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ABSTRACT

Enabling robots to learn novel tasks in a data-efficient manner is a long-standing
challenge. Common strategies involve carefully leveraging prior experiences, es-
pecially transition data collected on related tasks. Although much progress has
been made in developing such strategies for general pick-and-place manipula-
tion, far fewer studies have investigated contact-rich assembly tasks, where pre-
cise control is essential. In this work, we present SRSA (Skill Retrieval and
Skill Adaptation), a novel framework designed to address this problem by uti-
lizing a pre-existing skill library containing policies for diverse assembly tasks.
The challenge lies in identifying which skill from the library is most relevant
for fine-tuning on a new task. Our key hypothesis is that skills showing higher
zero-shot success rates on a new task are better suited for rapid and effective
fine-tuning on that task. To this end, we propose to predict the transfer success
for all skills in the skill library on a novel task, and then use this prediction to
guide the skill retrieval process. Through extensive experiments, we demonstrate
that SRSA significantly outperforms the leading baseline, achieving a 22% rela-
tive improvement in success rate, 3.7x higher stability, and 2.4x greater sample
efficiency when retrieving and fine-tuning skills on unseen tasks. Moreover, in
a continual learning setup, SRSA efficiently learns policies for new tasks and
incorporates them into the skill library, enhancing future policy learning. Ad-
ditionally, policies trained with SRSA in simulation achieve a 90% mean suc-
cess rate when deployed in the real world. Please visit our project webpage at
https://srsa2024.github.io/ for videos.

1 INTRODUCTION

Humans excel at solving new tasks with few demonstrations or trial-and-error interactions. In robot
learning, a key challenge is to similarly enable robots to learn control policies from sensor-based
observations in a data-efficient manner. Achieving data-efficient learning is crucial for deploying
robots in diverse real-world environments, such as the household and industry. A compelling ap-
proach to efficient policy learning is the development of a foundation model or generalist policy
that spans multiple tasks because it offers long-term efficiency gains by providing a strong base for
adaptation to novel tasks. Significant advancements have been made in manipulation tasks, particu-
larly in visual pre-training (Parisi et al., 2022; Nair et al., 2022), multi-task policy learning (Shridhar
et al., 2022; Goyal et al., 2024), and policy generalization (Jang et al., 2022; Ebert et al., 2021).

Despite this progress, efficiently solving new tasks in contact-rich environments, such as robotic as-
sembly, remains underexplored. Robotic assembly plays a critical role in industries like automotive,
aerospace, and electronics, but learning assembly policies is uniquely difficult. These tasks require
contact-rich interactions with high levels of precision and accuracy, compounded by the physical
complexity of the environments, part variability, and strict reliability standards. Much of the exist-
ing research focuses on training specialist (i.e., single-task) policies for individual assembly tasks
(Spector & Di Castro, 2021; Spector et al., 2022; Tang et al., 2023). Building on the strengths
of these specialist approaches, we propose a novel method for tackling new assembly tasks. Our
approach leverages a skill library – a collection of diverse specialist policies and associated infor-
mation (such as object geometry and task-relevant trajectories) for various assembly tasks. These
policies and data, regardless of the training strategies or learning approaches used to develop them,
can be harnessed to efficiently solve previously-unseen assembly challenges.
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Figure 1: Overview of SRSA. We address assembly tasks, where the goal is to use a robot arm to
insert diverse plugs (i.e., the white parts) into or onto corresponding sockets (i.e., the green parts).
Specifically, we propose to predict the transfer success of applying prior skills (i.e., policies) to a
new task, retrieve the skill with the highest predicted success rate, and fine-tune it on the new task.
During fine-tuning, we accelerate and stabilize adaptation by incorporating imitation learning of
high-rewarding transitions from the agent’s own replay buffer.

To utilize prior task experiences, previous work on general pick-and-place tasks has explored meth-
ods such as imitating state-action pairs from expert demonstrations (Du et al., 2023; Lin et al., 2024;
Kuang et al., 2024) and encoding sub-task skills as macro-action choices (Lynch et al., 2020; Pertsch
et al., 2021; Nasiriany et al., 2022). Unlike these approaches, which focus on reusing data or sub-
task skills, our approach centers on adapting policies from previous tasks to solve novel tasks. These
policies encapsulate essential task-solving knowledge in a generative form, making them a valuable
starting point for further refinement. Despite having access to a library of policies, identifying the
most relevant ones for fine-tuning on new tasks is still an open question, and the success of fine-
tuning hinges on making the right selection. In this paper, we introduce SRSA (Skill Retrieval and
Skill Adaptation), a novel framework designed to retrieve policies for similar tasks and adapt them
to new tasks, as illustrated in Fig. 1. The key contributions of this paper are as follows:

(1) Skill Retrieval Method: We propose a skill retrieval method that simultaneously and explicitly
learns embeddings for three fundamental components of assembly tasks: part geometry, interaction
dynamics, and expert action choices. We subsequently introduce a novel objective that leverages
these embeddings to predict transfer success across any source policy and target task, implicitly
capturing additional critical factors for policy transfer. This approach enables the effective retrieval
of relevant skills, resulting in higher zero-shot transfer success when applied to new tasks.

(2) Skill Adaptation Method: We propose a skill adaptation method that fine-tunes retrieved skills
on new tasks while incorporating a self-imitation learning method (Oh et al., 2018) to enhance per-
formance and stability during fine-tuning. In a simulation-based, dense-reward setting explored in
the leading assembly baseline (Tang et al., 2024), SRSA achieves a relative improvement of 22% in
success rate with 2.4x faster training and 3.7x greater stability. In simulation-based, sparse-reward
settings without demonstrations or curriculum (closely aligning with real-world fine-tuning scenar-
ios), SRSA outperforms the baseline with a relative improvement of 139% in success rate. Further-
more, we demonstrate that policies fine-tuned in simulation can be directly transferred to real-world
robots, achieving a 90% average success rate without the need for additional retraining. This capa-
bility of effectively fine-tuning policies in simulation on novel tasks, and transferring these policies
to the real world in zero-shot, highlights the potential for deploying high-performance solutions in
real-world assembly tasks.

(3) Continual Learning with Skill-Library Expansion: Rather than training numerous specialist
(i.e., single-task) policies from scratch, we propose gradually expanding a small set of initial skills
via retrieval and adaptation to cover a broader range of tasks. This strategy improves sample effi-
ciency by over 80% compared to the baseline (Tang et al., 2024) and keeps consistently efficient
as the skill library and target tasks evolve. SRSA provides an efficient solution for accumulating a
large-scale collection of skills.

2 RELATED WORK

Robotic Assembly Tasks Robotic assembly is a critical manufacturing process in the automotive,
aerospace, electronics, and medical device industries, but adaptive robotic assembly (e.g., robustness
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to part types, initial part poses, perceptual noise, control error, and environmental perturbations)
is largely unsolved. Research on adaptive assembly has seen significant growth in recent years
(Beltran-Hernandez et al., 2020; Luo et al., 2021; Narang et al., 2022; Tang et al., 2023; Zhang et al.,
2023). Despite advancements in datasets and real-world benchmarks for assembling small, realistic
parts (Kimble et al., 2020; 2022; Willis et al., 2022; Tian et al., 2022), the exploration of policy
learning across a wide variety of parts remains relatively limited. Most recent efforts in robotic
assembly have concentrated on perception (Fu et al., 2022; Wen et al., 2022) or planning (Tian et al.,
2022; 2024), rather than learning policies that are robust to disturbances and noise. Additionally,
the policy-learning efforts that have addressed the widest range of assemblies have typically been
restricted to <30 parts (Spector & Di Castro, 2021; Spector et al., 2022; Zhao et al., 2022). The
largest study, AutoMate (Tang et al., 2024), introduced a diverse dataset featuring 100 assembly
tasks with simulation environments and 3D-printable parts, and explores policy learning across these
tasks. However, its approach primarily focuses on learning specialist (i.e., single-task) policies from
scratch without leveraging prior experience or knowledge from related tasks. In contrast, our goal
is to solve novel assembly tasks by leveraging skills from previously-solved assembly tasks.

Retrieval-based Policy Learning Many studies have explored techniques for utilizing datasets from
other tasks for pretraining, such as visual pretraining (Parisi et al., 2022; Nair et al., 2022; Xiao et al.,
2022) and multi-task imitation learning (Jang et al., 2022; Ebert et al., 2021; Shridhar et al., 2022).
Recently, in robotic manipulation, some works have investigated how to incorporate offline data
from other tasks during policy learning, i.e., retrieving prior data according to expert demonstra-
tions on the target task (Nasiriany et al., 2022; Belkhale et al., 2024; Shao et al., 2021; Zha et al.,
2024). For instance, Du et al. (2023) selects pertinent state-action pairs based on visual and action
similarity from offline, unlabeled datasets and jointly trains a policy using a small amount of expert
demonstrations and the queried data via imitation learning. Lin et al. (2024), on the other hand,
emphasizes motion similarity rather than semantic similarity by retrieving state-action pairs based
on optical flow representations, followed by few-shot imitation learning with expert demonstrations
and the retrieved data. Kuang et al. (2024) takes a different approach by extracting a unified af-
fordance representation from diverse data sources and hierarchically retrieving and transferring 2D
affordance information based on language instructions to perform zero-shot robotic manipulation.
These works primarily study data retrieval for general pick-and-place manipulation tasks. (Zhu
et al., 2024) instead introduce a policy retriever to access relevant strategies from an external policy
memory bank and a policy generator to assimilate these strategies to formulate effective responses to
pick-and-place tasks. In contrast to these works, we focus on challenging contact-rich manipulation
tasks, specifically investigating policy retrieval for such environments.

