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ABSTRACT

Imbalanced distributions are ubiquitous in real-world data. They create constraints
on Deep Neural Networks to represent the minority labels and avoid bias towards
majority labels. The extensive body of imbalanced approaches address categor-
ical label spaces but fail to effectively extend to regression problems where the
label space is continuous. Local and global correlations among continuous labels
provide valuable insights towards effectively modelling relationships in feature
space. In this work, we propose ConR, a contrastive regularizer that models global
and local label similarities in feature space and prevents the features of minority
samples from being collapsed into their majority neighbours. ConR discerns the
disagreements between the label space and feature space, and imposes a penalty
on these disagreements. ConR addresses the continuous nature of label space
with two main strategies in a contrastive manner: incorrect proximities are penal-
ized proportionate to the label similarities and the correct ones are encouraged to
model local similarities. ConR consolidates essential considerations into a generic,
easy-to-integrate, and efficient method that effectively addresses deep imbalanced
regression. Moreover, ConR is orthogonal to existing approaches and smoothly ex-
tends to uni- and multi-dimensional label spaces. Our comprehensive experiments
show that ConR significantly boosts the performance of all the state-of-the-art
methods on four large-scale deep imbalanced regression benchmarks. Our code is
publicly available in https://github.com/BorealisAI/ConR.

1 INTRODUCTION

Imbalanced data distributions, which are common in real-world contexts, introduce substantial
challenges in generalizing conventional models due to variance across minority labels and bias to
the majority ones (Wang et al., 2021b; Gong et al., 2022; Buda et al., 2018). Although there are
numerous works on learning from imbalanced data (Chawla et al., 2002; Cui et al., 2021; Jiang et al.,
2021), these studies mainly focus on categorical labels. Continuous labels are potentially infinite,
high-dimensional and hard to bin semantically (Ren et al., 2022). These characteristics impede the
performance of imbalanced classification approaches on Deep Imbalanced Regression (DIR) (Yang
et al., 2021).

Continuous labels result in underlying local and global correlations, which yields valuable perspec-
tives towards effective representation learning of imbalanced data (Gong et al., 2022; Shin et al.,
2022). For instance, regression training on imbalanced data fails to model appropriate relation-
ships for minority labels in the feature space (Yang et al., 2021). Yang et al. (2021) established
an empirical example of this phenomenon on the age estimation task where the learned features of
under-represented samples collapse to majority features. Several approaches tackle this issue by en-
couraging local dependencies (Yang et al., 2021; Steininger et al., 2021). However, these methods fail
to exploit global relationships and are biased toward only learning representative features for majority
samples, especially when minority examples do not have majority neighbours. RankSim (Gong et al.,
2022) leverages global and local dependencies by exploiting label similarity orders in feature space.
Yet, RankSim does not generalize to all regression tasks, as not all continuous label spaces convey
order relationships. For example, for depth-map estimation from scene pictures, the complicated
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relationships in the high-dimensional label space are not trivially convertible to a linearly ordered
feature space. Given the importance of the correspondence between the label space and feature
space for imbalanced regression, can we effectively transfer inter-label relationships, regardless
of their complexity, to the feature space?
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Figure 1: Key insights of ConR. a) Without ConR,
it is common to have minority examples mixed
with majority examples. b) ConR selects the sam-
ple with confusion around it as an anchor and ad-
justs the feature space with relative contrastive
learning. c) Reduced prediction error.

