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ABSTRACT

Dataset distillation has demonstrated remarkable effectiveness in high-
compression scenarios for image datasets. While video datasets inherently con-
tain greater redundancy, existing video dataset distillation methods primarily fo-
cus on compression in the pixel space, overlooking advances in the latent space
that have been widely adopted in modern text-to-image and text-to-video models.
In this work, we bridge this gap by introducing a novel video dataset distilla-
tion approach that operates in the latent space using state-of-the-art variational
auto-encoders. Furthermore, we employ a diversity-aware data selection strategy
to select both representative and diverse samples. Additionally, we introduce a
simple, training-free method to further compress the distilled latent dataset. By
combining these techniques, our approach achieves new state-of-the-art perfor-
mances in video dataset distillation, outperforming prior methods on all datasets,
e.g. on HMDB51 IPC 1, we achieve a 2.6% performance increase; on MiniUCF
IPC 5, we achieve a 7.8% performance increase.

1 INTRODUCTION

Dataset distillation has emerged as a critical technique for compressing large-scale datasets into
computationally efficient representations that retain their essential characteristics (Wang et al.,
2018). While this technique has seen success in compressing image datasets (Cui et al., 2023; 2022;
Loo et al., 2022; Nguyen et al., 2020; Wang et al., 2022; Zhao & Bilen, 2021), applications onto
video datasets remain an underexplored challenge. Videos inherently possess temporal redundancy,
as characterized by consecutive frames often sharing substantial similarity, presenting the potential
for optimization via dataset distillation.

Existing video distillation methods predominantly focus on pixel-space compression. VDSD (Wang
et al., 2024) addresses the temporal information redundancy by disentangling static and dynamic in-
formation. Method IDTD (Zhao et al., 2024) tackles the within-sample and inter-sample redundan-
cies by leveraging a joint-optimization framework. However, these frameworks overlook the poten-
tial of latent-space compressions, which have proven transformative in generative models for images
and videos (Tong et al., 2022; Zhao et al., 2025). Modern variational autoencoders (VAEs) (Welling,
2009; Ranganath et al., 2014) offer a pathway to address this gap by encoding videos into compact
and disentangled representations in latent space.

In this work, we improve video distillation by operating entirely in the latent space of a VAE. Our
framework distills videos into low-dimensional latent codes, leveraging the VAE’s ability to model
temporal dynamics (Zhao et al., 2025). Unlike previous methods, our approach encodes entire
video sequences into coherent latent trajectories to model temporal dynamics through its hierarchical
architecture. We compress the VAE itself through post-training quantization, largely reducing the
model size, while retaining accuracy (Cui et al., 2023). After distillation, we apply Diversity-Aware
Data Selection using Determinantal Point Processes (DPPs) (Kulesza & Taskar, 2012) to select both
representative and diverse instances. Unlike clustering-based or random sampling methods, DPPs
favor diversity by selecting samples that are well-spread in the latent space, reducing redundancy
while ensuring comprehensive feature coverage (Nava et al., 2022). This leads to a more informative
distilled dataset that enhances downstream model generalization.

Our method further introduces a training-free latent compression strategy, which uses high-order
singular value decomposition (HOSVD) to decompose spatiotemporal features into orthogonal sub-
spaces (Wang et al., 2024). This isolates dominant motion patterns and spatial structures, enabling
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further compression while preserving essential dynamics (Tong et al., 2022). By factorizing latent
tensors, we dynamically adjust the rank of the distilled representations, allowing denser instance
packing under fixed storage limits. Experiments on the MiniUCF dataset demonstrate that our
method outperforms prior pixel-space approaches by 11.5% in absolute accuracy for IPC 1 and
7.8% for IPC 5. Overall, our contributions are:

1. We propose the first video dataset distillation framework operating in the latent space,
leveraging a state-of-the-art VAE to efficiently encode spatiotemporal dynamics.

2. We address the challenge of spatiotemporal redundancy in the video latent space by inte-
grating VAEs, Diversity-Aware Data Selection using DPPs and High-Order Singular Value
Decomposition (HOSVD) into a structured compression framework.

