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Abstract

Reliable uncertainty quantification is crucial for reinforcement learning (RL) in
high-stakes settings. We propose a unified conformal prediction framework for
infinite-horizon policy evaluation that constructs distribution-free prediction inter-
vals for returns in both on-policy and off-policy settings. Our method integrates
distributional RL with conformal calibration, addressing challenges such as un-
observed returns, temporal dependencies, and distributional shifts. We propose a
modular pseudo-return construction based on truncated rollouts and a time-aware
calibration strategy using experience replay and weighted subsampling. These in-
novations mitigate model bias and restore approximate exchangeability, enabling
uncertainty quantification even under policy shifts. Our theoretical analysis pro-
vides coverage guarantees that account for model misspecification and impor-
tance weight estimation. Empirical results, including experiments in synthetic and
benchmark environments like Mountain Car, show that our method significantly
improves coverage and reliability over standard distributional RL baselines.

1 Introduction

Motivation. As reinforcement learning (RL) are increasingly deployed in high-stakes domains,
such as healthcare, robotics, and autonomous systems, robust uncertainty quantification becomes
essential. While traditional policy evaluation methods focus on estimating the expected return, this
is insufficient when decisions must account for risk, reliability, and rare outcomes. For example,
in clinical decision-making, a treatment policy may appear beneficial on average but hide adverse
effects for specific patient subgroups. Even in less safety-sensitive applications such as recommen-
dation systems or finance, overlooking uncertainty can lead to unstable behavior and degraded user
experience. Prediction intervals (PIs) for returns offer a principled way to quantify uncertainty, en-
abling risk-aware planning and safer deployments.

This paper focuses on constructing valid PIs for infinite-horizon RL settings, where the return is
defined as the sum of discounted rewards. In on-policy settings, PIs help assess the variability
of returns under the current policy, enabling more robust policy improvement and risk-sensitive
exploration. In off-policy scenarios, where evaluating a new policy offline based on an observational
dataset, PIs serve to gauge the reliability of point estimation from historical data. By constructing
PIs for the return, our approach improves the transparency, reliability, and robustness of RL systems
across a wide range of domains.

Challenges. Constructing valid PIs for returns in RL is closely tied to estimating the full return
distribution, as studied in Distributional RL (DRL). In principle, conditional quantiles from this
distribution can be used to form PIs. However, existing DRL-based approaches often suffer from
model misspecification, leading to biased or inconsistent return distribution estimates and a lack of
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formal statistical guarantees. To address this, building on the framework of conformal prediction,
we propose a flexible, model-agnostic methodology for constructing PIs with asymptotic coverage
guarantees. Applying conformal prediction to the infinite-horizon RL setting requires substantial
methodological innovation, as it poses several fundamental challenges:

• Unobserved Returns. In infinite-horizon RL, the return cannot be directly observed, since in
practice only finite-horizon trajectories (of length T ) are available and future rewards beyond T
are unobserved. Although mitigated by discounting, the truncation error remains non-negligible in
offline settings when T is moderate, making it challenging to evaluate prediction errors or calibrate
uncertainty.

• Temporal Dependence. RL data are inherently sequential, violating the exchangeability assump-
tion required by standard conformal prediction methods.

• Distribution Shifts. In on-policy setting, discrepancies over time lead to complex covariate shift
in the state distribution. In off-policy evaluation, discrepancies between the behavior policy and
the target policy also lead to covariate shift in the state-action distribution.

Contributions. We propose a novel, distribution-free method that integrates conformal prediction
with distributional RL to construct prediction intervals for infinite-horizon returns under both on-
policy and off-policy settings. Our contributions are as follows: (1) Pseudo-Return Construction.
We develop a modular approximation scheme for unobserved returns, combining truncated rollouts
with tail sampling from learned return distributions. This design is inspired by temporal-difference
learning and enables calibration despite partial observability. (2) Calibration via Experience Replay.
To mitigate temporal dependence and approximate exchangeability, we adopt experience replay and
apply random subsampling to the calibration set. This design recovers approximate exchangeability,
enabling valid conformal calibration. (3) Time-Aware Weighted Subsampling. We address distri-
bution shifts both over time and between policies, using a simple, weighted subsampling scheme.
This enables valid calibration in off-policy settings and improves efficiency in on-policy scenarios.
(4) Theoretical Guarantees. We establish asymptotic lower bounds on coverage using Wasserstein
metrics, characterizing how model bias and density ratio estimation affect conformal validity. (5)
Empirical Validation. We demonstrate the effectiveness of our method through empirical studies on
synthetic and the Mountain Car environments.

Together, these contributions extend conformal prediction to the infinite-horizon RL setting and offer
a scalable, practical framework for uncertainty-aware policy evaluation.