Embedding Learning for Task and Skills Task embedding learning has been extensively explored
in meta-reinforcement learning and multi-task reinforcement learning problems, where shared
knowledge across tasks can significantly enhance learning efficiency for new tasks. Most previous
approaches focus on capturing task features related to visual appearance in 2D images or dynamics
in transitions (James et al., 2018; Rakelly et al., 2019; Lee et al., 2020). Contrastive learning is
often employed to bring similar tasks closer together in the embedding space while pushing dissim-
ilar tasks farther apart (James et al., 2018). Skill embedding learning, on the other hand, leverages
unstructured prior experiences (i.e., temporally extended actions that encapsulate useful behaviors)
and repurposes them to solve downstream tasks. Existing methods typically train a high-level policy
where the action space consists of the extracted skills (Pertsch et al., 2021; Nasiriany et al., 2022;
Hausman et al., 2018; Sharma et al., 2019; Lynch et al., 2020). Although most previous approaches
use skills to solve subtasks and combine sequences of skills for long-horizon tasks, we focus on
selecting and adapting a single relevant skill for a new task, which is typically short-horizon but
challenging to train due to exploration challenges and precise control requirements. Additionally,
we integrate multiple embedding-learning approaches by jointly capturing three fundamental com-
ponents of assembly tasks: part geometry, interaction dynamics, and expert actions. We consolidate
these perspectives for more robust task representation.

3 PROBLEM SETUP

In this work, we consider the problem setting of solving a new target task leveraging pre-existing
skills from a skill library. This library contains policies, each designed to solve a specific previously-
encountered task. Our approach is motivated by situations where an agent can draw on knowledge
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from previously-learned policies to adapt quickly to a new task at hand (Rusu et al., 2016; Tirinzoni
et al., 2019; Huang et al., 2021).

Similar to the multi-task reinforcement learning (RL) formulation (Borsa et al., 2016; Sodhani et al.,
2021; Calandriello et al., 2014), we consider a task space T where each task T ∈ T is defined as a
Markov decision process (MDP) (S,A, p, r, γ, ρ). In this formulation, S represents the state space,
A the action space, p(st+1|st, at) the transition dynamics, r(st, at) the reward function, γ ∈ [0, 1)
the discount factor, and ρ the initial state distribution.

(b) 3D-printed assembly parts in real world

(c) Keyframes of assembly tasks in real-world deployment
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(a) Various assembly tasks in simulation
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Figure 2: Illustration of assembly tasks in AutoMate and SRSA. (a) Samples of assembly tasks
in the AutoMate benchmark. (b) 3D-printed parts of corresponding real-world assembly tasks in
SRSA. (c) Keyframes from video recordings of our real-world deployments of performant policies.

.
Our study focuses on two-part assembly tasks, as depicted in Fig. 2. Following the setup of Auto-
Mate (Tang et al., 2024), each environment includes a Franka robot, a plug (i.e., a part to be inserted),
and a socket (i.e., the part that mates with the given plug). In the initial state, we randomize the robot
configuration and socket pose, as well as the position of the plug within the robot’s gripper. The goal
of each task is to insert a unique plug into its corresponding socket (see Appendix A.1 for details).

The state space S consists of the robot arm’s joint angles and velocities, the end-effector pose and
its linear/angular velocities, the current plug pose, and the end-effector goal pose. The action space
A consists of incremental pose targets for a task-space impedance controller. As described in (Tang
et al., 2024), although assembly trajectories are infeasible to procedurally generate, disassembly
paths can be easily generated, serving as reverse demonstrations that can be used by a reinforcement
learning (RL) agent. Specifically, the RL reward function is composed of terms that penalize the
distance to the goal, penalize simulation error, reward task difficulty in a curriculum, and imitate the
reversed disassembly paths. The assembly tasks all share the same state space S and action space
A, but vary in part geometries, transition dynamics p, and initial state distribution ρ.

Given a target task T ∈ T , we assume access to a prior task set Tprior = {T1, T2, · · · , Tn} ⊆ T .
With policy space Π : S → A, the skill library contains policies Πprior = {π1, π2, · · · , πn} ⊆ Π
that solve each of the prior tasks, respectively. To solve a target task, the goal of RL is to find a
policy π(at|st) that produces an action for each state to maximize the expected return. We propose
to first retrieve a skill (i.e., policy) for the most relevant prior task (Sec. 4.1), and then rapidly and
effectively adapt to the target task by fine-tuning the retrieved skill (Sec. 4.2).

4 METHOD

4.1 SKILL RETRIEVAL

To effectively retrieve skills from Πprior that are useful for a new target task T , we require a means
to measure the potential of applying a source policy πsrc ∈ Πprior to task T . Concretely, we aim
to obtain a function F : Π× T → R, which takes as input a source policy and a target task and
produces a scalar score measuring how well the source policy can be adapted to the target task.

According to the simulation lemma in RL theory (Agarwal et al., 2019), the difference in expected
value when applying the same policy to different tasks partially depends on their difference in tran-
sition dynamics and initial state distributions. If we execute a source policy πsrc on both the source
task Tsrc and the target task Ttrg , the success rates rsrc,src and rsrc,trg (on Tsrc and Ttrg, respec-
tively) reflect the expected value. Notably, similar success rates on these tasks indicate that their
transition dynamics functions and initial state distributions might also be similar. Here, our success
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rate on the source task rsrc,src will naturally be high, because the source policy πsrc is already an
expert policy on Tsrc. Thus, when the zero-shot transfer success rate rsrc,trg (i.e., applying πsrc

directly to Ttrg) is also high (e.g., similar to rsrc,src), it suggests that the two tasks might be closely
aligned in terms of their dynamics. Therefore, we use the high transfer success rate as a heuristic
indicator of similar dynamics between source and target tasks. Details are in Appendix A.2.

We then hypothesize that fine-tuning a source policy on a target task with similar dynamics will
be efficient, because it only requires adaptation to the small difference in dynamics. Therefore, we
propose using zero-shot transfer success as a metric to gauge the potential of efficiently adapting a
source policy on a target task. To identify a source policy with high zero-shot transfer success on a
given target task, we propose to learn a function F to predict the zero-shot transfer success for any
pair of source policy πsrc and target task Ttrg . The prediction F (πsrc, Ttrg) serves as an indicator of
whether πsrc is a strong candidate to initiate fine-tuning for the target task Ttrg . Below, we describe
the featurization of the source policies and target tasks in Sec. 4.1.1 and explain the approach to
transfer success prediction with input features in Sec. 4.1.2.

Geometry Feature zG

Encoder EG

Decoder DG

Point Cloud

Reconstruction

st-hat-h …… st-1at-1

Disassembly Trajectory 

Dynamics Feature zD

stat st+1

Encoder ED

Forward 
Model DD

s’t+1

(a) (b)

st-hat-h …… st-1at-1

Action Feature zA

Disassembly Trajectory 

a’t-ha’t-h+1 ……a’t-1
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Geometry
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Action
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Figure 3: Illustration of our skill retrieval approach. We decompose the skill retrieval into task
feature learning (abc) and transfer success prediction (d). (a) Geometry features are learned from
point-cloud input using a PointNet autoencoder. (b) Dynamics features are learned from transition
segments using a state-prediction objective. (c) Expert-action features are learned from transition
segments using an action-prediction objective. (d) The zero-shot transfer success rate (of applying
a source policy to a target task) is predicted using task features from source and target tasks.

4.1.1 LEARNING TASK FEATURES

In order to train the prediction function F , we construct a dataset of tuples (πsrc, Ttrg, rsrc,trg),
where rsrc,trg denotes the success rate for zero-shot transfer of a source policy πsrc when applied
to a target task Ttrg. However, due to the limited number of (πsrc, Ttrg) pairs (specifically, during
training, we have n× n pairs for a total of n tasks in Tprior), we need a strong featurization of both
the source policy and target task for efficient learning of F .

The source policy πsrc is an expert policy for the corresponding source task Tsrc, and there is a
one-to-one mapping between policies and tasks in the skill library. Thus, we can utilize the features
of the source task to represent the source policy. For assembly tasks, each task differs along three
fundamental axes: part geometry, interaction dynamics, and expert actions that solve the task. Thus,
we propose a framework that jointly captures features of geometry, dynamics, and expert actions to
represent the tasks, allowing us to efficiently learn the transfer success predictor F (Fig. 3).

When learning geometry features, we assume access to object meshes for both seen and novel tasks;
this assumption is well-grounded in industry, where CAD models are widely available, allowing us
to learn embeddings of 3D geometry. However, learning features for dynamics and expert actions
poses a unique challenge. For new assembly tasks, we assume that expert demonstrations are not
available, as these are typically tedious to obtain and often suboptimal for assembly tasks. This
deficit prevents us from easily computing dynamics or action embeddings.