3. Our method generalizes to both small-scale and large-scale video datasets, achieving a new
state-of-the-art performance on all settings compared to existing methods.

2 RELATED WORK

2.0.1 CORESET SELECTION

Coreset selection aims to identify a small but representative subset of data that preserves the essential
properties of the full dataset. One of the foundational approaches utilizes k-center clustering (Sener
& Savarese, 2018) to formulate coreset selection as a geometric covering problem, where a subset of
data points is chosen to maximize the minimum distance to previously selected points. By iteratively
selecting the most distant samples in feature space, this method ensures that the coreset provides
broad coverage of the dataset’s distribution, making it a strong candidate for reducing redundancy
in large-scale datasets. Herding methods (Welling, 2009) take an optimization-driven approach to
coreset selection by sequentially choosing samples that best approximate the mean feature represen-
tation of the dataset. Probabilistic techniques leverage Bayesian inference (Manousakas et al., 2020)
and divergence minimization (Tiwary et al., 2023) to construct coresets that balance diversity and
statistical representativeness. Influence-based selection methods (Yang et al., 2022) instead focus
on quantifying the contribution of individual samples to generalization performance, retaining only
the most impactful data points.

2.0.2 IMAGE DATASET DISTILLATION

Dataset distillation (Wang et al., 2018) has emerged as a powerful paradigm for compressing large-
scale image datasets while preserving downstream task performance. DC improved dataset distilla-
tion with aligning the single-step gradients of synthetic and real data (Zhao et al., 2020). Further,
meta-learning frameworks like Matching Training Trajectories (MTT) (Cazenavette et al., 2022)
and Kernel Inducing Points (KIP) (Nguyen et al., 2021) advances performance by distilling datasets
through bi-level optimization over neural architectures. Dataset condensation with Distribution
Matching (DM) (Zhao & Bilen, 2023) synthesizes condensed datasets by aligning feature distri-
butions between original and synthetic data across various embedding spaces.

Representative Matching for Dataset Condensation (DREAM) (Liu et al., 2023) improved sample
efficiency by selecting representative instances that retained the most informative patterns from the
original dataset. Generative modeling techniques have also been explored, with Distilling Datasets
into Generative Models (DiM) (Wang et al., 2023) encoding datasets into latent generative spaces,
allowing for smooth interpolation and novel sample generation. And Dataset Distillation via Disen-
tangled Diffusion Model (D4M) (Su et al., 2024) created latent prototypes which were used to gen-
erate synthetic distilled images with diffusion models. Similarly, Hybrid Generative-Discriminative
Dataset Distillation (GDD) (Li et al., 2024) balanced global structural coherence with fine-grained
detail preservation by combining adversarial generative models with traditional distillation objec-
tives. However, temporal redundancy and frame sampling complexities, as noted in (Huang et al.,
2018; Liu et al., 2021), highlight the unique difficulties of extending image-focused distillation to
video datasets.
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Figure 1: Our training-free latent video distillation pipeline. The entire video dataset is encoded
into latent space with a VAE. We further employ the DPPs to select both representative and diverse
samples, followed by latent space compression with HOSVD for efficient storage.

2.0.3 VIDEO DATASET DISTILLATION

While dataset distillation has achieved great improvements in static image datasets, direct applica-
tion to videos presents unique challenges due to temporal redundancy and the need for efficient frame
selection (Tong et al., 2022). Recent attempts to address video dataset distillation have primarily fo-
cused on pixel-space compression. Video Distillation via Static-Dynamic Disentanglement (VDSD)
(Wang et al., 2024) tackles temporal redundancies between frames by separating static and dy-
namic components. VDSD partitions videos into smaller segments and employs learnable dynamic
memory block that captures and synthesizes motion patterns, improving information retention while
reducing redundancy. IDTD (Zhao et al., 2024) addresses the challenges of within-sample redun-
dancy and inter-sample redundancy simultaneously. IDTD employs an architecture represented by
a shared feature pool alongside multiple feature selectors to selectively condense video sequences.
To retain the temporal information of synthesized videos, IDTD introduces a temporal fusor that
integrates diverse features into the temporal dimension.