We propose a method to enforce this correspon-
dence: ConR is a novel Contrastive Regularizer
which is based on infoNCE loss (Oord et al.,
2018) but adapted for multi-positive pairs.
While similar extensions are performed for clas-
sification tasks (Khosla et al., 2020b), ConR
addresses continuous label space and penalizes
minority sample features from collapsing into
the majority ones. Contrastive approaches for
imbalanced classification are mainly based on
predefined anchors, decision boundary-based
negative pair selection and imposing discrimina-
tive feature space (Cui et al., 2021; Wang et al.,
2021a; Li et al., 2022). These are not feasibly
extendible to continuous label spaces. ConR
introduces continuity to contrastive learning for
regression tasks. Fig 1 illustrates an intuitive ex-
ample for ConR from the task of age estimation.
There are images of individuals of varying ages,
including 1, 21, 25, and 80 years. Age 1 and 80
are the minority examples, reflecting the limited
number of images available for these age groups within the datasets. While 21 is a majority example,
given the abundance of images around this age within the datasets. Without using ConR, similarities
in the feature space are not aligned with the relationships in the label space. Thus, the minority
samples’ features collapse to the majority sample, leading to inaccurate predictions for minority
ones that mimic the majority sample (Fig 1a). ConR regularizes the feature space by simultaneously
encouraging locality via pulling together positive pairs and preserving global correlations by pushing
negative pairs. The 21-year-old sample coexists within a region in the feature space alongside
1-year-old and 80-year-old samples. Thus, ConR 1) considers the 21-year-old sample as an anchor,
and, 2) pushes negative pairs for minority anchors harder than majority examples to provide better
separation in feature space. Furthermore, ConR 3) increases pushing power based on how heavily
mislabelled an example is (Fig 1b.1 to Fig 1b.3). We demonstrate that ConR effectively translates
label relationships to the feature space, and boosts the regression performance on minority samples
(Fig 1c). Refer to A.1 for the empirical analysis on the motivation of ConR.

ConR implicitly models the local and global correlations in feature space by three main contributions
to the contrastive objective: 1) Dynamic anchor selection: Throughout the training, considering the
learned proximity correspondences, ConR selects samples with the most collapses on the feature
manifold as anchors. 2) Negative Pairs selection: Negative pairs are sampled to quantify the
deviation they introduce to the correspondence of similarities in feature and label space, thereby
compensating for under-represented samples. 3) Relative pushing: Negative pairs are pushed away
proportional to their label similarity and the density of the anchor’s label.

ConR is orthogonal to other imbalanced learning techniques and performs seamlessly on high-
dimensional label spaces. Our comprehensive experiments on large-scale DIR benchmarks for facial
age, depth and gaze estimation show that ConR strikes a balance between efficiency and performance,
especially on depth estimation, which has a complicated and high-dimensional label space.

2 RELATED WORK

Imbalanced classification. The main focus of existing imbalanced approaches is on the classification
task, while imbalanced regression is under-explored. The imbalanced classification methods are
either data-driven or model-driven. Resampling (Chawla et al., 2002; Chu et al., 2020; Byrd &
Lipton, 2019; Han et al., 2005; Jiang et al., 2021) is a data-driven technique that balances the input
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data by either over-sampling (Chawla et al., 2002; Byrd & Lipton, 2019) the minority classes or
under-sampling the majority ones (Han et al., 2005). Model-Aware K-center(MAK) (Jiang et al.,
2021) over-samples tail classes using an external sampling pool. Another branch of data-driven
approaches is augmentation-based methods. Mixup-based approaches linearly interpolate data either
in input space (Zhang et al., 2017) or feature space (Verma et al., 2019) for vicinal risk minimization.
RISDA (Chen et al., 2022) shares statistics between classes considering a confusion-based knowledge
graph and implicitly augments minority classes. Model-driven methods such as focal loss (Lin et al.,
2017) and logit-adjustment (Tian et al., 2020) are cost-sensitive approaches that regulate the loss
functions regarding the class labels. To encourage learning an unbiased feature space, several training
strategies including two-stage training (Kang et al., 2020), and transfer learning (Yin et al., 2019) are
employed. As discussed further, though there has been much success in this area, there are many
issues in converting imbalanced classification approaches to regression.