1.1 Related Work

Risk-aware RL. RL is a framework in which an agent interacts with an unknown environment
to maximize its expected total reward. Due to the intrinsic randomness of the environment, even
policies with high expected returns may occasionally yield very low rewards, which can be problem-
atic in risk-sensitive applications such as healthcare [19] or competitive games [21]. For instance,
in clinical decision-making, patient responses to treatments are stochastic, making it desirable to
select actions that achieve high effectiveness while minimizing the likelihood of adverse effects. To
address these concerns, risk-aware RL aims to learn policies that reduce the probability of low to-
tal rewards [16], using a variety of risk measures including entropic or exponential utility [11, 22],
conditional value-at-risk [25, 6], and coherent risk measures [18].

In parallel, safe RL and constrained Markov Decision Processes (MDPs) offer an alternative ap-
proach to managing uncertainty; a comprehensive survey of safe RL is provided in [14]. Unlike
risk-aware MDPs, these methods do not modify the optimality criteria; instead, risk aversion is en-
forced through constraints on rewards or risks [5]. While both risk-aware and safe RL approaches
incorporate risk considerations into policy learning, they primarily focus on modeling risk prefer-
ences and generally do not provide formal uncertainty quantification for PIs.

Distributional RL. Distributional RL focuses on modeling the full return distribution rather than
just its expectation. Pioneering work by [2] introduces this paradigm, followed by quantile-based
approaches such as Quantile Temporal Difference (QTD) learning [7, 27], which approximates re-
turn distributions via quantile regression. These methods have led to practical advances in robotics,
control, and decision-making under uncertainty [1, 4, 10, 34]. However, most DRL methods provide
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pointwise quantile estimates and lack formal statistical coverage guarantees, especially under model
misspecification.

By integrating conformal prediction with DRL-based distribution estimation, our framework ensures
asymptotic coverage for predictive intervals, even in challenging infinite-horizon settings.

Conformal Prediction for RL. Conformal prediction offers distribution-free confidence intervals
under exchangeable data [32]. Extending it to RL is challenging due to the inherent temporal de-
pendencies and evolving state distributions. Recent efforts have attempted to bridge this gap. Early
work such as [8] applies conformal prediction to construct trajectory-level prediction intervals in
finite-horizon MDPs. Building on this idea, [12] develop a weighted conformal prediction method
for off-policy evaluation, using importance sampling weights to correct for distributional shifts be-
tween behavior and target policies. However, this approach suffers from the curse of horizon, as the
importance weights accumulate multiplicatively over time, resulting in high variance in long-horizon
settings. In parallel, [35] introduce the COPP algorithm for contextual bandits, which approximates
exchangeability via pseudo-policies and trajectory subsampling; yet, its applicability is largely lim-
ited to short-horizon problems with finite discrete action spaces. [36] further analyze how temporal
correlations in Markovian data affect the coverage and width of split conformal intervals. Finally,
we note a growing line of work that applies adaptive conformal prediction to online safe RL settings
[29, 37], which differs fundamentally from our setting.

Despite these advances, existing methods largely focus on finite-horizon scenarios or on settings
with limited state or action spaces. Prior conformal RL approaches typically handle distribution
shifts between behavior and target policies using trajectory-level importance weighting, which be-
comes computationally inefficient as the trajectory horizon grows. In contrast, our work is the first
to tackle infinite-horizon off-policy prediction in general RL settings with arbitrary state and action
spaces using conformal prediction. By constructing stepwise pseudo-returns and leveraging expe-
rience replay, our method scales conformal prediction to infinite-horizon settings with standard RL
data and remains effective even when only partial trajectory fragments are available.

2 Problem Formulation

We consider the standard RL framework [2, 17, 30], where the environment is modeled as a time-
homogeneous MDP, as specified in the assumptions provided in the supplementary material. Our
goal is to construct distribution-free PIs for the return of a given policy in infinite-horizon settings
under both on-policy and off-policy scenarios.

Data and Setup. Let D = {ζi}Ni=1 be a dataset of N trajectories, each consisting of T time steps.
For simplicity, we assume trajectories have uniform length, but our method naturally extends to
variable-length settings. Each trajectory ζi = {(Sit, Ait, Rit)}T−1

t=0 consists of the state Sit, the
action Ait and the immediate reward Rit. These transitions are generated by a behavior policy
πb, such that Ait ∼ πb(· | Sit) and evolve under a transition kernel P with (Rit, Si,t+1) ∼ P(· |
Sit, Ait). In healthcare applications, each trajectory corresponds to a patient, with Sit representing
clinical features, Ait the administered treatment, and Rit the resulting clinical response.