2.0.4 TEXT-TO-VIDEO MODELS AND THEIR ROLE IN LATENT SPACE LEARNING

Latent-space representations have become a cornerstone of modern video modeling, offering struc-
tured compression while maintaining high-level semantic integrity (Tong et al., 2022; Zhao et al.,
2025). Variational autoencoders enable efficient storage and reconstruction (Kingma et al., 2013).
Extending this concept, hierarchical autoregressive latent prediction (Seo et al., 2022) introduces an
autoregressive component that improves temporal coherence, leading to high-fidelity video recon-
structions. Further enhancing latent representations, latent video diffusion transformers (Ma et al.,
2024) incorporate diffusion-based priors to refine video quality while minimizing storage demands.

Building upon these latent space techniques, recent text-to-video models have presented their capa-
bility to generate high-resolution video content from textual descriptions. These methods employ
a combination of transformer-based encoders and diffusion models to synthesize realistic video se-
quences. Imagen Video leverages cascaded video diffusion models to progressively upsample spa-
tial and temporal dimensions, ensuring high-quality output (Ho et al., 2022). Meanwhile, zero-shot
generation approaches utilize decoder-only transformer architectures to process multimodal inputs,
such as text and images, without requiring explicit video-text training data (Kondratyuk et al., 2023).
Hybrid techniques combining pixel-space and latent-space diffusion modeling further enhance com-
putational efficiency while maintaining visual fidelity by leveraging learned latent representations
during synthesis (Zhang et al., 2023). These advancements in latent space learning not only improve
video compression but also drive the development of scalable and high-quality text-driven video
generation.
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Dataset MiniUCF HMDB51 Kinetics-400 SSv2
IPC 1 5 1 5 1 5 1 5

Full Dataset 57.2± 0.1 28.6± 0.7 34.6± 0.5 29.0± 0.6

Coreset Selection
Random 9.9± 0.8 22.9± 1.1 4.6± 0.5 6.6± 0.7 3.0± 0.1 5.6± 0.0 3.2± 0.1 3.7± 0.0
Herding 12.7± 1.6 25.8± 0.3 3.8± 0.2 8.5± 0.4 4.3± 0.3 8.0± 0.1 4.6± 0.3 6.8± 0.2
K-Center 11.5± 0.7 23.0± 1.3 3.1± 0.1 5.2± 0.3 3.9± 0.2 5.9± 0.4 3.8± 0.5 4.0± 0.1

Dataset Distillation

DM 15.3± 1.1 25.7± 0.2 6.1± 0.2 8.0± 0.2 6.3± 0.0 9.1± 0.9 4.1± 0.4 4.5± 0.3
MTT 19.0± 0.1 28.4± 0.7 6.6± 0.5 8.4± 0.6 3.8± 0.2 9.1± 0.3 3.9± 0.2 6.5± 0.2
FRePo 20.3± 0.5 30.2± 1.7 7.2± 0.8 9.6± 0.7 � � � �
DM+VDSD 17.5± 0.1 27.2± 0.4 6.0± 0.4 8.2± 0.1 6.3± 0.2 7.0± 0.1 4.3± 0.3 4.0± 0.3
MTT+VDSD 23.3± 0.6 28.3± 0.0 6.5± 0.1 8.9± 0.6 6.3± 0.1 11.5± 0.5 5.7± 0.2 8.4± 0.1
FRePo+VDSD 22.0± 1.0 31.2± 0.7 8.6± 0.5 10.3± 0.6 � � � �
IDTD 22.5± 0.1 33.3± 0.5 9.5± 0.3 16.2± 0.9 6.1± 0.1 12.1± 0.2 � �
Ours 34.8 ± 0.5 41.1 ± 0.6 12.1 ± 0.3 17.6 ± 0.4 9.0 ± 0.1 13.8 ± 0.1 6.9 ± 0.6 10.5 ± 0.4

Table 1: Performance comparison between our method and existing baselines on both small-scale
and large-scale datasets. Follow previous works, we report Top-1 test accuracies (%) for small-scale
datasets and Top-5 test accuracies (%) for large-scale datasets.

