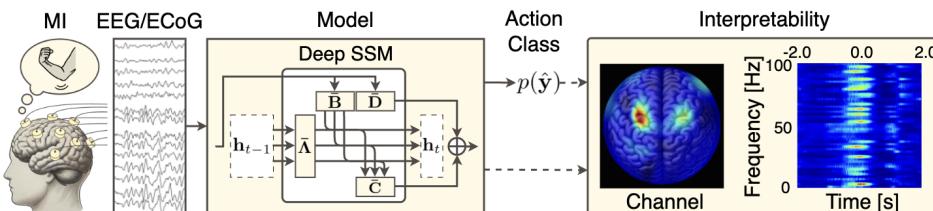


000 001 002 003 004 005 CORTICAL-SSM: A DEEP STATE SPACE MODEL FOR 006 ECoG MOTOR IMAGERY DECODING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027
028 Classification of electroencephalogram (EEG) and electrocorticogram (ECoG)
029 signals obtained during motor imagery (MI) has substantial application potential,
030 including for communication assistance and rehabilitation support for patients with
031 motor impairments. These signals remain inherently susceptible to physiologi-
032 cal artifacts (e.g., eye blinking, swallowing), which pose persistent challenges.
033 Although Transformer-based approaches for classifying EEG and ECoG signals
034 have been widely adopted, they often struggle to capture fine-grained depen-
035 dencies within them. To overcome these limitations, we propose Cortical-SSM, a
036 novel architecture that extends deep state space models to capture integrated de-
037 pendencies of EEG and ECoG signals across temporal, spatial, and frequency
038 domains. We validated our method across three benchmarks: 1) two large-scale
039 public MI EEG datasets containing more than 50 subjects, and 2) a clinical MI
040 ECoG dataset recorded from a patient with amyotrophic lateral sclerosis. Our
041 method outperformed baseline methods on the three benchmarks. Furthermore,
042 visual explanations derived from our model indicate that it effectively captures
043 neurophysiologically relevant regions of both EEG and ECoG signals. Our project
044 page is available at <https://cortical-ssm-u90sg.kinsta.page/>
045



046 Figure 1: Task overview. The input is EEG or ECoG signals recorded while the subject imagines
047 actions (e.g., elbow extension), and the model’s output are predictions of the corresponding actions.
048 The model also provides explicit interpretability across temporal, spatial, and frequency domains.
049

1 INTRODUCTION

050 Brain-Computer Interfaces (BCIs) hold transformative potential across various domains, including
051 the diagnosis of neurodegenerative diseases, advanced brain function mapping, robotic control, and
052 the development of immersive gaming devices (Wolpaw, 2013; Hramov et al., 2021). Among the
053 various BCI paradigms, motor imagery (MI) BCIs decode intentionally modulated neural activity
054 resulting from conscious cognitive effort, making them especially promising for developing assistive
055 communication systems and neurorehabilitation protocols for patients with severe motor impair-
056 ments (Hramov et al., 2021). Furthermore, BCI implementations leverage various techniques for
057 recording brain activity, including electroencephalography (EEG), electrocorticography (ECoG),
058 functional magnetic resonance imaging, and functional near-infrared spectroscopy (Ramadan &
059 Vasilakos, 2017). Among these modalities, BCIs based on EEG and ECoG are particularly promising
060 for real-world applications because of their high temporal resolution and superior portability.

061 In this study, we focus on brain activity occurring during motor imagery (MI) and tackle a classifica-
062 tion task for imagined actions using both EEG and ECoG signals. Figure 1 presents a representative
063 example of the task. In this case, the input comprises EEG and ECoG signals recorded while the

054 subject imagines an elbow extension. As its response, the model outputs predicted probabilities for
 055 each corresponding actions. Despite intensive research, the accurate decoding of MI EEG and ECoG
 056 signals is still non-trivial. For instance, binary classification task using MI EEG signals from the
 057 OpenBMI (Lee et al., 2019) dataset, a representative model (e.g., Lawhern et al. (2018)), demonstrates
 058 an error rate of approximately 22%.

059 Recent approaches have used Transformers to capture subject-agnostic dependencies in EEG and
 060 ECoG signals (Song et al., 2022; Wang et al., 2024a;d). However, to address the exponential growth
 061 in computational cost associated with longer time series, these methods patchify and compress the
 062 input EEG or ECoG signals along the temporal dimension, which may result in fine-grained temporal
 063 dependencies being lost. Moreover, while these approaches offer interpretability in spatio-temporal
 064 domains, they do not directly provide insights into the frequency domain, leaving the contributions of
 065 neurophysiologically significant frequency bands (e.g., mu band (Pfurtscheller et al., 2006)) unclear.
 066 Therefore, we propose Cortical-SSM, an extension of Deep SSM that captures integrated EEG
 067 and ECoG dependencies across temporal, spatial, and frequency domains. This design enables the
 068 modeling of temporal dependencies in EEG and ECoG signals without compressing them. Moreover,
 069 it provides direct visual explanations in each of the time, spatial, and frequency domains.

070 In Cortical-SSM, we extend a deep state space model (Deep SSM (Gu et al., 2022; Smith et al., 2023;
 071 Gu & Dao, 2024))—an architecture offering superior computational efficiency than Transformers
 072 for long sequence modeling—to effectively capture multi-scale temporal dependencies in EEG and
 073 ECoG signals. Specifically, we introduce the Frequency-SSM module, which extracts spatio-temporal
 074 dependencies for each frequency component, and the Channel-SSM module, which captures temporal-
 075 frequency dependencies for each electrode. Furthermore, we introduce a Wavelet-Convolution
 076 module integrating both deterministic and adaptive frequency features for feature extraction from the
 077 frequency-domain. The Frequency-SSM and Channel-SSM modules model temporal dependencies
 078 in EEG and ECoG signals without requiring the patchification employed in prior studies, thereby
 079 facilitating the capture of fine-grained temporal variations. Moreover, by incorporating the Wavelet-
 080 Convolution, Cortical-SSM extracts frequency-analyzable features while simultaneously learning
 081 their representations. Frequency-SSM and Channel-SSM modules explicitly model frequency-wise
 082 and electrode-wise features derived from the Wavelet-Convolution module, enabling direct visual
 083 explanations across temporal, spatial, and frequency domains.

084 Our main contributions lie in the following aspects:

- 085 • We propose Cortical-SSM, an extension of Deep SSM that captures integrated EEG and
 086 ECoG dependencies across temporal, spatial, and frequency domains.
- 087 • For frequency-domain feature extraction, we introduce Wavelet-Convolution, which inte-
 088 grates deterministically obtained frequency components with adaptively derived frequency
 089 features. This approach enables the extraction of interpretable features while preserving
 090 their learnable representations.

092 2 RELATED WORK

094 EEG and ECoG decoding methods have been extensively studied, as reviewed in (Abibullaev et al.,
 095 2023; Altaheri et al., 2023). Additionally, diverse predictive methods for multivariate time series
 096 signals have been systematically summarized in (Lara-Benítez et al., 2021; Liang et al., 2024).
 097 Furthermore, deep state space models (Deep SSMs) have emerged as a promising architecture for
 098 sequence modeling, with recent advances comprehensively documented in (Patro & Agneeswaran,
 099 2024; Wang et al., 2024c).

100 **EEG and ECoG decoding.** Deep-learning based methods for decoding EEG and ECoG signals
 101 have been extensively investigated (Wang et al., 2024a; Song et al., 2022), and they demonstrate
 102 considerable potential for enhancing communication and rehabilitation in patients with physical
 103 paralysis (Abibullaev et al., 2023; Altaheri et al., 2023). Early attempts rely on convolutional
 104 architectures (Lawhern et al., 2018; Mane et al., 2021). Nonetheless, the limited receptive field of
 105 convolutional layers has motivated the exploration of Transformer-based approaches (Song et al.,
 106 2022; Miao et al., 2023; Jiang et al., 2024; Wang et al., 2024d) to model temporal dependencies in EEG
 107 and ECoG signals. Medformer (Wang et al., 2024d), for instance, segments input signals into patches
 108 of varying temporal lengths and then feeds these patches into a Transformer. These Transformer-based

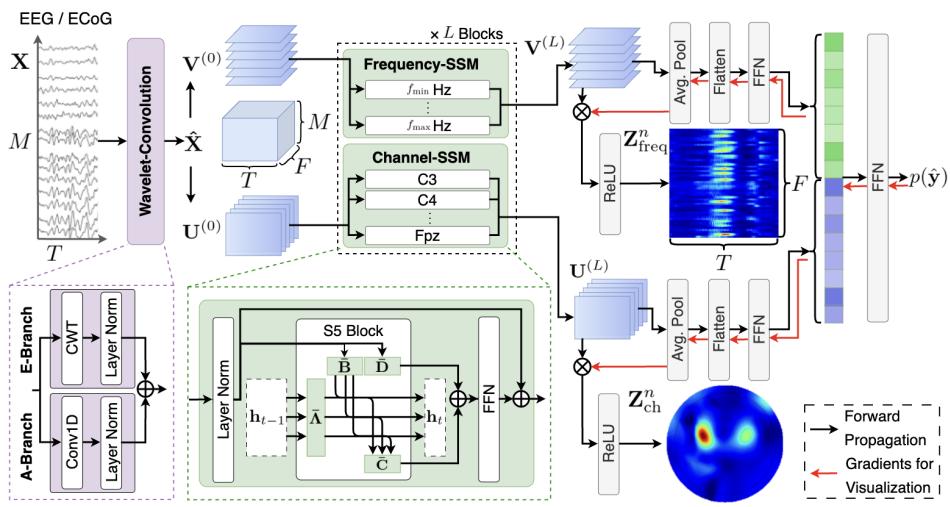


Figure 2: Overview of the proposed Cortical-SSM. Given an EEG or ECoG signal, the Wavelet-Convolution module extracts interpretable frequency features by combining deterministic and adaptive features (left). The Frequency-SSM and Channel-SSM then model spatio-temporal features for each frequency component and temporal-frequency features for each electrode, respectively (middle). Finally, the resulting features $V^{(L)}$ and $U^{(L)}$ are fused for action prediction, while providing visual explanations in spatio-temporal and temporal-frequency domains, respectively (right).

approaches typically employ temporal patching strategies prior to Transformer processing to address computational complexity in long-sequence modeling. However, this preprocessing step may disrupt fine-grained temporal dependencies in EEG and ECoG signals.

Deep state space models. Although the Transformer architecture has been widely adopted across various domains (Vaswani et al., 2017; Baevski et al., 2020; Dosovitskiy et al., 2021), the quadratic computational complexity $O(N^2)$ of its attention mechanism with respect to sequence length N introduces fundamental scalability bottlenecks. This limitation has motivated extensive research into efficient alternative architectures (Ren et al., 2021; Han et al., 2023). Among these alternatives, Deep SSMs (Gu et al., 2022; Nguyen et al., 2022; Smith et al., 2023; Gu & Dao, 2024) have emerged as a promising framework for efficiently capturing long-range dependencies. In line with this trend, EEG classification models (Zhang et al., 2024; Tran et al., 2024; Gui et al., 2025) have also leveraged Deep SSMs to capture temporal dependencies in signals. However, current models predominantly adopt Mamba (Gu & Dao, 2024) as their foundational Deep SSM, leaving the optimal choice for the EEG or ECoG classification task ambiguous. In contrast, our proposed method extends S5 (Smith et al., 2023), a Deep SSM explicitly designed to capture inter-variable dependencies within the state space, to effectively address the intrinsic multivariate nature of EEG and ECoG signals.

Further related studies are discussed in Appendix A.

3 METHOD

3.1 CORTICAL-SSM

In this study, we address a classification task for EEG and ECoG signals recorded while subjects engage in motor imagery (MI) tasks. In this task, it is desirable to accurately classify the corresponding EEG or ECoG signals recorded while subjects engage in MI involving N types of movement. Definitions of the key terminology used in this paper are provided in Appendix B. The input is EEG or ECoG signals recorded while the subjects performed MI, and the output is a predicted probability corresponding to the MI.

Unlike previous studies (Zhang et al., 2024; Tran et al., 2024; Gui et al., 2025), our method simultaneously captures the spatio-temporal features for individual frequency components as well as the temporal-frequency features of individual electrodes. This parallel modeling approach enables the integrated capture of spatial, temporal, and frequency dependencies, providing a more comprehensive representation for EEG and ECoG classification. Our approach, which is designed to capture

162 integrated dependencies among spatial, temporal, and frequency features, is widely applicable to the
 163 decoding of other endogenous and exogenous stimuli from EEG or ECoG signals.
 164

165 Figure 2 shows the overall architecture of our proposed Cortical-SSM. The proposed method consists
 166 of three main modules, Wavelet-Convolution, Frequency-SSM, and Channel-SSM. The input $\mathbf{X} \in \mathbb{R}^{M \times T}$
 167 to our model is the recorded EEG or ECoG signal, where M and T denote the number of
 168 electrodes and the sequence length, respectively.
 169

3.2 WAVELET-CONVOLUTION

170 In the Wavelet-Convolution module, we integrate deterministically derived frequency components
 171 with learned frequency features. Previous models for EEG and ECoG classification widely employed
 172 one-dimensional convolutional layers to learn frequency features through their kernels (Lawhern et al.,
 173 2018; Song et al., 2022). Despite the promising results achieved by these models, their black-box
 174 nature poses challenges for direct interpretability and impedes frequency domain analysis of the
 175 extracted features. In contrast, the conventional short-time Fourier transform (STFT) and wavelet
 176 transform extract frequency components in a deterministic manner, thereby yielding inherently
 177 interpretable features. However, these fixed representations constrain the model’s performance (see
 178 Subsection 5.3 for details).
 179

180 To address this trade-off between learnability and interpretability, we propose a module integrating
 181 deterministically derived frequency components from an Explanation Branch (E-Branch) with train-
 182 able frequency features from an Adaptation Branch (A-Branch). This architecture maintains both
 183 the learnability of these representations and the extraction of non-black-box features. Specifically,
 184 we employ the continuous wavelet transform (CWT) for the E-Branch (first term of Equation 1),
 185 and a one-dimensional convolutional layer for the A-Branch (second term of Equation 1). Unlike
 186 existing methods that integrate the wavelet transform within convolutional layers (Fujieda et al., 2018;
 187 Williams & Li, 2018; Liu et al., 2019), our module processes CWT and 1D convolutional features in
 188 parallel, thereby enabling effective feature fusion.
 189