We draw insight from (Tian et al., 2022; Tang et al., 2024), which noted that, while procedurally
generating assembly demonstrations for new tasks is intractable (narrow-passage problem), disas-
sembly paths can be trivially generated by employing a compliant low-level controller to lift an
inserted plug from its socket and move it to a randomized pose. We propose learning features for
dynamics and expert actions by using these disassembly paths and hypothesize that such features
are useful for predicting transfer success for assembly; we later empirically support this hypothesis.
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Using the parts’ point clouds or transition sequences from disassembly, we learn encoders EG, ED,
and EA to capture features zG (representing geometry), zD (representing forward dynamics), and
zA (representing expert actions). We also train decoders DG, DD, and DA conditioned on these
features to predict point cloud for geometry, next state for dynamics, and action sequence for expert
action choices. In Appendix A.4, we explain the implementation details for learning these features.

4.1.2 PREDICTING TRANSFER SUCCESS

We consolidate task features to develop the transfer success prediction function F . During training,
we formulate any two tasks from the prior task set Tprior as a source-target task pair. For each
pair (πsrc, Ttrg), we evaluate the source policy πsrc on the target task Ttrg to obtain the zero-
shot transfer success rate rsrc,trg. This process enables us to collect a training dataset of tuples
(πsrc, Ttrg, rsrc,trg) from the prior skill library. As explained in Sec. 4.1.1, we feed the point cloud
and transition segments into encoders. The features of geometry, dynamics, and expert action are
concatenated together to get task features zsrc and ztrg. Then the concatenated task features go
through an MLP to predict the transfer success rsrc,trg, as illustrated in Fig. 3(d). Formally, we train
the function F to minimize the objective function (Eq. 1):

L= ∥F (πsrc, Ttrg)− rsrc,trg∥2 = ∥MLP (zsrc, ztrg)− rsrc,trg∥2

= ∥MLP (EG(Psrc), ED(τsrc), EA(τsrc), EG(Ptrg), ED(τtrg), EA(τtrg))− rsrc,trg∥2 (1)

At test time, we use the function F to predict the transfer success of applying any prior
policy to a new task Ttrg as F (πsrc, Ttrg). For inputs to the function F , we sample
the point clouds P1, P2, · · · , Pm from parts’ meshes and transition segments τ1, τ2, · · · , τm
from disassembly trajectories. We compute the averaged prediction for these samples,
i.e. F (πsrc,Ttrg)=

1
m

∑m
i=1 MLP (EG(Psrc,i),ED(τsrc,i),EA(τsrc,i),EG(Ptrg,i),ED(τtrg,i),EA(τtrg,i)). In this

manner, we infer the predicted transfer success F (πsrc, Ttrg) for all source policies πsrc in the prior
skill library Πprior = {π1, π2, · · · , πn}. Our retrieved policy is the source policy with the highest
predicted transfer success, defined as argmaxπsrc

F (πsrc, Ttrg).

4.2 SKILL ADAPTATION

As mentioned in Sec. 3, our ultimate goal is to solve the new task as an RL problem. The retrieved
skill is used to initialize the policy network πθ(at|st), and we subsequently use proximal policy
optimization (PPO) (Schulman et al., 2017) to fine-tune the policy on the target task.

This initialization provides a strong start for policy learning, as the initial trials with the retrieved
skills can achieve a reasonable success rate. Inspired by self-imitation learning (Oh et al., 2018), we
fully exploit these positive experiences gained during the initial phase of fine-tuning. We maintain
a replay buffer D = {(st, at, Rt)} to store the transitions encountered throughout training, where
Rt =

∑∞
k=t γ

k−trk is the discounted sum of rewards. We prioritize the state-action pairs (st, at)
based on Rt and imitate those pairs with high rewards. The objective function is defined in Eq. 2:

Lsil = E(s,a,R)∈D[Lsil
policy + βLsil

value] (2)

where Lsil
policy = − log πθ(a|s)(R− Vθ(s))+, Lsil

value =
1
2∥(R− Vθ(s))+∥2, (·)+ = max(·, 0), and

πθ and Vθ are the policy and value function parameterized by θ (see details in Appendix A.3).

As training progresses, the agent collects higher rewards on the target task, leading to an expanding
replay buffer filled with improved experiences. As analyzed in (Tang, 2020), this self-imitation
mechanism accelerates the agent’s convergence to encountered high-reward behavior, even though
it may introduce some bias into the policy. In our case, the behavior derived from the retrieved skill
is advantageous for the target task. We find that self-imitation learning significantly enhances and
stabilizes policy fine-tuning, proving especially beneficial in sparse-reward scenarios.

4.3 CONTINUAL LEARNING WITH SKILL-LIBRARY EXPANSION

Continual learning investigates learning various tasks in a sequential fashion. The primary objec-
tive is to overcome the forgetting of previously-learned tasks and to leverage the earlier knowl-
edge for better performance and/or faster convergence on incoming tasks (Ring, 1994; Xu & Zhu,
2018; Abel et al., 2024). We integrate SRSA in the continual-learning setup and gradually expand

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the skill library. Specifically, we begin with an initial skill library Πprior corresponding to prior
tasks Tprior. When faced with a new batch of tasks T j = {T1, T2, · · · , Tk}, we apply SRSA to
retrieve and fine-tune policies for each new task Ti. The learned policies are then incorporated as
Tprior = Tprior ∪ {Ti}; Πprior = Πprior ∪ {πi}. This approach allows us to efficiently tackle new
tasks by leveraging the skill library and simultaneously prevent the forgetting of previously learned
tasks by maintaining the skill library. See Appendix A.3 for the algorithm pseudocode.

5 EXPERIMENTS

We design experiments to answer the following questions: (1) Compared with baseline retrieval
approaches, can SRSA retrieve source policies that achieve a better zero-shot transfer success rate on
target tasks? (2) Can SRSA improve learning performance, stability, and efficiency on target tasks?
(3) Can we deploy high-performing policies from simulation in zero-shot to the real-world? (4)
Can SRSA be applied in the continual-learning scenario to improve learning efficiency by gradually
expanding its skill library? We investigate these questions on the AutoMate benchmark, which
consists of 100 two-part assembly tasks with diverse parts, enabling us to study challenging contact-
rich assembly tasks in simulation and the real world.

5.1 SKILL RETRIEVAL

AutoMate provides meshes and disassembly trajectories for each task. We use these data to learn the
task embedding for retrieval. We compare SRSA to the following retrieval strategies as baselines.
Signature: retrieve the task with the closest path signature representing disassembly trajectories as
a collection of path integrals (Tang et al., 2024) Behavior: retrieve the task with the closest VAE
embedding of state-action pairs on disassembly trajectories. Forward: retrieve the task with closest
latent vector for transition sequence τ on disassembly trajectories, where the latent vector is used
to predict forward dynamics. Geometry: retrieve the task with closest PointNet encoding for point
clouds of the assembly assets. Implementation details can be found in Appendix A.4.
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Figure 4: Transfer success of retrieved skills when applied to test tasks. For each test task, we
retrieve a policy from the prior skill library using 5 different approaches (4 baselines and SRSA). We
train each approach for 3 random seeds if it involves training neural networks. Left: We illustrate
success rate averaged on 10 test tasks. Right: For each test task, we show the mean and standard
deviation of transfer success over 3 seeds. Overall, SRSA substantially outperforms baselines.

Given 100 tasks in AutoMate benchmark, we split the task set to have 90 prior tasks to build the
skill library and10 tasks as the new test tasks to solve. For both our and baseline methods, we train
the retrieval model for three runs with different random seeds, and report the average and standard
deviation of transfer success over three runs. Fig. 4 shows the result on the test task set. SRSA
performs best or second-best on all test tasks, except for one very challenging assembly where all
methods perform poorly (01029). In Appendix A.5, we additionally show the comparison for other
choices to split prior and test task sets. Overall, SRSA retrieves source policies that obtain around
20% higher success rates on the target tasks, compared with baselines.

5.2 SKILL ADAPTATION

In this section, we investigate policy learning on test tasks given the skill library. We compare
AutoMate (i.e., learning specialist policies from scratch (Tang et al., 2024) ) and SRSA (i.e., fine-
tuning retrieved specialist policy with self-imitation learning). Details are in Appendix A.4.
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Figure 5: Learning curves on test tasks. The x-axis and y-axis represent training epochs (where
each epoch consists of 128 environment steps over 256 parallel environments) and success rate,
respectively. The solid line shows the mean success rate over 5 runs with different random seeds,
and the shaded area denotes the standard deviation.
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Figure 6: Sample efficiency of policy
learning on test set. To achieve a desired
success rate (here, 0.70, 0.75, 0.80, 0.85,
or 0.90), we identify how many training
epochs are required for each run. We il-
lustrate the mean and standard deviation
across 5 runs with the points and error bars
in the figure, averaged over 10 test tasks.

We consider both the dense-reward setting (identical
to AutoMate) and the sparse-reward setting, without
the use of disassembly demonstrations or a curriculum.
The sparse-reward setting only provides a non-zero re-
ward signal to the agent when the assembly task suc-
ceeds. It is designed to emulate the real-world RL fine-
tuning setting, where dense-reward information can be
much more challenging to acquire.

