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Abstract

Due to the rapid generation and dissemination of information, large language
models (LLMs) quickly run out of date despite enormous development costs. To
address the crucial need to keep models updated, online learning has emerged as
a critical tool when utilizing LLMs for real-world applications. However, given
the ever-expanding corpus of unseen documents and the large parameter space
of modern LLMs, efficient adaptation is essential. To address these challenges,
we propose Memory of Amortized Contexts (MAC), an efficient and effective
online adaptation framework for LLMs with strong knowledge retention. We
propose a feature extraction and memory-augmentation approach to compress
and extract information from new documents into compact modulations stored in
a memory bank. When answering questions, our model attends to and extracts
relevant knowledge from this memory bank. To learn informative modulations in an
efficient manner, we utilize amortization-based meta-learning, which substitutes an
otherwise required optimization process with a single forward pass of the encoder.
Subsequently, we learn to choose from and aggregate selected documents into a
single modulation by conditioning on the question, allowing us to adapt a frozen
language model during test time without requiring further gradient updates. Our
experiment demonstrates the superiority of MAC in multiple aspects, including
online adaptation performance, time, and memory efficiency. In addition, we
show how MAC can be combined with and improve the performance of popular
alternatives such as retrieval augmented generations (RAGs). Code is available at:
https://github.com/jihoontack/MAC.

1 Introduction

Language models (LMs) [7, 79] have significantly accelerated progress in natural language processing
(NLP) and thus become a core technology in various real-world applications, such as coding assistants
[10], search engines [90], and personal AI assistants [16]. However, LMs are typically static artifacts,
and as the world changes, the knowledge encoded in their parameters becomes outdated. This
becomes especially problematic for large language models (LLMs), as multiple applications (e.g.,
Chatbots [34, 55]) require the model to be up-to-date, yet retraining LLMs with new documents from
scratch requires high computational demands [31].

To tackle this issue, multiple studies suggested online and continual learning frameworks for LMs, i.e.,
adapting the LM on a stream of new documents. One line of work proposes to use retrieval-augmented
models by saving the stream of documents and selecting the most relevant document based on the
input [9, 33]. However, even large models often fail to update their learned knowledge when the
retrieved document consists of counterfactual information [48, 44, 75] and it may not be suited for
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Figure 1: An overview of MAC: we amortize each context document into PEFT modulation ϕ and
learn to aggregate modulations into a single target modulation ϕ∗ based on the given question input
x to adapt the frozen LM θbase. During online adaptation, we store the amortized contexts into a
memory bankM, then adapt the LM via aggregating the memory bank based on the given question.

edge computing as a large number of documents poses expensive computation for model inference
[26]. Due to these limitations, another line of recent works suggests finetuning the model on a stream
of documents to directly update the knowledge inside the LM (i.e., online finetuning [42, 32]). While
effective, online finetuning schemes also face limitations such as a large computation for gradient
calculation, the sensitivity of the online optimization hyper-parameter [26], and the aforementioned
catastrophic forgetting problem [50, 39]. In this paper, we instead ask: Can we tackle the limitations
of retrieval augmented models and online finetuning by assimilating and retaining knowledge from
incoming documents without the need for gradient-based learning at test time?

To this end, we suggest bridging this gap through a complementary learning systems approach [41]
by introducing an end-to-end differentiable auxiliary retrieval augmentation system that can be run
alongside a (frozen) target LM. This system extracts knowledge from incoming documents, builds a
memory bank, and learns to automatically select relevant information from this memory bank, which
is subsequently passed as additional input to the target model. Once learned, this system can be
effectively employed purely through forward passes.

Contribution. We propose Memory of Amortized Contexts (MAC), an efficient and effective
online learning framework for LMs (see the overview in Figure 1). The core idea of MAC is
to freeze LM parameters (thus reducing undesirable side effects common for online finetuning)
and instead incorporate new information through additional learned input tokens (an established
Parameter-Efficient Fine-Tuning technique [47]), utilizing amortization-based meta-learning [19, 65].
Specifically, instead of optimizing individual PEFT tokens (which necessitates labels and gradient
computations), we instead learn to directly predict these tokens based on a query and memory bank
alone, without the need for labels at test time, thus proposing amortized optimization [1, 49].

To ensure the scalability of MAC, we propose two memory-efficient techniques for training and
inference: (1) We find that the process of training our complementary retrieval and aggregation
operation for LLMs, necessitates a sufficiently large batch size, which introduces significant memory
constraints. To address this issue, we backpropagate on only a random subset of documents, signifi-
cantly saving memory while still providing an unbiased approximation of the full gradients [6]. (2)
Large memory banks can further increase GPU memory usage when aggregating information relevant
to a query during inference. To address this, we propose a divide-and-conquer approach, sub-grouping
the large set of modulations into smaller, manageable groups and repeating this procedure with the
predicted modulations until the final modulation parameters are determined.

We verify the efficacy of MAC through evaluations on multiple datasets and architectures. Overall, our
experimental results demonstrate the strong results of MAC. For instance, when measured with the F1
score (%), MAC improves performance from 18.97→ 21.79 over prior work on StreamingQA [45],
and 18.66→ 21.14 on SQuAD-Seq [26]. Furthermore, we demonstrate that MAC shows significant
effectiveness in retaining learned knowledge when compared to other online finetuning baselines,
justifying the memory-augmentation approach. In addition, MAC can be readily combined with
retrieval augmented generation (RAG) and in effect, further increases the selection quality of retrieved
documents, resulting in an improvement of 71.83→ 74.89 over BM25 alone [66] on ArchivalQA-Seq.
Finally, we highlight the efficiency of MAC in multiple aspects, measuring adaptation time, training,
and inference memory usage, again demonstrating strong improvements over baselines.
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2 Related Work

Amortization-based meta-learning. Amortization-based meta-learning, which encodes the given
context to directly predict the task-specific model, has gained much attention due to its computational
efficiency as it only requires a single encoder forward pass when adapting the model [69, 51, 19, 18].
These approaches, especially when combined with modulation techniques, have achieved notable
success in various applications, such as few-shot visual recognition [65, 6, 11] and 3D reconstructions
[20, 35]. Recently, this idea has been extended to language domains where prior works facilitate
hypernetworks to adapt LMs with given few-shot prompts [58, 28]. In this paper, we extend the use
of amortization-based meta-learning to extract the knowledge of a given document into a compact yet
informative modulation for online adaptation.