190 Let $\mathbf{x}_m \in \mathbb{R}^T$ denote the EEG or ECoG signal recorded from the m -th electrode ($m = 1 \dots M$).
 191 The module’s output $\tilde{\mathbf{x}}_m \in \mathbb{R}^{F \times T}$ for each \mathbf{x}_m is formulated as shown below, yielding $\tilde{\mathbf{X}} =$
 192 $\{\tilde{\mathbf{x}}_m \mid m = 1 \dots M\} \in \mathbb{R}^{M \times F \times T}$:

$$193 \tilde{\mathbf{x}}_m = \frac{1}{2} \text{LayerNorm}(\text{CWT}(\mathbf{x}_m)) + \frac{1}{2} \text{LayerNorm}(\text{Conv1D}(\mathbf{x}_m)), \quad (1)$$

194 where $\text{Conv1D}(\cdot)$, $\text{CWT}(\cdot)$, and $\text{LayerNorm}(\cdot)$ represent one-dimensional convolutional layers,
 195 CWT, and layer normalization (Ba, 2016), respectively. Additionally, F represents the dimension in
 196 the frequency domain. Details of the processing are described below.
 197

198 First, in $\text{Conv1D}(\cdot)$, the kernel length K is set to $K = f_{\text{sample}}/2$ following EEGNet (Lawhern et al.,
 199 2018), and frequency features are extracted. Here, f_{sample} represents the sampling frequency.
 200

201 In $\text{CWT}(\cdot)$, a filter bank $\Psi \in \mathbb{R}^{F \times T}$ is constructed to extract features for individual frequency
 202 components. For the extraction of frequency components, the Morlet wavelet (Torrence & Compo,
 203 1998) is employed as the standard mother wavelet. Let $\psi_f = [\psi_{f,-\frac{T}{2}}, \psi_{f,-\frac{T}{2}+1}, \dots, \psi_{f,\frac{T}{2}}] \in \mathbb{R}^T$
 204 denote the Morlet wavelet used to extract a frequency component f . $\psi_{f,t}$ is defined as follows:
 205

$$206 \psi_{f,t} = \sqrt{\frac{1}{s}} \pi^{-\frac{1}{4}} e^{i\omega_0 \frac{t}{s}} e^{-\frac{1}{2}(\frac{t}{s})^2}, \quad s = \frac{\omega_0 f_{\text{sample}}}{2\pi f}, \quad (2)$$

207 where ω_0 and s denote the center frequency and scaling factor, respectively. Based on the above, Ψ
 208 is expressed by the following equation:
 209

$$\Psi = \{\psi_f \mid f = f_{\text{min}} + \alpha(f_{\text{max}} - f_{\text{min}})/F, \alpha = 1 \dots F\}, \quad (3)$$

210 where f_{min} and f_{max} denote the minimum and maximum f targeted by the CWT, respectively.
 211

212 Finally, we employ $\text{LayerNorm}(\cdot)$ to normalize the features obtained from $\text{Conv1D}(\cdot)$ and $\text{CWT}(\cdot)$.
 213 In this model, $\text{LayerNorm}(\cdot)$ is specifically applied along the temporal dimension, as explained
 214 below. Normalization techniques widely applied in deep learning include batch normalization (Ioffe
 215 & Szegedy, 2015), group normalization (Wu & He, 2018), and layer normalization across dimensions
 at a given time step. These methods normalize features across variables. However, in multivariate

time-series, when an arbitrary event occurs across variables and its effects appear at different time steps in the sequence, normalization across variables is known to introduce mutual noise (Liu et al., 2022; Kim et al., 2022; Liu et al., 2024). Similarly, in EEG and ECoG classification tasks, when internal stimuli derived from motor activity are recorded as signal sources via electrodes, these stimuli influence different temporal points within each electrode’s signal. Therefore, we adopt layer normalization along the temporal dimension to address these issues.

3.3 FREQUENCY-SSM

The Frequency-SSM module independently captures spatio-temporal feature interactions within individual frequency component. Previous EEG and ECoG studies (Pfurtscheller & Neuper, 2001; Miller et al., 2007) have reported that MI tasks elicit frequency-specific power variations localized to functionally relevant cortical regions. Motivated by these neurophysiological findings, Frequency-SSM explicitly models the spatio-temporal dependencies for each frequency component in an independent manner. This design effectively tracks the power variations of those frequency bands associated with MI. The proposed module comprises L hierarchically organized blocks, where each block includes layer normalization, a feed-forward network, and a Deep SSM. In the following, we provide a detailed description of the processing steps applied to the input $\mathbf{U}^{(l)}$ within the l -th block ($l = 0, \dots, L$), where $\mathbf{U}^{(0)} = \tilde{\mathbf{X}}$.

We first normalize $\mathbf{U}^{(l)}$ along the temporal dimension for each frequency component $f \in \{1, \dots, F\}$:

$$\tilde{\mathbf{u}}_f^{(l)} = \text{LayerNorm}(\mathbf{u}_f^{(l)}). \quad (4)$$

Next, we capture the temporal dependencies in $\tilde{\mathbf{u}}_f^{(l)}$. In EEG classification tasks, Transformer-based approaches are widely employed to model temporal dependencies (Song et al., 2022; Wang et al., 2024d;a). However, for long-sequence modeling, Deep SSMs have demonstrated superior performance to Transformer (Gu et al., 2022; Gu & Dao, 2024). Therefore, our module incorporates a Deep SSM to capture temporal dependencies in EEG or ECoG signals. Deep SSMs can be broadly categorized into time-invariant (Goel et al., 2022; Smith et al., 2023) and time-varying (Gu & Dao, 2024; Dao & Gu, 2024) systems. Although time-varying Deep SSMs are prevalent in EEG classification (Zhang et al., 2024; Tran et al., 2024; Gui et al., 2025), prior work (Gu & Dao, 2024) suggests that their inherent selection mechanisms can be detrimental for continuous signals, and they have exhibited inferior performance in certain speech synthesis tasks. Therefore, we opt for time-invariant Deep SSMs. Furthermore, Deep SSMs can be classified by their input-output configuration into Single-Input Single-Output (SISO) (Gu et al., 2022; Dao & Gu, 2024) or Multi-Input Multi-Output (MIMO) (Smith et al., 2023; Soydan et al., 2024). Given the multi-electrode nature of EEG and ECoG signals, a MIMO configuration that preserves inter-variable dependencies within the state space is deemed appropriate. For these reasons, we extend S5 (Smith et al., 2023) as the Deep SSM with a time-invariant and MIMO configuration. The detailed mathematical formulation of S5 is provided in Appendix C.

By defining the operation of S5 as $\text{SSM}(\cdot)$, the feature $\mathbf{u}_f^{(l+1)}$ that captures temporal dependencies in $\tilde{\mathbf{u}}_f^{(l)}$ is obtained as the following equation:

$$\mathbf{u}_f^{(l+1)} = \text{FFN} \left(\text{SSM} \left(\tilde{\mathbf{u}}_f^{(l)} \right) \right) + \tilde{\mathbf{u}}_f^{(l)}, \quad (5)$$

where $\text{FFN}(\cdot)$ denotes the feed-forward network. Subsequently, the output $\mathbf{U}^{(l+1)} = [\mathbf{u}_1^{(l+1)}, \mathbf{u}_2^{(l+1)}, \dots, \mathbf{u}_F^{(l+1)}] \in \mathbb{R}^{M \times F \times T}$ of the module at the l -th block is obtained, capturing temporal dependencies independently for each frequency component.

3.4 CHANNEL-SSM

In the Channel-SSM, temporal-frequency features are extracted independently for each electrode. By explicitly modeling electrode-specific dependencies of temporal-frequency features, we capture localized variations in signal intensity associated with MI. This module comprises L stacked blocks, each incorporating layer normalization, a feed-forward network, and Deep SSM layers hierarchically. The input $\mathbf{V}^{(l)}$ within the L -th block ($l = 0, \dots, L$) is modeled as follows, where $\mathbf{V}^{(0)} = \tilde{\mathbf{X}}$:

$$\mathbf{v}_m^{(l+1)} = \text{FFN} \left(\text{SSM} \left(\text{LayerNorm} \left(\mathbf{v}_m^{(l)} \right) \right) \right) + \text{LayerNorm} \left(\mathbf{v}_m^{(l)} \right), \quad (6)$$

270 yielding the block’s final output $\mathbf{V}^{(l+1)} = [\mathbf{v}_1^{(l+1)}, \mathbf{v}_2^{(l+1)}, \dots, \mathbf{v}_M^{(l+1)}] \in \mathbb{R}^{M \times F \times T}$.
 271

272 Finally, the outputs $\mathbf{U}^{(l)}$ and $\mathbf{V}^{(l)}$ from Frequency-SSM and Channel-SSM, respectively, are integrated as follows, yielding the predicted probability $p(\hat{\mathbf{y}})$ of action corresponding to \mathbf{X} :
 273

$$274 \quad p(\hat{\mathbf{y}}) = \text{FFN} \left(\left[\text{AvgPool} \left(\mathbf{U}^{(l)} \right); \text{AvgPool} \left(\mathbf{V}^{(l)} \right) \right] \right), \quad (7)$$

275 where N represents the number of action types. Moreover, $\text{AvgPool}(\cdot)$ denotes the average pooling
 276 layer, which aggregates the input features along the temporal dimension following the approach
 277 proposed in S4 (Gu et al., 2022). Furthermore, we use the cross-entropy loss as the loss function.
 278

279 4 EXPERIMENTS

280 In the experiments, we used EEG and ECoG datasets recorded during MI tasks. For the EEG datasets,
 281 we used two public MI datasets OpenBMI (Lee et al., 2019) and Stieger2021 (Stieger et al., 2021).
 282 For the ECoG dataset, we used a clinical dataset collected from a subject diagnosed with amyotrophic
 283 lateral sclerosis (ALS; hereafter referred to as the ECoG-ALS dataset).
 284

285 These datasets were selected for the following reasons. Previous research identified domain shifts
 286 across experimental sessions and subjects in EEG and ECoG signals recorded during MI tasks (Cho
 287 et al., 2017; Kaya et al., 2018). In the context of EEG, evaluating these two types of domain shifts is
 288 essential for developing reliable and broadly applicable models. Accordingly, we selected the publicly
 289 available OpenBMI (Lee et al., 2019) and Stieger2021 (Stieger et al., 2021) datasets, each of which
 290 comprise EEG signals recorded across multiple sessions from over 50 subjects. In contrast, ECoG
 291 signal acquisition poses substantial practical limitations because of the requirement for invasive
 292 craniotomy, making it infeasible to record signals from numerous subjects. Therefore, evaluating
 293 domain shifts across experimental sessions is the primary concern for ECoG. To this end, we selected
 294 a clinical dataset that consists of ECoG recordings made across eight experimental sessions from
 295 a single individual diagnosed with ALS. Furthermore, based on these properties, we adopted a
 296 cross-subject evaluation paradigm for EEG datasets (OpenBMI and Stieger2021) and a cross-session
 297 paradigm for the ECoG dataset (ECoG-ALS), employing k -fold cross-validation ($k = 8$).
 298

299 For preprocessing, we followed the minimal approach reported by Delorme (2023). We downsampled
 300 EEG and ECoG signals to 250 Hz and used them directly as model inputs, without applying noise or
 301 artifact removal across electrodes. Further experimental details are provided in Appendix E.
 302

303 5 RESULTS

304 5.1 QUANTITATIVE RESULTS

305 We conducted experiments to compare the performance of our model with baselines on the
 306 OpenBMI (Lee et al., 2019), Stieger2021 (Stieger et al., 2021), and ECoG-ALS datasets. The
 307 results for OpenBMI and ECoG-ALS are presented in Table 1, while the results for Stieger2021 can
 308 be found in Appendix F.1. Values reported in the table represent the mean and standard deviation
 309 obtained across k -fold cross-validation ($k = 8$). For the evaluation metrics, we employed accuracy,
 310 Macro-F1, AUROC (macro-averaged), AUPRC (macro-averaged), and Cohen’s Kappa. We used
 311 these metrics because they are standard for the classification of EEG and ECoG signals.
 312

313 This task involves (i) classification of EEG and ECoG signals, and (ii) handling of multivariate time-
 314 series signals recorded from multiple electrodes. Accordingly, we selected baseline methods from the
 315 following perspectives: (i) we chose baselines that have been successfully applied to EEG or ECoG
 316 classification, including ShallowConvNet (Schirrmeister et al., 2017), DeepConvNet (Schirrmeister
 317 et al., 2017), EEGNet (Lawhern et al., 2018), TSception (Ding et al., 2020), EEG Conformer (Song
 318 et al., 2022), and Medformer (Wang et al., 2024d), and (ii) given the multivariate nature, we se-
 319 lected baselines that have demonstrated effectiveness in multivariate time-series forecasting, such as
 320 Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022), Cross-
 321 former (Zhang & Yan, 2023), DLinear (Zeng et al., 2023), TimesNet (Wu et al., 2023), PatchTST (Nie
 322 et al., 2023), TimeMixer (Wang et al., 2024b), iTransformer (Liu et al., 2024), Uni-TS (Gao et al.,
 323 2024), TimeMachine (Ahamed & Cheng, 2024), and S-Mamba (Wang et al., 2025b).
 324

325 Table 1 presents the performance of our proposed method, which achieved the highest accuracy,
 326 macro-F1, AUROC, AUPRC, and Cohen’s Kappa on OpenBMI, with values of 81.62%, 81.56%,
 327

324 Table 1: Performance comparison on OpenBMI (Lee et al., 2019) and ECoG-ALS datasets. **Bold** and
 325 underlined values indicate the best and second-best performances, respectively.