Fig. 5 shows learning curves on the test task set. In
the dense-reward setting, SRSA achieves strong per-
formance with a fewer number of training epochs.
In the sparse-reward setting, AutoMate struggles to
achieve a reasonable success rate, whereas SRSA ben-
efits from the retrieved skill initialization and self-
imitation learning to reach higher performance. Addi-
tionally, in both settings, the learning curves of Auto-
Mate exhibit instability with fluctuating success rates
as training goes on. In Tab. 2 and Tab. 3 in Ap-
pendix A.5, we summarize the success rate at the last
epoch of training. In the dense-reward setting, SRSA
reaches a mean success rate of 84.7% better than Auto-
Mate (69.4%), corresponding to a relative improvement of 22% in performance with a substantially
smaller standard deviation, i.e. 3.7x greater stability. In the sparse-reward setting, SRSA delivers
a remarkable 139% relative improvement in average success rate compared to the baseline. Fig. 6
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demonstrates the number of training epochs required to reach a desired success rate in the dense-
reward setting. Averaged over 10 test tasks, SRSA requires far fewer training samples, i.e., at least
2.4 times fewer training epochs, to achieve an arbitrary success threshold.

5.3 REAL-WORLD DEPLOYMENT Asset ID 01029 01053 01079 01129 01136 Overall
AutoMate 7/10 1/10 7/10 4/10 8/10 54%

SRSA 9/10 8/10 8/10 10/10 10/10 90%

Figure 7: Real-world evaluation. We take the best
checkpoint of policies across 5 runs within 500 epochs
and report the success rate over 10 trials for each task.

We now deploy the trained specialist poli-
cies in the real world. As in (Tang et al.,
2024), we place the robot in lead-through
(a.k.a., manual guide mode), grasp a plug,
guide it into the socket, and record the pose
as a target pose. We then programmatically
lift the plug until free from contact, apply a perturbation for the position and rotation of the end ef-
fector, and deploy a policy to assembly the plug into the socket. Such conditions emulate the control
error and perceptual noise that are experienced in full assembly pipelines. In Tab. 7, we record
the performance of the best checkpoint over 500 training epochs. In this relatively-brief training
time, SRSA reaches higher success rates than the baseline for real-world assembly tasks. We show
keyframes of real-world assembly tasks in Fig. 2(c). For videos of the policy execution, please refer
to the project website https://srsa2024.github.io/.

5.4 CONTINUAL LEARNING

0.5 0.6 0.7 0.8

Success Rate

20
0

30
0

40
0

50
0

60
0

70
0

80
0

N
um

be
r o

f T
ra

in
in

g 
E

po
ch

s 
R

eq
ui

re
d

SRSA
AutoMate

(a)

1 2 3 4 5 6 7 8 9
Batch

0

20
0

40
0

60
0

80
0

10
00

N
um

be
r o

f E
po

ch
s

AutoMate
SRSA

(b)
Figure 8: (a) Sample efficiency of continual policy learning.. We report the number of training
epochs required to reach desired success rates (0.5, 0.6, 0.7, 0.8). We calculate the mean and stan-
dard deviation of required training epochs over 5 runs, and report the average over 90 tasks. (b)
Number of training epochs required in continual learning. We sequentially introduce 9 batches
of new tasks for policy learning, with each batch containing 10 new tasks. For each batch, we show
the mean and standard deviation of training epochs required to reach a success rate of 0.8. Obvi-
ously, SRSA requires less number of training epochs to reach a good success rate.

We study the continual-learning setting to obtain policies for each of the 100 AutoMate tasks. Rather
than training 100 policies from scratch in parallel, we start from a skill library with 10 tasks, and train
10 new policies for 10 new tasks utilizing the skill library. We repeat this process for 9 iterations,
eventually covering the entire benchmark. Essentially, we have a skill library that is gradually
expanded with an increasing number of specialist policies.

In Fig. 8, we compare the sample efficiency of SRSA and AutoMate when learning specialist policies
for 90 tasks outside the initial skill library. We consider different desired success rates, and report
the number of training epochs required to reach each success rate. Overall, SRSA requires fewer
training epochs to reach the desired success rate, demonstrating an 84% relative improvement in
sample efficiency (Fig. 8(a)). For each batch of new tasks, SRSA is more efficient than the baseline
regardless of the skill library and target tasks (Fig. 8(b)). In Fig. 14 in Appendix, we show the success
rates for the highest-reward checkpoints encountered in 5 runs for each task. SRSA achieves an
average success rate of 79% compared to AutoMate’s 70% across 100 tasks, while also exhibiting
better training efficiency. In Appendix A.5, we present learning results for another ordering of
batches of tasks, showing that the advantage of SRSA is agnostic to the order of encountering new
tasks.
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6 ABLATION STUDY
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Figure 9: Comparison for variants of SRSA with different changing component. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs. We show learning curves for more tasks in Appendix A.5.

Effect of Skill Retrieval In order to verify the effect of skill retrieval, we conduct skill adaptation
with retrieved skills using only a geometry embedding, i.e., the second best skill-retrieval approach
evaluated in Fig. 3. Fig. 9 shows the performance of policy fine-tuning for both our skill retrieval
approach (SRSA) and the geometry-based skill retrieval (SRSA-Geom). One can observe that re-
trieving a worse skill hinders learning efficiency, which starts from a lower success rate and requires
more training epochs to reach high performance. This shows that our retrieval approach with better
zero-shot transfer success also improves adaptation efficiency.

Effect of Self-imitation Learning To demonstrate the benefits of self-imitation learning (SIL) in
policy fine-tuning, we compare SRSA to the variant without this component (SRSA-noSIL). In
Fig. 9, SRSA outperforms the variant in terms of learning stability. In particular, SRSA-noSIL
suffers from more fluctuations during fine-tuning and a larger standard deviation of success rate
(shaded area) across runs with different seeds.

Effect of Generalist Policy We analyze whether fine-tuning a generalist policy outperforms fine-
tuning a selected specialist policy. For policy initialization, we use the generalist policy for 20
training tasks from (Tang et al., 2024) Although it does not cover numerous tasks, it is the strongest
generalist policy reported to date that can solve a diverse set of assembly tasks with an > 80%
success rate (Tang et al., 2024). Fig. 9 shows the learning curves of fine-tuning the generalist policy
on unseen tasks (SRSA-Gen). We observe that SRSA-Gen provides a weaker initialization compared
to SRSA. This may be because the generalist policy’s knowledge from the training tasks is less
specialized than the skills retrieved by SRSA. Also, the adaptation is less efficient, possibly due to
the larger neural network in generalist policy, which requires more fine-tuning to adapt to new tasks.

7 CONCLUSION

In this paper, we propose a pipeline to retrieve and adapt specialist policies to solve new assembly
tasks. To learn a retrieval model, we jointly learn features from geometry, dynamics and expert
actions to represent tasks, and predict transfer success to implicitly capture other transfer-related
factors from tasks. By combining skill retrieval with policy fine-tuning and self-imitation learning,
our method efficiently learns simulation-based policies. We demonstrate that these policies are
transferable to real-world robots for assembly tasks. Additionally, we demonstrate that our approach
can be used to continuously expand a skill library through efficient learning of various skills.

Our work has three key limitations: First, although we train policies for all assembly tasks in a
leading benchmark (Tang et al., 2024), we do not address assemblies requiring rotational or helical
motion (e.g., nut-and-bolt assembly). Second, we primarily concentrate on learning specialist (i.e.,
single-task) policies; future work could explore training generalist (i.e., multi-task) policies, and
furthermore, incorporating knowledge from both specialist and generalist policies to solve novel
tasks with even greater efficiency. Third, although our real-world success rates outperform the
state-of-the-art in sim-to-real transfer for our examined tasks, they still fall short of 95+% success
rates required for industry-level deployment. We believe that RL fine-tuning directly in real-world
settings could help bridge the sim-to-real gap and further improve success rates.
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A APPENDIX

A.1 ROBOT SETUP

Bench Vise

Plug

Socket

Figure 10: Real-world experimental setup. A Franka Panda robot and a bench vise are mounted
to a tabletop. At the beginning of each episode, a 3D-printed plug is grasped by the robot gripper
and and a 3D-printed socket is haphazardly placed in the bench vise. The task is to control the robot
arm and fully insert the plug into the socket.

A.2 MOTIVATION WITH THEORETICAL PERSPECTIVE

Transferring knowledge from a source task to a target task can improve training efficiency and
asymptotic performance. Consider a source task Tj and target task Ti, which are MDPs that share
state space S , action space A, and reward function r, but have distinct transition functions pi, pj
and initial state distributions ρi, ρj . To measure the transferability of a policy, we apply the same
policy on both tasks and examine the difference in their expected values. Here we note that the
value difference depends primarily on the difference in their transition functions pi, pj and initial
state distributions ρi, ρj (Proposition 1).

Proposition 1. Let Ti = {S,A, pi, r, γ, ρi} and Tj = {S,A, pj , r, γ, ρj} be two MDPs in the task
space T . Applying a policy π on Ti and Tj , we have a function f to describe the value difference:

V π(ρi, Ti)− V π(ρj , Tj) = f(pi − pj , ρi − ρj)
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Proof.