Online learning. Online learning, also referred to as continual or lifelong learning, is a task of
adapting models to new data or task distributions [77]. Such ideas are becoming increasingly relevant
in the era of deep learning generally and with the advent of extremely large models [78, 17, 71]
specifically. In the language domain, there have been various attempts to tackle online learning
[40, 92, 63] where recent studies focus more on online learning of LLMs, e.g., finetuning on a
stream of documents [42], architectural constraints [32], and the use of replay buffers [14]. Among
them, Hu et al. [26] found that online finetuning can be effective when an LM focuses on important
tokens during the adaptation and proposed a gradient-based meta-learning approach to automatically
learn a token importance weighting model. However, such gradient-based meta-learning schemes
require a compute-expensive second-order gradient calculation [15, 64]. Moreover, online finetuning
schemes can face multiple challenges, including (i) inevitable forgetting of the learned knowledge, (ii)
gradient computation of LLMs during adaptation, and (iii) high sensitivity to the online optimization
hyperparameter (e.g., learning rate [26]). MAC does not suffer from such issues as our amortization
strategy is efficient without introducing any hyperparameters while effectively preserving knowledge.

Retrieval augmentation for LMs. Retrieval augmentation of LMs with relevant information
from external knowledge sources has served as an effective way to improve the performance of
LMs on various NLP tasks [21, 43, 30, 70, 80] by reducing hallucination and leveraging external
knowledge which is not seen during pre-training. However, retrieval augmentation drastically
increases computational cost [88] as documents often consist of thousands of words. In addition,
its effectiveness is sensitive to the configuration of retrieved information [46], and even negatively
affects the performance of LMs when the retrieved information is counterfactual [75]. MAC is
more efficient than retrieval augmentation as it amortizes the external knowledge to modulate LMs
rather than directly incorporating it. Furthermore, we believe MAC and retrieval augmentation has
similarities as both methods store the knowledge and utilize them base on the user query, while the
main difference is that MAC attend to multiple documents simultaneously using the aggregation
network, allowing the LLM to capture shared information across documents. We thus believe that
the joint usage benefits retrieval augmentation, as MAC can guide retrieval augmentation to capture
missing information not retrieved by the retriever (see Section 4.1 for the supporting experiment).

Memory augmented LMs. Recently, memory augmentation has also shown great promise for LMs
where it significantly improves the performance and efficiency in various directions [84, 56, 94, 54,
24], e.g., extending context length with memory retrieval [87, 83], personalization [2], and model
editing [53]. Unlike these methods, which store the raw text or use the memory bank to train new
LMs, MAC stores compact modulation parameters (in the shape of learned tokens) and adapts the
frozen target LM, thereby utilizing large models without the heavy computation of training LMs.

3 MAC: Online Adaptation with a Memory of Amortized Contexts

In this section, we first briefly describe our problem setup (Section 3.1), then core components,
namely amortization and aggregation framework (Section 3.2) and finally, efficient training and
inference schemes for MAC (Section 3.3). Algorithm 1 and 2 in Appendix B provide detailed training
and online adaptation processes for our framework.

3.1 Problem setup: Online adaptation

We consider the online adaptation scenario proposed in Hu et al. [26] where a static LM parameterized
by θbase is adapted to an online stream of documents Ctest := (d1, · · · ,dKtest). After incorporating
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the final document, we then evaluate the adapted model’s performance with a set of queries {xi} and
a corresponding labels {yi}, where the ith query and label are drawn from a conditional distribution
of a document di, i.e., (xi,yi) ∼ p(x,y|di). Here, note that the query xi is not accessible during
online adaptation; hence, retaining the learned information from di is critical for achieving good
results. While the query input and label pair (x,y) can be in any format or task, we mainly focus on
question and answering (QA) tasks by following Hu et al. [26], i.e., xi is a question and yi is the
corresponding answer based on the given information in di, as it is straightforward to evaluate the
LM’s updated knowledge. Nevertheless, we also consider an additional non-QA setup in Section 4.3.

3.2 MAC: Memory of amortized contexts

The stated goal of MAC is (i) the efficient adaptation of a given LM to unseen information (ii) while
retaining previously learned knowledge, both from its original training stage as well as updates from
prior examples in a stream of novel data. To this end, we propose to utilize amortization-based
meta-learning [18, 19] of a memory-augmented system. Amortization-based meta-learning with
modulations [27, 65, 4] learns to predict a task-specific modulation (i.e., a compact representation
of a task) through amortizing the given context set sampled from the task distribution. This enables
efficient adaptation using the learned amortization network, as it only requires a single forward pass to
adapt a model, foregoing the cost of gradient computation. It is worth noting that this is also beneficial
as the LM does not have access to the input and label pair (x,y) during the online adaptation, where
we can design the amortization to find the modulation only with the given document d. Furthermore,
meta-learned modulations have been found to preserve the task information well (e.g., showing great
potential for generating or classifying distributions of tasks [72, 73]). They can hence be expected
to effectively extract document information. Based on this insight, we suggest meta-learning the
amortization network to directly predict a compact modulation for a new document.

Learning to amortize contexts. For a given context document dk sampled from the training docu-
ment set Ctrain, we learn an amortization network parameterized by θamort to predict a modulation
parameter (of the same shape as embedded tokens) ϕk as: ϕk := gθamort(dk). Here, we use a hyper-
network [22] for θamort: we modify the T5 architecture [60] by having learnable tokens as the input
of the decoder to have a consistent number of output tokens by following [58]. One can design the
modulation with any type of PEFT scheme (e.g., LoRA [25] or FiLM [57]), among which we use
P-Tuning v2 [47] (i.e., predictions of the key-value of each attention layer).

Modulating LMs via aggregating amortized contexts. Given a memory bank of compressed
documents in the form of modulations {ϕk}Kk=1, we now learn to choose relevant information in
the form of a modulation ϕ∗i for a given input xi. While one design choice is to select/retrieve
a single modulation, this has two drawbacks: (i) risk of selecting the wrong modulation and (ii)
limited utilization of learned knowledge across different modulations. Moreover, it is worth noting
that recent studies empirically show that linear interpolation (or advanced merging) between the
modulations trained from the same pre-trained LM can even perform better than individual modulation
(coined “model soup” [86, 93]). In this regard, we thus aggregate the memory bank into a single
modulation based on the given input. Formally, we learn a set aggregation network hψ that satisfies
permutation invariance (i.e., invariance to the order of modulations in the memory bank) by utilizing
cross-attention blocks [81, 36, 89] to select ϕ∗i :

ϕ∗i := hψ
(
gθinput(xi), {ϕk}Kk=1

)
, (1)

where θinput is the input encoder, and we use the same architectural design as the amortization
network θamort, albeit resorting to a reduced number of parameters for efficiency reasons. Note that
{ϕk}Kk=1 is often referred to as as a context set in the meta-learning literature, hence inspiring the
name of our method. We provide more architecture design details of θamort and ψ in Appendix A.