326	Dataset	Models	Accuracy [%]↑	Macro-F1 [%]↑	AUROC [%]↑	AUPRC [%]↑	Kappa ↑
327		Chance Performance	50.00	50.00	50.00	50.00	0.00
328 General Time-Series Models							
329	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Informer	73.92±5.19	73.71±5.25	83.06±5.79	82.77±5.75	0.48±0.10
329		Autoformer	67.91±4.84	67.73±4.94	74.80±5.79	74.19±6.04	0.36±0.10
330		FEDformer	66.67±4.83	66.53±4.85	72.80±6.71	72.02±7.22	0.33±0.10
331		Crossformer	71.85±4.93	71.74±4.99	80.05±5.24	79.82±5.54	0.44±0.10
332		DLinear	70.46±4.65	70.34±4.63	70.56±4.64	64.84±4.31	0.41±0.09
333		TimesNet	73.19±5.53	73.10±5.57	80.58±5.99	79.95±5.93	0.46±0.11
334		PathcTST	76.80±4.73	76.73±4.77	84.94±4.98	83.87±5.42	0.54±0.09
335		TimesMixer	54.08±4.38	48.91±8.99	54.62±6.35	54.03±5.04	0.08±0.09
336		iTransfromer	69.83±3.86	69.75±3.88	78.04±4.67	78.44±4.50	0.40±0.08
337		UniTS	73.59±4.63	73.52±4.67	81.55±5.52	81.52±5.56	0.47±0.09
338		TimeMachine	72.33±4.36	72.23±4.37	80.32±5.29	79.59±6.17	0.45±0.09
339		S-Mamba	72.05±4.20	71.97±4.22	80.09±4.97	79.78±5.26	0.44±0.08
340 General EEG and ECoG Models							
341	341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Shallow ConvNet	75.21±5.35	75.15±5.38	82.20±5.86	80.93±6.82	0.50±0.11
342		Deep ConvNet	76.93±3.51	76.81±3.59	85.31±3.59	85.16±3.83	0.54±0.07
343		EEGNet	74.93±4.48	74.80±4.52	83.20±5.11	82.71±5.26	0.50±0.09
344		TSeception	65.78±5.77	65.60±5.87	71.69±7.84	71.16±8.20	0.32±0.12
345		EEG Conformer	77.90±5.27	77.78±5.33	85.81±5.23	85.36±5.47	0.56±0.11
346		Medformer	74.06±3.35	73.99±3.37	81.65±4.05	81.38±4.38	0.48±0.07
347		Corical-SSM (Ours)	81.62±5.20 (+3.72)	81.56±5.24 (+3.78)	90.14±4.61 (+4.33)	90.17±4.47 (+4.81)	0.63±0.10 (+0.07)
348		Chance Performance	25.00	25.00	50.00	25.00	0.00
349 General ECoG Models							
350	350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Informer	59.45±7.70	58.32±8.69	83.30±6.03	67.17±10.36	0.46±0.10
351		Autoformer	28.05±3.56	26.14±4.29	52.65±3.66	29.19±3.79	0.04±0.05
352		FEDformer	27.34±3.06	26.17±3.63	52.87±3.08	29.46±3.27	0.03±0.04
353		Crossformer	46.88±7.16	45.86±7.03	73.24±6.21	51.24±9.12	0.29±0.10
354		DLinear	45.39±3.89	44.17±4.54	63.78±2.81	35.37±2.75	0.27±0.05
355		TimesNet	57.50±9.57	55.88±10.48	81.37±6.51	63.32±11.32	0.43±0.13
356		PathcTST	58.91±5.88	57.10±7.23	83.37±5.70	66.74±8.90	0.45±0.08
357		TimesMixer	44.61±6.72	43.50±7.33	69.54±5.86	45.78±7.91	0.26±0.09
358		iTransfromer	56.09±8.74	53.84±11.43	81.59±5.38	64.09±10.34	0.41±0.12
359		UniTS	48.52±13.57	44.72±17.84	74.89±11.59	53.85±15.72	0.31±0.18
360		TimeMachine	56.09±6.10	55.40±6.40	78.69±5.06	58.88±7.50	0.41±0.08
361		S-Mamba	53.28±7.35	52.31±8.15	78.71±5.45	59.16±9.19	0.38±0.10
362 EEG and ECoG Models							
363	363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Shallow ConvNet	44.45±7.16	41.53±17.97	77.10±7.51	51.98±8.52	0.26±0.10
364		Deep ConvNet	59.30±12.15	56.94±14.91	85.73±8.52	70.68±13.48	0.46±0.16
365		EEGNet	65.47±6.64	63.33±10.07	88.31±6.18	75.36±10.74	0.54±0.09
366		TSeception	46.56±13.76	44.85±14.61	73.10±12.27	51.71±16.69	0.29±0.18
367		EEG Conformer	64.06±9.70	62.41±12.14	88.47±6.44	75.22±12.55	0.52±0.13
368		Medformer	59.06±7.17	58.18±8.61	83.16±6.56	66.18±11.43	0.45±0.10
369		Cortical-SSM (Ours)	75.08±9.69 (+9.61)	73.87±12.84 (+10.54)	92.34±6.40 (+3.87)	83.25±12.34 (+7.89)	0.67±0.13 (+0.13)
370		Chance Performance	25.00	25.00	50.00	25.00	0.00
371		General Time-Series Models	50.00	50.00	50.00	50.00	0.00
372		Informer	59.45±7.70	58.32±8.69	83.30±6.03	67.17±10.36	0.46±0.10
373		Autoformer	28.05±3.56	26.14±4.29	52.65±3.66	29.19±3.79	0.04±0.05
374		FEDformer	27.34±3.06	26.17±3.63	52.87±3.08	29.46±3.27	0.03±0.04
375		Crossformer	46.88±7.16	45.86±7.03	73.24±6.21	51.24±9.12	0.29±0.10
376		DLinear	45.39±3.89	44.17±4.54	63.78±2.81	35.37±2.75	0.27±0.05
377		TimesNet	57.50±9.57	55.88±10.48	81.37±6.51	63.32±11.32	0.43±0.13
378		PathcTST	58.91±5.88	57.10±7.23	83.37±5.70	66.74±8.90	0.45±0.08
379		TimesMixer	44.61±6.72	43.50±7.33	69.54±5.86	45.78±7.91	0.26±0.09
380		iTransfromer	56.09±8.74	53.84±11.43	81.59±5.38	64.09±10.34	0.41±0.12
381		UniTS	48.52±13.57	44.72±17.84	74.89±11.59	53.85±15.72	0.31±0.18
382		TimeMachine	56.09±6.10	55.40±6.40	78.69±5.06	58.88±7.50	0.41±0.08
383		S-Mamba	53.28±7.35	52.31±8.15	78.71±5.45	59.16±9.19	0.38±0.10
384		EEG and ECoG Models	50.00	50.00	50.00	50.00	0.00
385		Shallow ConvNet	44.45±7.16	41.53±17.97	77.10±7.51	51.98±8.52	0.26±0.10
386		Deep ConvNet	59.30±12.15	56.94±14.91	85.73±8.52	70.68±13.48	0.46±0.16
387		EEGNet	65.47±6.64	63.33±10.07	88.31±6.18	75.36±10.74	0.54±0.09
388		TSeception	46.56±13.76	44.85±14.61	73.10±12.27	51.71±16.69	0.29±0.18
389		EEG Conformer	64.06±9.70	62.41±12.14	88.47±6.44	75.22±12.55	0.52±0.13
390		Medformer	59.06±7.17	58.18±8.61	83.16±6.56	66.18±11.43	0.45±0.10
391		Cortical-SSM (Ours)	75.08±9.69 (+9.61)	73.87±12.84 (+10.54)	92.34±6.40 (+3.87)	83.25±12.34 (+7.89)	0.67±0.13 (+0.13)
392		Chance Performance	25.00	25.00	50.00	25.00	0.00
393		General Time-Series Models	50.00	50.00	50.00	50.00	0.00
394		Informer	59.45±7.70	58.32±8.69	83.30±6.03	67.17±10.36	0.46±0.10
395		Autoformer	28.05±3.56	26.14±4.29	52.65±3.66	29.19±3.79	0.04±0.05
396		FEDformer	27.34±3.06	26.17±3.63	52.87±3.08	29.46±3.27	0.03±0.04
397		Crossformer	46.88±7.16	45.86±7.03	73.24±6.21	51.24±9.12	0.29±0.10
398		DLinear	45.39±3.89	44.17±4.54	63.78±2.81	35.37±2.75	0.27±0.05
399		TimesNet	57.50±9.57	55.88±10.48	81.37±6.51	63.32±11.32	0.43±0.13
400		PathcTST	58.91±5.88	57.10±7.23	83.37±5.70	66.74±8.90	0.45±0.08
401		TimesMixer	44.61±6.72	43.50±7.33	69.54±5.86	45.78±7.91	0.26±0.09
402		iTransfromer	56.09±8.74	53.84±11.43	81.59±5.38	64.09±10.34	0.41±0.12
403		UniTS	48.52±13.57	44.72±17.84	74.89±11.59	53.85±15.72	0.31±0.18
404		TimeMachine	56.09±6.10	55.40±6.40	78.69±5.06	58.88±7.50	0.41±0.08
405		S-Mamba	53.28±7.35	52.31±8.15	78.71±5.45	59.16±9.19	0.38±0.10
406		EEG and ECoG Models	50.00	50.00	50.00	50.00	0.00
407		Shallow ConvNet	44.45±7.16	41.53±17.97	77.10±7.51	51.98±8.52	0.26±0.10
408		Deep ConvNet	59.30±12.15	56.94±14.91	85.73±8.52	70.68±13.48	0.46±0.16
409		EEGNet	65.47±6.64	63.33±10.07	88.31±6.18	75.36±10.74	0.54±0.09
410		TSeception	46.56±13.76	44.85±14.61	73.10±12.27	51.71±16.69	0.29±0.18
411		EEG Conformer	64.06±9.70	62.41±12.14	88.47±6.44	75.22±12.55	0.52±0.13
412		Medformer	59.06±7.17	58.18±8.61	83.16±6.56	66.18±11.43	0.45±0.10
413		Cortical-SSM (Ours)	75.08±9.69 (+9.61)	73.87±12.84 (+10.54)	92.34±6.40 (+3.87)	83.25±12.34 (+7.89)	0.67±0.13 (+0.13)
414		Chance Performance	25.00	25.00	50.00	25.00	0.00
415		General Time-Series Models	50.00	50.00	50.00	50.00	0.00
416		Informer	59.45±7.70	58.32±8.69	83.30±6.03	67.17±10.36	0.46±0.10
417		Autoformer	28.05±3.56	26.14±4.29	52.65±3.66	29.19±3.79	0.04±0.05
418		FEDformer	27.34±3.06	26.17±3.63	52.87±3.08	29.46±3.27	0.03±0.04
419		Crossformer	46.88±7.16	45.86±7.03	73.24±6.21	51.24±9.12	0.29±0.10
420		DLinear	45.39±3.89	44.17±4.54	63.78±2.81	35.37±2.75	0.27±0.05
421		TimesNet	57.50±9.57	55.88±10.48	81.37±6.51	63.32±11.32	0.43±0.13
422		PathcTST	58.91±5.88	57.10±7.23	83.37±5.70	66.74±8.90	0.45±0.08
423		TimesMixer	44.61±6.72	43.50±7.33	69.54±5.86	45.78±7.91	0.26±0.09
424		iTransfromer	56.09±8.74	53.84±11.43	81.59±5.38	64.09±10.34	0.41±0.12
425		UniTS	48.52±13.57	44.72±17.84	74.89±11.59	53.85±15.72	0.31±0.18
426</td							

We further examine our proposed method by generating visual explanations, following the procedure described in Appendix D. Figure 3 demonstrates sample-agnostic visual explanations of the proposed method on OpenBMI (Lee et al., 2019). Row (a) depicts temporal-frequency visualizations, whereas Rows (b) illustrate spatio-temporal visualizations. Columns (i) and (ii) show the class-wise average explanations for successful cases, corresponding to left-hand and right-hand grasp imagery, respectively. Specifically, Row (a) visualize Z_{freq}^n (introduced in Appendix D), with 0 seconds indicating the onset of MI, while Row (b) visualize Z_{ch}^n (also introduced in Appendix D) projected as topographic maps aligned with the 10–20 system (Klem, 1999). As seen in Row (a), the proposed method consistently attends to the mu band (approximately 10 Hz), a frequency range well known to be associated with MI in EEG (Pfurtscheller et al., 2006). Furthermore, Row (b) indicates that regions near electrodes C3 and C4 were strongly attended to. The C3 and C4 electrodes are positioned over the motor cortex and are neurophysiologically linked to hand motor control (Pfurtscheller et al., 2006). Therefore, these results suggest that the proposed method reliably attends to neurophysiologically critical regions in EEG, in a sample-agnostic manner.

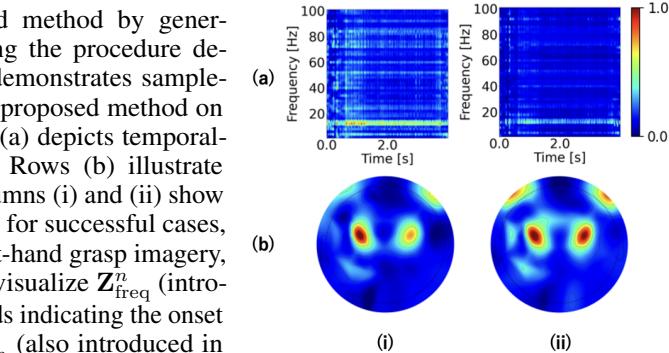


Figure 3: Sample-agnostic visual explanations of our proposed method on OpenBMI (Lee et al., 2019). Rows (a) and (b) display the temporal-frequency and spatio-temporal visual explanations for Subject 02, respectively. Columns (i) and (ii) correspond to left and right hand grasp, respectively.

Next, Figure 4 presents sample-agnostic visual explanations of our proposed method on ECoG-ALS. Columns (i)–(iv) display the class-wise average explanations corresponding to elbow extension, elbow flexion, hand extension, and hand grasp, respectively. Row (a) shows the average Z_{freq}^n for successful cases in Session 07, aligned such that 0 seconds denotes the onset of MI. Row (b) visualizes the average Z_{ch}^n for the same sessions, projected onto the subject’s electrode configuration (as shown in Figure 5). As seen in Row (a), the proposed method consistently attends to a temporal interval of approximately 0.5 seconds centered around the MI onset. Moreover, Row (b) reveals that regions surrounding 9–25 and 49–60, located in the Hand Knob Area (Yousry et al., 1997) were consistently attended to. Previous studies have demonstrated that MI related to hand movements induces distinct increases in high-frequency components in ECoG signals from these regions. Accordingly, these results suggest that our proposed method effectively attends to neurophysiologically critical regions in a sample-agnostic manner, not only for EEG but also for ECoG.

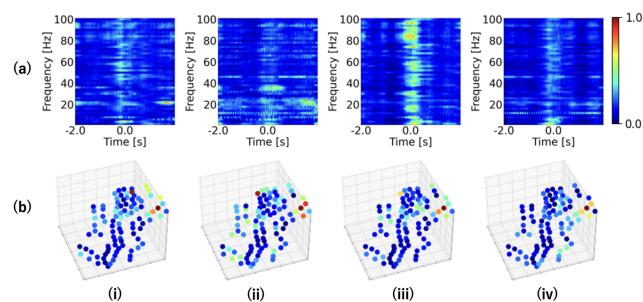


Figure 4: Sample-agnostic visual explanations of our proposed method on ECoG-ALS. Rows (a) and (b) display the temporal-frequency and spatio-temporal visual explanations for Session 07, respectively. Columns (i)–(iv) correspond to the output classes: (i) elbow extension, (ii) elbow flexion, (iii) hand extension, and (iv) hand grasp.

5.3 ABLATION STUDY

To investigate the effectiveness of each module, we conducted ablation studies on the following three conditions.

