency constraints. When adapted for our prompt-based setting, the bound implies:

ϵDt
(φ ◦ f) ≤ O (PDt

[φ ◦ f ̸= hpl]− ϵDS
(hpl)) ·

RDt(φ ◦ f)
γ︸ ︷︷ ︸

Term 1: Consistency and Fitting Error

+ max
i∈[C]
{dH∆H(Pa

Z ,P
p
Z)}︸ ︷︷ ︸

Term 2: Representation Divergence

+λ

(8)

The minimization of the target risk ϵDt is achieved by designing our three loss components to serve
as empirical surrogates for minimizing the primary terms in this upper bound:

• Term 1: Pseudo-Label Fitting and Consistency Error. PDt [φ ◦ f ̸= hpl] is the fitting
error (the probability of disagreement with a pseudo-labeler hpl), and RDt(φ ◦ f) is the
population consistency error (model instability under input transformations B(x)).

• Term 2: Representation Divergence. dH∆H(Pa
Z ,P

p
Z) is the H∆H-Divergence between

the anchor (weakly augmented sample) feature distribution (Pa
Z) and the prompted feature

distribution (Pp
Z), measuring the effectiveness of domain alignment.

A.6.2 THE GENERALIZATION BOUND AND THE UGPROMPT’S OBJECTIVES

Our objective function L = Lc + λ1Ldiv + λ2Ladv directly controls these terms:
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Consistency Loss (Lc): Lc empirically minimizes the combination of the fitting error and the
consistency error (Term 1 in Sec. A.6.1).

Lc =
1

|B|
∑
G∈B

I(max(p̃Gφ(y)) > τ) · CE(p̃Gφ(y), p̂
G
φ(y))

First, Lc minimizes the Cross-Entropy (CE) between the confident pseudo-label p̃Gφ(y) (derived
from the weakly augmented samples) and the model’s prediction for the prompted graphs p̂Gφ(y)
(from φ ◦ f ). This forces the resulting hypothesis φ ◦ f to tightly fit the generated pseudo-labels,
empirically reducing PDt

[φ ◦ f ̸= hpl].

Second, Lc achieves prediction invariance by forcing consistency between two distinct input trans-
formations: the weakly augmented, non-prompted input Gw and the strongly augmented, prompted
input Gp. This constraint directly contributes to controlling the model stabilityRDt(φ ◦ f).

Domain Adaptation Loss (Ladv): Ladv directly serves as a surrogate loss for minimizing the
divergence term. This adversarial objective forces the prompt-transformed features zp = g(Gp) to
be indistinguishable from the anchor features za = g(Gw) by optimizing the prompt parameters θf
against a discriminator d. This adversarial training minimizes a surrogate for theH∆H-Divergence
(Term 2 in Sec. A.6.1). By aligning the generated features Pp

Z back towards the anchor distribution
Pa
Z , we ensure the prompt efficiently mitigates the covariate shift without pushing the features into

OOD regions outside the core knowledge of the frozen encoder g.

Diversity Loss (Ldiv): The diversity term Ldiv = −λ1H(q̂) (maximizing the entropy of the aver-
age prediction q̂) serves as a necessary regularizer. This objective prevents the model from collapsing
all predictions into a single dominant class, a trivial solution that minimizes Lc but invalidates the
classifier. This ensures the optimal parameters θ∗f lead to a non-degenerate hypothesis φ ◦ f that
preserves the inherent discriminability learned by the frozen classifier φ.

A.6.3 THE NECESSITY OF UNIVERSAL PROMPTING

The success of the above approach relies on a foundational assumption about the capacity of the
minimal prompt fθf . The DaC framework assumes the adaptation mechanism (fine-tuning a deep
ϕ) is functionally powerful enough to capture any shift. Since our deep GNN φ is frozen, the burden
of handling the entire graph shift falls solely on the shallow prompt fθf .

The universality of our feature-only prompt, justified by Theorem 1 of GPF-Plus derivation Fang
et al. (2023), acts as the theoretical guarantee. Essentially, UGPROMPT’s feature-based prompt-
ing function fθf is universally capable of mathematically simulating the effect of any arbitrary
graph-level structural or feature transformation on the final feature representation Z. This capac-
ity guarantees that even if the covariate shift is structural, the prompt fθf has the functional power
to generate the minimally required input perturbation Gp that successfully aligns the feature distri-
butions (Pp

Z ≈ Pa
Z), thus guaranteeing the feasibility of minimizing the divergence term (Term 2 of

8) across all possible graph shifts.

The combination of the strong SFUDA generalization bound (from DaC Zhang et al. (2022)) and the
proven universal capacity (from GPF-Plus Fang et al. (2023)) provides a comprehensive theoretical
justification for the UGPROMPT architecture.

A.7 ADDITIONAL EXPERIMENTAL RESULTS

A.7.1 COMPARISON WITH MORE BASELINES

To validate whether UGPROMPT with no label constraint can offer practical advantages over few-
shot methods, in this section, we evaluate our method against more recent state-of-the-art models,
namely DAGPrompt, PRONOG, and GCOPE. As evidenced in Tables 9 and 10, UGPROMPT gen-
erally outperforms the few-shot baselines in new experiments.