End-to-end training objective. To learn aggregation and amortization networks, we optimize both
networks in an end-to-end fashion as follows:

min
θamort,θinput,ψ

1

N

N∑
i=1

L
(
LMθbase(xi;ϕ

∗
i ),yi

)
. (2)

where L is the loss function, i.e., negative log-likelihood of the given label y, and N is the batch size
of training query inputs and labels. Here, it is important to state that we make no updates to the static
LM θbase, which would carry the risk of catastrophic forgetting by overwriting important parameters.
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Online adaptation stage. After training amortization and aggregation networks based on a given
training set, we now consider the online adaptation scenario. Here, we consider a stream of Ktest

documents dtest
1 , · · · ,dtest

Ktest given to the LM in a sequential manner, where the task input xtest is
not accessible during adaptation. To this end, we propose to store the compact modulations into
a memory bankM := {gθamort(dtest

k )}Ktest

k=1 and later predict the modulation using the aggregation
network to adapt the LM, i.e., LMθbase(x

test;ϕ∗) where ϕ∗ := hψ
(
gθinput(x

test),M
)
.

3.3 Memory efficient training and inference for MAC

Due to aforementioned challenges, the training of MAC can quickly become prohibitive. The
following sections cover techniques to drastically reduce memory requirements.

Backpropagation dropout. During the online adaptation stage, the aggregation network is required
to predict the modulation based on the memory bank, which may consist of large numbers of
modulations (examples extracted from thousands of novel documents in our experimental setup).
To handle large batch inference, it is crucial to present similar examples during training to avoid
distribution shift between training and online adaptation stage and ensure that memory selection
is robust. To this end, we propose a memory-efficient way to increase the training context size
K by computing gradients using only a subset of randomly chosen examples (ensuring unbiased
gradient computation), thus allowing training with significantly larger memory sizes. More concretely,
with probability p, we perform amortization at training time with a stop-gradient operation, i.e.,
stopgrad

(
gθamort(di)

)
where p is a hyper-parameter, thus reminiscent of dropout. It is important

to note that this random sub-sampling yields unbiased approximation of the full gradient under
amortization-based meta-learning schemes [6], hence, does not hurt the overall performance.

Hierarchical modulation aggregation. In addition, we propose an efficient inference technique to
deal with the accumulated memory bank. Let T be the number of output tokens for each context
and K the number of amortized contexts, respectively. Then, the memory usage made by a single
cross-attention layer becomes O(KT 2) (note that the input x is also mapped into T tokens). This
indicates the aggregation process requires a memory cost that linearly scales with the size of the
memory bank.

To alleviate memory consumption, we propose hierarchical modulation aggregation that uses a
divide-and-conquer strategy (see Algorithm 3). Specifically, for a given memory bank size of
K with T tokens, we subgroup the total KT tokens into M tokens each, thereby having ⌈KTM ⌉
groups (⌈·⌉ is the ceil function, i.e., the smallest integer which is greater than or equal to the given
input). Then, we aggregate the modulations of individual subgroups into a single output to obtain
⌈KTM ⌉ modulations. We repeat this procedure until it outputs a single modulation. Assuming no
parallelization, one can compute this process by only utilizing the memory complexity of O(MT )
where M is a hyperparameter (more details of the complexity calculation is in Appendix A.2).

4 Experiments

In this section, we provide an empirical evaluation of MAC, systematically verifying claims made
throughout the manuscript and thus supporting the suitability of its constituent components. Specifi-
cally, we investigate the following questions:

• How does MAC perform compare to other online learning techniques for LMs? (Table 1 & Table 2)

• Is MAC more efficient compared to online finetuning schemes? (Figure 2)

• Does MAC show effective knowledge retention compared to other finetuning methods? (Figure 3)

• Does proposed efficient training and inference schemes save memory usage? (Figure 4 & Figure 5)

Before answering each question, we outline the experimental protocol (more details in Appendix A).

Datasets. For the experiment, we utilize three question-and-answering (QA) datasets including
StreamingQA [45], SQuAD [62], and ArchivalQA [82], by following the prior work [26]. Here,
unlike the original use of SQuAD and ArchivalQA (i.e., used for evaluating static LMs), we use
these datasets for online adaptation (i.e., adapting on a stream of documents), hence, denote with an
additional “-Seq” notation throughout the section.
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Table 1: Comparison of the online adaptation performance between MAC and online finetuning
baselines. We report the exact match (EM) and F1 score by adapting the LM on a stream of documents
and then performing QA based on the learned data. ∗ denotes the adaptation results of CaMeLS using
a proxy token weighting LM (i.e., a smaller LM than the base LM) due to memory consumption,
and OOM denotes unavailable results due to the running out-of-memory on a single NVIDIA A100
80GB GPU (even with a batch size of 1). The bold indicates the best result within the group.

StreamingQA SQuAD-Seq ArchivalQA-Seq

Model (# params) Method EM (↑) F1 (↑) EM (↑) F1 (↑) EM (↑) F1 (↑)

DistilGPT2
(82M)

Uniform 1.62 3.76 1.24 2.54 4.86 4.08
Salient Spans 1.44 4.67 1.03 2.47 4.52 3.76
CaMeLS 1.62 5.79 1.47 3.08 4.62 6.19
MAC (ours) 5.59 10.18 2.01 6.85 7.55 10.58

GPT2-Large
(774M)

Uniform 4.74 7.00 3.64 4.97 7.66 8.71
Salient Spans 4.86 8.54 4.03 6.48 9.75 11.19
CaMeLS∗ 5.35 10.60 4.97 8.63 9.92 12.41
MAC (ours) 7.25 13.31 6.43 11.42 11.84 15.26

GPT2-XL
(1.5B)

Uniform 5.11 7.48 6.10 6.78 8.61 10.78
Salient Spans 5.40 9.42 4.55 6.74 11.81 14.11
CaMeLS∗ 6.55 11.67 6.70 10.15 13.87 15.74
MAC (ours) 8.99 15.38 7.10 12.55 14.01 17.12

LLaMA-2
(7B)

Uniform 12.43 13.54 13.25 17.01 18.53 21.35
Salient Spans 13.33 18.97 13.74 18.66 18.97 22.75
CaMeLS ——————————– OOM ——————————–
MAC (ours) 14.29 21.79 15.07 21.14 20.12 23.90

Online adaptation setup. After training MAC (i.e., learning θamort, θinput, and ψ parameters)
on a training dataset that consists of document and QA pairs, we evaluate the online adaptation
performance on the stream of documents. Here, we use 1,665 documents to adapt the LM and then
perform the evaluation after the adaptation, where QA pairs are sampled from the learned documents.
Each document can consist of tokens up to 512 when using the Byte Pair Encoding [74].