Wavelet-Convolution ablation. Table 2 presents the performance of different frequency-domain feature extraction methods in the E-Branch and A-Branch of the Wavelet-Convolution module. We compared five model variants (1-i)–(1-v) with combinations of short-time Fourier transform (STFT)

Table 2: Ablation study on frequency-domain feature extraction methods in the Wavelet-Convolution module. 1D-Conv. denotes 1D convolutional layers.

Model	E-Branch	A-Branch	Accuracy [%] \uparrow	
			OpenBMI	ECoG-ALS
(1-i)	STFT	—	71.51 \pm 3.94	45.31 \pm 6.30
(1-ii)	CWT	—	78.86 \pm 5.05	65.55 \pm 9.92
(1-iii)	—	1D-Conv.	80.25 \pm 5.55	73.98 \pm 8.48
(1-iv)	STFT	1D-Conv.	79.46 \pm 5.22	70.00 \pm 9.81
(1-v)	CWT	1D-Conv.	81.62\pm5.20	75.08\pm9.69

432 and continuous wavelet transform (CWT) in the E-Branch, along with 1D convolutional layers in
 433 the A-Branch. The results reveal that models employing CWT in the E-Branch exhibited markedly
 434 different performance on OpenBMI (Lee et al., 2019), with the classification accuracy of Model (1-ii)
 435 being 2.76 points lower than that of Model (1-v). Similarly, when models using 1D convolutions
 436 in the A-Branch were compared, Model (1-iii) underperformed Model (1-v) by 1.37 points in the
 437 corresponding metric. These findings suggest that the complementary integration of deterministically
 438 obtained frequency components from the E-Branch and adaptively derived frequency features from
 439 the A-Branch enhances the model’s representational capacity.

440 **Frequency-SSM and Channel-SSM ablation.** Table 3 shows the performance of different ar-
 441 chitectures in the Frequency-SSM and Channel-
 442 SSM. We compared models using the following
 443 architectures for capturing temporal dependen-
 444 cies: (2-i) Attention (Vaswani et al., 2017), (2-
 445 ii) S4-LegS (Gu et al., 2022), (2-iii) Mega (Ma
 446 et al., 2022), (2-iv) Mamba (Gu & Dao, 2024),
 447 (2-v) Mamba-2 (Dao & Gu, 2024), and (2-vi)
 448 S5 (Smith et al., 2023). Table 3 indicate that the
 449 classification accuracy of models (2-i), (2-ii), (2-
 450 iii), (2-iv), and (2-v) on OpenBMI underperformed Model (2-vi) by 2.88, 1.93, 1.76, 2.17, and 1.33
 451 points, respectively. These results suggest that S5, a Deep SSM employing a time-invariant system
 452 and MIMO configuration, is effective for capturing temporal dependencies in EEG and ECoG signals.
 453

454 **Module-wise ablation.** Table 4
 455 presents the performance of the three
 456 main modules: Wavelet-Convolution,
 457 Frequency-SSM, and Channel-SSM.
 458 We compared four model config-
 459 urations: (3-i) exclusion of Wavelet-
 460 Convolution, (3-ii) exclusion of
 461 Frequency-SSM, (3-iii) exclusion of Channel-SSM,
 462 and (3-iv) the complete model incorporating
 463 all three modules. Regarding classification accuracy on OpenBMI, Models (3-i), (3-ii), and (3-iii)
 464 underperformed Model (iv) by 5.74, 2.48, and 0.98 points, respectively. These findings indicate that
 465 each module contributes to improving overall model performance, with the Wavelet-Convolution
 466 module exerting the most significant impact.
 467

6 CONCLUSION AND LIMITATIONS

468 **Conclusion.** In this study, we focused on a classification task based on EEG and ECoG signals
 469 recorded during MI tasks. We proposed Cortical-SSM, an extension of Deep SSMs designed to
 470 capture integrated dependencies across temporal, spatial, and frequency domains. For frequency
 471 feature extraction, we proposed the Wavelet-Convolution, which extracts non-black-box frequency-
 472 analyzable features while maintaining a learnable representation. In comprehensive evaluations on
 473 three MI EEG and ECoG benchmarks, our method consistently outperformed the comparison baseline
 474 methods. Furthermore, we demonstrated that for both EEG and ECoG signals, neurophysiologically
 475 significant regions were attended to in the visual explanations generated by our proposed method.

476 **Limitations and future work.** While Cortical-SSM captures integrated dependencies across
 477 temporal, spatial, and frequency domains from EEG and ECoG signals, it has limitations that
 478 suggest promising directions for future work. 1) Limited cross-domain integration: Cortical-SSM
 479 processes each domain independently to enhance interpretability, but this may cause overreliance on
 480 a single domain (e.g., temporal) when it suffices for the classification, underutilizing complementary
 481 cues. Future work could explore progressive or joint learning strategies to promote balanced feature
 482 utilization. See Appendix F.3 for detailed analysis. 2) Sensitivity to domain shifts: As with the existing
 483 baselines, Cortical-SSM does not explicitly address subject- or session-level domain shifts (Cho et al.,
 484 2017; Kaya et al., 2018). As shown in Section 5.1, the Shapiro–Wilk test rejects normality across
 485 folds, suggesting substantial variance. Incorporating domain adaptation techniques, such as learning
 invariant representations via mutual information maximization, offers a promising path forward.

Table 3: Ablation study on architectures for capturing temporal dependencies.

Model	Architecture	Accuracy [%] ↑	
		OpenBMI	ECoG-ALS
(2-i)	Attention	78.74±5.11	56.72± 9.37
(2-ii)	S4-LegS	79.69±4.98	69.38±11.22
(2-iii)	Mega	79.86±2.05	71.48±12.06
(2-iv)	Mamba	79.45±3.25	67.03± 8.56
(2-v)	Mamba-2	80.29±3.69	68.36± 8.52
(2-vi)	S5	81.62±5.20	75.08± 9.69

Table 4: Ablation study on the core modules.

Model	Wavelet	Frequency	Channel-SSM	Accuracy [%] ↑				
				Conv.	SSM	SSM	OpenBMI	ECoG-ALS
(3-i)			✓			✓	75.88±2.12	63.13±10.42
(3-ii)	✓				✓		79.14±2.75	65.00± 8.93
(3-iii)	✓	✓				✓	80.64±2.31	73.91± 9.42
(3-iv)	✓	✓	✓			✓	81.62±5.20	75.08± 9.69

486 REFERENCES
487

488 Berdakh Abibullaev, Aigerim Keutayeva, and Amin Zollanvari. Deep learning in EEG-based BCIs:
489 a comprehensive review of transformer models, advantages, challenges, and applications. *IEEE
490 Access*, 11:127271–127301, 2023.

491 Md Ahamed and Qiang Cheng. TimeMachine: A Time Series is Worth 4 Mambas for Long-term
492 Forecasting. In *ECAI*, 2024.

493 Hamdi Altaheri, Ghulam Muhammad, Mansour Alsulaiman, Syed Amin, Ghadir Ali Altuwaijri, et al.
494 Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI)
495 signals: A review. *Neural Computing and Applications*, 35(20):14681–14722, 2023.

496 Jimmy Lei Ba. Layer normalization. *arXiv preprint arXiv:1607.06450*, 2016.

497 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A Framework
498 for Self-Supervised Learning of Speech Representations. In *NeurIPS*, volume 33, pp. 12449–12460,
499 2020.

500 Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
501 range global weather forecasting with 3D neural networks. *Nature*, 619(7970):533–538, 2023.

502 Benjamin Blankertz, Klaus-Robert Müller, Dean Krusienski, Gerwin Schalk, Jonathan Wolpaw, Alois
503 Schlögl, Gert Pfurtscheller, José del Millán, Michael Schröder, and Niels Birbaumer. The BCI
504 competition III: validating alternative approaches to actual BCI problems. *TNSRE*, 14(2):153–159,
505 2006.

506 Clemens Brunner, Robert Leeb, Gernot Müller-Putz, Alois Schlögl, and Gert Pfurtscheller. BCI
507 Competition 2008–Graz data set A. *Institute for knowledge discovery (laboratory of brain-computer
508 interfaces), Graz University of Technology*, 16:1–6, 2008.

509 Hohyun Cho, Minkyu Ahn, Sangtae Ahn, Moonyoung Kwon, and Sung Chan Jun. EEG datasets for
510 motor imagery brain–computer interface. *GigaScience*, 6(7):gix034, 2017.

511 Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
512 Through Structured State Space Duality. In *ICML*, volume 235, pp. 10041–10071, 2024.

513 Arnaud Delorme. EEG is better left alone. *Scientific reports*, 13(1):2372, 2023.

514 H. Chris Dijkerman and Edward H. F. de Haan. Somatosensory processes subserving perception and
515 action. *Behavioral and Brain Sciences*, 30(2):189–201, 2007.

516 Yi Ding, Neethu Robinson, Qiuhan Zeng, Duo Chen, Aung Aung Phyoe Wai, Tih-Shih Lee, and
517 Cuntai Guan. TSception: A Deep Learning Framework for Emotion Detection Using EEG. In
518 *IJCNN*, pp. 1–7, 2020.

519 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
520 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An Image
521 is Worth 16x16 Words: Transformers for Image Recognition at Scale. In *ICLR*, 2021.

522 Shinetsu Fujieda, Kohei Takayama, and Toshiya Hachisuka. Wavelet Convolutional Neural Networks.
523 *ArXiv*, abs/1805.08620, 2018.

524 Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
525 Marinka Zitnik. UniTS: A Unified Multi-Task Time Series Model. In *NeurIPS*, 2024.

526 Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s Raw! Audio Generation with
527 State-Space Models. In *ICML*, pp. 7616–7633, 2022.

528 Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. In
529 *CoLM*, 2024.

530 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent Memory
531 with Optimal Polynomial Projections. In *NeurIPS*, volume 33, pp. 1474–1487, 2020.

540 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
 541 Combining Recurrent, Convolutional, and Continuous-time Models with Linear State-Space
 542 Layers. In *NeurIPS*, volume 34, pp. 572–585, 2021.

543

544 Albert Gu, Karan Goel, and Christopher Ré. Efficiently Modeling Long Sequences with Structured
 545 State Spaces. In *ICLR*, 2022.

546

547 Yiyu Gui, MingZhi Chen, Yuqi Su, Guibo Luo, and Yuchao Yang. EEGMamba: Bidirectional State
 548 Space Model with Mixture of Experts for EEG Multi-task Classification. In *ICLR*, 2025.

549

550 Tao Guo, Yinuo Wang, Shihao Shu, Diansheng Chen, Zhouping Tang, Cai Meng, and Xiangzhi Bai.
 551 MambaMorph: a Mamba-based Framework for Medical MR-CT Deformable Registration. *arXiv*
 552 preprint *arXiv:2401.13934*, 2024.

553

554 Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten Transformer: Vision
 555 Transformer using Focused Linear Attention. In *ICCV*, pp. 5961–5971, 2023.

556

557 Alexander Hramov, Vladimir Maksimenko, and Alexander Pisarchik. Physical principles of
 558 brain–computer interfaces and their applications for rehabilitation, robotics and control of human
 559 brain states. *Physics Reports*, 918:1–133, 2021.

560

561 Hongbin Huang, Minghua Chen, and Xiao Qiao. Generative Learning for Financial Time Series with
 562 Irregular and Scale-Invariant Patterns. In *ICLR*, 2024.

563

564 Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by
 565 reducing internal covariate shift. In *ICML*, pp. 448–456, 2015.

566

567 Weibang Jiang, Liming Zhao, and Bao liang Lu. Large Brain Model for Learning Generic Represen-
 568 tations with Tremendous EEG Data in BCI. In *ICLR*, 2024.

569

570 Xilin Jiang, Cong Han, and Nima Mesgarani. Dual-path Mamba: Short and Long-term Bidirectional
 571 Selective Structured State Space Models for Speech Separation. In *ICASSP*, pp. 1–5, 2025.

572

573 R. Kalman. A New Approach to Linear Filtering and Prediction Problems. *Journal of Basic
 574 Engineering*, 82(1):35–45, 1960.

575

576 Kanta Kaneda, Yuiga Wada, Tsumugi Iida, Naoto Nishizuka, Yûki Kubo, and Komei Sugiura. Flare
 577 Transformer: Solar Flare Prediction using Magnetograms and Sunspot Physical Features. In *ACCV*,
 578 pp. 1488–1503, 2022.

579

580 Murat Kaya, Mustafa Binli, Erkan Ozbay, Hilmi Yanar, and Yuriy Mishchenko. A large electroen-
 581 cephalographic motor imagery dataset for electroencephalographic brain computer interfaces.
 582 *Scientific data*, 5(1):1–16, 2018.

583

584 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
 585 Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift. In *ICLR*,
 586 2022.

587

588 George Klem. The ten-twenty electrode system of the international federation. The international
 589 federation of clinical neurophysiology. *Electroencephalogr. Clin. Neurophysiol. Suppl.*, 52:3–6,
 590 1999.

591

592 Pedro Lara-Benítez, Manuel Carranza-García, and José C Riquelme. An experimental review on
 593 deep learning architectures for time series forecasting. *International journal of neural systems*, 31
 594 (03):2130001, 2021.

595

596 Vernon Lawhern, Amelia Solon, Nicholas Waytowich, Stephen Gordon, Chou Hung, and Brent Lance.
 597 EEGNet: A Compact Convolutional Neural Network for EEG-based Brain–Computer Interfaces.
 598 *Journal of Neural Engineering*, 15(5):056013, 2018.

599

600 Min-Ho Lee, O-Yeon Kwon, Yong-Jeong Kim, Hong-Kyung Kim, Young-Eun Lee, John Williamson,
 601 Siamac Fazli, and Seong-Whan Lee. EEG dataset and OpenBMI toolbox for three BCI paradigms:
 602 an investigation into BCI illiteracy. *GigaScience*, 8(5):giz002, 2019.

594 Jun Li, Che Liu, Sibo Cheng, Rossella Arcucci, and Shenda Hong. Frozen Language Model Helps
 595 ECG Zero-Shot Learning. In *MDL*, pp. 402–415, 2024a.
 596

597 Kai Li, Guo Chen, Runxuan Yang, and Xiaolin Hu. SPMamba: State-space model is all you need in
 598 speech separation. *arXiv preprint arXiv:2404.02063*, 2024b.

599 Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
 600 Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In *KDD*, pp.
 601 6555–6565, 2024.

602

603 Pengju Liu, Hongzhi Zhang, Wei Lian, and Wangmeng Zuo. Multi-Level Wavelet Convolutional
 604 Neural Networks. *IEEE Access*, 7:74973–74985, 2019.

605

606 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 607 the stationarity in time series forecasting. In *NeurIPS*, volume 35, pp. 9881–9893, 2022.

608

609 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 610 iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. In *ICLR*, 2024.