Objective. Let π be a target policy of interest. The return starting from the state s is defined as
Gπ(s) =

∑∞
t=0 γ

tRt, where Rt is the reward at time t under policy π and γ ∈ (0, 1) is the discount
factor. This return captures the long-term outcome of following policy π from state s. Given a new
test state Stest, we aim to construct a prediction interval for Gπ(Stest) that achieves a user-specified
coverage level 1− α. That is, we seek a set C(Stest) such that:

Pr(Gπ(Stest) ∈ C(Stest)) ≥ 1− α.

In healthcare applications, Gπ(Stest) represents the long-term treatment effect for a new patient
under policy π. The prediction interval thus provides a principled range of plausible outcomes for
the patient, enabling informed decision-making before the policy is actually deployed in practice. In
this paper, we consider two settings:

1. On-Policy Setting: the target policy π is the same as the behavior policy πb. This setting enables
evaluation using in-distribution transitions, but still faces the challenges of infinite horizon and
unobserved returns.
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2. Off-Policy Setting: the target policy π differs from πb. In this case, the data distribution differs
from that under the target policy, and appropriate corrections for distribution shift are necessary.

Preliminaries of DRL. The goal of DRL is to learn the distribution of returns Gπ(s) for each
state s. Let ηπ(s) denote the the probability distribution of the random return. Numerous DRL
methods exist for both on-policy and off-policy settings [3]. In this paper, we adopt quantile tem-
poral difference (QTD) learning for experiments, a prominent approach within DRL. QTD seeks
to approximate the return distribution by ηπ(s) ≈ 1

m

∑m
i=1 δθ(s,i), which is an equally-weighted

mixture of Dirac deltas at locations θ(s, i). The aim is to have these particles approximate the
τi = (2i − 1)/(2m)-th quantiles of ηπ(s) for i = 1, . . . ,m. Like other temporal-difference meth-
ods, QTD updates its parameters {(θ(s, i))mi=1} using observed transitions (Sit, Rit, Si,t+1). In
continuous and high-dimensional state spaces, function approximation offers a powerful approach
for modeling {(θ(s, i))mi=1} and generalizing across states.

Limitations of DRL. A naive approach to constructing PIs would be to take the empirical quantiles
of ηπ(s), i.e. using [θ(s, L), θ(s, U)], where L = ⌊(mα+1)/2⌋ and U = m+1−L. However, such
DRL-based quantile intervals, referred to as DRL-QR, can be unreliable in finite-sample settings
and do not come with formal guarantees of asymptotic validity. For instance, [3] show that the QTD
algorithm converges to a limiting distribution in finite state and action spaces; yet this limiting dis-
tribution is not guaranteed to match the true return distribution, and thus the convergence provides
no assurance that QTD-based prediction intervals are asymptotically valid. In continuous state and
action spaces, distributional RL methods must rely on function approximation to estimate return
distributions. The theoretical guarantees of these approaches consequently depend critically on the
accuracy of the modeling assumptions, rendering them susceptible to potential model misspecifica-
tion. To address these limitations, we develop a conformal prediction framework that wraps around
any return distribution estimator (such as QTD), correcting for model bias and enabling finite-sample
statistical guarantees.

3 Conformal Policy Prediction Beyond the Horizon

We propose a novel conformal prediction (CP) framework that addresses the unique challenges of
uncertainty quantification in infinite-horizon RL. Our approach combines three key innovations: (1)
pseudo-returns that blend finite rollouts with learned distributional tails, (2) time-aware calibration
addressing both temporal dependence and distribution shifts, and (3) replay-based weighted subsam-
pling to restore exchangeability.

3.1 Overview of the Conformal Framework

Our method follows the split conformal prediction paradigm, adapted to the RL setting. Given a
dataset of transition tuples {(Sit, Ait, Rit, Si,t+1)}, we partition it into a training set Dtr , used
to fit a predictive model for the return distribution, and a calibration set Dcal, used to quantify
predictive uncertainty. The overall pipeline consists of four key steps illustrated in Figure 1:

1. Train a DRL model, such as QTD learning, onDtr to construct a return distribution estimate η̂π(s)
and a value function estimate v̂π(s) under the target policy π.

2. For each calibration state, construct pseudo-returns by combining observed rewards with samples
drawn from the estimated return distribution. The procedure for generating pseudo-returns is
detailed in Section 3.2.

3. Compute nonconformity scores using the pseudo-returns in the calibration set, typically using
the absolute deviation from the estimated value function: V (s) = |G̃π(s)− v̂π(s)|, where G̃π(s)
denotes the pseudo-return.

4. Apply conformal prediction to construct a prediction interval for a new test state Stest, using
weighted subsampling to adjust for distribution shifts and experience replay to approximate ex-
changeability by decorrelating transitions, detailed in Section 3.3.