Baselines. We mainly consider the online finetuning baselines introduced in [26], including Uniform,
Salient Spans and CaMeLS. Here, all baselines are first pre-trained on a QA-paired training set
(without the documentation) and then utilize auto-regressive finetuning to adapt to the stream of
documents. Specifically, Uniform uses uniform token weighting, Salient Spans assigns uniform
weight to tokens in salient spans [21] and no weights to other tokens, and CaMeLS utilizes the
output of the token weighting LM (which is meta-learned to predict the important token so that the
performance of the adapted LM is maximized). Furthermore, we also consider the joint usage of
MAC with the retrieval augmentation scheme, including BM25 [66], Contriever [29], and DPR [33].

4.1 Online adaptation with MAC

We first present the main result by comparing the online adaptation performance with other baselines.
Here, we mainly compare with online finetuning schemes and additionally show that MAC can be
jointly used with a retrieval augmentation method to further improve the performance.

Comparison with online finetuning methods. In Table 1, we show the online adaptation perfor-
mance of MAC and the online finetuning baselines. Overall, MAC significantly outperforms all
the prior online finetuning methods by a large margin, leading to a better exact match (EM) and F1
score. We also found that CaMeLS [26] suffers from the memory shortage on LLaMA-2 even when
using the memory efficient techniques (e.g., 4bit quantization [13] and ZeRO [61]), as it requires
second-order gradient computation for meta-learning. Consequently, it requires a proxy model (a
small-sized LM compared to the base LM) that uses the same tokenization (e.g., we use DistilGPT2
for GPT family as suggested in [26]).

Furthermore, it is worth mentioning that MAC is significantly efficient in both memory and adaptation
time compared to other online finetuning methods; we remark that MAC does not require any gradient
computation to update the model, while online finetuning needs the gradient to update the model. For
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Figure 2: Comparison of the adaptation mem-
ory and time efficiency between MAC and online
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ment and the time (min) for adapting a stream of
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Table 2: Online adaptation performance of MAC jointly using the retrieval augmentation under
ArchivalQA-Seq dataset. We consider BM25, Contriever, and DPR as retrieval augmentation methods.
We report the exact match (EM) and F1 score by adapting the LLaMA2-7B on a stream of documents
and then performing QA based on the learned data while retrieval augmentation retrieves documents.
The bold indicates the best results within the group.

Top-1 Top-3 Top-5

EM F1 EM F1 EM F1

BM25 48.53 54.17 56.18 63.74 64.74 71.83
BM25 + MAC (ours) 52.81 56.55 60.22 66.82 68.85 74.89

Contriever 44.78 51.55 52.56 61.28 60.10 67.83
Contriever + MAC (ours) 47.99 53.23 53.92 63.75 61.28 70.01

DPR 48.98 55.01 57.02 64.27 65.07 72.24
DPR + MAC (ours) 49.57 55.98 60.19 67.05 68.52 75.00

instance, compared to CaMeLS, MAC reduces 68.0% memory usage for a single document adaptation
and can adapt 128 times larger number of documents when using the same memory. Moreover, the
adaptation time reduces from 28.58 to 2.5 minutes under the same memory usage (i.e., 90.31% drop).
We emphasize that both types of efficiency are crucial for online learning LMs as i) the document
corpus is expanding rapidly, and ii) it enables the user to use a larger model for better generalization.

Knowledge Retention of MAC. We now address one of our primary motivations for this study: a
comparison of knowledge retention by analyzing the catastrophic forgetting of each method. To this
end, we evaluate the F1 score retention ratio, which is determined by the decline in the F1 score of
the initially adapted 200 documents during the optimization on a subsequent stream of documents.
As shown in Figure 3, MAC shows a strong knowledge retention compared to other online finetuning
methods: when adapting additional 1,400 documents, MAC retains the initial performance by 96.2%
while CaMeLS retains 70.8%. These results indeed highlight i) the benefit of using a memory bank as
a tool for preserving knowledge and ii) our aggregation mechanism well predicts the modulation even
when the memory bank’s cardinality increases throughout the adaptation process. It is also worth
noting that online finetuning schemes somewhat suffer from preserving the newly learned knowledge,
especially when the number of adapted documents increases, thus may limit the practical usage for
real-world applications.

Improving MAC with retrieval augmentation. In addition, we show that MAC can be further
improved by using retrieval augmentations. Here, we note that the user requires more inference
costs to use retrieval augmentations as prepending the retrieved document in front of the question
quadratically increases the inference computation based on the document length due to the Attention
mechanism [81]. For the experimental setup, we compare it with LMs that are pre-trained on QA
training set with an appended top-1, top-3, and top-5 retrieved document for each question, i.e.,
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hierarchical aggregation).

LMθbase(d⊕ x;ϕ) where ⊕ and ϕ indicate concatenation and the modulation, respectively. Here, we
consider three types of popular retrieval augmentation methods, including BM25 [66], Contriever [29],
and DPR [33]. As shown in Table 2, using BM25 with MAC significantly improves the performance
by a large margin in all cases, e.g., F1 score of 71.83%→ 74.89% for LLaMA-2 (7B) when using
top-5 documents. We conjecture that the aggregation process of MAC enables the utilization of the
shared information across the documents, thus improving the performance over the single document
retrieval. We believe further extending MAC for the joint usage with retrieval augmentation schemes
will be an interesting future direction to explore where one can extend the amortization and input
network to enhance the aggregation of modulations but also learn to well retrieve documents.

4.2 Efficiency of backpropagation dropout and hierarchical modulation aggregation

We verify the proposed memory efficient techniques, namely the backpropagation dropout and the
hierarchical modulation aggregation for training and inference, respectively. Here, we report the peak
GPU utilization when using the proposed techniques to show the memory efficiency. Furthermore,
we re-emphasize that such techniques are important for (i) scaling LMs to larger models and (ii)
handling a large number of documents during online adaptation, which are both necessary for scaling.

Table 3: Effect of backpropagation dropout
(backprop.) on LLaMA2-7B under Stream-
ingQA dataset. K indicates the batch size.