611

612 Jun Ma, Feifei Li, and Bo Wang. U-Mamba: Enhancing Long-Range Dependency for Biomedical
 613 Image Segmentation. *arXiv preprint arXiv:2401.04722*, 2024.

614

615 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
 616 May, and Zettlemoyer Luke. Mega: Moving Average Equipped Gated Attention. *arXiv preprint
 617 arXiv:2209.10655*, 2022.

618

619 Ravikiran Mane, Effie Chew, Karen Chua, Kai Keng Ang, Neethu Robinson, A Prasad Vinod, Seong-
 620 Whan Lee, et al. FBCNet: A Multi-view Convolutional Neural Network for Brain-Computer
 621 Interface. *arXiv preprint arXiv:2104.01233*, 2021.

622

623 Rito Clifford Maswanganyi, Chunling Tu, Pius Adewale Owolawi, and Shengzhi Du. Statistical
 624 Evaluation of Factors Influencing Inter-Session and Inter-Subject Variability in EEG-Based Brain
 625 Computer Interface. *IEEE Access*, 10:96821–96839, 2022.

626

627 Zhengqing Miao, Meirong Zhao, Xin Zhang, and Dong Ming. LMDA-Net: A lightweight multi-
 628 dimensional attention network for general EEG-based brain-computer interfaces and interpretability.
 629 *NeuroImage*, 276:120209, 2023.

630

631 J Miller, C Leuthardt, Gerwin Schalk, PN Rao, R Anderson, W Moran, W Miller, and G Ojemann.
 632 Spectral changes in cortical surface potentials during motor movement. *Journal of Neuroscience*,
 633 27(9):2424–2432, 2007.

634

635 Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
 636 Christopher Ré. S4ND: Modeling Images and Videos as Multidimensional Signals Using State
 637 Spaces. In *NeurIPS*, volume 35, pp. 2846–2861, 2022.

638

639 Yuqi Nie, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A Time Series is Worth 64
 640 Words: Long-term Forecasting with Transformers. In *ICLR*, 2023.

641

642 Marc Nuwer. 10-10 electrode system for EEG recording. *Clin. Neurophysiol.*, 129(5):1103–1103,
 643 2018.

644

645 Badri Patro and Vijay Agneeswaran. Mamba-360: Survey of State Space Models as Transformer
 646 Alternative for Long Sequence Modelling: Methods, Applications, and Challenges. *arXiv preprint
 647 arXiv:2404.16112*, 2024.

648

649 Max Pause, Erwin Kunesch, Ferdinand Binkofski, and Hans-Joachim Freund. Sensorimotor distur-
 650 bances in patients with lesions of the parietal cortex. *Brain*, 112(6):1599–1625, 1989.

651

652 Gert Pfurtscheller and Christa Neuper. Motor imagery and direct brain-computer communication.
 653 *Proceedings of the IEEE*, 89(7):1123–1134, 2001.

654

655 Gert Pfurtscheller, Clemens Brunner, Alois Schlögl, et al. Mu rhythm (de) synchronization and EEG
 656 single-trial classification of different motor imagery tasks. *NeuroImage*, 31(1):153–159, 2006.

648 Rabie Ramadan and Athanasios Vasilakos. Brain computer interface: control signals review. *Neuro-*
 649 *computing*, 223:26–44, 2017.
 650

651 Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec, Dale Schuurmans, and Bo Dai.
 652 Combiner: Full Attention Transformer with Sparse Computation Cost. In *NeurIPS*, volume 34, pp.
 653 22470–22482, 2021.

654 Gerwin Schalk, Dennis McFarland, Thilo Hinterberger, Niels Birbaumer, and Jonathan Wolpaw.
 655 BCI2000: a general-purpose brain-computer interface (BCI) system. *TBME*, 51(6):1034–1043,
 656 2004.

657

658 Robin Schirrmeister, Jost Springenberg, Lukas Fiederer, Martin Glasstetter, Katharina Eggensperger,
 659 Michael Tangermann, et al. Deep learning with convolutional neural networks for EEG decoding
 660 and visualization. *Human brain mapping*, 38(11):5391–5420, 2017.

661 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 662 and Dhruv Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
 663 Localization. In *ICCV*, pp. 618–626, 2017.

664

665 Jimmy Smith, Andrew Warrington, and Scott Linderman. Simplified State Space Layers for Sequence
 666 Modeling. In *ICLR*, 2023.

667

668 Yonghao Song, Qingqing Zheng, Bingchuan Liu, and Xiaorong Gao. EEG Conformer: Convolutional
 669 Transformer for EEG Decoding and Visualization. *TNSRE*, 31:710–719, 2022.

670

671 Taylan Soydan, Nikola Zubić, Nico Messikommer, Siddhartha Mishra, and Davide Scaramuzza.
 672 S7: Selective and Simplified State Space Layers for Sequence Modeling. *arXiv preprint arXiv:2410.03464*, 2024.

673

674 James Stieger, Stephen Engel, and Bin He. Continuous sensorimotor rhythm based brain computer
 675 interface learning in a large population. *Scientific Data*, 8(1):98, 2021.

676

677 Christopher Torrence and Gilbert Compo. A practical guide to wavelet analysis. *BAMS*, 79(1):61–78,
 1998.

678

679 Xuan-The Tran, Linh Le, Quoc Toan Nguyen, Thomas Do, and Chin-Teng Lin. EEG-SSM: Leverag-
 680 ing State-Space Model for Dementia Detection. *arXiv preprint arXiv:2407.17801*, 2024.

681

682 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 683 Kaiser, and Illia Polosukhin. Attention is All you Need. In *NeurIPS*, volume 30, 2017.

684

685 Feng Wang, Jiahao Wang, Sucheng Ren, Guoyizhe Wei, Jieru Mei, Wei Shao, Yuyin Zhou, Alan
 686 Yuille, and Cihang Xie. Mamba-Reg: Vision Mamba Also Needs Registers. In *ICLR*, 2025a.

687

688 Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. EEGPT: Pretrained
 689 transformer for universal and reliable representation of EEG signals. In *NeurIPS*, volume 37, pp.
 690 39249–39280, 2024a.

691

692 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Zhang, and
 693 Jun Zhou. TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting. In *ICLR*,
 694 2024b.

695

696 Xiao Wang, Shiao Wang, Yuhe Ding, Yuehang Li, Wentao Wu, Yao Rong, Weizhe Kong, Ju Huang,
 697 Shihao Li, Haoxiang Yang, et al. State Space Model for New-Generation Network Alternative to
 698 Transformers: A Survey. *arXiv preprint arXiv:2404.09516*, 2024c.

699

700 Yihe Wang, Nan Huang, Taida Li, Yujun Yan, and Xiang Zhang. Medformer: A Multi-Granularity
 701 Patching Transformer for Medical Time-Series Classification. In *NeurIPS*, volume 37, pp. 36314–
 36341, 2024d.

702

703 Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling Wang, and
 704 Yifei Zhang. Is Mamba Effective for Time Series Forecasting? *Neurocomputing*, 619:129178,
 705 2025b.

702 Travis Williams and Robert Li. Wavelet Pooling for Convolutional Neural Networks. In *ICLR*, 2018.
 703

704 Jonathan Wolpaw. Brain-computer interfaces. *Handbook of Clinical Neurology*, 110:67–74, 2013.

705

706 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
 707 with auto-correlation for long-term series forecasting. In *NeurIPS*, volume 34, pp. 22419–22430,
 708 2021.

709

710 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet:
 711 Temporal 2D-Variation Modeling for General Time Series Analysis. In *ICLR*, 2023.

712

713 Yuxin Wu and Kaiming He. Group normalization. In *ECCV*, pp. 3–19, 2018.

714

715 A Yousry, D Schmid, H Alkadhi, D Schmidt, A Peraud, A Buettner, and P Winkler. Localization of
 716 the motor hand area to a knob on the precentral gyrus. A new landmark. *Brain*, 120(1):141–157,
 717 1997.

718

719 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 720 forecasting? In *AAAI*, pp. 11121–11128, 2023.

721

722 Jie Zhang, Yihui Zhao, Fergus Shone, Zhenhong Li, Alejandro Frangi, Sheng Xie, and Zhi-Qiang
 723 Zhang. Physics-Informed Deep Learning for Musculoskeletal Modeling: Predicting Muscle Forces
 724 and Joint Kinematics From Surface EMG. *TNSRE*, 31:484–493, 2023.

725

726 Yunhao Zhang and Junchi Yan. Crossformer: Transformer Utilizing Cross-Dimension Dependency
 727 for Multivariate Time Series Forecasting. In *ICLR*, 2023.

728

729 Zheng Zhang and Kil To Chong. Comparison between first-order hold with zero-order hold in
 730 discretization of input-delay nonlinear systems. In *ICCAS*, pp. 2892–2896, 2007.

731

732 Ziyang Zhang, Andrew Thwaites, Alexandra Woolgar, Brian Moore, and Chao Zhang. SWIM:
 733 Short-Window CNN Integrated with Mamba for EEG-Based Auditory Spatial Attention Decoding.
 734 In *SLT*, 2024.

735

736 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 737 Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In *AAAI*, pp.
 738 11106–11115, 2021.

739

740 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
 741 enhanced decomposed transformer for long-term series forecasting. In *ICML*, pp. 27268–27286,
 742 2022.

743

744 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
 745 Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model. In *ICML*,
 746 pp. 62429 – 62442, 2025.

747

748

749

750

751

752

753

754

755

756 **A ADDITIONAL RELATED WORK**

758 **Deep state space models.** Rooted in the theoretical foundations of classical state space models
 759 from control theory (Kalman, 1960), Deep SSMs leverage the Linear State-Space Layer (Gu et al.,
 760 2021) to model sequential data effectively. Moreover, a key innovation lies in the integration of
 761 the HiPPO matrix (Gu et al., 2020), which fuses the concept of recurrent memory with optimal
 762 polynomial approximation. Subsequent developments have substantially expanded this paradigm (Gu
 763 et al., 2022; Smith et al., 2023; Gu & Dao, 2024). For instance, S4 (Gu et al., 2022) introduced
 764 a learnable HiPPO parameterization, while S5 (Smith et al., 2023) extended the framework to a
 765 Multi-Input Multi-Output (MIMO) setting. Notably, the recent Mamba architecture (Gu & Dao, 2024)
 766 introduces an input-dependent selection mechanism that enables time-varying state transitions, and
 767 its performance is reported to surpass that of Transformers in certain language modeling tasks. This
 768 development has catalyzed cross-domain adoption, with success being demonstrated in fields such as
 769 computer vision (Zhu et al., 2025; Wang et al., 2025a), speech synthesis (Jiang et al., 2025; Li et al.,
 770 2024b), and medical applications (Ma et al., 2024; Guo et al., 2024). Together, these advancements
 771 establish Deep SSMs as a viable alternative to attention-based models.

772 **Multivariate time-series forecasting models.** Multivariate time-series forecasting has found broad
 773 applications across diverse domains, ranging from medical signal prediction (e.g., electromyography
 774 and electrocardiography analysis (Zhang et al., 2023; Li et al., 2024a)) as well as other applications
 775 (Kaneda et al., 2022; Bi et al., 2023; Huang et al., 2024). Notably, Transformer-based approaches
 776 are widely studied due to their demonstrated capability for long range sequence modeling (e.g., (Zhou
 777 et al., 2021; Wu et al., 2023; Nie et al., 2023; Zhang & Yan, 2023)). For example, Informer (Zhou
 778 et al., 2021) proposed an efficient forecasting method based on a ProbSparse self-attention mechanism
 779 and a generative decoder. Other notable examples include PatchTST (Nie et al., 2023), which divides
 780 time-series signals into smaller patches for Transformer input, and Crossformer (Zhang & Yan,
 781 2023), which introduces a two-stage attention mechanism to capture inter-variable and temporal
 782 dependencies separately. In contrast, DLinear (Zeng et al., 2023) achieves performance comparable to
 783 Transformer-based approaches by utilizing a simple yet effective MLP-based method that decomposes
 784 time-series into seasonal and trend components. Drawing on this findings, iTransformer (Liu et al.,
 785 2024) proposes a strategy in which the matrix operations in the Transformer are transposed, thereby
 786 capturing inter-variable dependencies through the Attention mechanism while modeling temporal
 787 dependencies with an MLP.

788 **Datasets and benchmarks.** MI EEG/ECoG classification has been extensively studied using
 789 standardized benchmarks including BCI Competition III (Blankertz et al., 2006), BCI Competition
 790 IV (Brunner et al., 2008), and the dataset by Schalk et al. (Schalk et al., 2004). In MI EEG/ECoG,
 791 however, domain shifts across experimental sessions and subjects have been reported (Cho et al., 2017;
 792 Kaya et al., 2018; Maswanganyi et al., 2022). These domain shifts arise from intrinsic variability
 793 in neural signals, influenced by factors typified by participant’s alertness and wakefulness during
 794 EEG/ECoG measurement. For instance, Maswanganyi et al. (Maswanganyi et al., 2022) observed
 795 approximately 12% accuracy variation in a four-class MI EEG classification task under cross-session
 796 evaluation. Similarly, Song et al. (Song et al., 2022) reported up to 41% performance discrepancies
 797 in cross-subject scenarios for another four-class MI-EEG classification task. While aforementioned
 798 benchmarks provide foundational insights, their limited number of experimental sessions and subjects
 799 hinders a comprehensive assessment of the impact of such domain shifts. Therefore, in EEG settings,
 800 several multi-subject, multi-session benchmarks have been proposed including OpenBMI (Lee et al.,
 801 2019), as well as the datasets by Cho et al. (Cho et al., 2017), Kaya et al. (Kaya et al., 2018), and
 802 Stieger et al. (Stieger et al., 2021). In contrast, for ECoG settings, the substantial measurement
 803 barriers limit the feasibility of recording signals from multiple subjects, making the handling of
 804 domain shifts across experimental sessions a critical concern. To the best of our knowledge, the only
 805 standard benchmark comprising multiple sessions of ECoG signals is Task 1 of BCI Competition III,
 806 but it provides only a limited number of experimental sessions ($n = 2$). Therefore, in this work, we
 807 employ a clinical dataset of ECoG signals recorded from a single subject across multiple sessions
 808 ($n = 8$) during MI tasks.

809 **B TERMINOLOGY**

The terminology used in this paper is defined as follows:

- Electroencephalogram (EEG): Biosignals recorded from electrodes placed on the scalp.
- Electrocorticogram (ECoG): Biosignals recorded from electrodes placed on the brain surface following a craniotomy.
- Electrode: In EEG, this refers to wet electrodes or dry electrodes depending on the dataset, whereas in ECoG, this refers to subdural electrodes.
- Motor imagery (MI): Mental representation of physical movements without an overt motor output.