Imbalanced regression. Unlike classification tasks with the objective of learning discriminative
representation, effective imbalanced learning in continuous label space is in lieu of modelling the
label relationships in the feature space (Yang et al., 2021; Gong et al., 2022). Therefore, imbalanced
classification approaches do not feasibly extend to the continuous label space. DenseLoss (Steininger
et al., 2021) and LDS (Yang et al., 2021) encourage local similarities by applying kernel smoothing
in label space. Feature distribution smoothing (FDS) (Yang et al., 2021) extends the idea of kernel
smoothing to the feature space. Ranksim (Gong et al., 2022) proposes to exploit both local and
global dependencies by encouraging a correspondence of similarity order between labels and features.
Balanced MSE (Ren et al., 2022) prevents Mean Squared Error (MSE) from carrying imbalance to the
prediction phase by restoring a balanced prediction distribution. The empirical observations in (Yang
et al., 2021) and highlighted in VIR (Wang & Wang, 2023), demonstrate that using empirical label
distribution does not accurately reflect the real label density in regression tasks, unlike classification
tasks. Thus, traditional re-weighting techniques in regression tasks face limitations. Consequently,
LDS (Yang et al., 2021) and the concurrent work, VIR propose to estimate effective label distribution.
Despite their valuable success, two main issues arise, specifically for complicated label spaces. These
approaches rely on binning the label space to share local statistics. However, while effective in
capturing local label relationships, they disregard global correspondences. Furthermore, in complex
and high-dimensional label spaces, achieving effective binning and statistics sharing demands in-
depth domain knowledge. Even with this knowledge, the task becomes intricate and may not easily
extend to different label spaces.

Contrastive learning. Contrastive Learning approaches are pairwise representation learning tech-
niques that push away semantically divergent samples and pull together similar ones (He et al., 2020;
Chen et al., 2020a; Khosla et al., 2020a; Kang et al., 2021a). Momentum Contrast (Moco) (He
et al., 2020) is an unsupervised contrastive learning approach that provides a large set of negative
samples via introducing a dynamic queue and a moving-averaged encoder; while SupCon (Khosla
et al., 2020b) incorporates label information to the contrastive learning. Kang et al. (2021a) argue
that in case of imbalanced data, SupCon is subject to learning a feature space biased to majority
samples and proposed k-positive contrastive loss (KCL) to choose the same number of positive
samples for each instance to alleviate this bias. Contrastive long-tailed classification methods train
parametric learnable class centres (Cui et al., 2021; Wang et al., 2021a) or encourage learning a
regular simplex (Li et al., 2022). However, these approaches cannot be used for regression tasks
where handling label-wise prototypes is potentially complex. Contrastive Regression (CR) (Wang
et al., 2022) adds a contrastive loss to Mean Squared Error (MAE) to improve domain adaptation for
the gaze estimation task. CR assumes there is a correspondence between similarities in label space
and the feature space. Regardless, when learning from the imbalanced data, the correspondence can’t
be assumed. Instead of the assumption of correspondence, ConR translates the relative similarities
from the label space to the feature space. Barbano et al. (2023) proposed a relative pushing for the
task of brain age prediction using MRI scans. This relative pushing doesn’t consider imbalanced
distribution, and the weights are learnable kernels that can introduce complexities to complex label
spaces. Rank-N-Contrast (Zha et al., 2023) ranks samples and contrasts them against each other
regarding their relative rankings to impose continuous representations for regression tasks. Like
RankSim Gong et al. (2022), Rank-N-Contrast is designed based on the order assumption and cannot
be used in all regression tasks.
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Figure 2: The framework of ConR is to translate label similarities to the feature space. a) Per each
augmented sample, ConR selects positive and negative pairs with regard to the label similarities
and prediction similarities. b) ConR pulls positive pairs together while pushing away negative pairs
regarding their label similarities and label distribution for the anchor. In this way, the minority anchor
pushes negative samples harder. The pushing weight is inversely relative to the label similarities.

3 METHOD

3.1 PROBLEM DEFINITION

Consider a training dataset consisting N examples, which we denote as {(xi, yi)}Ni=0, where xi ∈ Rd

is an example input, and yi ∈ Rd′
is its corresponding label. d and d′ are the dimensions of the

input and label, respectively. We additionally enforce that the distribution of the labels Dy deviates
significantly from a uniform distribution. Given a model that consists of a feature encoder E(·), and a
regression functionR(·), the objective is to train a regression modelR(E(·)), such that the model
output ŷi = R(E(xi)) is similar to the true label yi.

3.2 IMBALANCED CONTRASTIVE REGRESSION

In regression tasks, inter-label relationships unveil meaningful associations in feature space. However,
learning from imbalanced data harms this correspondence since the features learned for minority
samples share statistics with the majority samples, despite dissimilar labels (Yang et al., 2021). By
incorporating label and prediction relationships into contrastive learning, ConR enforces appropriate
feature-level similarities for modelling a balanced feature space.