Method K Memory (GB) F1

No backprop. 1 33.86 12.43
MAC 4 34.01 21.79

Training memory efficiency. To show the memory effi-
ciency of the backpropagation dropout, we increase the
number of amortized contexts Ktrain during training
time and vary the dropout ratio p. As shown in Figure
4, increasing the dropout ratio can significantly handle
more contexts under the same memory constraint. As
a result, we found that simply using p = 0.75 is an
effective choice when using large models (# parameters > 1B) as the training context size is small
in such cases. For instance, when training LLaMA-2 (7B) model on StreamingQA dataset without
this technique, one can only compute the loss with a single document (under 32 GB GPU), thus
the aggregation network cannot learn the similarity between the modulations. As a result, using
backpropagation dropout improves the performance of LLMs (in Table 3).

Inference memory efficiency. Here, we show that the hierarchical modulation aggregation can
significantly reduce memory usage while effectively preserving the performance for the inference. To
this end, we vary the cardinality of the subgroup M and report the peak GPU memory usage and
F1 score where we only measure the used memory by the modulation aggregation (i.e., excluding
the LM cost). As shown in Figure 5, using the subgroup size of M = 16 can reduce the memory by
65.6% while still preserving 93.2% of the original accuracy. We remark that this technique can be
applied even without additional training trick or regularization, demonstrating similar observations
from the prior works that uses hierarchical aggregation (or merging) in the context of Transformers
[5, 76], yet MAC is the first to aggregate the modulations.
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Figure 6: Visualization of the per-token final layer cross-attention. The aggregation network is
provided with the gold document (containing the answer) with five additional documents, which are
either (a) retrieved using BM25 or (b) randomly sampled. Each question and document are encoded
into K = 12 tokens, where K is a hyperparameter. Red denotes the high similarity with the question.

4.3 Additional analysis

In this section, we provide more analysis of MAC. Here, we mainly consider baselines that show
effectiveness in the main experiment (e.g., CaMeLS in Table 1) and consider GPT2 family trained
with StreamingQA dataset.

Cross-attention analysis. We analyze whether the learned cross-attention is attending to the correct
information. To this end, we visualize the final cross-attention layer of the aggregation network
trained on StreamingQA with GPT2-Large, where we provide the gold document (containing the
answer to the question) and an additional five documents. Here, we consider providing the retrieved
documents using BM25 or random documents, where we average the cross-attention over 25 questions
(as considering more number of questions over-smooth the visualization). As shown in Figure 6, the
model selectively attends to the gold document when provided with irrelevant random documents,
effectively ignoring them, while appropriately attending to relevant documents retrieved using BM25,
indicating a well-trained attention mechanism capable of discerning useful information.

Random Prune
Random Avg.

NN Avg.
Full Memory

F1
 s

co
re

19
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22

Figure 7: Comparison of various
memory bank reduction methods
on LLaMA2-7B.

Memory bank size constraint. One possible concern of MAC
is the growing size of the memory bank as the number of
adapted documents increases. To this end, we have conducted
an additional experiment using a fixed memory bank size for
MAC. Specifically, we reduce the number of amortized con-
texts when it reaches the memory constraint of 1,250 (where
the total number of contexts is 1665). Here, we consider three
simple yet effective schemes: i) random pruning, ii) randomly
averaging two modulations ϕnew = 1

2 (ϕ1 + ϕ2), and iii) av-
eraging two nearest-neighbor (NN) modulations based on the
cosine distance. As shown in Figure 7, we tested LLaMA-2
7B on StreamingQA by reducing the memory bank size where
averaging NN modulations shows quite effective preservation.
We believe it would be an interesting future direction to further
explore MAC under memory bank size constraints where a

great variety of techniques can be developed in this direction, for instance, using neural compression
techniques to reduce the memory bank size [3, 73].

Table 4: Online adaptation perfor-
mance on different types of PEFT, in-
cluding LoRA and P-tuning-v2. We
train GPT2-XL on StreamingQA.

PEFT type EM F1

LoRA 8.67 15.15
P-tuning v2 8.99 15.38

Using other types of PEFT. Here, we show that other types
of PEFT modulation can also be used for our framework. To
this end, we considered LoRA [25] as an alternative to P-
tuning v2 [47]. As shown in Table 4, LoRA also performs well
compared to other online fine-tuning methods, but overall, P-
tuning v2 outperformed LoRA when training GPT2-XL on the
StreamingQA dataset. This result aligns with the finding from
previous work [58], where they also observed that P-tuning v2
outperforms LoRA when using amortization. Additionally, we
believe P-tuning is also easy to implement, as it allows efficient batch computation, enabling a single
forward pass of the LLM with different modulations. In contrast, LoRA requires separate forward
passes for each modulation, which increases the training time.
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Table 5: Online adaptation performance
on OOD datasets: We report the F1 score
of GPT2-XL trained on StreamingQA,
adapting to SQuAD and ArchivalQA.

StreamQA → SQuAD ArchivalQA

CaMeLS 8.63 13.43
MAC (ours) 10.47 13.73

Adaptation on out-of-distribution (OOD) datasets. We
additionally analyze the online adaptation performance of
MAC on the OOD dataset from the training distribution.
To this end, we compare the performance with CaMeLS
[26] on GPT2-XL, as other online finetuning methods do
not involve a training stage (i.e., no training distribution).
Here, we use StreamingQA as a training set (i.e., a rela-
tively large dataset) and other datasets as OOD. As shown
in Table 5, MAC outperforms CaMeLS in F1 score. It is
worth noting that the meta-learning performance scales as the training distribution is more diverse
[91], hence, we believe training MAC on larger datasets will further improve the OOD generalization.

Table 6: Perplexity on adapted and un-
seen documents. We use GPT2-Large
auto-regressively trained on Stream-
ingQA documents.

Adapted Unseen

Uniform 11.43 13.89
Salient Spans 27.87 29.69
CaMeLS 11.31 14.77
MAC (ours) 10.91 12.71

Language modeling with MAC. While the conventional
evaluation protocol for online learning LMs uses QA [32,
31, 26], we additionally conducted a language modeling
task (i.e., predicting the next token). Specifically, we
adapted the LLM on a stream of documents, then gave the
initial 10% of the document as input to the input network
(this is equivalent to a question in the QA task). Here,
we measured the perplexity of the remaining 90% of the
documents on two cases: (i) the documents used for LLM
adaptation to measure knowledge preservation and (ii)
unseen documents to measure generalization. As shown
in Table 6, MAC outperforms other online finetuning baselines in both cases.

Table 7: Online adaptation performance
across design choices for the amorti-
zation network, evaluated by training
GPT2-XL on the StreamingQA dataset.