C DEEP STATE SPACE MODELS

Recent advancements in Deep SSMs (Gu et al., 2022; Smith et al., 2023; Dao & Gu, 2024) have demonstrated their remarkable advantages over predominant architectures (including Transformer (Vaswani et al., 2017)) across various sequence modeling tasks. Inspired by classical SSM (Kalman, 1960), Deep SSMs establish a principled framework in which input signals $\mathbf{x}(t) \in \mathbb{R}^P$ are mapped to output signals $\mathbf{y}(t) \in \mathbb{R}^P$ via latent states $\mathbf{h}(t) \in \mathbb{R}^Q$, as follows:

$$\frac{d\mathbf{h}(t)}{dt} = \mathbf{A}\mathbf{h}(t) + \mathbf{B}\mathbf{x}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{h}(t) + \mathbf{D}\mathbf{x}(t), \quad (8)$$

where P and Q denote the number of variables for the input/output signals and the latent states, respectively. Moreover, $\mathbf{A} \in \mathbb{R}^{Q \times Q}$ represents the state matrix, while $\mathbf{B} \in \mathbb{R}^{Q \times P}$, $\mathbf{C} \in \mathbb{R}^{P \times Q}$, and $\mathbf{D} \in \mathbb{R}^{P \times P}$ denote the projection matrices. Notably, the Deep SSM variant S5 (Smith et al., 2023) has demonstrated remarkable effectiveness in capturing sequential relationships for continuous signals. Here, we detail the processing steps employed in S5.

In S5, the HiPPO-N matrix (Gu et al., 2022) is adopted as \mathbf{A} to effectively capture long-range dependencies in sequential signals. Since the HiPPO-N matrix is real symmetric, it can be diagonalized as $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$, thereby transforming Equation (8) into the following form:

$$\frac{d\tilde{\mathbf{h}}(t)}{dt} = \tilde{\mathbf{A}}\tilde{\mathbf{h}}(t) + \tilde{\mathbf{B}}\mathbf{x}(t), \quad \mathbf{y}(t) = \tilde{\mathbf{C}}\tilde{\mathbf{h}}(t) + \mathbf{D}\mathbf{x}(t), \quad (9)$$

where $\tilde{\mathbf{h}}(t) = \mathbf{V}^{-1}\mathbf{h}(t)$, $\tilde{\mathbf{B}} = \mathbf{V}^{-1}\mathbf{B}$, and $\tilde{\mathbf{C}} = \mathbf{C}\mathbf{V}$. Moreover, by introducing a timescale parameter $\Delta \in \mathbb{R}_+$, Equation 9 is discretized using the zero-order hold (ZOH) method (Zhang & Chong, 2007) as follows:

$$\tilde{\mathbf{h}}_t = \bar{\Lambda}\tilde{\mathbf{h}}_{t-1} + \bar{\mathbf{B}}\mathbf{x}_t, \quad \mathbf{y}_t = \bar{\mathbf{C}}\tilde{\mathbf{h}}_t + \bar{\mathbf{D}}\mathbf{x}_t, \quad (10)$$

where $\bar{\Lambda} = \exp(\Lambda\Delta)$, $\bar{\mathbf{B}} = \Lambda^{-1}(\bar{\Lambda} - \mathbf{I})\tilde{\mathbf{B}}$, $\bar{\mathbf{C}} = \tilde{\mathbf{C}}$, $\bar{\mathbf{D}} = \mathbf{D}$. In practice, $\Delta \in \mathbb{R}^Q$ is used for the timescale parameter, and \mathbf{D} is restricted as a diagonal matrix. Under these conditions, the learnable parameters consist of $\text{diag}(\Lambda)$, $\tilde{\mathbf{B}}$, $\tilde{\mathbf{C}}$, $\text{diag}(\mathbf{D})$, and Δ . Furthermore, S5 achieves efficient modeling of Equation 10 through the introduction of parallel scanning.

D VISUAL EXPLANATIONS

In our proposed method, we generate visual explanations in both the spatio-temporal and temporal-frequency domains through the following procedures. Our approach extends Grad-CAM (Selvaraju et al., 2017) to generate visual explanations tailored for time-series signals. Grad-CAM is formulated as follows, generating a feature map $\mathbf{Z}^n \in \mathbb{R}^{I \times J}$ that represents the explanation for the n -th output class from the gradient of the loss with respect to \hat{y}_n :

$$\alpha_r = \frac{1}{IJ} \sum_{i \in I} \sum_{j \in J} \frac{\partial \hat{y}^{(n)}}{\partial o_{r,i,j}}, \quad \mathbf{Z}^{(n)} = \text{ReLU} \left(\sum_{r \in R} \alpha_r \mathbf{o}_r \right), \quad (11)$$

where \hat{y}_n denotes the n -th element of $\hat{\mathbf{y}}$. I , J , and R denote the number of vertical and horizontal pixels, and the number of dimensions of the feature map, respectively. Furthermore, $\mathbf{o}_r \in \mathbb{R}^{I \times J}$ and

$o_{r,i,j} \in \mathbb{R}$ denote the feature map of the r -th dimension and the feature indexed by position (i, j) within \mathbf{o}_r , respectively. In this context, \mathbf{o}_r is required to retain the spatial relationships of the input.

Next, we describe our method for generating visual explanations in the spatio-temporal domain. While Grad-CAM operates on 2D feature maps \mathbf{o}_r and performs weighting across $\{\mathbf{o}_r\}_{r=1}^R$, our method deals with time-series signals and therefore performs weighting across 1D time-series vectors. Here, we generate visual explanations using $\mathbf{V}^{(L)}$, the feature closest to the output layer, which preserves the spatio-temporal relationships of the input signal. As detailed in Subsection 3.4, the feature within $\mathbf{V}^{(L)}$ are processed independently for each electrode. Therefore, we generate a separate visual explanation for each electrode by weighting across $\{\mathbf{v}_{f,m}^{(L)}\}_{f=1}^F$. This yields the feature map $\mathbf{Z}_{\text{ch}}^n \in \mathbb{R}^{M \times T}$, representing the spatio-temporal visual explanation for the n -th output class, obtained as follows:

$$\alpha_{f,m}^n = \frac{1}{T} \sum_{t \in T} \frac{\partial \hat{y}_n}{\partial v_{f,m,t}^{(L)}}, \quad (12)$$

$$\mathbf{Z}_{\text{ch}}^n = \left\{ \text{ReLU} \left(\sum_{f \in F} \alpha_{f,m}^n \mathbf{v}_{f,m}^{(L)} \right) \mid m = 1 \dots M \right\}. \quad (13)$$

Finally, we describe our method for generating visual explanations in the temporal-frequency domain. Here, we generate visual explanations using $\mathbf{U}^{(L)}$, the feature closest to the output layer, which preserves the temporal-frequency relationships of the input signal. As detailed in Subsection 3.3, in contrast to $\mathbf{V}^{(L)}$, the features within $\mathbf{U}^{(L)}$ are processed independently for each frequency component. Therefore, we generate a separate visual explanation for each frequency component by weighting across $\{\mathbf{u}_{f,m}^{(L)}\}_{m=1}^M$. This yields the feature map $\mathbf{Z}_{\text{freq}}^n \in \mathbb{R}^{F \times T}$, representing the temporal-frequency visual explanation for the n -th output class, as in Equations 12 and 13.

E DETAILED EXPERIMENTAL SETUP

E.1 DATASETS

We constructed the training, validation, and test sets according to the procedures described below, using them for model training, hyperparameter tuning, and performance evaluation, respectively. During training, we computed classification accuracy on the validation set after each epoch. For the final evaluation on the test set, we employed the model parameters corresponding to the highest validation accuracy.

OpenBMI. It is a public dataset of EEG recorded from 54 healthy subjects while they performed an MI task (Lee et al., 2019). The task involves two types of MI: right-hand grasping and left-hand grasping. The experimental design was based on the protocol established by Pfurtscheller et al. (Pfurtscheller & Neuper, 2001). While recording the signals, a display was positioned in front of the subjects, and the type movement to be imagined was indicated through visual cues including left and right arrows.

Subjects engaged in two sessions, performing 400 MI trials per session. A total of 21,600 samples were collected from 54 subjects. Each sample was recorded at a sampling rate of 1000 Hz, following a 3-second presentation of fixation cross, a 4-second MI, and a 6-second (± 1.5 seconds) rest period. Additionally, visual cues were continuously presented during the 4-second MI period. EEG signals were recorded using BrainAmp systems with Ag–AgCl electrodes, and a total of 62 electrodes were positioned according to the international 10–20 system (Klem, 1999). Notably, this study focused on the 4-second MI period.

We adopted k -fold cross-validation ($k = 8$) in a subject-independent manner. EEG samples collected from 54 subjects were partitioned at the subject level and randomly shuffled across the subjects. For each fold, samples from 44, 5, and 5 subjects were allocated to the training, validation and test sets, respectively. Given that each subject contributed 400 samples, the training, validation, and test sets consist of 17600, 2000, and 2000 samples, respectively.

918 **Stieger2021.** It is a public dataset of EEG recorded from 62 healthy subjects during motor im-
 919 agery (Stieger et al., 2021). This dataset consists of three types of tasks(LR, UD, and 2D; defined
 920 below) using MI control a cursor on a display. The movements to be imagined included left-hand
 921 grasping, right-hand grasping, bilateral hand grasping, and voluntarily rest, with each task involv-
 922 ing different combinations of these movements. In the LR task, left-hand and right-hand grasping
 923 correspond to cursor movements in the left and right directions, respectively. The UD task involved
 924 bilateral hand grasping and voluntarily rest, which correspond to cursor movements in the upward
 925 and downward directions, respectively. The 2D task integrated the LR and UD tasks, which involved
 926 four types of movements, with cursor movement directions corresponding to those in the LR and UD
 927 tasks. While recording the signals, a display was positioned in front of the subjects, and a yellow
 928 bar indicating the direction corresponding to the movement was presented at the edge of the screen
 929 as a visual cue. Subjects were required to move the cursor, located at the center of the screen, by
 930 imagining the movement corresponding to the direction of the yellow bar. In this process, cursor
 931 movement was controlled based on the alpha power from electrodes C4 and C3 in the international
 932 10–10 system (Nuwer, 2018).

933 Subjects engaged in 7 to 11 sessions, performing MI tasks ranging from 1050 to 1650 trials per
 934 task. A total of 269099 samples were collected from 64 subjects. Each sample was recorded at a
 935 sampling rate of 1000 Hz, following a 2-second rest period, a 2-second presentation of visual cues,
 936 and up to 6 seconds of MI. The MI recording was terminated when the cursor reached the screen
 937 edge in any direction. EEG signals were recorded using SynAmps RT and Neuroscan caps, with 64
 938 electrodes positioned according to the international 10–10 system. Notably, this study focused on
 939 202950 samples obtained from 41 participants who completed all 11 sessions. For each sample, we
 940 used a 4 second window, encompassing 2 seconds before and 2 seconds after the onset of MI.

941 Similar to OpenBMI, we employed k -fold cross validation ($k = 8$) in a subject-independent manner.
 942 EEG samples from 41 subjects were first partitioned at the individual level and randomly shuffled
 943 among the subjects. Subsequently, samples from 33, 4, and 4 subjects were allocated to the training,
 944 validation, and test sets, respectively. With each subject providing 1650 samples, the dataset was split
 945 into training, validation, and test sets of 54450, 6600, and 6600 samples, respectively.

946 **ECoG-ALS.** It is an ECoG dataset
 947 recorded from a single subject with
 948 ALS during an MI task. This task in-
 949 volved four types of MI: elbow ex-
 950 tension and flexion, as well as hand
 951 extension and grasping. While record-
 952 ing the signals, a display was posi-
 953 tioned in front of the subject, and the
 954 type of movement to be imagined was
 955 communicated via textual instructions.
 956 To ensure precise timing of MI, syn-
 957 chronized auditory and visual cues, in-
 958 cluding voice prompts and on-screen
 959 arrows, were presented to the subject.

960 A single subject performed the four
 961 types of MI, each repeated 40 times
 962 per experimental session, over the
 963 course of eight sessions. Conse-
 964 quently, a total of 1280 samples were
 965 collected from the subject. Each sam-
 966 ple was recorded at a sampling rate
 967 of 1000 Hz following a 4-second rest
 968 and 2-seconds of MI. In this study, we
 969 used a 4-second window encompass-
 970 ing 2 seconds before and 2 seconds af-
 971 ter the onset of MI. The ECoG signals
 972 were recorded from 94 subdural elec-
 973 trodes positioned near the central sulcus of the left hemisphere.
 974 Figure 5 illustrates the spatial distri-
 975 bution of these electrodes. Among the electrodes positioned
 976 in the precentral and postcentral gyrus, elec-
 977 trodes 9–25 and 49–60 were located within the Hand

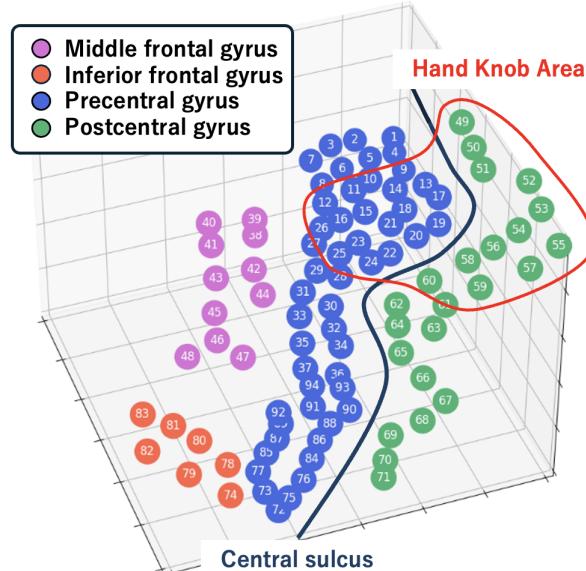


Figure 5: Electrode distribution in ECoG-ALS. Electrodes 9–25 and 49–60, positioned within the precentral and postcentral gyrus, respectively, are located in the Hand Knob Area (Yousry et al., 1997).

972 Table 5: Performance comparison for the LR and UD tasks in Stieger2021 (Stieger et al., 2021).
 973 **Bold** and underlined text indicate the best and second-best methods for each evaluation metric.