Specifically, UGPROMPT consistently surpasses all baselines on graph classification and achieves
competitive (first or second best) results on node classification. The robustness of zero-label acts as
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Table 9: Comparison against methods specialized for few-shot learning on graph classification un-
der distribution shift. UGPROMPT (with 0% labels) consistently outperforms few-shot competitors
(with 25% labels), which often suffer catastrophic negative transfer.

Method %Label ENZYMES PROTEINS DHFR BBBP BACE
DAGPrompt

25
-47.6 -36.4 -9.3 -3.1 -7.0

PRONOG -26.8 -26.6 -2.1 0.0 9.8
GCOPE -28.5 -15.8 -6.2 -3.5 -15.2

UGPROMPT (ours) 0 2.9 8.1 2.0 1.1 10.4

Table 10: Comparison against methods specialized for few-shot learning on node classification un-
der distribution shift. Few-shot methods achieve the highest gain on most datasets, but UGPROMPT
is the best overall performer without relying on any labeled data.

Method %Label Cora CiteSeer PubMed Flickr Cornell Texas Wisconsin
DAGPrompt

25
3.2 1.0 16.3 16.4 25.1 37.7 15.1

PRONOG -7.1 -3.9 -5.3 -26.7 -3.7 34.3 4.4
GCOPE 0.4 -4.5 -2.4 -30.9 -14.1 -6.8 -3.9

UGPROMPT (ours) 0 6.5 3.6 7.2 6.1 21.5 13.6 11.1

a powerful regularizer, forcing distribution alignment for positive transfer, which contrasts sharply
with few-shot methods that often suffer from catastrophic negative transfer and overfitting to biased
samples under distribution shifts. In addition, UGPROMPT has notably less complex (lower number
of trainable parameters) than the baselines. Therefore, heavier models like DAGPrompt (which has
separate trainable low-rank matrices for each input and GNN encoder layer) fail catastrophically on
smaller graph classification datasets—despite having superior performance on large and heterophilic
node classification tasks—and undesirably show negative improvement as it requires a larger number
of samples.

A.7.2 EFFECTIVENESS ACROSS DIFFERENT DISTRIBUTION SHIFTS.

The problem setup UGPP validates how well prompting methods can relieve the performance drop
of a GNN facing distribution shift. Therefore, we aim to show the generalization of UGPROMPT
across different kinds of distribution shifts. Previously, we evaluated our method on distribution
shift based on edge homophily ratio and Page Rank (PR). Here we add shifts based on graph density
for graph classification and clustering coefficient for node classification.

Graph Density Distribution Shift. Table 11 illustrates UGPROMPT generally attains the best results
on the graph datasets with consistent positive performance gain, while the competitors mostly have
negative performance gain on DHFR and PROTEINS in all cases even when they take advantage
of 50% of labeled data of the target distribution. Besides, we have the second-best performance on
ENZYMES after Fine-tuning in 50% label setting while beating this baseline in 25% label setting.

Node Clustering Coefficient Density Distribution Shift. The results in Table 12 reflect on the
superiority of UGPROMPT over all competitors on CiteSeer and PubMed. However, GPF-Plus
outperforms our method on Cora when it has access to 50% of labeled samples while is beaten
by UGPROMPT when 25% of labels are available. Notably, we excel over all of the baselines on
PubMed with a high margin and with no labels.

A.7.3 GENERALIZATION TO ADVANCED GNN BACKBONES

A core principle of a prompting method is that it should be agnostic to the specific GNN backbone,
demonstrating effectiveness across a range of architectures. To validate this, we extend our experi-
ments beyond the foundational GCN and GAT models by incorporating two powerful, recent GNNs
as suggested by the reviewer. We specifically chose: 1) GATv2 Brody et al. (2022), a model that
uses dynamic attention to better handle graphs with varying levels of homophily and heterophily. 2)
GraphGPS Rampasek et al. (2022), a graph transformer that uses a global attention mechanism to
address common GNN challenges like oversmoothing and oversquashing.

The results of these new experiments are presented in Table 13 for graph and node classification
tasks, respectively. The findings clearly demonstrate that our method, UGPROMPT, consistently
outperforms all baselines when applied to these advanced GNN backbones. This is particularly
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Table 11: Graph classification results for GCN as the base model on target datasets having distribu-
tion shift based on graph density. Overall, the best results are attained by UGPROMPT without any
labels of the target dataset compared to the case where baselines have access to 50% of labels.