V π(ρi, Ti)− V π(ρj , Tj) = Es∼ρi(·)Ea∼π(·|s)Q
π(s, a, Ti)− Es∼ρj(·)Ea∼π(·|s)Q

π(s, a, Tj)

= Es∼ρi(·)Ea∼π(·|s)[Q
π(s, a, Ti)−Qπ(s, a, Tj)]

+Es∼ρi(·)Ea∼π(·|s)Q
π(s, a, Tj)− Es∼ρj(·)Ea∼π(·|s)Q

π(s, a, Tj)

= Es∼ρi(·)Ea∼π(·|s)[Q
π(s, a, Ti)−Qπ(s, a, Tj)]

+Es∼ρi(·)V
π(s, Tj)− Es∼ρj(·)V

π(s, Tj)

= Es∼ρi(·)Ea∼π(·|s)[Q
π(s, a, Ti)−Qπ(s, a, Tj)] +

∑
s

(ρi − ρj)V
π(s, Tj)

For the Q-value difference Qπ(s, a, Ti)−Qπ(s, a, Tj), we refer to the simulation lemma in (Agarwal
et al., 2019):

Qπ(Ti)−Qπ(Tj) = γ(I − γPπ(Tj))
−1(pi − pj)V

π(Ti)

where Pπ(Tj) denotes the transition matrix on state-action pairs induced by the policy π on the task
Tj , i.e., Pπ

(s,a),(s′,a′)(Tj) = pj(s
′|s, a)π(a′|s′).

Consequently, Qπ(s, a, Ti) − Qπ(s, a, Tj) is the (s, a) item in the matrix Qπ(Ti) − Qπ(Tj), and
Qπ(s, a, Ti)−Qπ(s, a, Tj) can be expressed as a function of (pi − pj).

Overall, the value difference V π(ρi, Ti) − V π(ρj , Tj) depends primarily on (pi − pj) and (ρi −
ρj).

Assume the reward function r is a sparse, binary term indicating task success at the end of
an episode. The success rate of applying a policy π to a task T can be represented as
V π(ρ) = Es0∼ρEτ∼pπ(τ |s=s0)[

∑∞
t=0 γ

trt]. Here, our success rate V π(ρj , Tj) will naturally be
high, because the source policy π is already an expert policy for the source task Tj . When the
success rate of applying the source policy to target task Ti is also high, i.e., V π(ρi, Ti) is close to
V π(ρj , Tj), then Proposition 1 implies that the transition functions pi and pj might be similar, as are
the initial state distributions ρi and ρj . Consequently, if a source policy can achieve high zero-shot
transfer success on a target task, the target task might have a similar transition function and initial
state distribution as the source task. Hence, we hypothesize that fine-tuning the source policy on the
target task will be efficient.

However, it is important to note that achieving a similarly high success rate on two tasks with a single
policy does not necessarily indicate similar dynamics between the tasks. Proposition 1 establishes
that similar dynamics and initial state distributions lead to similar expected values for a given policy,
but the reverse is not guaranteed. We use the high transfer success rate as a heuristic indicator of
similar dynamics, serving as intuitive motivation rather than strict theoretical justification.
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A.3 METHOD

Algorithm 1 Policy finetuning with Self-imitation Learning

Initialize parameter θ for policy πθ and value function Vθ with retrieved skill
Initialize replay buffer D ← ∅
Initialize episode buffer E ← ∅
for each iteration do

# Collect training samples
for each step do

Execute an action st, at, rt, st+1 ∼ πθ(at|st)
Store transition E ← E ∪ {(st, at, rt)}

end for
if st+1 is terminal then

# Update replay buffer
Compute returns Rt =

∑∞
k γk−trk for all t in E

D ← D ∪ {(st, at, Rt)} for all t in E
Clear episode buffer E ← ∅

end if
# Update parameter θ using PPO objective
θ ← θ − η∇θLppo (Schulman et al., 2017)
# Perform self-imitation learning
for m = 1 to M do

Sample a mini-batch {(s, a,R)} from D
θ ← θ − η∇θLsil

end for
end for

Algorithm 2 Continual Learning with Skill Library Expansion

Require: Prior tasks Tprior = {T1, T2, · · · , Tn}; Skill library Πprior = {π1, π2, · · · , πn}
1: while given newly coming batch of tasks T j = {T1, T2, · · · , Tk} do
2: for each task Ti do
3: Retrieve a policy πsrc from the skill library Πprior

4: Finetune πsrc to get a policy πi solving the task Ti

5: Expand the skill library, Tprior = Tprior ∪ {Ti}; Πprior = Πprior ∪ {πi}
6: end for
7: end while
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A.4 IMPLEMENTATION DETAIL

A.4.1 TASK FEATURE LEARNING IN SRSA

Geometry Features As shown in Fig. 3(a), we employ a PointNet-based (Qi et al., 2017) autoen-
coder EG and DG to minimize the difference between input point cloud P and reconstructed point
cloud DG(EG(P )). The autoencoder is trained using point clouds of parts from all tasks.

We follow the implementation details outlined in (Tang et al., 2024). In a large set of meshes M for
various assembly parts, each mesh mi ∈ M consists of (Vi, Ei), where V denotes the vertices and
E represents the (undirected) edges. During each training iteration, we sample a batch of meshes
B ⊂ M . For each mi ∈ B, we generate a point cloud Pi from the mesh, with each point located
on the surface of mi. The point cloud Pi ghdn is passed through a PointNet encoder (Qi et al.,
2017) based on the implementation from (Mu et al., 2021) to produce a latent vector. The latent
vector zG,i is subsequently fed into a fully-convolutional decoder, following the implementation
from (Wan et al., 2023) to produce the reconstructed point cloud P ′

i .

The network is trained to minimize reconstruction loss, defined here as the Chamfer distance be-
tween Pi and P ′

i :

LCD =
1

∥Pi∥
∑
p∈Pi

min
q∈Qi

∥p− q∥22 +
1

∥Qi∥
∑
q∈Qi

min
p∈Pi

∥p− q∥22

Across 100 two-parts assembly tasks, we utilize a total of 200 meshes for the plug and socket
components with |M | = 200. Each sampled point cloud Pi contains 2000 points and the dimension
of learned embedding is |zG,i| = 32. The autoencoder is trained for a total of 23,000 epochs, using
a batch size of 64 and a learning rate of 0.001.

To represent the feature of one task, we gather the geometry features for the meshes of plug, socket,
and the assembled state of the plug inserted in the socket. Therefore, the geometry feature of one
task is concatenation of these three features, resulting in a dismensionality of, |zG,i| = 96.

Dynamics Features We build upon prior work in context-based meta-RL (Rakelly et al., 2019;
Lee et al., 2020) to utilize a context encoder ED that produces a latent vector from transition seg-
ments τt−1 = {st−h, at−h, st−h+1, at−h+1, · · · , st−1, at−1}, as shown in Fig. 3(b). We sample the
transition segments from disassembly trajectories, compute the latent vector ED(τt−1), and feed the
latent vector from transition segments to a forward dynamics model DD across all tasks. For any
transition samples from any task, the forward dynamics model is trained to predict the next state
s′t+1 = DD(ED(τt−1), st, at) to be close to the ground-truth next state st+1.

As described in (Tang et al., 2024), for each task, we generate disassembly paths by initializing the
robot hand to grasp the plug in the assembled state, where the plug is fully inserted in the socket.
Using a low-level controller, we lift the plug from the socket and move it to a randomized pose.
We repeat this process until collecting 100 successful disassembly trajectories. We store the state
of end-effector position and the action of moving end-effector at each timestep in the disassembly
trajectories. Each task has a total of 100 disassembly trajectories, with each trajectory spanning 128
timesteps.

We sample the transition segment τt−1 = {st−h, at−h, st−h+1, at−h+1, · · · , st−1, at−1} for h = 10
timesteps. The context encoder is modeled as multi-layer perceptrons (MLPs) with 3 hidden lay-
ers of sizes (256, 128, 64), producing a 32-dimensional vector zD,t. Then, the forward dynamics
model DD receives the context vector as an additional input, where the input consists of a concate-
nation of state st, action at, and context vector zD,t. The forward dynamics model comprises four
fully-connected layers of sizes (200, 200, 200, 200) with ReLU activation functions, outputing the
prediction of the next state s′t+1. The objective is to minimize L2-distance between the ground-truth
next state st+1 and the predicted next state s′t+1. For the entire set of disassembly trajectories across
100 tasks, we train the encoder and forward dynamics model for 200 epochs, using a batch size of
128 and a learning rate of 0.001.

Expert Action Features We utilize the disassembly trajectories as reverse expert demonstrations
for assembly tasks and aim to capture expert action information in an embedding space. As illus-
trated in Fig. 3(c), we sample a transition segment τt−1 from the disassembly trajectories, map it
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to the action embedding EA(τt−1), and reconstruct the action sequence {at−h, at−h+1, · · · , at−1}
using decoder DA. We train both the encoder and decoder with transition segments from all tasks.
This embedding effectively extracts the strategy for solving the task by reconstructing the expert
actions from the disassembly trajectories.

We sample the transition segment τt−1 = {st−h, at−h, st−h+1, at−h+1, · · · , st−1, at−1} for 10
timesteps (i.e., h = 10). The action encoder EA is modeled as multi-layer perceptrons (MLPs)
with three hidden layers of sizes (256, 128, 64), producing a 32-dimensional vector zA,t. The
action decoder DA is an MLP with four hidden layers of sizes (200, 200, 200, 200) that pre-
dicts the sequence of expert actions {a′t−h, a

′
t−h+1, · · · , a′t−1}. We minimize the L2-distance

between input action sequence {at−h, at−h+1, · · · , at−1} and the reconstructed action sequence
{a′t−h, a

′
t−h+1, · · · , a′t−1}. The encoder and decoder are trained for 200 epochs, using a batch size

of 128 and a learning rate of 0.001.