The nonconformity score plays a central role in quantifying uncertainty and correcting for potential
estimation bias. While our framework is compatible with more sophisticated nonconformity mea-
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sures, such as those used in conformalized quantile regression [26], the double-quantile score [12],
and various others, we use the simple absolute-error score here for clarity and illustration.

Figure 1: Pipeline of the proposed conformal policy prediction framework.

3.2 Pseudo-Return Construction via Truncated Rollouts

A key challenge in infinite-horizon RL is that the true return Gπ(s) is unobservable in a finite-step
trajectory, making it difficult to directly evaluate nonconformity scores for conformal prediction.
To address this, we introduce a novel pseudo-return construction that inspired by k-step temporal
difference (TD) learning. We reinterprete k-step TD learning through the lens of distributional
inference. Specifically, for each calibration point (Sit, Ait, Rit, Si,t+1), we define the k-step pseudo-
return as:

G̃(k)(Sit) =

k−1∑
h=0

γhRi,t+h + γkG̃π(Si,t+k), (1)

where the first term accumulates observed rewards under the behavior policy πb, and the second term
approximates the unobserved tail using a sample from the estimated return distribution η̂π(Si,t+k).

Advantages. Pseudo-return construction approximates the infinite-horizon return using a finite
rollouts combined with a bootstrapped tail. First, this decomposition bridges model-based and
model-free RL within the conformal inference framework. Second, the tail value is sampled from
a learned return distribution, allowing seamless integration with DRL methods such as QTD or C51
[2]. Finally, the rollout horizon k offers a natural bias-variance trade-off: increasing k incorporates
more observed data, potentially reducing model bias but requiring longer rollouts; decreasing k
increases reliance on model predictions, offering faster calibration at the cost of higher bias.

On-policy setting. We detail the QTD learning procedure for DRL used in this paper, although
any DRL estimation method can be integrated into our framework. In the on-policy case, QTD
estimates the return distribution conditioned on the initial state, η̂π(s), via the iterative update

θ(s, i)← θ(s, i) + ρ · 1
m

m∑
j=1

[τi − I(r + γθ(s′, j)− θ(s, i) < 0)] ,

where θ(s, i) denotes the τi-th quantile of η̂π(s), (s, a, r, s′) is sampled under the behavior policy π,
which coincides with the target policy in the on-policy setting, and ρ is a learning rate.

Off-policy setting. Extending QTD to the off-policy setting requires careful modifications to ac-
count for distributional shifts between πb and π. We first define the return starting from a state-action
pair as Gπ(s, a) =

∑∞
t=0 γ

tRt, where the agent takes action a in state s and follows policy π there-
after. The distribution of this return is denoted by ηπ(s, a). The goal of QTD is to estimate the
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quantile functions of ηπ(s, a). The iterative update for the τi-th quantile θ(s, a, i) is given by

θ(s, a, i)← θ(s, a, i) + ρ · 1
m

m∑
j=1

[τi − I(r + γθ(s′, a′, j)− θ(s, a, i) < 0)] ,

where θ(s, a, i) is the τi-th quantile of η̂π(s, a), (s, a, r, s′) is sampled from the behavior policy πb,
and a′ is drawn from the target policy π. The result is marginalized over the action space according to
π: η̂π(s) =

∑
a π(a|s)η̂π(s, a). This modification is necessary to correct for the action distribution

mismatch between behavior and target policies. For further details on distributional RL in off-policy
evaluation, see [23, 15].

3.3 Time-Aware Calibration via Experience Replay and Weighted Subsampling

A core challenge in applying CP to RL lies in the violation of its key assumption: exchangeability
between the calibration and test data. In RL, this is broken due to (i) temporal dependencies across
transitions and (ii) distribution shifts in the state space both over time and across policies. To address
these challenges, we introduce a two-pronged calibration strategy through experience replay-based
sampling to decorrelate temporally linked transitions and time-aware importance weighting to cor-
rect for dynamic policy-dependent distributional shifts.

Experience Replay. Temporal dependence between transitions in RL makes the direct application
of conformal prediction invalid. To mitigate this, we draw inspiration from deep RL techniques and
treat the calibration set as a replay buffer, storing transition tuples (Sit, Ait, Rit, Si,t+1). We then
apply random subsampling from this buffer to construct approximately i.i.d. calibration samples
[9]. This technique mirrors the prioritized or uniform experience replay used in deep Q-learning,
effectively decorrelating transitions [28]. For the construction of k-step pseudo-returns, we store
extended tuples of the form {(Sit, Ait, Rit, . . . , Si,t+k)}.