3 METHODOLOGY

In this section, we first introduce the variational autoencoder (VAE) used to encode video sequences
into a compact latent space. We then discuss our Diversity-Aware Data Selection method. Next,
we present our training-free latent space compression approach using High-Order Singular Value
Decomposition (HOSVD). Finally, we describe our two-stage dynamic quantization strategy. The
entire pipeline of our framework is shown in Fig. 1.

3.1 PRELIMINARY

3.1.1 PROBLEM DEFINITION

In video dataset distillation, given a large dataset T = {(xi, yi)}|T |
i=1 consisting of video samples xi

and their corresponding class labels yi, the objective is to construct a significantly smaller distilled
dataset S = {x̃i, ỹi}|S|

i=1, where |S| ⌧ |T |. The distilled dataset is expected to achieve comparable
performance to the original dataset on action classification tasks while significantly reducing storage
and computational requirements.

3.1.2 LATENT IMAGE DISTILLATION

Latent image distillation has emerged as an effective alternative to traditional dataset distillation
methods. Instead of distilling datasets at the pixel level, latent distillation leverages pre-trained au-
toencoders or generative models to encode images into a compact latent space. Latent Dataset Dis-
tillation with Diffusion Models (Moser et al., 2024), have shown that distilling image datasets in the
latent space of a pre-trained diffusion model improves generalization and enables higher compres-
sion ratios. Similarly, Dataset Distillation in Latent Space (Duan et al., 2023) adapts conventional
distillation methods like Gradient Matching, Feature Matching, and Parameter Matching to the la-
tent space, significantly reducing computational overhead while achieving competitive performance.
Different from these methods, we extend latent space distillation to video datasets by encoding both
spatial and temporal information into the latent space.

3.1.3 VARIATIONAL AUTOENCODER

Variational Autoencoders (VAEs) (Kingma et al., 2013) provide compact latent representations by
encoding inputs into a probabilistic latent space while maintaining the ability to reconstruct the orig-
inal data. Unlike deterministic autoencoders, VAEs learn a distribution q�(z|x) over latent variables,
encouraging continuity and smooth interpolation in the latent space. This probabilistic structure is
essential for dataset distillation, as it ensures that the compressed representations remain expressive
and robust to variation.

In our framework, we employ a VAE to process full video clips. The encoder maps an input se-
quence x 2 RT⇥H⇥W⇥C into a latent distribution q�(z|x) parameterized by mean and variance,
where z is a spatiotemporal latent tensor. Samples from this distribution capture both spatial content
and temporal dynamics in a compact form. The decoder then reconstructs the original clip from z
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through p✓(x|z), ensuring that the latent codes retain the essential motion and appearance patterns
needed for downstream tasks.

Training follows the standard Evidence Lower Bound (ELBO) objective:

LVAE = Eq�(z|x)[� log p✓(x|z)] + � ·DKL(q�(z|x) k p(z)) (1)

where the first term enforces reconstruction fidelity and the second term regularizes the latent dis-
tribution towards the prior p(z) = N (0, 1). The balance parameter � controls the trade-off between
compression and information preservation.

3.2 DIVERSITY-AWARE DATA SELECTION

After encoding the entire video dataset into the latent space using a state-of-the-art VAE, an ef-
fective data selection strategy is crucial to maximize the diversity and representativeness of the
distilled dataset. To this end, we employ Diversity-Aware Data Selection using Determinantal Point
Processes (DPPs) (Kulesza & Taskar, 2012), a principled probabilistic framework that promotes
diversity by favoring sets of samples that are well-spread in the latent space.

DPPs provide a mechanism for selecting a subset of latent embeddings that balance coverage and
informativeness. Given the encoded latent representations of the dataset, we construct a similarity
kernel matrix L, where each entry Lij quantifies the pairwise similarity between latent samples zi
and zj . The selection process then involves sampling from a determinantal distribution parameter-
ized by L, ensuring that the chosen subset is both diverse and representative of the full latent dataset.
We define a kernel matrix L using the following function:

Lij = exp(�k zi � zj k2

2�2
) (2)

Then subset S is sampled according to:

P (S) =
det(LS)

det(L+ I)
(3)

here LS is the submatrix of L that corresponds to the rows and columns indexed by S. The denomi-
nator det(L+ I) serves as a normalization factor, ensuring that the probabilities across all possible
subsets sum to 1. This normalization stabilizes the sampling process by incorporating an identity
matrix I , which prevents numerical instability in cases where L is near-singular.