A.4.2 TRANSFER SUCCESS PREDICTION IN SRSA

We learn the function F (πsrc, Ttrg) to predict the transfer success. For any pair of source policy
and target task in the skill library, we execute the source policy in the target task for 1000 episodes
and average the success rate to obtain the ground-truth label for F . For any task T in the prior task
set, we sample the point cloud Pi of plug, socket and assembly state to extract the geometry feature
zG,i with a dimension of 96. Then we sample transition segment τi to obtain the dynamics feature
zD,i with a dimension of 32 and action feature zA,i with a dimension of 32. By concatenating
these features, we create a task feature zi with a dimension of 160 for the sampled point clouds and
transition segment. With both the task features zsrc,i and ztrg,i for source and target tasks, we feed
them into an MLP with one hidden layer of size 128 to predict the transfer success. We optimize
the MLP while jointly finetuning the feature encoders EG, ED, and EA to learn the transfer success
prediction. The training is conducted for 50 epochs across all source-target pairs in the prior task
set.

A.4.3 BASELINES OF SKILL RETRIEVAL APPROACHES

Signature : path signature can represent trajectories as a collection of path integrals and also
quantify distances between trajectories. Inspired by (Tang et al., 2024), we find the closest path
signature for skill retrieval. For each disassembly trajectory τk on the target task T , we calculate the
path signature zk and search all disassembly trajectories over all source tasks to identify a source
disassembly trajectory τj with the path signature zj closest to zk. The source disassembly trajectory
τj belongs to a source task in Tprior, and thus we match the target trajectory τk to this source task,
denoted as Tk. We count the times that one source task Tsrc ∈ Tprior is assigned as the source
task for a target disassembly trajectory, C(Tsrc) =

∑n
k=1[Tk = Tsrc]. Then we retrieve the source

policy for one source task with the highest count, i.e. argmaxTsrc
C(Tsrc)

Behavior : Inspired by (Du et al., 2023), we employ state-action pairs on disassembly trajectories
across all tasks and learn a state-action embedding with a VAE for skill retrieval. For any state-
action pair (sk, ak) on the target task, we infer the embedding zsa,k and look for one state-action
pair (sj , aj) from the disassembly trajectories in source tasks with the embedding zsa,j closest
to zsa,k. The target state-action pair (sk, ak) is matched to one source task, which (sj , aj) be-
longs to. We denote this source task as Tk. Similar to the method above, we count the times
that one source task Tsrc ∈ Tprior is assigned as the source task for a target state-action pair,
C(Tsrc) =

∑n
k=1[Tk = Tsrc]. Then we retrieve the source policy for one source task with the high-

est count, i.e. argmaxTsrc
C(Tsrc)

Forward : As explained above, we learn the latent vector for transition sequence τ on disassembly
trajectories. In order to retrieve one source task according to the distances between task embeddings,
we average embedding for all transition sequences from the same task to obtain the task embedding,
similar to (Guo et al., 2022). We retrieve the policy for the source task that has the closest task
embedding.
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Hyperparameters Value
Policy Network Architecture [256, 128, 64]
Value Function Architecture [256, 128, 64]

LSTM network size 256
Horizon length (T) 32
Adam learning rate 1e-4
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Entropy coefficient 0.0
Critic coefficient 2
Minibatch size 8192

Minibatch epochs 8
Clipping parameter (ϵ) 0.2

LSTM network size 256
SIL update per iteration 1

SIL batch size 8192
SIL loss weight 1

SIL value loss weight (β) 0.01
Replay buffer size 105

Exponent for prioritization 0.6

Table 1: Hyperparameters in PPO and Self-imitation learning

Geometry : As explained above, we learn an autoencoder for the point clouds of the assembly
assets to minimize the reconstruction loss, as conducted in (Tang et al., 2024). We retrieve the
policy for the source task with the closest point-cloud embedding.

A.4.4 SKILL ADAPTATION IN SRSA

Following (Tang et al., 2024), we use PPO to train the stochastic policy πθ (i.e., actor) and an ap-
proximation of the value function Vθ (i.e., critic), parameterized by a neural networks with weights
θ. While the policy is stochastic following a multivariant normal distribution with the learned mean
and standard deviation, at evaluation and deployment time, the action output from well-trained pol-
icy is deterministic.

The input state for the policy network consists of the robot arm’s joint angles, the end-effector pose,
the goal end-effector pose, and the relative pose of the end effector to the goal. The state has a
dimensionality of 28.

Due to the asymmetric actor-critic strategy, the states provided to the value function include privi-
leged information not available to the policy. The states for the critic include joint velocities, end-
effector velocities, and the plug pose, resulting in an input dimensionality of 44 for the value func-
tion.

The action space consists of incremental pose targets, representing the position and orientation dif-
ferences between the current pose and the target pose. We use incremental targets instead of absolute
targets to restrict selection to a small, bounded spatial range. The action dimensionality is 6.

SRSA combines PPO with a self-imitation learning mechanism for policy fine-tuning. We maintain
a replay buffer D for transitions encountered during training, defined as D = {si, ai, Ri}. The data
samples in the buffer are prioritized based on the discounted accumulated reward.

As shown in Algorithm 1, each iteration includes one PPO update for the policy and value function,
along with a batch sampling from D to perform one self-imitation learning update. This update
aims to minimize the loss function Lsil defined in Sec. 4.2. For details on network architectures and
hyperparameters, refer to Tab. 1.

We follow prior work to use object poses rather than visual observations as input to the policy.
Incorporating vision-based observations would introduce additional challenges for zero-shot sim-
to-real transfer, as it requires a camera. In contrast, the current policy only relies on the fixed
socket pose and the robot’s proprioceptive features (including the end-effector pose), making it
more straightforward to execute the policy in real-world settings.
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Using visual observations or object pose is orthogonal to our proposed method (i.e., SRSA is in-
dependent of the observation modality). The high-level idea of retrieving a relevant skill and fine-
tuning the retrieved policy remains applicable in scenarios involving vision-based policies. The
geometry features derived from point clouds in our task representation can partially capture visual
similarities between tasks. This enables the retrieval of source tasks that are visually similar to the
target task to some degree.

At the same time, SRSA may require modifications to better support vision-based policies. Here is
no guarantee that the retrieved source and target tasks are visually similar enough and the features
extracted by the vision encoder in policy might differ significantly on source and target tasks. This
could pose challenges for fine-tuning the policy on the target task.

To address this, we consider two distinct directions: 1. how to perform retrieval to better account
for visual similarity; 2. how to train specialist policies with visual encoders such that the current
SRSA retrieval strategy is still likely to work. Below, we propose specific approaches for these two
directions.

1. Enhancing retrieval by incorporating features from visual observations: For example, integrating a
Variational Autoencoder (VAE) to extract features from visual observations (as in BehaviorRetrieval
(Du et al., 2023)) and combining these with other task representations might improve the retrieval
process. Additionally, learning dynamics features, such as predicting future visual observations,
could implicitly encode relevant visual information in task features for retrieval.

2. Improving the robustness of the visual encoder in policy: Training the specialist source policy
with significant data augmentation (e.g., randomizing colors, poses, backgrounds, etc.) could make
the visual encoder in the source policy more robust to diverse visual observations. It is more likely
to extract similar features from geometrically similar tasks. Alternatively, leveraging state-of-the-art
visual foundation models (e.g., DINOv2 (Oquab et al., 2023)) as visual encoders in specialist poli-
cies could further enhance generalization and robustness. These models have demonstrated strong
performance in handling diverse observations and sim-to-real challenges, as shown in PoliFormer
(Zeng et al., 2024). Consequently, we believe that features extracted by such visual encoders are
likely to remain consistent for visual observations across geometrically similar tasks.

A.5 EXPERIMENTS

A.5.1 SKILL RETRIEVAL

We first replicate the specialist policy learning for 100 assembly tasks as described in (Tang et al.,
2024). Then, these 100 tasks are split into 90 prior tasks and 10 test tasks. For the 90 prior tasks, we
use the well-trained specialist policies to build the skill library.

We train the skill-retrieval method on the prior tasks and evaluate its performance on the test tasks.
In Fig. 4 in main text, 11, and 12 in Appendix, we present the test results for three different ways
of splitting the 100 tasks. Overall, SRSA demonstrates superior performance in identifying relevant
policies from the skill library, achieving a high success rate in zero-shot transfer.
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Figure 11: Transfer success of retrieved skills applied to test tasks. For each of the test tasks, we
retrieve a policy from the prior skill library using 5 different approaches. For each approach, if it
involves training neural networks, we train it for 3 random seeds. Left: we illustrate the mean result
over 10 test tasks. Right: For each test task, we show the mean and standard deviation of transfer
success over 3 seeds. Overall, SRSA clearly outperforms baselines.
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Figure 12: Transfer success of retrieved skills applied to test tasks. For each of the test tasks, we
retrieve a policy from the prior skill library using 5 different approaches. For each approach, if it
involves training neural networks, we train it for 3 random seeds. Left: we illustrate the mean result
over 10 test tasks. Right: For each test task, we show the mean and standard deviation of transfer
success over 3 seeds. Overall, SRSA clearly outperforms baselines.