EM F1

Encoder only (T5-encoder) 8.53 15.01
Decoder only (GPT2) 8.01 14.87
Encoder-Decoder (T5) 8.99 15.38

Design choice for the amortization network. Here, we
consider different types of design choice for the amortiza-
tion network. To this end, we evaluated three architectural
configurations: decoder-only, encoder-only, and encoder-
decoder language models. Specifically, we experimented
with (i) the GPT2 model and (ii) the T5 encoder with learn-
able tokens, where input context is compacted into these
tokens. As shown in Table 7, the encoder-decoder model
demonstrated superior performance over other configura-
tions, using GPT2-XL as the base LLM on the StreamingQA dataset.

5 Discussion and Conclusion

We propose MAC, an efficient and effective online adaptation framework for static LMs with strong
knowledge retention. MAC compresses the context document into parameter-efficient finetuning
modulations, predicted by a meta-learned amortization network. These contexts are stored in a
memory bank for strong knowledge retention and aggregated into a single output when a question
is input. MAC excels in performance, adaptation time, and memory efficiency, and shows superior
knowledge retention for newly learned documents when handling a stream of documents.

Future works and limitations. We believe it will be an interesting future work extending MAC to
multiple applications that require online learning in an efficient manner, e.g., federated learning for
LMs [8] and model editing [52, 53, 23]. Moreover, one possible limitation of MAC is the increasing
size of the memory bank during online adaptation. In this paper, we found that the memory bank can
be effectively reduced by averaging nearest neighbor modulation (in Section 4.3), where we believe
further investigating a better-merging technique will be an interesting future direction to explore.

Societal impact. This paper presents a method that enhances the online adaptation performance of
LMs through the use of amortization-based meta-learning and the memory bank. Similar to other
works, using memory banks for LMs in real-world applications comes with benefits and pitfalls
(e.g., privacy concerns when saving documents from users), requiring the responsible use of the
technology. We believe further extending the amortization network in the perspective of privacy will
be an interesting future direction to explore. For instance, rather than saving the raw text as other
retrieval augmentations techniques or memory-augmented LMs, one can learn to amortize the context
documents to prevent the document’s privacy leakage.
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[54] A. Modarressi, A. Köksal, A. Imani, M. Fayyaz, and H. Schütze. Memllm: Finetuning llms to
use an explicit read-write memory. arXiv preprint arXiv:2404.11672, 2024.

[55] OpenAI. Introducing chatgpt. https: // openai. com/ blog/ chatgpt , 2022.

[56] S. Park and J. Bak. Memoria: Resolving fateful forgetting problem through human-inspired
memory architecture. In International Conference on Machine Learning, 2024.

[57] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a
general conditioning layer. In AAAI Conference on Artificial Intelligence, 2018.

[58] J. Phang, Y. Mao, P. He, and W. Chen. Hypertuning: Toward adapting large language models
without back-propagation. In International Conference on Machine Learning, 2023.

[59] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding
by generative pre-training. In preprint, 2018.

[60] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research, 2020.

[61] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory optimizations toward training
trillion parameter models. In International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020.

[62] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine
comprehension of text. In Conference on Empirical Methods in Natural Language Processing,
2016.

[63] M. Rei. Online representation learning in recurrent neural language models. In Conference on
Empirical Methods in Natural Language Processing, 2015.

[64] M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to reweight examples for robust deep
learning. In International conference on machine learning, 2018.

[65] J. Requeima, J. Gordon, J. Bronskill, S. Nowozin, and R. E. Turner. Fast and flexible multi-task
classification using conditional neural adaptive processes. In Advances in Neural Information
Processing Systems, 2019.

[66] S. Robertson, H. Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 2009.

[67] E. Sandhaus. The new york times annotated corpus. Linguistic Data Consortium, Philadelphia,
2008.

[68] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[69] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with
memory-augmented neural networks. In International Conference on Machine Learning, 2016.

[70] P. Sarthi, S. Abdullah, A. Tuli, S. Khanna, A. Goldie, and C. D. Manning. Raptor: Recursive
abstractive processing for tree-organized retrieval. In International Conference on Learning
Representations, 2024.

14

https://openai.com/blog/chatgpt


[71] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and
R. Hadsell. Progress & compress: A scalable framework for continual learning. In International
Conference on Machine Learning, 2018.

[72] J. R. Schwarz and Y. W. Teh. Meta-learning sparse compression networks. Transactions on
Machine Learning Research, 2022.

[73] J. R. Schwarz, J. Tack, Y. W. Teh, J. Lee, and J. Shin. Modality-agnostic variational compression
of implicit neural representations. arXiv preprint arXiv:2301.09479, 2023.

[74] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words with subword
units. In Annual Conference of the Association for Computational Linguistics, 2015.

[75] C. Si, Z. Gan, Z. Yang, S. Wang, J. Wang, J. Boyd-Graber, and L. Wang. Prompting gpt-3 to be
reliable. In International Conference on Learning Representations, 2023.

[76] W. Song, S. Oh, S. Mo, J. Kim, S. Yun, J.-W. Ha, and J. Shin. Hierarchical context merging:
Better long context understanding for pre-trained LLMs. In International Conference on
Learning Representations, 2024.

[77] S. Thrun and T. M. Mitchell. Lifelong robot learning. Robotics and Autonomous Systems, 1995.

[78] M. K. Titsias, J. Schwarz, A. G. d. G. Matthews, R. Pascanu, and Y. W. Teh. Functional
regularisation for continual learning with gaussian processes. In International Conference on
Learning Representations, 2020.

[79] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[80] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal. Interleaving retrieval with chain-
of-thought reasoning for knowledge-intensive multi-step questions. In Annual Conference of
the Association for Computational Linguistics, 2023.

[81] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

[82] J. Wang, A. Jatowt, and M. Yoshikawa. Archivalqa: A large-scale benchmark dataset for
open-domain question answering over historical news collections. In International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2022.

[83] W. Wang, L. Dong, H. Cheng, X. Liu, X. Yan, J. Gao, and F. Wei. Augmenting language models
with long-term memory. In Advances in Neural Information Processing Systems, 2023.

[84] Y. Wang, X. Chen, J. Shang, and J. McAuley. Memoryllm: Towards self-updatable large
language models. In International Conference on Machine Learning, 2024.

[85] D. Wingate, M. Shoeybi, and T. Sorensen. Prompt compression and contrastive conditioning for
controllability and toxicity reduction in language models. In Conference on Empirical Methods
in Natural Language Processing, 2022.

[86] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos,
H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, et al. Model soups: averaging weights of
multiple fine-tuned models improves accuracy without increasing inference time. In Interna-
tional Conference on Machine Learning, 2022.