Our approach is motivated by the observation that naive random sampling or traditional clustering-
based selection strategies (Ikotun et al., 2023) tend to underperform in high-dimensional latent
spaces (Ghilotti et al., 2023), where redundancy is prevalent. By leveraging DPPs, we effectively
capture a more comprehensive distribution of video features. Furthermore, the computational effi-
ciency of DPPs allows us to scale our selection process to large datasets without significant overhead.

Applying DPPs in the latent space instead of the pixel space offers several key advantages. First,
latent representations encode high-level semantic features, making it possible to directly select sam-
ples that preserve meaningful variations in motion and structure, rather than relying on pixel-wise
differences that may be redundant or noisy. Second, the latent space is significantly more compact
and disentangled, allowing DPPs to operate more effectively with reduced computational complex-
ity compared to pixel-space selection (Wang et al., 2024). Finally, in the latent space, similarity
measures are inherently more structured, which makes DPPs better suited for ensuring diverse and
representative selections.

3.3 TRAINING-FREE LATENT SPACE COMPRESSION

While our Diversity-Aware Data Selection reduces sample-level redundancy, the resulting latent
tensors still contain substantial spatiotemporal redundancy, since consecutive frames often encode
overlapping motion patterns.

A natural approach for redundancy reduction is Singular Value Decomposition (SVD), which com-
presses matrices by discarding low-energy components. However, applying SVD requires flattening
video tensors into 2D matrices, thereby destroying spatial and temporal structure.

5
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To address this, we employ High-Order Singular Value Decomposition (HOSVD), which generalizes
SVD to multi-dimensional tensors while preserving correlations across modes. Given a latent tensor
Z 2 Rd1⇥d2⇥···⇥dn , HOSVD decomposes it into a compact core tensor G and orthonormal factor
matrices Ui:

Z = G ⇥1 U1 ⇥2 U2 ⇥ · · ·⇥n Un. (4)

By truncating along the temporal mode, we explicitly remove redundant motion information while
retaining dominant dynamics. Similarly, spatial and channel-wise redundancy can be reduced by
low-rank approximation in the corresponding modes. Importantly, this procedure is entirely training-
free, scalable, and seamlessly integrates into our pipeline after DPP-based selection.

3.4 VAE QUANTIZATION

To improve storage efficiency, we apply a two-stage post-training quantization to the 3D-VAE (Zhao
et al., 2025), combining dynamic quantization for fully connected layers and mixed-precision opti-
mization for the remaining layers.

In the first stage, all fully connected layers are quantized from FP32 to INT8 using dynamic scaling
of activations and weights. This significantly reduces memory and computation while preserving
inference stability, since matrix multiplications in fully connected layers exhibit high redundancy
and are well-suited for integer quantization (Hu et al., 2024).

In the second stage, convolutional and batch normalization layers are compressed from FP32 to
FP16. Mixed-precision is preferred here because convolutional operations are more sensitive to
precision loss, and FP16 provides sufficient dynamic range to maintain reconstruction quality (Yun
et al., 2023).

This hybrid quantization yields over a 2.6⇥ reduction in VAE model size with negligible loss in
reconstruction fidelity, ensuring that the encoder remains compact while effectively modeling spa-
tiotemporal dependencies in video sequences.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Following previous works VDSD (Wang et al., 2024) and IDTD (Zhao et al., 2024), we evaluate our
proposed video dataset distillation approach on both small-scale and large-scale benchmark datasets.
For small-scale datasets, we utilize MiniUCF (Wang et al., 2024) and HMDB51 (Kuehne et al.,
2011), while for large-scale datasets, we conduct experiments on Kinetics (Carreira & Zisserman,
2017) and Something-Something V2 (SSv2) (Goyal et al., 2017). MiniUCF is a miniaturized version
of UCF101 (Soomro et al., 2012), consisting of the 50 most common action classes selected from the
original UCF101 dataset. HMDB51 is a widely used human action recognition dataset containing
6,849 video clips across 51 action categories. Kinetics is a large-scale video action recognition
dataset, available in different versions covering 400, 600, or 700 human action classes. SSv2 is a
motion-centric video dataset comprising 174 action categories.