Weighted Subsampling (WS). Instead of adopting weighted conformal prediction (WCP) [31],
which is commonly used to correct for covariate shifts, we employ a sampling-based strategy. Specif-
ically, we perform weighted subsampling from the calibration buffer based on estimated importance
weights, producing a recalibrated set of approximately exchangeable samples tailored to the target
distribution. The importance weights differ depending on whether the setting is on-policy or off-
policy:

1. On-Policy Setting. Here, the distribution shift stems from time-indexed variation in state visita-
tion. We define the importance weight as

won(s) =
dP0(s)

dPcal(s)
=

P (δ = 1 | s)
P (δ = 0 | s)

P (δ = 0)

P (δ = 1)
∝ P (δ = 1 | s)

P (δ = 0 | s)
, (2)

where P0 is the probability distribution of test states, Pcal is the marginal probability distribution
over calibration states, and δ is an indicator variable, where δ = 0 denotes that s belongs to the
calibration set, and δ = 1 indicates that s is in the test set. The second equality in Eq. (2) follows
from Bayes rule, expressing the likelihood ratio as a ratio of classifier probabilities [13, 24]. In
practice, won(s) can be estimated using standard propensity scoring or density ratio estimation
methods. In simulations, we employ logistic regression for this purpose.

2. Off-Policy Setting. In this case, both temporal drift and policy mismatch must be corrected. We
define the importance weight over a k-step trajectory segment as

woff(s0, a0, . . . , sk) ∝
dP0(s0)

dPcal(s0)

k−1∏
h=0

π(ah | sh)
πb(ah | sh)

. (3)

This formulation adjusts for discrepancies in both state visitation and action selection between the
behavior and target policies. This ratio can also be estimated using propensity scoring techniques.

To reduce the variance in PIs caused by subsampling randomness, we repeat the process B times and
aggregate the intervals. This technique draws from recent work in conformal prediction under dis-
tribution shift [35] and improves both coverage stability and efficiency. The complete algorithm for
the on-policy setting is in Algorithm 1, while the off-policy version is deferred to the supplementary
material to save space.
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Why WS Works. In the off-policy setting, let Stest := Stest,0 denote a test state drawn from the
marginal distribution P0(s), and consider the joint distribution:

(Stest,0, Atest,0, Rtest,0, . . . , Stest,k, G
π(Stest,0)) ∼ Poff

0 (s0, a0, r0, . . . , sk, G).

Similarly, let Poff
cal denote the joint distribution of rollout segments in the calibration set:

(Sit, Ait, Rit, . . . , Si,t+k, G
π(Sit)) ∼ Poff

cal(s0, a0, r0, . . . , sk, G).

The two distributions are related through the importance weight woff, such that:

dPoff
0 (s0, a0, r0, . . . , sk, G) = woff(s0, a0, . . . , sk) dPoff

cal(s0, a0, r0, . . . , sk, G). (4)

This identity shows that sampling from the calibration distribution according to the importance
weights woff produces samples that approximate the test-time distribution Poff

0 . By reweighting
the calibration set in this way, we recover approximate exchangeability between the calibration and
test samples, thereby restoring the validity of conformal prediction in the presence of both temporal
and policy-induced distribution shifts.

Why Not Use WCP. Weighted conformal prediction (WCP) typically assumes access to the full
set of test-time covariates. In contrast, our setting only observes the initial state Stest,0 at test time,
while subsequent states Stest,1, Stest,2, . . . , Stest,k remain unobserved. The WCP weight defined in
Eq. 12 of [12] involves marginalizing over entire trajectories, which are unobserved. Although [12]
further propose an optimization-based approximation (Eq. 14), this approach introduces additional
model assumptions and tends to exhibit high variance, especially in long-horizon settings, limiting
their practical applicability in our context. On the other hand, while one could adopt more elaborate
designs such as that of [35] tailored for sequential decision-making, our weighted subsampling
scheme offers a significantly simpler and more practical alternative, especially when only the initial
states of test trajectories are observed.

4 Theoretical Results

In this section, we provide statistical guarantees for the PIs constructed by our method. Standard
CP yields marginal coverage at level 1 − α under the assumption of exchangeability. However,
in practice, distribution shifts violate this assumption, leading to a gap between the nominal level
1 − α and the actual coverage. Previous studies have bounded this gap using total variation dis-
tance, which fails to capture how different choices of k in k-step rollouts affect the coverage gap.
To address this, we propose a tighter upper bound on the coverage gap based on the Wasserstein
distance, leveraging a recent theoretical result from [33]. Let µ and ν be two probability mea-
sures on the real space R. For any p > 0, the p-Wasserstein distance between µ and ν is defined
as Wp(µ, ν) := infκ∈Γ(µ,ν){

∫
R×R |x − y|pκ(dx, dy)}1/p, where Γ(µ, ν) denotes the set of all cou-

plings with marginals µ and ν.