[87] Y. Wu, M. N. Rabe, D. Hutchins, and C. Szegedy. Memorizing transformers. In International
Conference on Learning Representations, 2022.

[88] F. Xu, W. Shi, and E. Choi. Recomp: Improving retrieval-augmented lms with compression and
selective augmentation. arXiv preprint arXiv:2310.04408, 2023.

[89] J. Xu, J.-F. Ton, H. Kim, A. R. Kosiorek, and Y. W. Teh. Metafun: Meta-learning with iterative
functional updates. In International Conference on Machine Learning, 2020.

15



[90] D. Xuan-Quy, L. Ngoc-Bich, P. Xuan-Dung, N. Bac-Bien, and V. The-Duy. Evaluation of
chatgpt and microsoft bing ai chat performances on physics exams of vietnamese national high
school graduation examination. arXiv preprint arXiv:2306.04538, 2023.

[91] M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn. Meta-learning without memorization. In
International Conference on Learning Representations, 2020.

[92] D. Yogatama, C. Wang, B. R. Routledge, N. A. Smith, and E. P. Xing. Dynamic language
models for streaming text. Transactions of the Association for Computational Linguistics, 2014.
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A Experimental Details

A.1 Experimental details

Training details. We mainly follow the training configuration suggested by [26]. For all datasets,
we train 50 epochs by using Adam [38] optimizer, where we warm up the learning rate for the first
epoch (except for training DistilGPT2; 68) and then use a constant value throughout the training.
Here, we use a learning rate of 1e − 5 for all models except for DistilGPT2 where it uses 1e − 4.
The output token number of the amortized network T is 12 for DistilGPT2 and 24 for the rest. We
apply backpropagation dropout for large models with more than 1 billion parameters, using a ratio of
p = 0.75. Additionally, we use 4bit quantization [13] and ZeRO [61] when training GPT2-XL [59],
and LLaMA-2 [79] where we also (4-bit) quantize the T5 encoder [60]. It is important to note that
the quantization should be applied to pre-trained networks, not the networks learned from the random
initialization (e.g., amortization and aggregation network). We use a batch size of 64 for DistilGPT2
and 32 for the rest by using the gradient accumulation.

Evaluation details. We follow the same evaluation protocol from [26]. For the online adaptation,
we adapt the model on a stream of 1,665 documents and then perform a QA evaluation. For the
online finetuning baselines, we follow Hu et al. [26] to find the best learning rate hyperparameter,
where we observed that the performance is somewhat quite sensitive to the choice. We mainly used
6.5e− 6 for all online finetuning methods except for CaMeLS, which uses 2.5e− 5 in most cases.
For the catastrophic forgetting analysis in Figure 3, we fixed the learning rate to 6.5e − 6 for all
online finetuning methods as we found that forgetting occurs more on larger learning rates. It is worth
remarking that MAC does not require any additional hyperparameter during online fine-tuning.

Base LM details. We mainly consider GPT2 family [59] as the static base LM θbase by following
the prior work [26], where we additionally conduct the experiment on LLaMA-2 [79] to verify the
scalability of MAC. For the amortization network, we consider the T5 model family [60] that are
relatively smaller than the base LM. It is important to note that the output number of tokens T of the
amortization and aggregation networks is a hyper-parameter, where we use 24 for all architectures
except for Distil-GPT2, which uses 12. Then, we map these T tokens into each layer’s modulation
through a linear layer where we use P-tuning v2 [47] as the modulation design.

Amortization network details. For the model details, we mainly describe the design choice of our
amortization θamort. Note that input encoder θinput uses the same architectural design as θamort while
using a smaller sized network. For the amortization network, we follow the design choice from [58]
and use the T5 encoder-decoder model [60] as the base architecture. Specifically, we learn trainable
tokens that are used for decoder input so that the output number of tokens T is consistent. Then, we
have an individual two-layered MLP for each output token. For the network size, we use T5-small as
the amortization θamort network for Distil-GPT2, T5-base for GPT2-Large, and T5-Large for both
GPT2-XL and LLaMA-2 (7B) where the input network θinput uses a smaller model (T5-small for
Distil-GPT2 and T5-base for the rest).

Aggregation network details. The aggregation network uses four cross-attention blocks, each
consisting of one cross-attention layer and one feed-forward network. Here, the set of parameter
efficient finetuning (PEFT) modulations (in the memory bank) is the key and value of each cross-
attention layer, and the encoded question (gθinput(x); soft prompt tokens) is the initial query of the
cross attention layer (i.e., later layers use the previous block’s output as the query input). Thereby,
the output of the aggregation network is soft prompts that have the same dimension as the encoded
question.

Dataset details. Here, we describe the dataset detail in the following.

◦ StreamingQA [45] The StreamingQA is composed of questions that are either created by annotators
or produced using a large-scale language model. These questions can be answered using a dynamic
knowledge database of English WMT news articles, which have been timestamped and were
published from 2007 to 2020, and these articles are also included in the dataset. Following the
setups in [26], we use 21k training questions, 1.7k validation questions, and 5k test questions,
respectively. Also, the same number of documents with the questions is used for each split, during
the experiments. For the baselines that require QA pre-training (see Section 4), we use 40k training
questions and 4k validation questions, respectively.
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◦ SQuAD [62]: The Stanford Question Answering Dataset (SQuAD) is composed of questions
created by crowdworkers based on a collection of Wikipedia articles, where the answer to each
question is a span contained in the corresponding article. Following the setups in [26], we use
39.9k training questions, 5.6k validation questions, and 10.6k test questions, respectively. Next, we
use 8.6k training documents, 1.2k validation documents, and 2.1k test documents, respectively. For
the baselines that require QA pre-training (see Section 4), we use 40k training questions and 2.1k
validation questions, respectively.
◦ ArchivalQA [82]: The ArchivalQA dataset is constructed with synthetically generated questions

from the sophisticatedly designed pipelines with language models. Specifically, questions are
generated from articles in the New York Times Annotated Corpus [67]. Also, the answer to each
question is a span contained in an article. Following the setups in [26], we use 21.7k training
questions, 5.3k validation questions, and 8.7k test questions, respectively. Next, we use 12.8k
training documents, 3.0k validation documents, and 5.0k test documents, respectively. For the
baselines that require QA pre-training (see Section 4), we use 12.4k training questions and 3k
validation questions, respectively.