A.5.2 SKILL ADAPTATION

We show the learning curves in Fig. 5 in main text. At the end of 1000 training epochs, we record
the success rate of the learned policies on 10 test tasks. For AutoMate, the policies are learned from
scratch using PPO on the 10 test tasks. In contrast, SRSA initializes the policies with retrieved skills
and fine-tunes them using PPO combined with self-imitation learning. The retrieval mechanism is
trained on a skill library of 90 prior tasks, where the skills were pre-trained by AutoMate.

Compared to the baseline success rate of 69.4%, SRSA achieves a significantly higher success rate
of 84.7%, corresponding to an absolute improvement of 15.3 percentage points and a relative im-
provement of approximately 22.0%. By leveraging the knowledge from the skill library, SRSA also
obtains 3.7x lower standard deviation compared to AutoMate (Tab. 2). This advantage becomes
even more pronounced in sparse-reward scenarios, where SRSA shows an absolute improvement of
41.9 percentage points and a relative improvement of 139% in comparison with baseline. (Tab. 3).

Task ID 01029 01036 01041 01053 01079 01092 01102 01125 01129 01136 Average

AutoMate 53.4 89.0 79.1 49.1 74.3 59.4 76.4 49.6 76.0 87.3 69.4
(27.4) (7.7) (8.4) (15.3) (32.9) (13.1) (11.4) (3.2) (3.0) (4.2) (12.7)

SRSA 98.5 91.3 83.3 75.4 93.60 78.3 92.5 50.6 85.8 98.4 84.7
(0.4) (6.0) (4.4) (6.4) (3.6) (6.3) (0.5) (1.6) (4.0) (0.4) (3.4)

Table 2: Mean (standard deviation) of success rate (%) on each test task, in dense-reward
setting. We calculate the mean and standard deviation over 5 runs of different random seeds, at the
last training epoch (i.e. 1000 epochs).

Task ID 01029 01036 01041 01053 01079 01092 01102 01125 01129 01136 Average

AutoMate 61.3 37.2 14.4 0 81.7 0 1.4 9.8 55.6 39.7 30.1
(26.5) (31.4) (1.6) (0.5) (15.1) (0.5) (1.0) (2.0) (6.0) (5.4) (9.0)

SRSA 95.1 78.7 33.7 92.5 96.1 51.4 70.7 51.2 90.3 60.5 72.0
(1.1) (8.9) (6.4) (2.2) (1.7) (5.5) (2.9) (9.3) (7.2) (2.6) (4.8)

Table 3: Mean (standard deviation) of success rate (%) on each test task, in sparse-reward
setting. We calculate the mean and standard deviation over 5 runs of different random seeds, at the
last training epoch (i.e., 1000 epochs).

A.5.3 CONTINUAL LEARNING

We begin with an initial skill library containing 10 policies and expand its size by 10 policies per
round over 9 rounds, eventually reaching 100 policies. When the skill library contains fewer than 40
policies, the number of source-target task pairs from the prior task set is limited. During this phase,
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we retrieve skills solely based on geometry embeddings. Once the skill library reaches 40 or more
policies, we train the transfer success prediction function F to guide skill retrieval for new tasks.

In the continual learning setting, Fig. 8 in main text and Fig. 13 in Appendix show the efficiency of
SRSA and AutoMate under two different task batch orderings. In both cases, SRSA demonstrates
significantly better sample efficiency compared to AutoMate.
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Figure 13: (a) Sample efficiency of policy learning in a continual-learning setting. We report how
many training epochs are required to reach desired success rates (0.5, 0.6, 0.7, 0.8). We calculate the
mean and standard deviation of training epochs over 5 runs, and report the average over 90 tasks.(b)
Number of training epochs required for different batches. In the continual-learning scenario,
we proceed through 9 batches of new tasks for policy learning, with each batch containing 10 new
tasks. For each batch, we show the mean and standard deviation of training epochs required to reach
a success rate of 0.8. SRSA requires less number of training epochs to reach a good success rate.

Additionally, we compare SRSA and AutoMate based on the best checkpoint, measured by the
highest rewards achieved over 5 runs for each task. In our replication of AutoMate, we achieved
an average success rate of 70% across 100 assembly tasks, which is lower than the 80% reported in
the original paper. This discrepancy may be due to differences in simulator versions, asset meshes,
implementation details, and other factors.

On average, SRSA achieves a success rate of 79% in Fig. 14 and 73% in Fig. 15, for two cases of
task ordering, respectively. SRSA demonstrates a higher success rate and better sample efficiency
than the baseline AutoMate.
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Figure 14: Comparison of SRSA and AutoMate success rate over 100 tasks. We replicate the
specialist policy learning in the AutoMate paper over all tasks, and run SRSA with the continual-
learning approach to train 90 specialist policies with initial skill library of 10 policies. For both
approaches, for each task, we select the best checkpoint among 5 runs with different random seeds.
We compare the success rate on all the tasks. On average, SRSA achieves a higher success rate.

A.5.4 ABLATION STUDY

Fig. 16 illustrates the learning curves of different SRSA variations across 10 test tasks.
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Figure 15: Comparison of SRSA and AutoMate success rate over 100 tasks. We replicate the
specialist policy learning in the AutoMate paper over all tasks, and run SRSA with the continual-
learning approach to train 90 specialist policies with the initial skill library of 10 policies. For both
approaches, for each task, we select the best checkpoint among 5 runs with different random seeds.
We compare the success rate on all the tasks. On average, SRSA achieves a higher success rate.

Skills retrieved based solely on geometry embeddings may face challenges during adaptation due
to dynamic differences between the source and target tasks. As a result, the learning curves of
SRSA-Geom tend to be less efficient and more unstable than SRSA.

When self-imitation learning is removed (SRSA-noSIL) from SRSA, the learning curves show in-
creased fluctuation and higher variance across runs.

For the generalist policy, which was trained on 20 tasks from AutoMate (including tasks 01036,
01041, 01129, 01136), fine-tuning on these tasks yields strong performance since the policy was
already optimized for them. However, on other test tasks, the generalist policy is not as effective for
efficient policy learning compared to the skills retrieved by SRSA.

Fine-tuning a state-based generalist policy does not perform well because the generalist policy has
limited capacity and it cannot cover more than 20 training tasks.

As prior work AutoMate (Tang et al., 2024) has shown, the training success rate of a state-based
generalist policy decreases significantly when the number of training tasks exceeds 20, given a fixed
policy architecture of RNN and MLP. We believe that this may be because each task requires precise
control across distinct geometric features, and their single policy cannot capture the strategies for all
these challenging tasks.

While “increasing model capacity” or moving toward a ”large data and large model” regime might
help mitigate this problem, it might introduce other challenges. Simply scaling model capacity
could result in a generalist policy that works well in-domain but operates more like a ”switching
circuit,” effectively storing task-specific strategies without generalizing to out-of-domain tasks. This
approach is suboptimal as it prioritizes in-domain performance at the expense of out-of-distribution
generalization. So we do not want to increase the model capacity indefinitely. Instead, we may need
a more advanced architecture (e.g. diffusion policy) or model-based RL approach with planning to
better handle diverse tasks.

That said, several open questions remain for state-based generalist policy: How to design policy
architectures capable of high-precision control across many tasks? How to train the generalist policy
efficiently on many assembly tasks considering possible gradient conflicts? How many training tasks
are needed to achieve strong out-of-distribution generalization performance for new assembly tasks?

Fine-tuning a vision-based generalist policy presents additional challenges, such as effectively learn-
ing a generalist policy across multiple prior tasks with high-dimensional vision observations, fine-
tuning on new tasks without forgetting prior ones, and addressing continual learning scenarios, in-
cluding whether to fine-tune the original generalist policy or one already fine-tuned on other tasks.
We made an initial attempt to train a vision-based generalist policy with PPO and fine-tune it. Given
90 prior tasks, it can only reach around 10% average success rate after training for two days. We
expect such a generalist policy would perform no better than random initialization when fine-tuned
for new tasks. Vision-based RL for generalist policy on assembly tasks is a relevantly new topic, and
the development of such policies lies beyond the scope of SRSA. We leave this direction for future
research.
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Figure 16: Comparison for variants of SRSA with different ablated components. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs.

A.6 COMPARISON WITH GEOMETRY-BASED RETRIEVAL

During adaptation, the final performance of SRSA-geom looks close to SRSA in some cases (see
Fig. 16). However, it is statistically worse than SRSA, especially when there is a smaller number of
training epochs. To provide a more comprehensive evaluation, we run SRSA-geom and SRSA across
additional target tasks with three random seeds. The table below summarizes statistics of success
rate at different numbers of training epochs, showing that SRSA consistently achieves higher success
rates with lower variance. In industrial settings, a 3–9% difference in success rate can be significant.
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Test task set 1 Test task set 2
Success rate (%) Epoch 500 Epoch 1000 Epoch 500 Epoch 1000

SRSA-geom 73.6 (± 6.9) 81.0 (±7.7) 67.7(±7.1) 71.4(±8.1)
SRSA 82.8(±4.2) 84.3(±3.4) 76.2(±3.0) 77.6(±3.5)

Geometry-based retrieval alone is not always sufficient. When tasks share similar geometry but have
different dynamics, SRSA-geom struggles to transfer as effectively as SRSA.