4.2 BASELINES

Based on previous work, we include the following baseline: (1) coreset selection methods such
as random selection, Herding (Welling, 2009), and K-Center (Sener & Savarese, 2018), and (2)
dataset distillation methods including DM (Zhao & Bilen, 2023), MTT (Cazenavette et al., 2022),
FRePo (Zhou et al., 2022), VDSD (Wang et al., 2024), and IDTD (Zhao et al., 2024). DM (Zhao
& Bilen, 2023) ensures that the models trained on the distilled dataset produce gradient updates
similar to those trained on the full dataset. MTT (Cazenavette et al., 2022) improves distillation
by aligning model parameter trajectories between the synthetic and original datasets. FRePo (Zhou
et al., 2022) focuses on generating compact datasets that allow pre-trained models to quickly recover
their original performance with minimal training. VDSD (Wang et al., 2024) introduces a static-
dynamic disentanglement approach for video dataset distillation. IDTD (Zhao et al., 2024) enhances
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video dataset distillation by increasing feature diversity across samples while densifying temporal
information within instances.

4.3 IMPLEMENTATION DETAILS

4.3.1 DATASET DETAILS

For small-scale datasets, MiniUCF and HMDB51, we follow the settings from previous work (Wang
et al., 2024; Zhao et al., 2024), where videos are dynamically sampled to 16 frames with a sampling
interval of 4. Each sampled frame is then cropped and resized to 112×112 resolution. We adopt the
same settings as prior work (Wang et al., 2024; Zhao et al., 2024) for Kinetics-400, each video is
sampled to 8 frames and resized to 64×64, maintaining a compact representation suitable for large-
scale dataset distillation. In Something-Something V2 (SSv2), which is relatively smaller among the
two large-scale datasets, we sample 16 frames per video and resize them to 112×112, demonstrating
the scalability of our method across datasets of varying sizes.

4.3.2 EVALUATION NETWORK

Following the previous works, we use a 3D convolutional network, C3D (Tran et al., 2015) as
the evaluation network. C3D (Tran et al., 2015) is trained on the distilled datasets generated by our
method. Similar to previous works, we assess the performance of our distilled datasets by measuring
the top-1 accuracy on small-scale datasets and top-5 accuracy on large-scale datasets.

4.3.3 FAIR COMPARISON

Throughout our experiments, we rigorously ensure that the total storage space occupied by the quan-
tized VAE model and the decomposed matrices remain within the constraints of the corresponding
Instance Per Class (IPC) budget. Specifically, on SSv2, our method utilizes no more than 68% of
the storage space allocated to the baseline methods DM and MTT, guaranteeing a fair and consistent
comparison. We made sure the combined size of the quantized VAE and latent tensor are within the
storage budget for fair comparison, as shown in Tab. 2. Our storage is sublinear and more scalable
to large datasets with higher resolutions.

Dataset MiniUCF HMDB51 Kinetics-400 SSv2
IPC 1 5 1 5 1 5 1 5
DM 115 586 115 586 150 765 400 2039

MTT 115 586 115 586 150 765 400 2039
VDSD 94 455 94 455 123 591 327 1583
Ours 107 475 107 475 148 455 223 458

Table 2: Storage (in MB) analysis of prior methods and ours.

4.4 EXPERIMENTAL RESULTS

In Tab. 1, we present the performance of our method across MiniUCF (Wang et al., 2024),
HMDB51 (Kuehne et al., 2011), Kinetics-400 (Carreira & Zisserman, 2017), and SSv2 (Goyal et al.,
2017) under both IPC 1 and IPC 5 settings.