Method %Label ENZYMES PROTEINS DHFR
F1 IMP F1 IMP F1 IMP

BaseModel 0 39.1±4.1 0.0 56.1±4.0 0.0 76.3±3.8 0.0

Fine-Tuning

50

40.7±0.7 4.1 39.5±1.6 -29.6 76.6±0.2 0.4
GraphPrompt 33.6±1.4 -14.1 55.7±0.9 -0.7 58.3±3.1 -23.6
All-In-One 30.0±3.2 -23.3 37.3±9.5 -33.5 77.2±0.7 1.2
GPF-Plus 39.2±1.4 0.3 57.6±1.2 2.7 74.2±0.9 -2.8

Fine-Tuning

25

38.0±1.1 -2.8 37.0±3.6 -34.0 73.6±0.5 -3.5
GraphPrompt 29.9±1.4 -23.5 53.3±1.8 -5.0 57.8±3.1 -24.2
All-In-One 27.3±3.8 -30.2 34.2±10.7 -39.0 77.1±0.7 1.0
GPF-Plus 39.1±1.3 0.0 57.2±1.7 2.0 74.2±0.9 -2.8

UGPROMPT (ours) 0 40.0±1.0 2.3 58.3±0.8 3.9 78.0±0.8 2.2

Table 12: Node classification results for GCN as the base model on target datasets having distribution
shift based on node clustering coefficient. When 50% of target dataset labels are visible to baseline,
the unsupervised UGPROMPT achieves the second-best results while it performs the best overall
datasets in cases where 25% of labels are available for competitors.

Method %Label Cora CiteSeer PubMed
F1 IMP F1 IMP F1 IMP

BaseModel 0 59.0±3.1 0.0 44.1±1.6 0.0 60.0±0.8 0.0

Fine-Tuning

50

60.2±0.9 2.0 38.7±0.5 -12.2 53.5±2.3 -10.8
GraphPrompt 59.9±0.3 1.5 44.8±0.3 -1.6 61.3±0.1 2.2
GPPT 47.9±6.8 -18.8 39.0±2.2 -11.6 55.1±3.7 -8.2
All-In-One 53.7±1.2 -9.0 39.4±1.0 -10.7 47.1±0.7 -21.5
GPF-Plus 61.4±0.6 4.1 41.7±0.6 -5.6 61.3±1.0 2.2

Fine-Tuning

25

56.5±0.6 -4.2 39.9±0.4 -9.5 48.7±3.9 -18.8
GraphPrompt 58.0±0.4 -1.7 43.7±0.3 -0.9 61.3±0.1 -2.2
GPPT 46.4±4.6 -21.4 38.2±2.9 -13.4 54.5±3.6 -9.2
All-In-One 53.7±1.0 -9.0 38.3±0.9 -13.2 48.9±0.8 -18.5
GPF-Plus 59.8±0.5 1.4 40.3±0.6 -8.6 60.9±0.8 1.5

UGPROMPT (ours) 0 60.5±0.3 2.5 45.1±0.4 2.3 64.7±0.3 7.8

noteworthy as the baselines retain the significant advantage of access to labeled data from the target
domain, whereas our method operates in a completely unsupervised manner. These results confirm
that the effectiveness of our prompting framework is not dependent on a specific GNN architecture
and that it generalizes robustly to more powerful and modern backbones.

A.7.4 COMPARISON WITH SOURCE-FREE DOMAIN ADAPTATION METHODS

While our problem setup is distinct from SFDA methods, the shared goal of adapting a model
without source data motivates a direct empirical comparison. To this end, we evaluate UG-
PROMPT against two recent, state-of-the-art graph SFDA methods: SOGAMao et al. (2024b) and
GraphCTAZhang et al. (2024). Since these methods are designed for node classification, we conduct
the evaluation on our node classification datasets.

To create a fair comparison within our prompting-focused problem setup, we adapt these baselines.
SFDA methods typically fine-tune the entire model; instead, we align them with the “lightweight
fine-tuning” paradigm common to other baselines by freezing the pre-trained GNN’s encoder and
only allowing the decoder (prediction head) to be trained on the target data. This contrasts with our
method, UGPROMPT, where both the encoder and decoder remain fully frozen.

The results of this comparison are presented in Table 14. UGPROMPT consistently and signifi-
cantly outperforms both adapted SFDA methods across all datasets. This outcome is powerful, as
it demonstrates that our parameter-efficient approach of training only a prompt is more effective
for adaptation than the more common strategy of fine-tuning the prediction head. In addition, our
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Table 13: Graph classification results for GraphGPS and GATv2 as the base model on target datasets
having distribution shift based on node clustering coefficient. UGPROMPT achieves almost the best
across all datasets without labels, while 25% of labels are available for competitors.