For example, for the target task 01092, SRSA-geom retrieves source task 00686, achieving a transfer
success rate of only 61.1%, whereas SRSA retrieves task 00213 with a higher success rate of 76.7%.
While the overall shapes of 01092 and 00686 are similar (see below), the lower part of plug in task
01092 is thinner than the upper part, and there is only a short distance to insert this lower part into
the socket. These features closely resemble task 00213, i.e., a narrow plug to be inserted a short
distance to accomplish assembly. These shared physical characteristics and similar task-solving
strategies make 00213 better suited for transfer. In assembly tasks, the dynamics of the contact
region are often more critical than overall geometry for task success. Therefore, source task 00213
works better than 00686 when transferring to the target task 01092.

(a) Assembly tasks in the first example (b) Assembly tasks in the second example

Additionally, we examine assembly tasks with identical geometry but differing physical parameters.
For instance, consider the target task 01136 with a friction value of 10.0. One source task has the
same geometry as 01136 but a significantly lower friction value of 0.5. SRSA-geom selects this
source task due to its geometric similarity; however, the corresponding source policy achieves only
88.9% transfer success on the target task, due to the friction mismatch (despite achieving a 99.3%
success rate on its original source task). In contrast, SRSA selects the source task 00213, whose
policy better aligns with the target task’s dynamics, resulting in a higher transfer success rate of
93.2%

A.7 ANALYSIS OF SOURCE POLICY SUCCESS AS INPUT FOR RETRIEVAL

The success rate of the source policy on the source task is meaningful information to represent the
source policy. To see whether it is practically beneficial for retrieval, we modify our approach. We
simply concatenate this source success rate information with the task features of source and target
tasks. We train the transfer success predictor F with these features as inputs.

We consider three random splits between the prior task set (90 tasks) and test task set (10 tasks).
For each split, we train F on the prior task set over three random seeds. For each seed, we test the
trained function F on the test task set for retrieval. We report the mean transfer success rate of the
retrieved skills on 10 test tasks, with the standard deviation reported over three seeds. Empirically,
the source success rate as input to F only slightly improves the retrieval results.

Average transfer success (%) Test task set 1 Test task set 2 Test task set 3
SRSA 62.7 (+-5.7) 53.7 (+-5.5) 44.9 (+-2.4)

SRSA+source success rate 66.7 (+-0.3) 53.7(+-2.6) 43.7 (+-3.7)

A.8 ANALYSIS OF OUT-OF-DISTRIBUTION TEST TASKS

For out-of-distribution (OOD) tasks where no skill transfers zero-shot, SRSA may indeed struggle,
and the initialization from a retrieved skill might not help much. To tackle this, it’s essential to build
a skill library that’s as diverse as possible. When the target task falls outside the current library’s
distribution, we can use SRSA’s continual learning approach (section 4.3 & 5.4) to expand the library
with new tasks. By building a larger, more varied skill library, we increase the likelihood that this
target task will align better with tasks in the skill library.
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We run experiments for target tasks with IDs 00004, 00015, 00016, 00028, 00030. These tasks
suffer from low transfer success rate given a small skill library with only 10 prior tasks. However,
when we have a larger and larger skill library, the retrieved skill has a higher transfer success rate on
the target task.

Transfer success rate (%) 00004 00015 00016 00028 00030
10-task library 15.9 6.9 0.2 12.2 39.1
50-task library 12.7 8.4 0.3 27.5 49.4
90-task library 24.2 28.4 19.3 18.1 82.6

As demonstrated, continual learning to expand the skill library is a promising step; however, gener-
alizing to OOD tasks is a longstanding challenge in robotics, and it is still an open question how to
optimally construct the curriculum that governs the expansion of the skill library.

A.9 ANALYSIS OF OTHER METRICS FOR RETRIEVAL

We acknowledge that zero-shot transfer success rate may not be a perfect proxy for retrieval. We can
consider several other possible metrics for retrieval: (1) Ground-truth success rate after adaptation
(2) Predicted success rate after adaptation (3) Predicted success rate in zero-shot manner (i.e. SRSA)
(4) Predicted dense rewards in zero-shot manner.

Option 1 is the ideal metric to identify the best skill for retrieval, as our final goal is to obtain the
highest success rate on the target task after adaptation. However, it introduces a chicken-and-egg
problem, as we cannot get this metric without fine-tuning all candidate policies on the target task.

Option 2 requires training a predictor for the success rate after adapting any source policy on any
target task. We need the training labels of the ground-truth success rate after adaptation. Unfor-
tunately, collecting this training data would require extensive computational resources. For each
source-target pair, we need at least 20 GPU hours to finish adaptation; given a skill library of 100
tasks, 200,000 GPU hours would be required to collect training data. Furthermore, it will remain
intractable as the skill library becomes larger.

Option 3 (SRSA) requires much less resources to collect training data for the predictor. We only
need 20 minutes on a GPU to evaluate one source policy on a target task. It thus requires 3,000 GPU
hours to collect training labels. We conduct an experiment to compare the performance of Option 1
and Option 3 on two test tasks. To collect experimental results for Option 1, for each test task, we
sweep all 90 source policies in our skill library. We finetune each source policy with one random
seed to adapt to the target task and identify the best success rate after adaptation. We only afford the
computational resources for two test tasks to sweep fine-tuning for Option 1. Below we report the
success rate of Option 1 and Option 3 after fine-tuning for 1500 epochs

Success rate after adaptation (%) Test task 1036 Test task 1041
Option 3 (SRSA) 95.9 89.1

Option 1 98.3 94.0

Option 1 is the perfect but intractable metric for retrieval. The difference of success rate between the
SRSA-retrieved skill (Option 3) and the best source skill (Option 1) is less than 5% after adaptation.
Therefore, although zero-shot transfer success rate is not a perfect metric for retrieval, it is a high-
quality metric for retrieval in terms of both performance and computational efficiency.

Furthermore, we consider using dense reward information to guide retrieval (Option 4). We learn to
predict the accumulated reward rather than success rate on the target task when executing the source
policies in a zero-shot manner; then we retrieve the source policy with the highest predicted transfer
reward. In the table below, we show the performance of retrieved skills when they are applied on
the target tasks.

In the AutoMate task set, Option 3 (SRSA) yields slightly better skill retrievals, especially with
higher transfer success on the target task. However, success rate may not accurately reflect the
expected value for tasks with dense rewards. The higher transfer success rate does not mean higher
transfer reward in test task set 2. Therefore, if it is critical to prioritize the reward achieved on the
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Test task set 1 Test task set 2
Transfer reward Transfer success (%) Transfer reward Transfer success (%)

Option 3 (SRSA) 8134 62.7 7722 53.7
Option 4 7976 54.8 7935 32.6

target task, using the transfer-reward predictor for retrieval is a reasonable choice. Conversely, if the
success rate on the target task is more critical (as in our assembly tasks), the transfer success would
be the preferred choice as a retrieval metric.

A.10 ANALYSIS OF DISTANCE METRICS FOR TASK FEATURES

We concatenate the features of geometry, dynamics and expert actions as the task features, and apply
some distance metrics between the vectors as the metrics for retrieval. We consider three different
ways to split the prior task set (90 tasks) and test task set (10 tasks). We consider L2 distance, L1
distance, and negative cosine similarity as distance metrics. For each test task, we retrieve the source
task with the closest task feature to the target task. However, the retrieval result is worse than SRSA
on three different test task sets.

Transfer success rate (%) L2 distance L1 distance Cosine similarity SRSA
Test task set 1 51.6 50.8 52.6 62.7
Test task set 2 47.1 49.0 46.5 53.7
Test task set 3 35.3 35.0 36.1 44.9

We jointly learn features from geometry, dynamics and expert actions to represent tasks, and pre-
dict transfer success to implicitly capture other transfer-related factors from tasks. SRSA learning
function F aims to capture additional information for transfer success prediction. Therefore, the pre-
diction function F provides a better metric to identify the source task with higher zero-shot transfer
success.

A.11 ABLATION STUDY ON POLICY INITIALIZATION AND SELF-IMITATION LEARNING

As for policy learning, AutoMate is PPO from random policy initialization, and SRSA is PPO with
self-imitation learning (SIL) after initialization with the retrieved skill. Thus, the main difference
between SRSA and AutoMate lies in (1) strong initialization from retrieval and (2) SIL. In section
6, we compared SRSA and SRSA-noSIL to show the effect of SIL. Below, we additionally com-
pare with SRSA with random initialization (SRSA-noRetr) to show the effect of initialization from
retrieval.

Comparing AutoMate with SRSA-noRetr, we see the difference between PPO and PPO+SIL when
learning a policy from scratch. Both approaches started from poor performance, but SIL has greater
learning efficiency and stability. Comparing SRSA-noRetr and SRSA, we see the difference between
random initialization and initialization from retrieval. Policy retrieval provides a good start with a
reasonable success rate. As a result, SRSA more efficiently reaches higher performance on the target
task.
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Figure 17: Comparison for variants of SRSA with different ablated components. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs.
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