On MiniUCF, our approach outperforms the best baseline (IDTD) by 12.3% under IPC 1, achieving
34.8% accuracy compared to 22.5%, and by 7.8% under IPC 5, reaching 41.1% accuracy. Similarly,
on HMDB51, our method achieves 12.1% accuracy under IPC 1, surpassing the strongest baseline
by 2.6%, while under IPC 5, it reaches 17.6%, a 1.4% improvement. These results highlight the
effectiveness of our latent-space distillation framework, which provides superior compression effi-
ciency and classification performance compared to pixel-space-based approaches. The consistent
performance gains across both IPC settings demonstrate the robustness of our method in preserving
essential video representations while achieving high compression efficiency.

Furthermore, the results in Kinetics-400 and SSv2 reinforce our findings, as our approach con-
sistently outperforms all baselines. Improvements in low-IPC regimes (IPC 1) suggest that our
training-free latent compression and diversity-aware data selection are particularly effective when
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dealing with extreme data reduction. Our method achieves 9.0% accuracy on Kinetics-400 IPC 1,
outperforming the strongest baseline (IDTD) by 2.9%, and 6.9% accuracy on SSv2 IPC 1, surpass-
ing VDSD by 2.2%. The trend continues in IPC 5, where our model achieves 13.8% on Kinetics-400
and 10.5% on SSv2, both establishing new state-of-the-art results in video dataset distillation.

4.5 ABLATION STUDY

In this section, we systematically analyze the key components of our method to understand their
contributions to overall performance. We evaluate on cross-architecture generalization, various sam-
pling methods, different rank compression ratios in HOSVD, and different latent space compression
techniques. We also provide comparison with traditional video compression methods and diversity
analysis.

Evaluation Model
ConvNet3D CNN+GRU CNN+LSTM

Random 9.9± 0.8 6.2± 0.8 6.5± 0.3
DM 15.3± 1.1 9.9± 0.7 9.2± 0.3

DM + VDSD 17.5± 0.1 12.0± 0.7 10.3± 0.2
MTT 19.0± 0.1 8.4± 0.5 7.3± 0.4

MTT + VDSD 23.3± 0.6 14.8± 0.1 13.4± 0.2
Ours 34.8± 0.5 19.9± 0.7 18.3± 0.7

Table 3: Result of experiment on cross-architecture generalization for MiniUCF when IPC is 1.

4.5.1 CROSS ARCHITECTURE GENERALIZATION

To further evaluate the generalization capability of our method, we conduct experiments on cross-
architecture generalization, as presented in Tab. 3. The results demonstrate that datasets dis-
tilled using our method consistently achieve superior performance across different evaluation mod-
els—ConvNet3D, CNN+GRU, and CNN+LSTM—compared to previous state-of-the-art methods.

Our approach achieves 34.8% accuracy with ConvNet3D, significantly surpassing all baselines, in-
cluding MTT+VDSD (23.3%) and DM+VDSD (17.5%). Notably, our method also outperforms all
baselines when evaluated on recurrent-based architectures (CNN+GRU and CNN+LSTM), obtain-
ing 19.9% and 18.3% accuracy, respectively. This highlights the robustness of our distilled dataset
in preserving spatiotemporal coherence, which is crucial for models leveraging sequential depen-
dencies, and validates our advantage over traditional compression methods.

4.5.2 RANK COMPRESSION RATIO

We evaluate the impact of different rank compression ratios in HOSVD on overall performance in
Tab. 4. Empirical results show that a rank compression ratio of r = 0.75 consistently provides a
strong balance between storage efficiency and model accuracy across datasets. While increasing the
compression ratio reduces storage requirements, overly aggressive compression can lead to signifi-
cant information loss, negatively affecting downstream tasks. Notably, as shown in Tab. 4, when the
rank compression ratio is set to r = 0.1 , both datasets exhibit classification accuracy around 4.0%,
suggesting that excessive compression leads to degraded latent representations, making the distilled
dataset nearly indistinguishable from random noise.