A.2 Memory complexity of hierarchical modulation aggregation

The calculated memory complexity is based on the Attention map size, which is equal to the dimension
after multiplying the Query and Key of the Cross-Attention layer. Here, the Query dimension is fixed
to T tokens, and the Key dimension is dependent on the size of the memory bank. In this regard, K
documents are encoded into KT tokens, thus showing O(KT 2) for the entire set aggregation. For
the hierarchical aggregation, we subgroup KT tokens into M tokens for each memory, thus reducing
the complexity into O(MT ). Here, it is important to note that we do not assume parallelization
for the hierarchical aggregation when computing each subgroup, hence, the memory complexity is
O(MT ).

B Algorithm

B.1 Algorithm of MAC

Algorithm 1 Meta-training of MAC
Input: θamort, θinput, θbase, ψ, Ctrain, learning
rate β

1: while not converge do
2: Sample documents {d1, . . . ,dK} from
Ctrain.

3: Sample QA pairs (xk,yk) ∼ p(x,y|dk).
4: for k = 1 to K do
5: # Summarize context
6: ϕk = gθamort(dk)
7: end for
8: # Aggregate modulations
9: ϕ∗k = hψ

(
gθinput(xk), {ϕk}Kk=1

)
10: # Compute loss
11: Ltotal = Ek[L

(
LMθbase(xk;ϕ

∗
k),yk

)
]

12: # Optimize
13: θamort ← θamort − β∇θamortLtotal
14: θinput ← θinput − β∇θinputLtotal
15: ψ ← ψ − β∇ψLtotal
16: end while
Output: θamort, θinput, ψ

Algorithm 2 Online learning of MAC
Input: Stream of document Ctest, test QA set
{xi,yi}Ii=1, θamort, θinput, θbase, ψ

1: Initialize new memory bankM := ∅
2: Extract amortized contexts from the stream

of documents
3: for k = 1 to Ktest do
4: # Summarize context
5: ϕk = gθamort(dk)
6: Save ϕk intoM
7: end for
8: Adapt the LM based on the input and evaluate
9: for i = 1 to I do

10: # Aggregate modulations

11: ϕ∗i = hψ
(
gθinput(xi), {ϕi}K

test

i=1

)
12: y

pred
i = LMθbase(xi;ϕ

∗
i )

13: end for
Output: Accuracy

(
{(yi,ypred

i )}Ii
)
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B.2 Algorithm of the hierarchical modulation aggregation

Algorithm 3 Hierarchical modulation aggregation
Input:M, ψ, x, θinput, subgroup cardinality M

1: while |M| > 1 do
2: SubgroupM into M tokens {M1, · · · ,M⌈ |M|

M ⌉}
3: Initialize new memory bankMnew := ∅
4: for i = 1 to ⌈ |M|

M ⌉ do
5: Aggregate subgroup ϕi ← hψ

(
gθinput(x),Mi

)
6: Store ϕi intoMnew

7: end for
8: Repeat byM←Mnew

9: end while
Output:M = {ϕ∗}

C More Discussion with Related Work

Prompt compression. The amortization meta-learning scheme of MAC can also be related to prompt
compression methods [85, 12]. The major goal of prompt compression techniques is to reduce
the context length while preserving the prediction performance. While seemingly similar to our
amortization-based meta-learning approach (as it compresses the document into a few tokens), our
amortization network learns to extract the new knowledge that is useful to adapt the base LM’s old
knowledge. Namely, their goals are different. Nevertheless, we believe exploring the architectures
suggested in other prompt compression schemes to improve our amortization network will be an
interesting future direction to explore.

D More Experimental Results

D.1 Effect of train time quantization for aggregation network

Table 8: Effect of train time quantization on aggregation network. Here, we train MAC on LLaMA2
under 4bit quantization and 16bit mixed predicsion, respectively. We report exatch match (EM) and
F1 score as a evaluation metric.

StreamingQA SQuAD ArchivalQA

EM F1 EM F1 EM F1

4bit quantize (nf4) 14.29 21.79 15.07 21.14 20.12 23.90
16bit (bfloat16) 19.26 27.20 16.08 22.34 21.50 26.25

We found that the main reason for the smaller improvement in larger models is due to the strong
quantization applied during training, not because of our method itself. Specifically, when training
large models (e.g., LLaMA4), we used 4-bit quantization for efficiency. We observed that removing
this quantization (using only mixed precision training) significantly improved model performance.
For example, the F1 score of Llama2 on ArchivalQA increased from 23.90% to 26.25% (as shown
in the table below). This is because training with additional modules learned from scratch (e.g.,
aggregation network) requires careful quantization. It is worth noting that we have only removed
4-bit quantization for training, not for the adaptation stage, thereby maintaining a fair comparison
with the baseline.
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D.2 Comparison with memory augmented LMs

Table 9: Comparison with memory augmented LM by compressing the context using a recent method
(i.e., CCM), then learning to retrieve the relevant compressed document using a retriever. Here, we
train LLaMA2 (unquantized) on StreamingQA dataset. The bold indicates the best result.

EM F1

CCM + T5 encoder Retriever 17.98 25.98
MAC 19.26 27.20

We also have conducted a comparison by combining the context compression method CCM [37] and
RAG to show the effectiveness of MAC. Here, we first train the CCM to compress the context, then
train an encoder-only model (i.e., T5 encoder) that retrieves the correct compressed contexts. For
a fair comparison, we have frozen the base LLM parameter to retain the knowledge learned from
the past and did not apply quantization during training. As shown in Table 9, MAC shows better
performance compared to CCM combined with RAGs.

D.3 Data contamination check for evaluation datasets

Table 10: Dataset contamination check on StreamingQA dataset by comparing document adapted
performance with zero-shot and few-shot in-context learning (ICL).

Model Zero-shot 5-shot ICL Ours

GPT2-XL 7.12 10.78 15.38
LLaMA2 12.59 13.98 21.79

We measured the base LLM’s zero-shot and 5-shot in-context learning (ICL) F1 accuracies on the
StreamingQA dataset to verify whether the model has already learned the test set knowledge. As
shown in Table 10, the base LLM struggles to answer the evaluation set without adaptation to the test
set documents, indicating the low possibility of test set leakage.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the introduction and abstract accurately reflect the contribution
and scope, which are then verified in the experiment section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: It is discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not have a theory in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included the implementation of MAC in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the implementation in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detail of the network/dataset/training/evaluation setup in
Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: All experiments are conducted with the same and commonly used random
seed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the memory usage in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not have any ethical concerns regarding the paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the societal impact in Appendix 5
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method does not introduce risks for misuse.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all papers and datasets used in the paper (See Appendix A)
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have included our anonymous PyTorch implementation of MAC in the
supplementary file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: We use existing benchmark datasets and do not have any crowdsourcing
datasets or experiments in the paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have human subject in the research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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