BaseGNN Method %Label BBBP BACE Cornell Texas Wisconsin
F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP

GraphGPS

BaseModel 0 87.0 - 73.0 - 22.8 - 24.4 - 20.8 -

Fine-Tuning

25

87.8 0.8 70.0 -4.1 24.8 8.8 27.0 10.7 19.6 -5.8
GraphPrompt+ 77.8 -10.6 51.5 -29.5 12.7 -44.3 22.8 -6.6 5.9 -71.6
All-In-One 72.1 -17.1 39.5 -46.9 19.6 -14.0 0.3 -98.8 22.3 7.2
GPF-Plus 87.7 0.8 73.6 0.8 22.9 0.4 26.9 10.2 22.5 8.2

UGPROMPT
(ours)

0 88.6 1.8 75.0 2.7 26.6 16.7 28.2 15.6 23.1 11.1

GATv2

BaseModel 0 88.8 - 63.8 - 16.0 - 22.0 - 24.7 -

Fine-Tuning

25

89.4 0.7 67.8 6.3 17.8 11.3 22.3 1.4 23.5 -4.9
GraphPrompt+ 83.6 -5.9 64.3 0.8 10.3 -35.6 2.0 -90.9 8.2 -66.8
All-In-One 88.5 -0.3 47.4 -25.7 18.6 16.3 16.6 -24.5 16.9 -31.6
GPF-Plus 89.3 0.6 68.6 7.5 18.2 13.8 21.8 -0.9 25.4 2.8

UGPROMPT
(ours)

0 89.6 0.9 67.9 6.4 20.2 26.3 23.0 4.5 26.2 6.1

Table 14: Comparison again unsupervised SFDA methods. UGPROMPT outperforms both competi-
tors while it has significantly less number of trainable parameters.

Method Label Cora CiteSeer PubMed Flickr

F1 IMP F1 IMP F1 IMP F1 IMP

Base Model - 53.8 - 44.1 - 57.1 - 16.5 -

SOGA 0% 53.1 -1.3 43.7 -0.9 54.9 -3.9 14.5 -12.1
GraphCTA 49.2 -8.6 38.0 -13.8 12.1 -78.8 OOM OOM

UGPROMPT (ours) 0% 57.3 6.5 45.7 3.6 61.2 7.2 17.5 6.1

method is significantly lighter since we only train a small set of trainable prompting vectors, but
these methods are originally proposed to fine-tune all parameters of the pretrained model.

A.7.5 EMBEDDING DISTRIBUTION ANALYSIS UNDER DISTRIBUTION SHIFT

Figure 3 illustrates the distribution of embeddings produced by the base GNN’s encoder for the
PubMed dataset. The setting is for PR distribution shift with GCN as the base GNN. It compares
the embeddings for the BaseModels on source (BaseModel-source) and target (BaseModel-Target)
test data when graphs are not prompted in both cases. Additionally, it shows the embeddings for
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Figure 3: Distribution of embeddings generated by the base GNN encoder on the PubMed dataset
under PR distribution shift with GCN as the base GNN. Embeddings for BaseModel on source and
target test data without prompting and embeddings for UGPROMPT and GPF-Plus when target test
graphs are prompted are presented. This highlights UGPROMPT ’s ability to mitigate distribution
shift without labeled data, producing well-separated representations similar to the source distribu-
tion.
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Table 15: Statistic of the datasets used for experiments.

Dataset #Samples NE IR IMP% of Diversity
Reg.

IMP% of Domain
Reg.

ENZYMES 300 0.997 1.26 1.5 1.2
PROTEINS 556 0.949 1.72 6.6 4.3
DHFR 378 0.980 1.39 0.0 0.7
Cora 1354 0.941 4.72 4.0 0.7
CiteSeer 1663 0.965 1.94 1.3 0.0
PubMed 9858 0.966 1.91 0.2 0.0

UGPROMPT and GPF-Plus when graphs from the target test data are prompted, while UGPROMPT
is fully unsupervised and GPF-Plus consumes 50% of labeled data.

This figure provides empirical evidence supporting our claims. First, UGPROMPT, which employs
consistency regularization without labeled data, achieves equal or better performance in mitigat-
ing distribution shift compared to GPF-Plus although the latter has access to labeled data. Second,
when using confident pseudo-labels and keeping the GNN’s parameters fixed after pre-training, the
prompting function aligns with the knowledge learned from the source data. This approach preserves
samples within densely homophilous regions while pushing uncertain samples (those in overlapping
regions) away, replicating the source data distribution as seen in BaseModel-Source. As a result,
the method produces well-separated representations, enabling the projection head to effectively dis-
criminate between classes using the same pre-trained weights.

A.7.6 EFFECT OF REGULARIZATION METHODS

We study the effect of domain adaptation and diversity regularization methods introduced in Section
3.2. Minimizing the entropy of the score’s expected value (as a diversity regularization term) has
also been used in prior representation learning studies Hu et al. (2017); Liang et al. (2020a). This
regularization term relieves the harmful effect of class imbalance. Meanwhile, the domain adaptation
regularization term is more beneficial for smaller datasets since inferring their distribution from
a low number of samples is difficult, making the chances of generating OOD prompted graphs
higher. To showcase the effect of these objective terms, we first introduce two common methods
of measuring class imbalance that are the Imbalanced Ratio (IR) and Normalized Entropy (NE). A
higher IR and a lower NE show more class imbalance in the datasets. Denoting the frequency of
each class of a dataset as fi, while we have C classes, IR and NE are defined as below:

IR =
fmax

fmin
; fmin = argmin

i
fi, fmax = argmax

i
fi (9)

NE =
H

log(C)
; H = −

C∑
i=1

pilog(pi), pi =
fi∑C
i=1 fi

(10)

Tables 15 shows the total number of samples in the target datasets (50% of the actual dataset sizes
because we split the datasets into half source and half target), the statistics of their corresponding
test sets, and the IMP% of UGPROMPT on these datasets (we fix GCN as the base GNN).