Let n be the cardinality of the calibration set Dcal, and η̂π(s) denote an estimate of the re-
turn distribution ηπ(s) under the target policy π. We take S to be the state space and define
W̄1(η

π, η̂π) := sups∈S W1(η
π(s), η̂π(s)). Let ŵon(s) be an estimate of the on-policy importance

weight defined in (2), and let Ĉon
N,α(·) be the prediction interval produced by Algorithm 1. The

following theorem establishes an asymptotic lower bound on the coverage in the on-policy setting.

Condition 1. (i) The return distribution ηπ(s) has a Lebesgue density bounded by L for all s ∈ S .
(ii) E[ŵon(Sit)|Dtr] <∞ and E[won(Sit)] <∞ for all 0 ≤ t ≤ T − k.

THEOREM 1 (On-Policy Coverage Guarantee). Assume Condition 1, and redefine ŵon(s) as
ŵon(s)/

1
T−k+1

∑T−k
t=0 E[ŵon(Sit)|Dtr] so that 1

T−k+1

∑T−k
t=0 E[ŵon(Sit)|Dtr] = 1. Then

lim
n→∞

Pr
(
Gπ(Stest) ∈ Ĉon

N,α(Stest)
)
≥ 1− α− Λ(ŵon, η̂

π), where

Λ(ŵon, η̂
π) =

1

2(T − k + 1)

T−k∑
t=0

E [|ŵon(Sit)− won(Sit)|] +
√

2Lγk E
[
W̄1(ηπ, η̂π)

]
.
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Algorithm 1: CP for Infinite Horizon On-policy Evaluation
Data: D = {(Sit, Ait, Rit, Si,t+1) : 1 ≤ i ≤ N, 1 ≤ t ≤ T} and a test state Stest.
Input: 1− α, target coverage level; A, an on-policy distributional RL algorithm;W , a density

ratio estimation algorithm; k, step width; B, resampling number; l, subsample size; ξ,
multiple subsampling parameter

Output: Prediction interval for Gπ(Stest)
1 Split the data: D = Dtr

⋃
Dcal where Dtr = {(Sit, Ait, Rit, Si,t+1) : (i, t) ∈ Itr} and

Dcal = {(Sit, Ait, Rit, . . . , Si,t+k) : (i, t) ∈ Ical}. Here, Itr and Ical denote the indices of
transitions in the training and calibration datasets, respectively.

2 Train a conditional return model η̂π(s) using A based on Dtr.
3 Obtain the value function estimator v̂π(s), the expectation of η̂π(s).
4 Obtain ŵon(s) as an estimator of the density ratio (2) based on {Si0 : (i, 0) ∈ Itr} and
{Sit : (i, t) ∈ Itr} usingW .

5 for b = 1 : B do
• Sample l data tuples {(Sit, Ai,t, Ri,t, . . . , Si,t+k) : (i, t) ∈ I(b)cal} from Dcal according to

the importance weight ŵon(Sit).

• Calculate pseudo return (1) and obtain D̃(b)
cal := {(Sit, G̃

(k)
it ) : (i, t) ∈ I(b)cal}.

• Calculate the nonconformity scores: {Vit := |G̃(k)
it − v̂π(Sit)| : (i, t) ∈ I(b)cal}}.

• Obtain q̂
(b)
1−αξ, the ⌈l(1− αξ)⌉-th smallest value of {Vit : (i, t) ∈ I(b)cal}.

• Obtain Ĉ
(b)
N,αξ(Stest) = v̂π(Stest)± q̂

(b)
1−αξ.

Result: A conformal predictive region for Gπ(Stest) with a coverage rate of 1− α is

Ĉon
N,α(Stest) =

{
G :

1

B

B∑
b=1

I
{
G ∈ Ĉ

(b)
N,αξ(Stest)

}
≥ 1− ξ

}
. (5)

Theorem 1 shows that the deviation from nominal coverage depends on two main factors: (i) the
estimation error in the importance weights, which arises due to the distribution shift, and (ii) the
approximation error in the return distribution η̂π(s), measured by the Wasserstein distance. Notably,
the second term decays with the truncation step k at a rate proportional to γk. When the approxima-
tion error in the return distribution η̂π(s) is large, choosing a larger k can help reduce the deviation
from nominal coverage by relying more on observed rewards. However, this introduces a trade-off:
if k is too large, it becomes difficult to accurately estimate the off-policy weights, especially un-
der substantial distributional shifts. In this case, the method effectively reduces to a Monte Carlo
estimator that relies on full trajectories, resulting in the high variance we aim to avoid.