974	Dataset	Models	Accuracy [%] \uparrow	Macro-F1 [%] \uparrow	AUROC [%] \uparrow	AUPRC [%] \uparrow	Kappa \uparrow
975		Chance Performance	50.00	50.00	50.00	50.00	0.00
976 General Time-Series Models							
977	978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007	Informer	77.90 \pm 5.51	77.85 \pm 5.54	86.83 \pm 5.87	87.05 \pm 5.91	0.56 \pm 0.11
978		Autoformer	72.02 \pm 5.02	71.96 \pm 5.02	79.75 \pm 6.08	79.22 \pm 6.25	0.44 \pm 0.10
979		FEDformer	67.48 \pm 4.05	67.16 \pm 4.51	74.46 \pm 5.02	73.36 \pm 5.34	0.35 \pm 0.08
980		Crossformer	82.63 \pm 4.81	82.60 \pm 4.83	91.80 \pm 4.03	92.09 \pm 3.89	0.65 \pm 0.10
981		DLinear	63.66 \pm 4.37	63.65 \pm 4.36	63.70 \pm 4.39	58.94 \pm 3.42	0.27 \pm 0.09
982		TimesNet	77.43 \pm 5.98	77.41 \pm 5.98	86.37 \pm 6.36	86.54 \pm 6.46	0.55 \pm 0.12
983		PathcTST	79.67 \pm 3.52	79.64 \pm 3.52	88.85 \pm 3.76	88.47 \pm 4.75	0.59 \pm 0.07
984		TimesMixer	53.97 \pm 4.88	46.91 \pm 9.21	54.29 \pm 5.09	53.33 \pm 3.86	0.08 \pm 0.10
985		iTransfromer	78.67 \pm 5.77	78.62 \pm 5.82	87.85 \pm 5.93	88.08 \pm 6.00	0.57 \pm 0.12
986		UniTS	82.59 \pm 3.05	82.58 \pm 3.05	91.21 \pm 2.90	91.38 \pm 2.90	0.65 \pm 0.06
987	988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007	TimeMachine	79.23 \pm 5.83	79.22 \pm 5.83	87.17 \pm 5.93	86.30 \pm 6.44	0.58 \pm 0.12
988		S-Mamba	80.23 \pm 5.70	80.21 \pm 5.71	88.67 \pm 5.73	88.67 \pm 5.73	0.60 \pm 0.11
989		EEG and ECoG Models					
990		Shallow ConvNet	52.22 \pm 2.68	42.95 \pm 7.18	64.44 \pm 3.90	60.60 \pm 3.58	0.04 \pm 0.05
991		Deep ConvNet	69.56 \pm 2.97	69.15 \pm 2.86	75.01 \pm 6.09	70.68 \pm 6.67	0.39 \pm 0.06
992		EEGNet	75.16 \pm 5.92	75.06 \pm 5.93	79.75 \pm 6.95	75.57 \pm 7.31	0.50 \pm 0.12
993		TScception	63.19 \pm 6.38	60.29 \pm 9.98	70.46 \pm 3.00	67.02 \pm 2.99	0.26 \pm 0.13
994		EEG Conformer	72.53 \pm 5.73	72.42 \pm 5.77	79.90 \pm 6.92	77.89 \pm 7.53	0.45 \pm 0.11
995		Medformer	78.67 \pm 6.12	78.61 \pm 6.15	88.06 \pm 5.87	88.47 \pm 5.75	0.57 \pm 0.12
996		Cortical-SSM (Ours)	87.12\pm4.33 (+4.49)	87.11\pm4.33 (+4.51)	94.66\pm3.40 (+1.86)	94.82\pm3.32 (+2.73)	0.74\pm0.09 (+0.09)
997 General Time-Series Models							
998	999 1000 1001 1002 1003 1004 1005 1006 1007	Informer	72.55 \pm 5.23	72.46 \pm 5.26	81.18 \pm 6.26	81.33 \pm 6.44	0.45 \pm 0.10
999		Autoformer	63.49 \pm 2.95	62.81 \pm 3.41	69.28 \pm 4.11	67.87 \pm 4.24	0.27 \pm 0.06
1000		FEDformer	64.23 \pm 2.77	63.83 \pm 2.94	69.73 \pm 3.19	68.03 \pm 3.13	0.28 \pm 0.06
1001		Crossformer	<u>76.96\pm4.71</u>	<u>76.74\pm5.01</u>	<u>86.19\pm4.28</u>	<u>86.27\pm4.34</u>	<u>0.54\pm0.09</u>
1002		DLinear	54.92 \pm 2.49	54.72 \pm 2.67	54.96 \pm 2.48	52.80 \pm 1.47	0.10 \pm 0.05
1003		TimesNet	72.14 \pm 4.63	72.09 \pm 4.62	80.33 \pm 5.16	80.26 \pm 5.31	0.44 \pm 0.09
1004		PathcTST	73.90 \pm 3.74	73.86 \pm 3.74	82.47 \pm 4.45	81.99 \pm 5.21	0.48 \pm 0.07
1005		TimesMixer	52.32 \pm 2.72	44.48 \pm 8.01	53.19 \pm 3.00	52.55 \pm 2.31	0.05 \pm 0.05
1006		iTransfromer	64.94 \pm 6.48	64.84 \pm 6.54	71.11 \pm 8.39	70.54 \pm 8.89	0.30 \pm 0.13
1007		TimeMachine	72.92 \pm 5.17	72.88 \pm 5.20	80.55 \pm 5.87	79.78 \pm 6.20	0.46 \pm 0.10
1008 General Time-Series Models							
1009	1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	Shallow ConvNet	52.13 \pm 3.70	43.00 \pm 8.90	61.16 \pm 3.78	58.38 \pm 3.43	0.04 \pm 0.07
1010		Deep ConvNet	54.38 \pm 3.93	46.26 \pm 9.81	64.26 \pm 4.21	61.41 \pm 3.43	0.09 \pm 0.08
1011		EEGNet	51.34 \pm 2.44	38.23 \pm 4.78	66.48 \pm 6.17	63.17 \pm 5.57	0.03 \pm 0.05
1012		TScception	52.95 \pm 4.09	44.15 \pm 10.11	57.94 \pm 6.08	56.43 \pm 4.94	0.06 \pm 0.08
1013		EEG Conformer	66.97 \pm 6.98	66.02 \pm 8.06	73.91 \pm 8.01	73.01 \pm 8.37	0.34 \pm 0.14
1014		Medformer	74.14 \pm 4.97	74.02 \pm 5.01	83.08 \pm 5.07	83.37 \pm 5.07	0.48 \pm 0.10
1015		Cortical-SSM (Ours)	79.09\pm4.16 (+2.13)	79.03\pm4.17 (+2.29)	87.97\pm4.08 (+1.78)	88.06\pm4.16 (+1.79)	0.58\pm0.08 (+0.04)
1016							
1017							
1018							
1019							
1020							
1021							
1022							
1023							
1024							
1025							

Knob Area (Yousry et al., 1997). Previous studies have reported that this area exhibits a significant increase in high-frequency components during motor imagery (MI), supporting the relevance of these electrodes to the current task.

For the ECoG-ALS dataset, we employed k -fold cross-validation ($k = 8$) in a session-independent manner. ECoG samples collected over eight experimental sessions on different days were segmented per session and randomly shuffled across the sessions. Subsequently, samples from six sessions were assigned to the training set, one session was assigned to the validation set, and the remaining session was assigned to the test set. Given that there are 160 samples per session, the training, validation, and test sets consisted of 960, 160, and 160 samples, respectively.

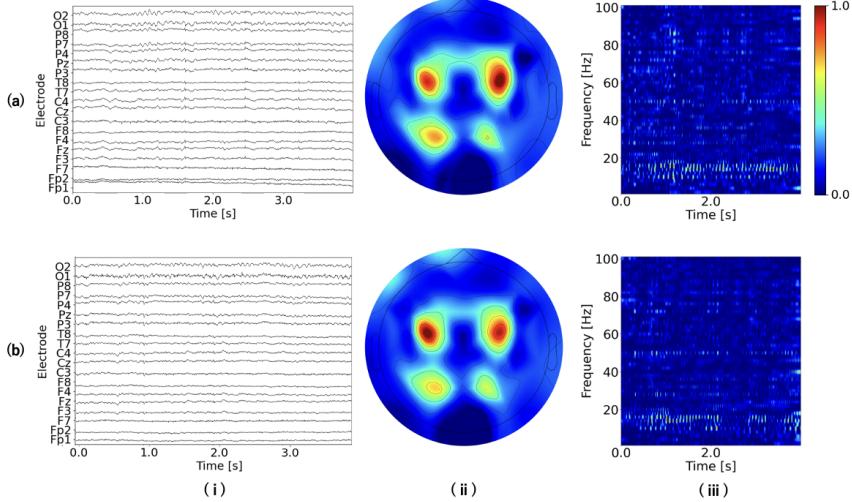
E.2 IMPLEMENTATION DETAILS

We employed the AdamW optimizer ($\beta_1 = 0.9, \beta_2 = 0.999$) with a learning rate of 1.0×10^{-4} . The batch size was set to 8 and the training ran for 100 epochs. For the Wavelet-Convolution, we set the frequency dimension $F = 50$ and targeted the frequency range $(f_{\min}, f_{\max}) = (1 \text{ Hz}, 100 \text{ Hz})$. For both the Frequency-SSM and Channel-SSM, we set the stacked block number $L = 2$.

Overall, our model contained approximately 0.93 million trainable parameters and 2.34 billion multiply-add operations. Training was performed on a Nvidia GeForce RTX 4090 with 24GB of

1026 Table 6: Performance comparison for the 2D task in Stieger2021 (Stieger et al., 2021). **Bold** and
 1027 underlined text indicate the best and second-best methods for each evaluation metric.

1028 Dataset	1029 Models	1030 Accuracy [%] \uparrow	1031 Macro-F1 [%] \uparrow	1032 AUROC [%] \uparrow	1033 AUPRC [%] \uparrow	1034 Kappa \uparrow
1029	Chance Performance	25.00	25.00	50.00	25.00	0.00
1030 General Time-Series Models						
1031	Informer	55.92 \pm 7.68	55.69 \pm 7.90	80.93 \pm 5.97	64.10 \pm 9.41	0.41 \pm 0.10
1032	Autoformer	39.55 \pm 3.66	39.28 \pm 3.81	65.81 \pm 3.63	40.25 \pm 4.53	0.19 \pm 0.05
1033	FEFormer	38.02 \pm 2.77	37.85 \pm 2.89	64.14 \pm 2.81	37.82 \pm 3.14	0.17 \pm 0.04
1034	Crossformer	62.88 \pm 7.03	62.92 \pm 7.16	86.02 \pm 4.69	72.60 \pm 8.09	0.51 \pm 0.09
1035	DLinear	33.96 \pm 3.42	33.85 \pm 3.47	56.06 \pm 2.30	28.36 \pm 1.60	0.12 \pm 0.05
1036	TimesNet	54.01 \pm 7.78	53.62 \pm 8.14	79.48 \pm 6.08	61.40 \pm 9.48	0.39 \pm 0.10
1037	PathcTST	59.27 \pm 7.33	58.98 \pm 7.51	82.84 \pm 5.22	66.52 \pm 8.64	0.46 \pm 0.10
1038	Stieger2021 2D Task (4 Classes)	TimesMixer	26.72 \pm 2.57	18.14 \pm 7.63	51.66 \pm 2.67	26.24 \pm 1.85
1039	iTransfromer	56.37 \pm 7.85	56.23 \pm 7.84	81.12 \pm 6.18	64.23 \pm 9.79	0.42 \pm 0.10
1040	UniTS	61.90 \pm 3.11	61.84 \pm 3.10	85.16 \pm 2.10	70.50 \pm 3.72	0.49 \pm 0.04
1041	TimeMachine	58.21 \pm 7.30	58.11 \pm 7.33	81.76 \pm 5.68	64.72 \pm 8.79	0.44 \pm 0.10
1042	S-Mamba	60.27 \pm 7.70	60.20 \pm 7.69	83.20 \pm 5.82	67.38 \pm 9.29	0.47 \pm 0.10
1043 EEG and ECoG Models						
1044	Shallow ConvNet	27.43 \pm 2.09	17.77 \pm 4.48	59.26 \pm 1.65	31.72 \pm 1.83	0.03 \pm 0.03
1045	Deep ConvNet	26.45 \pm 2.32	15.29 \pm 3.80	65.09 \pm 3.24	36.54 \pm 3.72	0.02 \pm 0.03
1046	EEGNet	28.85 \pm 4.11	20.38 \pm 5.34	68.55 \pm 5.31	41.16 \pm 6.17	0.05 \pm 0.05
1047	Tception	25.90 \pm 1.35	15.96 \pm 3.66	53.26 \pm 1.91	27.05 \pm 1.51	0.01 \pm 0.02
1048	EEG Conformer	55.76 \pm 7.40	55.27 \pm 7.47	79.77 \pm 5.92	61.25 \pm 9.83	0.41 \pm 0.10
1049	Medformer	57.69 \pm 7.95	57.64 \pm 7.90	82.20 \pm 5.67	66.14 \pm 9.06	0.44 \pm 0.11
1050	Cortical-SSM (Ours)	66.07\pm7.34 (+3.19)	66.01\pm7.40 (+3.09)	87.67\pm4.66 (+1.65)	75.37\pm8.17 (+2.77)	0.55\pm0.10 (+0.04)



1063 Figure 6: Successful cases of the proposed method on OpenBMI (Lee et al., 2019). Rows (a) and (b)
 1064 display samples for which the ground-truth class is left-hand grasping. For each sample, Column
 1065 (i) shows recorded EEG signals, Column (ii) presents the spatio-temporal visual explanations, and
 1066 Column (iii) illustrates the temporal-frequency visual explanations.

1067 VRAM and an Intel Core i9-13900KF processor with 64GB of RAM. The training times per task for
 1068 our proposed method on OpenBMI, Stieger2021, and ECoG-ALS were approximately 157 min, 50
 1069 min, and 4 min, respectively. The inference time per sample in the corresponding benchmarks was
 1070 approximately 2-3 ms.