When looking at both graph and node classification results, the general trends support our claims
that the regularization methods have a positive impact. The first main trend observed in each task
group is that diversity regularization is more effective as dataset imbalance increases; specifically,
on PROTEINS and Cora, which are the most imbalanced datasets for graph and node classifica-
tion respectively, diversity regularization shows the highest IMP%. Furthermore, when considering
dataset size, domain regularization generally demonstrates its greatest effect on smaller datasets.
For example, Cora, the node classification dataset with the fewest samples, benefits the most from
domain regularization. An exception regarding domain regularization’s effect might be seen when
comparing PROTEINS with DHFR and ENZYMES; this could be because PROTEINS has discrete
features, whereas ENZYMES and DHFR also include continuous features, potentially reducing the
impact of domain regularization.
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Table 16: Ablation study on the contribution of each objective function (λ1 and λ2 are respectively
the weights of diversity and domain adaptation objectives as in Equation 6) while using GCN as the
base model. Both objectives show positive effect on UGPROMPT’s performance.

Dataset Base (λ1, λ2=0.0)

Cora F1=56.3

λ1 0.25 0.5 0.75 1.0 1.25 1.5
IMP% 1.4 1.6 2.0 2.0 2.0 2.0

λ2 0.25 0.5 0.75 1.0 1.25 1.5
IMP% 1.2 1.1 1.1 0.9 0.9 1.1

PROTEINS F1=51.0

λ1 0.25 0.5 0.75 1.0 1.25 1.5
IMP% 3.1 5.9 7.1 7.5 7.5 7.5

λ2 0.25 0.5 0.75 1.0 1.25 1.5
IMP% 4.1 5.1 6.3 6.3 6.5 6.9

Table 17: Performance comparison of different methods across various source (S) and target (T)
datasets.

Method %Label Cora CiteSeer PubMed ENZYMES PROTEINS DHFR

F1(S) F1(T) F1(S) F1(T) F1(S) F1(T) F1(S) F1(T) F1(S) F1(T) F1(S) F1(T)

Base Model - 75.5 53.8 63.1 44.1 81.9 57.1 49.5 47.7 60.5 51.8 78.2 75.5

Fine-Tuning 25 69.8 51.7 57.2 40.0 74.2 54.3 43.4 46.4 56.2 47.5 79.4 76.8

UGPROMPT
(ours)

0 75.7 57.3 63.3 45.7 81.0 61.2 49.6 49.1 63.3 56.0 78.5 77.0

Table 18: Performance comparison of UGPROMPT against the competitor under no distribution
shift. An overall assessment across all datasets shows superior performance of our unsupervised
method.

Method Label Cora CiteSeer PubMed ENZYMES PROTEINS DHFR

F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP

Base Model 64.9 - 50.5 - 73.2 - 54.5 - 51.8 - 75.1 -

GraphPrompt+ 25 72.6 11.9 48.8 -3.4 76.4 4.4 57.1 4.8 35.2 -32.2 55.4 -26.3
GPF-Plus 66.5 2.5 51.2 1.4 73.6 0.5 57.9 6.2 49.5 -4.4 76.1 1.3

UGPROMPT (ours) 0 65.9 1.5 51.4 1.8 75.8 3.6 58.7 7.7 52.2 0.8 76.2 1.5

To better show the effect of each regularization methods, we also do a more comprehensive ablation
study on Cora and PROTEINS as the representatives of datasets for node and graph classification.
Table 16 shows how increasing the weight of each regularization term, as in Equation 6, improves
the performance on both datasets, especially on PROTEINS.

A.7.7 EFFECTIVENESS UNDER NO DISTRIBUTION SHIFT

A key concern for any adaptation method is whether adapting to a new target distribution causes
“catastrophic forgetting,” degrading performance on the original source domain. To measure this,
we adapted models on the target data (with a distribution shift) and then evaluated their performance
on both the original source test set and the target test set. The results are presented in Table 17, with
columns marked (S) for source and (T) for target evaluation. The findings show that UGPROMPT
not only adapts effectively to the target distribution but also maintains higher performance on the
source data compared to traditional lightweight fine-tuning, demonstrating its robustness against
catastrophic forgetting.

To further understand our method’s behavior, we also investigated its effect in a no-shift setting,
where the model is prompted for a target domain that shares the same distribution as the source.
As shown in Table 18, we measured the F1 score improvement (IMP) over the base model in this
scenario. The results demonstrate that UGPROMPT consistently improves performance even without
a distribution shift. This benefit is more evident than that of competing baselines, which show
smaller gains and occasionally fail to improve performance at all. This indicates that our prompting
approach serves as a general performance enhancer, not just a tool for mitigating distribution shifts.
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Table 19: The effect of the number of trainable prompting vectors (nt) while using GCN as the base
model. A higher number of trainable vectors brings marginal improvement, and the model performs
favorably with a smaller number of trainable vectors.