Rank Compression Ratio
0.10 0.25 0.50 0.75 1.00

MiniUCF 4.1± 0.1 19.0± 1.3 31.5± 0.7 34.8± 0.5 28.9± 0.5

HMDB51 3.9± 0.6 7.6± 1.0 11.5± 0.1 12.1± 0.3 8.9± 0.5

Table 4: Accuracies under different rank compression ratios. Both MiniUCF and HMDB51 datasets
are evaluated under IPC 1.
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4.5.3 HOSVD VS CLASSIC SVD

To evaluate the effectiveness of our latent-space compression strategy, we compare truncated SVD
with HOSVD under the same storage budget at IPC 5. Truncated SVD is a matrix factorization
technique that approximates a data matrix by keeping only its largest singular values, thus reduc-
ing dimensionality while retaining the most informative components. However, SVD operates on
flattened data matrices, leading to a loss of structural information, particularly in spatiotemporal
representations.

As shown in Tab. 5, HOSVD consistently outperforms truncated SVD across all datasets, demon-
strating its ability to better preserve spatial and temporal dependencies in the latent space. On
Kinetics-400 and SSv2, HOSVD achieves higher classification accuracy (+1.4% and +1.2%, re-
spectively), highlighting its advantage in handling large-scale datasets.

Dataset MiniUCF HMDB51 Kinetics-400 SSv2
SVD 38.5± 0.4 15.8± 0.2 12.4± 0.3 9.3± 0.2

HOSVD 41.1± 0.6 17.6± 0.4 13.8± 0.1 10.5± 0.4

Table 5: Classification accuracies comparison between different latent compression techniques un-
der the same storage budget for each dataset at IPC 5.

4.5.4 TRADITIONAL VIDEO COMPRESSION METHODS

To further demonstrate the applicability of our method, we compared it with two widely used tra-
ditional video compression methods, VP9 (Google, 2013) and H.264 (Wiegand et al., 2003), in the
context of video dataset distillation. As shown in Tab.6, our method consistently outperforms both
VP9 and H.264 across all four datasets. This is likely because traditional video compression primar-
ily aims to reduce bitrate while preserving perceptual visual quality, whereas our method explicitly
selects representative samples and compresses them spatiotemporally to better retain task-relevant
information for downstream learning.

Dataset MiniUCF HMDB51 Kinetics-400 SSv2
IPC 1 5 1 5 1 5 1 5
VP9 25.8 37.5 7.3 14.8 4.8 7.2 4.3 5.6

H.264 24.6 38.2 8.5 15.4 5.5 7.8 3.7 4.5
Ours 34.8 41.1 12.1 17.6 9.0 13.8 6.9 10.5

Table 6: Performance of Traditional Video Compression Methods

5 CONCLUSION

In this work, we introduce a novel latent-space video dataset distillation framework that leverages
VAE, DPPs, and HOSVD to achieve state-of-the-art performance with efficient storage. We carefully
selected DPPs and HOSVD for video distillation after investigating existing baselines and exploring
alternatives such as KDE, KMeans, SVD, and PCA. Our method provides a simple yet effective
solution by significantly reducing both temporal and spatial redundancy. Unlike prior works such
as VDSD, which trains a dedicated network for spatiotemporal modeling, we leverage a pre-trained
VAE and HOSVD to efficiently compress this information, achieving better performance with lower
computational cost. Moreover, our plug-and-play design enables seamless integration with future
state-of-the-art VAEs, allowing continuous improvements as models evolve.

5.0.1 LIMITATIONS & FUTURE WORK

While our method shows strong performance, we plan to explore learning-based approaches to en-
hance dataset distillation, aiming to improve both efficiency and generalization in future work. We
also intend to investigate non-linear decomposition techniques for latent-space compression, which
could offer more compact and expressive representations than linear methods. Although our method
is exclusive to video distillation given the nature of the temporal redundancy of video datasets, we
plan to extend our method to image dataset distillation where temporal redundancy is not applicable.
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6 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. Detailed descriptions of
our models, training procedures, dataset preprocessing step, and evaluation protocols are provided
in the Section 4.3 and Appendix B. In addition, we provide an anonymous GitHub repository link in
Appendix B containing our implementation and scripts to reproduce experiments.
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