1073 F ADDITIONAL RESULTS

1076 F.1 QUANTITATIVE RESULTS FOR STIEGER2021

1078 Tables 5 and 6 present the quantitative results of the proposed method and the baseline methods for
 1079 the three tasks (LR, UD, and 2D) included in Stieger2021(Stieger et al., 2021). For details on the
 selection of the baseline methods and evaluation metrics, please refer to Section 5.1. According to

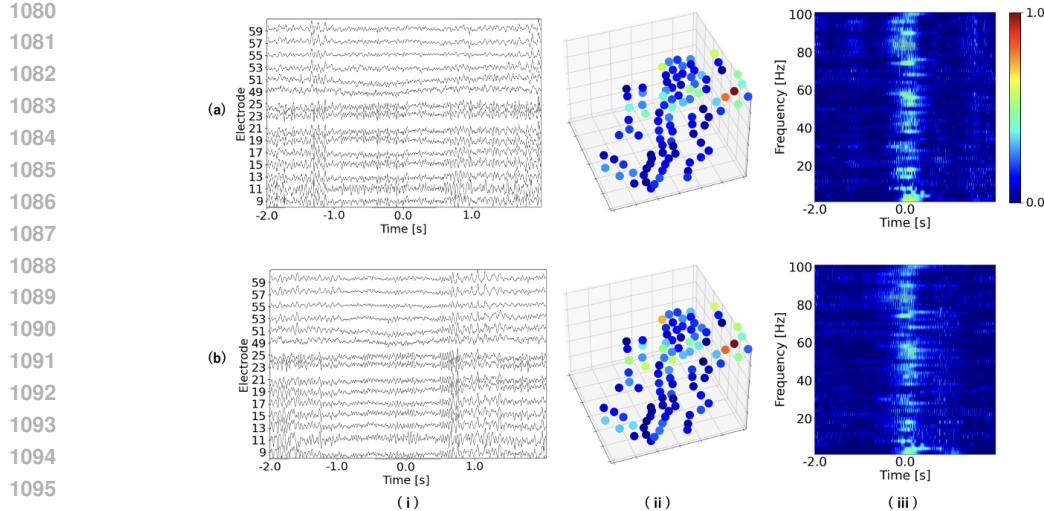


Figure 7: Successful cases of the proposed method on ECoG-ALS. In this figure, Rows (a) and (b) correspond to samples whose ground-truth class is hand extension. For each sample, Column (i) displays the recorded ECoG signals, Column (ii) presents the spatio-temporal visual explanations, and Column (iii) illustrates the temporal-frequency visual explanations.

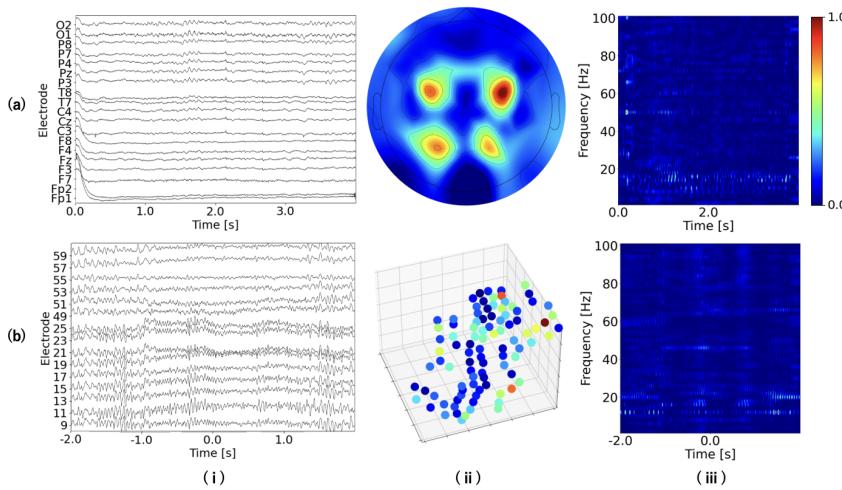


Figure 8: Failure cases of the proposed method. Rows (a) and (b) show samples from OpenBMI (Lee et al., 2019) and ECoG-ALS, respectively. Columns (i)–(iii) present, respectively, (i) the recorded EEG or ECoG signals, (ii) the visual explanations in the temporal-frequency domain, and (iii) the visual explanations in the spatio-temporal domain.

Table 6, the proposed method achieved the highest performance in the 2D task of Stieger2021, with accuracy, macro-F1, AUROC, AUPRC, and Cohen’s Kappa of 66.07%, 66.01%, 87.67%, 75.37%, and 0.55 points, respectively. Similarly, as shown in Tables 5 and 6, the proposed method also demonstrated the best performance in both the LR and UD tasks of Stieger2021.

F.2 SAMPLE-SPECIFIC INTERPRETABILITY

Figure 6 shows successful cases by the proposed method on OpenBMI (Lee et al., 2019). In the figure, Rows (a) and (b) display samples where the ground truth class corresponds to left-hand grasping, while Columns (i)–(iii) respectively present: (i) recorded EEG signals, (ii) spatio-temporal visual explanations, and (iii) temporal-frequency visual explanations. Column (ii) reveals that the proposed method consistently attended to regions surrounding the C3 and C4 electrodes. Furthermore, in contrast to the sample-agnostic visual explanations in Figure 3, the proposed method in this sample also attended to regions near the P3 and P4 electrodes, located over the left and right parietal cortices.

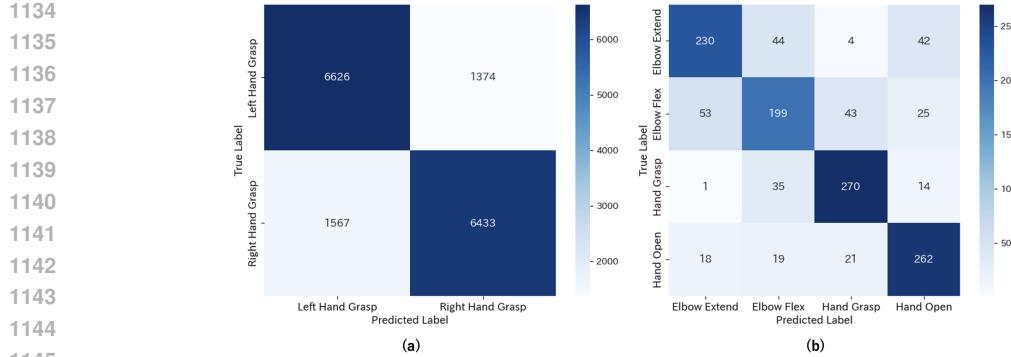


Figure 9: Confusion matrices for OpenBMI (Lee et al., 2019) and ECoG-ALS.

These areas are associated with somatosensory processing (Pause et al., 1989; Dijkerman & de Haan, 2007) and may hold functional relevance. Since the OpenBMI dataset includes motor imagery of both left- and right-hand movements, it is plausible that these regions capture proprioceptive representations of the imagined limb movements. Additionally, Column (iii) indicates consistent attention to regions surrounding the mu band. Taken together, these results suggest that the proposed method effectively focuses on neurophysiologically meaningful EEG regions.

Next, Figure 7 presents successful cases of the proposed method on ECoG-ALS. In the figure, Rows (a) and (b) display samples where the ground truth class is hand extension. Following the structure of Figure 6, Columns (i)-(iii) respectively present: (i) recorded ECoG signals, (ii) spatio-temporal visual explanations, and (iii) temporal-frequency visual explanations. As shown in Row (ii), electrodes located in the Hand Knob Area (Yousry et al., 1997) were significantly attended. Meanwhile, Row (iii) indicates that the period approximately 0.5 seconds around the MI onset was strongly attended to. Therefore, these results suggest that our proposed method effectively attends to neurophysiologically critical regions of ECoG.

Finally, Figure 8 illustrates cases where the proposed method failed. Row (a) shows a sample from OpenBMI where the ground-truth label was left-hand grasp, yet our method incorrectly predicted right-hand grasp. Similarly, Row (b) presents a sample from ECoG-ALS in which the ground-truth label was hand extension, but the method erroneously predicted elbow extension. Columns (i)–(iii) correspond, respectively, to the (i) recorded EEG or ECoG signals, (ii) the temporal-frequency visual explanations, and (iii) the spatio-temporal visual explanations. Notably, from Subfigures 8 (a-ii) and 8 (b-ii), regions surrounding the C3/C4 electrodes and the Hand Knob Area were significantly attended to. In contrast, Subfigures 8 (a-iii) and 8 (b-iii) indicate that the spatio-temporal domain was weakly attended to. These observations suggest that, for these samples, the proposed method predominantly focused on neurophysiologically critical regions in the spatial domain. We hypothesize that this misclassification can be attributed to domain shifts across experimental sessions and subjects in EEG, and across experimental sessions in ECoG, with the impact of domain shift in the spatial domain being relatively minor compared with that in the temporal-frequency domain.

F.3 ERROR ANALYSIS

Figure 9 presents the confusion matrices for all test sets obtained through k -fold cross validation ($k = 8$) for (a) OpenBMI (Lee et al., 2019) and (b) ECoG-ALS. For OpenBMI, the F1-scores for left and right hand grasp were 81.84% and 81.39%, respectively. In contrast, for ECoG-ALS, the elbow extension class achieved 230 True Positives (TP), 72 False Positives (FP), 888 True Negatives (TN), and 90 False Negatives (FN), resulting in an F1-score of 73.95%. Likewise, the F1-scores for the elbow flexion, hand extension, and hand grasp classes were 64.51%, 82.07%, and 79.03%, respectively. Therefore, the hand extension class exhibited the highest F1-score. On average, there were 367.63 failure modes per fold for OpenBMI and 39.88 per fold for ECoG-ALS.

To investigate the limitations of our proposed method, we conducted an error analysis on 100 failure modes from both OpenBMI and ECoG-ALS. The causes of failure can be broadly grouped into three categories:

1188

1189

Table 7: Error analysis on failure modes

1190

1191

Error	OpenBMI	ECoG-ALS
Irrelevant Attention Error (IAE)	51	72
Prediction Error (PE)	23	23
Noise/Artifact Induced Error (NAIE)	26	5
Total	100	100

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

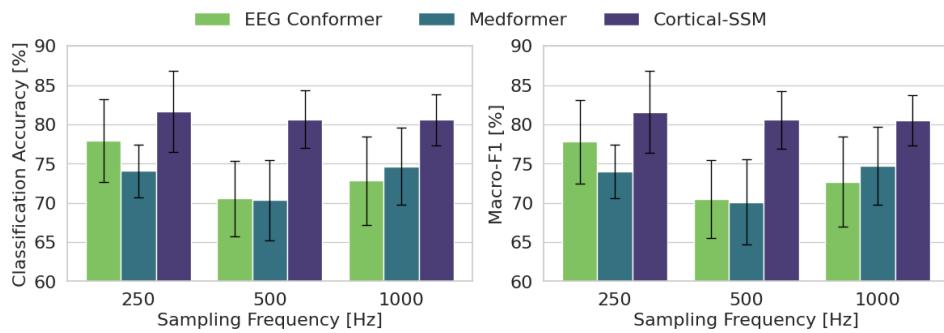


Figure 10: Sensitivity analysis of EEG sequence length on OpenBMI (Lee et al., 2019).

- **Irrelevant Attention Error (IAE):** This category refers to modes where regions that deviate from neurophysiologically significant areas were attended to, or where regions in the temporal, spatial, and frequency domains were insufficiently attended.
- **Prediction error (PE):** This category includes cases where neurophysiologically significant regions were attended to, yet the predictions were incorrect.
- **Noise/artifact Induced Error (NAIE):** This category refers to modes where the EEG or ECoG signal-to-noise ratio (SNR) was below -15 dB. For SNR calculation, we defined 1-100 Hz as the signal band, and 0-1 Hz and above 100 Hz as noise bands.

Furthermore, we defined neurophysiologically significant regions as follows:

- OpenBMI: The mu band around 10 Hz and regions surrounding the C3 and C4 electrodes in the 10–20 system (Klem, 1999).
- ECoG-ALS: Regions near 0 seconds representing the onset of MI and areas surrounding the Hand Knob Area (Yousry et al., 1997).

Table 7 indicates that the main bottleneck in both benchmarks was IAE. We hypothesize that this issue arises because our method tends to overemphasize certain regions within the temporal, spatial, and frequency domains during training. Our approach processes features from each domain independently to provide explicit visual explanations from all three domains. Consequently, when successful classification is achieved using features from only a subset of these domains, features from the remaining domains may not be effectively utilized. A possible solution could be training with features from the temporal, spatial, and frequency domains in a stepwise manner, which would be effective for achieving balanced attention across domains and reducing IAE. Furthermore, the number of NAIE modes was 26 for OpenBMI and 5 for ECoG-ALS, revealing a substantial difference between the benchmarks. This disparity can be attributed to the distinct recording methodologies of EEG and ECoG signals. The lower NAIE in ECoG signals likely results from their proximity to the signal source, leading to higher signal quality compared with EEG signals.

F.4 SENSITIVITY ANALYSIS ON SEQUENCE LENGTH

To investigate the effect of sequence length on decoding performance, we performed a sensitivity analysis on the OpenBMI dataset by resampling EEG signals originally recorded at 1000 Hz to three sampling rates (250 Hz, 500 Hz, and 1000 Hz), as illustrated in Figure 10. The 250 Hz condition

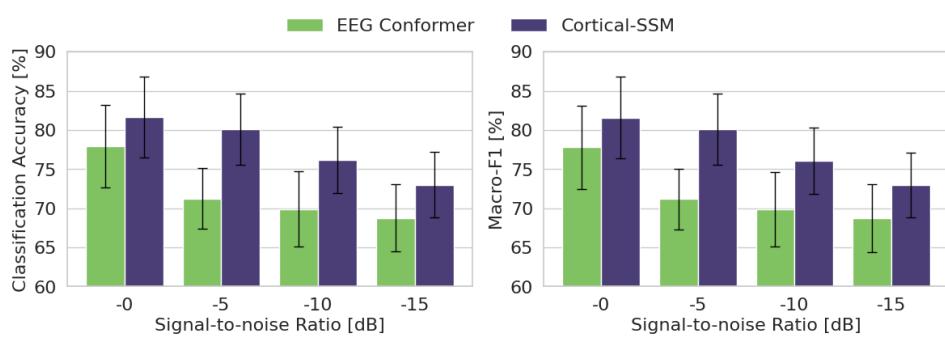


Figure 11: Sensitivity analysis of EEG signal-to-noise ratio on OpenBMI (Lee et al., 2019).

corresponds to the setting used in the original experimental setup, and all conditions employ 4-second EEG segments as input. We compared our method against two representative EEG/ECoG decoding baselines: EEG Conformer (Song et al., 2022) and Medformer (Wang et al., 2024d). While EEG Conformer and Medformer revealed accuracy drops of up to 7.34 and 3.73 points, respectively, our method shows only a marginal decrease of 1.06 points. These results suggest that the proposed method scales with sequence length.

F.5 SENSITIVITY ANALYSIS ON SIGNAL-TO-NOISE RATIO

To evaluate the impact of noise and signal degradation, we conducted an additional experiment in which the signal-to-noise ratio (SNR) of EEG signals from the OpenBMI dataset was progressively degraded by 0dB, 5dB, 10dB, and 15dB as shown in Figure 11. Here, we compared the performance of our proposed method with the second-best baseline, EEG Conformer (Song et al., 2022). Following Appendix F.3, the signal bandwidth was set to 1-100Hz. As shown in the figure, our method consistently outperformed EEG Conformer across all SNR levels in terms of classification accuracy and macro-F1, demonstrating its effectiveness even in the presence of substantial noise and signal degradation common in clinical settings.

G THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were used solely for auxiliary purposes, such as polishing, editing, and formatting the manuscript. They were not employed in any part of the methodology, nor did they contribute to the implementation or evaluation of the proposed methods. Therefore, LLMs were not involved as essential, original, or non-standard components of the research.