Dataset nt = 10 nt = 20 nt = 30 nt = 40 nt = 50 nt = 60

Cora 57.3 57.2 57.3 57.4 57.4 57.5
PROTEINS 55.5 56.0 56.1 55.8 56.7 56.2

Table 20: Comparison of UGPROMPT with other prompting methods based on the average full
dataset training and test (inference) time measures in seconds. UGPROMPT has marginally higher
training time and a test time below the average of all methods.

Method Cora CiteSeer PubMed Flickr

Test time (s),
813 nodes

Train time (s),
406 nodes

Test time (s),
984 nodes

Train time (s),
492 nodes

Test time (s),
5917 nodes

Train time (s),
2957 nodes

Test time (s),
22313 nodes

Train time (s),
17850 nodes

Fine-Tuning 0.075 0.077 0.096 0.052 1.081 0.636 1.833 1.585
All-In-One 1.638 0.746 0.452 0.26 7.016 3.933 10.782 9.856
GraphPrompt+ 0.715 0.802 0.166 0.197 4.206 4.970 2.243 4.094
GPF-Plus 0.939 0.766 0.351 0.275 5.542 3.754 7.494 9.479
UGPrompt (ours) 0.925 1.181 0.315 0.458 5.56 4.946 6.730 13.904

Average across
Prompting Methods

1.054 0.874 0.321 0.298 5.581 4.401 6.812 9.333

A.7.8 EFFECT OF THE NUMBER OF TRAINABLE PROMPTING VECTORS

As the final ablation study, we evaluate the effect of increasing the number of trainable prompting
vectors. For this experiment, we also fix GCN as the base GNN and report the results in Table 19.
This empirical evaluation clarifies that increasing the number of does not have a significant impact
on UGPROMPT’s performance. This conclusion is indeed favorable meaning that our method can
achieve desirable results even with considerably low number of trainable parameters.

A.7.9 ANALYSIS OF COMPUTATIONAL COST

A practical consideration for any adaptation method is its computational cost. The unsupervised
nature of UGPROMPT, which relies on data augmentation and multiple regularization components,
introduces a manageable overhead during the training phase. This is an expected trade-off for the
significant advantage of operating without labeled data. Table 20 shows the seconds of the average
full dataset training epoch time and test time across node classification datasets. Our training times
are marginally higher than supervised prompting baselines, but scale reasonably on large graphs like
PubMed and Flickr.

However, the more critical metric for real-world deployment is inference efficiency. Once the prompt
is trained, the adaptation process is complete. At test time, the expensive training components,
such as data augmentation and the discriminator, are no longer required. The inference step simply
involves a forward pass through the frozen GNN with the learned prompt, resulting in a compu-
tational complexity of O(NLd2 + L|E|d + NdN∗)—as discussed in Section 3.3—compared to
O(NLd2 + L|E|d) of a regular GNN models and N∗ is number of trainable prompting vectors.
Since, in all our experiments, even for large graphs N∗ ≤ 50, the overhead can be neglected. Our
empirical results confirm this efficiency, showing that UGPROMPT’s test time is consistently below
the average of competing prompting methods, making it a lightweight and practical solution for
deployment.

A.7.10 EFFECT OF CHANGING THE PROMPTING FUNCTION

An advantage of UGPROMPT, as discussed in Section 3.1, is its versatility, as it serves as a general
framework agnostic to the base GNN and the prompting function. This means our unsupervised
framework can potentially enhance a prefix prompting function such as Fang et al. (2023); Sun
et al. (2023). To support this claim, we design an experiment where we substitute our experimental
prompting function (which is similar to GPF-Plus) with All-In-One’s prompting function and present
the results in Table 21. These results show how the performance of All-In-One’s prompting improves
when integrated into our framework. Notably, this improvement occurs without using labeled data.
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Table 21: Evaluation of UGPROMPT with All-In-One’s prompting function using GCN as the base
model. The results show that All-In-One’s prompting function performs better when wrapped in
our unsupervised framework, demonstrating that UGPROMPT is a versatile prompting framework
capable of enhancing prefix prompting methods.

Method %Label ENZYMES PROTEINS DHFR
F1 IMP F1 IMP F1 IMP

BaseModel 0 47.7±5.7 - 51.8±7.0 - 75.5±6.3 -

All-In-One 50 48.7±1.0 2.1 45.8±10.4 -11.6 79.2±0.6 4.8
25 45.8±1.9 -4.0 38.1±13.4 -26.4 79.1±0.6 4.6

UGPROMPT (ours) 0 48.9±0.9 2.5 50.8±2.5 -1.9 79.3±2.4 5.0

Table 22: Augmentation type’s effect on UGPROMPT performance using GPF-Plus’s feature
prompting function. Feature augmentation aligns more with the prompting function and generally
achieves better results.