Next, we establish an asymptotic lower bound on the coverage of the PI in the off-policy setting. Let
ŵoff(·) be an estimate of the importance weight woff(·) as defined in (4). Let Ĉoff

N,α(·) denote the
conformal interval produced by Algorithm 1 in the supplementary material.
Condition 2. (i) The return distribution ηπ(s) has a Lebesgue density bounded by L for all s ∈ S .

(ii) E[ŵoff(Ht:t+k)|Dtr] < ∞, E[woff(Ht:t+k)] < ∞ for all 0 ≤ t ≤ T − k, where Ht:t+k :=
(St, At, . . . , St+k) denotes the local trajectory segment following policy πb, independent of Dtr.
(iii) (overlapping) πb(a|s) is uniformly bounded away from 0 for any a, s.
THEOREM 2 (Off-Policy Coverage Guarantee). Assume Condition 2, and redefine
ŵoff(s0, a0. . . . , sk+1) as ŵoff(s0, a0. . . . , sk+1)/

1
T−k+1

∑T−k
t=0 E[ŵoff(Ht:t+k)|Dtr] so that

1
T−k+1

∑T−k
t=0 E[ŵoff(Ht:t+k)|Dtr] = 1. Then we have

lim
n→∞

Pr
(
Gπ(Stest) ∈ Ĉoff

N,α(Stest)
)
≥ 1− α− Λ(ŵoff , η̂

π), where

Λ(ŵoff , η̂
π) =

1

2(T − k + 1)

T−k∑
t=0

E [|ŵoff(Ht:t+k)− woff(Ht:t+k)|] +
√
2Lγk E

[
W̄1(ηπ, η̂π)

]
.
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Theorem 2 shows that the coverage deviation has the same form as in the on-policy case (Theorem 1).
The main difference is the additional estimation error in the importance weights ŵoff , which arises
from evaluating a different target policy.

Remark. For continuous return distributions, the bounded Lebesgue density assumption is mild
and typically satisfied in practice. It holds for many commonly-used distributions, including the
Gaussian, exponential, and Gamma distributions with shape parameter no less than 1. For example,
in Examples 1 and 2 of our experiments, the return distributions can be readily verified to satisfy
this condition. In contrast, this assumption does not apply to discrete return distributions, as discrete
random variables are not absolutely continuous with respect to the Lebesgue measure. Hence, the
bounded density condition is neither required nor meaningful for discrete returns, as in Example 3
of our experiments.

5 Experiments

In this section, we conduct simulation studies to investigate the empirical performance of our pro-
posed methods. In particular, we focus on the following two examples:

Example 1: two-state MDP (Example 3 of [27]) The state space of the environment is discrete
with two possible values: x1 and x2. The agent transfers from a current state to a different state
with a certain probability determined by the policy and the discount factor is γ = 0.8. The reward
obtained when transitioning from state x1 is distributed as N(2, 1), and the reward obtained when
transitioning from state x2 is distributed as N(1, 1).

Example 2: continuous state (Scenario B of [30]) The action is binary and St+1 =
(St+1,1, St+1,2), where St+1,1 = 3(2At − 1)St,1/4 + zt,1, St+1,2 = 3(1 − 2At)St,2 + zt,2,
zt = (zt,1, zt,2), for t ≥ 0, {zt}t≥0∼N(02, I2/4) are i.i.d. and S0 ∼ N(02, I2). The immedi-
ate reward Rt = 2St+1,1 + St+1,2 − (2At − 1)/4. The discount factor is γ = 0.8.

For each example, we consider both an on-policy setting and an off-policy setting:

• In Example 1, when there is no policy shift, the probabilities of transferring from x1 to x2 and x2

to x1 are 0.4 and 0.8, respectively; when there exists a policy shift, the training data has the same
transition dynamics as in the on-policy setting, while the test agent transitions from x1 to x2 with
probability 0.5 and from x2 to x1 with probability 0.7.

• In Example 2, when there is no policy shift, both the observed data and the test agents satisfy
Pr(At = 1|St) = 0.5sigmoid(St,1) + 0.5sigmoid(St,2); when there exists a policy shift, the
observed data follows the same policy as in the on-policy setting while the test data satisfies
Pr(At = 1|St) = 0.6sigmoid(St,1) + 0.4sigmoid(St,2).