Method Aug. Type ENZYMES PROTEINS DHFR Cora CiteSeer PubMed

F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP F1 IMP

BaseModel 47.7 - 51.8 - 75.5 - 53.8 - 44.1 - 57.1 -

UGPROMPT
(ours)

Feature 49.1 2.9 56.0 8.1 77.0 2.0 57.3 6.5 45.6 2.9 61.0 6.8
Structural 48.2 1.0 54.5 5.2 75.2 -0.4 57.0 5.9 44.8 1.6 55.7 -2.5

A.7.11 EFFECT OF TYPES OF AUGMENTATION

Augmentation is a key component of our framework. As discussed in Section 3.1, the type of
augmentation should align with the prompting function. For instance, if the prompting function
applies feature modifications, as in our main experimental prompting function, feature augmentation
is expected to be more beneficial than structural augmentation (e.g., adding or removing edges), and
vice versa.

As an ablation study on the type of augmentation Table 22 shows how different types of augmenta-
tion impact UGPROMPT’s performance. Here our prompting function transforms the feature matrix,
the feature augmentation masks features, and structural augmentation drops edges. Results meet our
expectations that the feature augmentation attains better performance since it aligns better with the
prompting function. Since none of the existing GNN prompting functions can be categorized solely
as structural prompting (without changing the node representations), we leave experimenting with
such prompting method for future works.

A.7.12 UNSUPERVISED PROMPTING VS FULLY SUPERVISED PROMPTING

Since UGPROMPT accomplishes significant improvements in different experiments, we are inter-
ested in evaluating the competitors while allowing them to access 50%, 75%, and 100% of labeled
data from target distributions. We show the results of these settings in Tables 23 and 24, and Figures
4 and 5. All the results are reported for both GCN and GAT when we have distribution shifts based
on edge homophily for graph classification and PR node classification.

Graph classification results for both GCN and GAT base models in Tables 23 illustrate the superior
performance of UGPROMPT as an unsupervised method compared to the baselines in most cases,
while they are given the advantage to access 50% of labeled samples for training on the target
datasets. On the node classification datasets, UGPROMPT achieves the second-best performance as
shown in Table 24. Specifically discussing larger node classification datasets, it is noteworthy that
we beat all the baselines on Flickr and only underperform GraphPrompt+ on PubMed.

Observing Figure 4 when we use GAT as the base model, UGPROMPT outperforms GPF-Plus and
GraphPrompt on graph classification datasets even when they utilize fully labeled target datasets.
This clearly shows the effectiveness of our proposed method, UGPROMPT. Additionally, we achieve
closely competitive results with GCN as the base model in 100% label setting overall. Besides look-
ing at the node classification results for both GNNs, we generally obtain the second-best improve-
ment in 75% label setting and perform favorably with 100% compared to the best baseline.
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Table 23: Graph classification results on target datasets for GCN as the base model. Our unsuper-
vised method mostly achieves the best results even when the competitors use 50% of the labeled
data.

Base GNN Method %Label ENZYMES PROTEINS DHFR
F1 IMP F1 IMP F1 IMP

GCN

BaseModel 0 47.7±5.7 - 51.8±7.0 - 75.5±6.3 -

Fine-Tuning

50

45.0±2.0 -5.7 46.9±1.6 -9.5 77.6±0.2 2.8
GraphPrompt 40.2±1.5 -15.7 54.1±1.0 4.4 73.1±0.9 -3.2
GraphPrompt+ 29.7±1.7 -37.7 49.7±1.0 -4.1 65.5±1.3 -13.2
All-In-One 48.7±1.0 2.1 45.8±10.4 -11.6 79.2±0.6 4.8
GPF-Plus 48.6±0.9 1.9 53.8±2.4 3.9 77.4±0.3 2.5

UGPROMPT (ours) 0 49.1±0.6 2.9 56.0±1.5 8.1 77.0±2.4 2.0

GAT

BaseModel 0 44.1±6.4 - 51.5±8.1 - 77.3±3.5 -

Fine-Tuning

50

43.3±1.2 -1.8 49.2±0.5 -4.5 78.0±0.2 0.9
GraphPrompt 35.3±1.9 -20.0 50.3±0.9 -2.3 77.1±0.9 -0.3
GraphPrompt+ 29.2±6.2 -33.8 52.1±6.3 1.2 60.5±12.7 -21.7
All-In-One 40.3±2.5 -8.6 41.8±11.2 -18.8 77.3±1.2 0.0
GPF-Plus 43.4±2.0 -1.6 54.8±2.7 6.4 77.2±0.8 -0.6

UGPROMPT (ours) 0 45.9±2.2 4.1 56.4±2.0 9.5 78.2±0.9 1.2

Table 24: Node classification results on target datasets for GCN as the base model. Comparing
all baselines with the access to 50% of labeled data, UGPROMPT achieves the second-best results
without labels.