Implementation details. The sample size is fixed to N = 400 for Example 1 and N = 200 for
Example 2, with each trajectory consisting of T = 30 stages. For Example 1, we approximate the
return distribution using 20 conditional quantiles estimated by QTD. In Example 2, where the state
space is continuous, we use 30 conditional quantiles estimated by QTD and model the conditional
quantile functions with a neural network. The detailed architecture of the neural network is provided
in the supplementary material. We evaluate the performance of the proposed method with step sizes
k = 1, . . . , 5, and set the number of intervals B = 50. For each simulation, we generate 310 test
points from the target policy to evaluate the converge probability. In the supplementary material, we
include simulation results for Example 1 to examine the impact of ξ and k, a comparison with [12]
based on the same example, and an extension of Example 1 to a high-dimensional setting.

Benchmark and Results. We compare our method with the quantile region given by the
learned QTD model (DRL-QR). Since the DRL algorithm directly learns the return distribution
ηπ(S) := P(Gπ|S) by η̂π(S), a quantile region for the test instance Stest can be constructed as
[Q̂a/2(Stest), Q̂1−a/2(Stest)], where Q̂ã(Stest) is the ã-th quantile of η̂π(Stest). Figure 2 presents
boxplots based on 50 independent repetitions. It shows that our method consistently achieves near-
nominal 90% coverage across various k-step pseudo-returns in both on-policy and off-policy settings.
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In contrast, the DRL-QR baseline suffers from undercoverage due to model bias in the estimated re-
turn distribution. This highlights the effectiveness of our conformal framework in correcting such
bias and ensuring valid uncertainty quantification. We also observe that the average interval length
increases with larger k, reflecting the higher variance introduced by longer truncation horizons.

(a) Coverage probability

(b) Average length

Figure 2: Coverage probability and average interval length at the 90% level for the proposed method
with k-step pseudo-returns (k = 1, . . . , 5, from left to right) and DRL-QR (rightmost), under on-
policy and off-policy settings in Example 1 (columns 1-2) and Example 2 (columns 3-4).

Example 3: Mountain Car (adapted from [17]) We generate the dataset using a behavior policy
defined as πb = aπQ + (1 − a)πU , where πQ is a policy trained via Q-learning, πU is a uniformly
random policy, and a = 0.3. The target policy is constructed similarly with a = 0.2, reflecting an
off-policy setting. To conserve space, implementation details and results are provided in the sup-
plementary material. As a benchmark, we apply kernel density estimation (KDE) to approximate
the return distribution from Monte Carlo rollouts and construct baseline prediction intervals using
quantiles (KDE-QR). As shown in Figure 1 of the supplementary material, our method effectively
corrects the model bias in KDE and achieves near-nominal 90% coverage, highlighting the robust-
ness of the proposed CP framework in a complex, continuous control task.

6 Conclusion

In this paper, we propose a novel CP framework for infinite-horizon policy evaluation with asymp-
totic coverage guarantees. By constructing k-step pseudo-returns, our method balances predictive
accuracy and statistical efficiency, addressing key challenges in long-horizon evaluation. This for-
mulation enables the construction of valid PIs without relying on full trajectory rollouts. Although
the choice of k remains underexplored, we suggest practical remedies such as evaluating stability
across multiple k values (e.g., k = 1, . . . , 5) or aggregating PIs across different k. Since these
intervals are correlated, aggregation is nontrivial. A promising direction is to construct a unified
prediction region by combining the corresponding p-values, leveraging the connection between pre-
diction intervals and hypothesis testing. Methods such as the Cauchy Combination Test [20], which
are robust to arbitrary dependencies, offer a viable approach. Moreover, extending our framework
to policy optimization represents an exciting avenue for future work and could further broaden the
applicability of conformal prediction in RL.
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paper’s contributions and scope?

Answer: [Yes] .

Justification: The abstract and introduction clearly state the contributions: we develop a
novel conformal prediction (CP) framework to construct prediction intervals (PIs) for rein-
forcement learning (RL) settings, addressing key challenges such as unobserved returns,
temporal dependencies, and distribution shifts. We further establish asymptotic lower
bounds on coverage based on Wasserstein metrics and demonstrate the effectiveness of
our method through empirical studies on both synthetic data and the Mountain Car environ-
ment.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: The conclusion section outlines the limitations of the proposed method and
proposes potential directions for future investigation.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
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4. Experimental result reproducibility
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experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
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Justification: Section 4.1 specifies datasets, model sizes, hyper-parameters, and links (in
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA] .

Justification: No crowdsourcing or human-subject research is involved.

15

https://neurips.cc/public/EthicsGuidelines


15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The study does not involve human subjects and therefore requires no IRB
review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.

16


	Introduction
	Related Work

	Problem Formulation
	Conformal Policy Prediction Beyond the Horizon
	Overview of the Conformal Framework
	Pseudo-Return Construction via Truncated Rollouts
	Time-Aware Calibration via Experience Replay and Weighted Subsampling

	Theoretical Results
	Experiments
	Conclusion