Base GNN Method %Label Cora CiteSeer PubMed Flickr
F1 IMP F1 IMP F1 IMP F1 IMP

GCN

BaseModel 0 53.8±2.4 - 44.1±1.5 - 57.1±0.8 - 16.5±0.4 -

Fine-Tuning

50

54.5±1.2 1.3 43.5±0.4 -1.4 56.3±2.1 -1.4 10.3±0.4 -37.6
GPPT 50.5±3.1 -6.1 40.6±1.2 -7.9 51.8±3.7 -9.3 13.6±0.5 -17.6
GraphPrompt 55.8±0.3 3.7 43.8±0.3 -0.7 57.1±0.1 0.0 13.1±0.2 -20.6
GraphPrompt+ 57.3±0.6 6.5 42.9±0.2 -2.7 64.9±0.2 13.7 14.9±0.7 -9.7
All-In-One 50.3±1.2 -6.5 39.3±1.0 -10.9 39.8±1.2 -30.3 13.5±0.3 -18.2
GPF-Plus 58.2±0.6 8.2 46.8±0.7 6.1 60.3±0.5 5.6 13.1±0.1 -20.6

UGPROMPT (ours) 0 57.3±0.4 6.5 45.7±0.4 3.6 61.2±0.3 7.2 17.5±0.1 6.1

GCN

BaseModel 0 47.7±1.3 - 41.2±2.4 - 60.0±1.1 - 17.0±0.2 -

Fine-Tuning

50

47.1±1.7 -1.3 39.9±0.5 -3.2 56.5±2.2 -5.8 10.8±0.3 -36.5
GPPT 32.8±3.8 -31.2 35.6±1.2 -13.6 51.8±5.5 -13.7 13.1±0.3 -22.9
GraphPrompt 48.2±0.5 1.0 40.7±0.3 -1.2 60.1±0.1 0.2 13.5±0.1 -20.6
GraphPrompt+ 48.2±0.5 1.0 42.0±0.3 1.9 67.1±0.1 11.8 17.5±0.6 2.9
All-In-One 34.6±4.1 -27.5 33.0±1.2 -19.9 25.4±5.2 -57.7 12.5±0.5 -26.5
GPF-Plus 49.6±1.4 4.0 43.1±0.6 4.6 60.1±0.5 0.2 13.2±0.2 -22.4

UGPROMPT (ours) 0 48.8±0.9 2.3 42.3±0.5 2.7 60.2±0.1 0.3 17.5±0.1 2.9

Next, we evaluate our method in distribution shifts of graph density and clustering coefficient under
the 75% and 100% label settings. Here we fix GCN as the base GNN. Results are in Figure 5.
Similar to the previous distributions, for the graph density and clustering coefficient, UGPROMPT
has a competitive or better performance on graph classification datasets and stands in second position
after GPF-Plus on node classification except that our method does not see any labels.

Finally, an interesting finding of these experiments is that the competitors occasionally can cause a
performance drop compared to the base models which is unexpected and undesirable. On the other
hand, UGPROMPT although is an unsupervised method, does not have a negative influence on any
dataset, any GNN architecture, and any type of distribution shifts. Also, all the above results can
lead to the same conclusion that UGPROMPT can enhance the base GNNs which encounter different
distribution shifts on various downstream tasks. Since UGPROMPT achieves promising results in a
fully unsupervised manner, it offers new avenues to leverage large unlabeled datasets for improving
the generalization of GNNs.
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(a) Graph classification under edge homophily distribution shift for GCN as base
model.
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(b) Graph classification under edge homophily distribution shift for GAT as base
model.
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(c) Node classification under PR distribution shift for GCN as base model.
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(d) Node classification under PR distribution shift for GAT as base model.

Figure 4: Performance gains for GCN and GAT base models on graph and node classification tasks
in the presence of edge homophily (a, b) and node page rank (c, d) distribution shifts; where the com-
petitor prompting methods utilize 100% and 75% labeled data of target distributions. UGPROMPT
without using any labels always shows improvement over the base model and attains the best results
on graph classification for GAT while having second best results in other cases.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

75 100
%Label

-15.0
-12.5
-10.0

-7.5
-5.0
-2.5
0.0
2.5
5.0

IM
P

1.8
3.6

1.5 1.5

-13.0

-10.0

1.3

ENZYMES

-1.0
0.0
1.0
2.0
3.0
4.0
5.0

-0.4 -0.5

0.6 0.6

3.9

PROTEINS

75 100
%Label

-50.0
-40.0
-30.0

-36.2
-42.6

75 100
%Label

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

5.0

-0.5 -0.9-0.3 -0.3

-24.8 -23.3

1.6
DHFR

UGPrompt Fine-Tuning GPF-Plus GraphPrompt

(a) Graph classification under graph density distribution shift for GCN as base
model.
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(b) Node classification under clustering coefficient distribution shift for GCN as
base model.

Figure 5: Performance gains for GCN as the base model on graph and node classification tasks in
the presence of graph density (a) and node clustering coefficient (b) distribution shifts when the
competitor prompting methods utilize 100% and 75% labeled data of target distributions. The trend
is similar to other distribution shifts (Figure 4) where UGPROMPT generally attains the best results
on graph classification and the second-best on node classification.
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