ConR is a continuous variation of infoNCE. Initially, for creating diversity in examples, we perform
problem-specific augmentations on each input xi to produce two augmented samples. We define the
set of augmented examples from the input to be {(xa

j , yj)}2Nj=0, where xa
j is an augmented input.

As illustrated in Fig. 2, ConR is a collaboration of pair selection and relative pushing. For each
augmented sample, ConR first selects pairs. Next, in the case of at least one negative pairing, the
sample is considered an anchor and contributes to the regularizing process of ConR by pulling
together positive pairs and relatively repelling negative pairs.

3.2.1 PAIR SELECTION

Given a pair of examples (xa
i , yi) and (xa

j , yj) from the augmented inputs (labels and samples,
Fig. 2-a), each example is passed to the feature encoder E(·) to produce feature vectors zi and zj , and
then to the regression functionR(·) for predictions ŷi and ŷj (sample through regression function,
Fig. 2-a). The values of the predicted and actual labels are used to determine if the examples should
be a positive pair, a negative pair, or unpaired (righthand side, Fig. 2-a).

To measure similarity between labels (or predictions) of augmented examples, ConR defines a
similarity threshold ω. Given a similarity function Sim(·, ·) ∈ R (e.g., inverse square error), we
define two labels (or two predictions) yi and yj as similar if Sim(yi, yj) ≥ ω. We denote this as
yi ≃ yj . Iff two examples have similar labels yi ≃ yj , then they are treated as a positive pair. The

4



Published as a conference paper at ICLR 2024

examples have dissimilar labels, but similar predictions ŷi ≃ ŷj , then they are treated as a negative
pair. Otherwise, examples are unpaired.

Anchor selection. For each example j, (xa
j , yj) We denote the sets of positive and negative pairs

for this example, and their feature vectors as K+
j = {(zp)}

N+
j

p and K−
j = {(zq)}

N−
j

q , respectively,
where N+

j is the number of positive examples and N−
j is the number of negative samples for example

j. If N−
j > 0, (xa

j , yj) is selected as an anchor and contributes to the regularization process of ConR.

3.2.2 CONTRASTIVE REGULARIZER

For each example j, ConR introduces a loss function LConRj . If example j is not selected as an
anchor, LConRj = 0. Otherwise, LConRj pulls together positive pairs while pushing away negative
pairs proportional to the similarity of their labels. As shown in Fig. 2-b, ConR pushes away negative
samples with less label similarity to yj harder than negative samples with labels closer to the anchor
yj :

LConRj = − log
1

N+
j

∑
zi∈K+

j

exp(zj · zi/τ)∑
zp∈K+

j
exp(zj · zp/τ) +

∑
zq∈K−

j
Sj,q exp(zj · zq/τ)

(1)

where τ is a temperature hyperparameter and Sj,n is a pushing weight for each negative pair:

Sj,q = fS(ηj , Sim(yj , yq)), (2)

and yq is the label of xq where zq = E(xq). ηj is a pushing power for each sample (xa
j , yj) that

depends on label distributionDy to boost the pushing power for minority samples (Fig. 2-b): ηj ∝ wj ,
where wj is a density-based weight for input j derived from the empirical label distribution (e.g.,
inverse frequency). The function fS computes the Sj,q to be proportionate to ηj and inversely related
to Sim(yj , yq). Please refer to Appendix A.4 for the definition of fS .

Finally, LConR is the ConR’s regularizer value for the augmented example set:

LConR =
1

2N

2N∑
j=0

LConRj . (3)

To prevent the representations of minority labels from collapsing to the majority ones in deep
imbalanced regression, Lsum is optimized. Lsum is weighed sum of LConR and a regression loss
LR (e.g., mean absolute error) as below:

Lsum = αLR + βLConR (4)

3.3 THEORETICAL INSIGHTS

We theoretically justify the effectiveness of ConR in Appendix B. We derive the upper bound
LConR + ϵ on the probability of incorrect labelling of minority samples to be:

1

4N2

2N∑
j=0,xj∈A

K−
j∑

q=0

logSj,qp(Ŷj |xq) ≤ LConR + ϵ, ϵ
N→∞→ 0 (5)

where A is the set of anchors and xq is a negative sample. p(Ŷj |xq) is the likelihood of sample xq

with an incorrect prediction yq ∈ Ŷj = (ŷj − ω, ŷj + ω). ŷj a prediction that is mistakenly similar to
its negative pair ŷq. We refer to p(Ŷj |xq) as the probability of collapse for xq. The Left-Hand Side
(LHS) contains the probability of all collapses for all negative samples, which is bounded above by
LConR. Minimizing the loss, consequently minimizes the LHS, which causes either 1) the number
of anchors decreases or 2) the degree of collapses is reduced. Each p(Ŷj |xq) is weighted by Sj,q,
which penalizes incorrect predictions proportional to severity. Thus, optimizing ConR decreases the
probability of mislabelling proportional to the degree, and emphasizes minority samples.
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4 EXPERIMENTS

4.1 MAIN RESULTS

Datasets and baselines. We use three datasets curated by Yang et al. (2021) for the deep im-
balanced regression problem: AgeDB-DIR is a facial age estimation benchmark, created based
on AgeDB (Moschoglou et al., 2017). IMDB-WIKI-DIR is an age estimation dataset originated
from IMDB-WIKI (Rothe et al., 2018). NYUD2-DIR is created based on NYU Depth Dataset
V2 (Silberman et al., 2012) to predict the depth maps from RGB indoor scenes. Moreover, we create
MPIIGaze-DIR based on MPIIGaze, which is an appearance-based gaze estimation benchmark. Refer
to Appendix A.2 and A.4 for more dataset and implementation details. Please refer to Appendix A.3
for baseline details.

Evaluation process and metrics. Following the standard procedure for imbalanced learning (Yang
et al., 2021; Gong et al., 2022), we report the results for four shots: All, few, median and many. The
whole test data is denoted by All. Based on the number of samples in the training dataset, few, median
and many that have less than 20, between 20 and 100, and more than 100 training samples per label,
respectively.

For AgeDB-DIR and IMDB-WIKI-DIR, the metrics are Mean-Absolute-Error (MAE), and Geometric
Mean (GM). For NYUD2-DIR we use Root Mean Squared Error (RMSE) and Threshold accuracy
(δ1) as metrics as in (Yang et al., 2021; Ren et al., 2022). Threshold accuracy δi is the percentage
of di that satisfies max(d1

g1
, g1
d1
) < 1.25, where for each pixel, g1 is the ground truth depth value

and d1 is the predicted depth value. For MPIIGaze-DIR, we use Mean Angle Error (degrees). To
calculate relative improvement of ConR, we compare the performance of each combination of
methods including ConR, against the same combination without ConR. Each ”Ours vs. ...” entry
shows the average of these improvements (e.g. ”Ours vs. LDS” is the average of the improvements of
adding ConR to each combination of baselines that has LDS).

Main results for age estimation. Table 1 and Table 2 show the results on AgeDB-DIR and IMDB-
WIKI-DIR benchmarks, respectively. We compare the performance of DIR methods: FDS, LDS and
RankSim with their regularized version by ConR. All results are the averages of 5 random runs. We
observe that the performances of all the baselines are considerably boosted when they are regularized
with ConR. In addition, ConR results in the best performance across both metrics and all shots for
the AgeDB-DIR benchmark with leading MAE results of 6.81 and 9.21 on the overall test set and
few-shot region, respectively. For IMDB-WIKI-DIR, ConR achieves the highest performance on 7
out of 8 shot/metric combinations with the best MAE results of 7.29 and 21.32 on the overall test set
and few-shot region, respectively.

Main results for depth estimation. To assess the effectiveness of ConR in more challenging
settings where the label space is high-dimensional with non-linear inter-label relationships, we
compare its performance with baselines: LDS, FDS and Balanced MSE on NYUD2-DIR depth
estimation benchmark. For this task, the label similarity is measured by the difference between the
average depth value of two samples. As shown in table 3, ConR alleviates the bias of the baseline
toward the majority samples. ConR significantly outperforms LDS, FDS and Balanced MSE across
all shots and both metrics with leading RMSE results of 1.265 on the overall test set and 1.667 on the
few-shot region. Notably, RankSim cannot be used on the depth estimation task; however, ConR can
smoothly be extended to high-dimensional label space with high performance. The reason is that
order relationships are not semantically meaningful for all regression tasks with high-dimensional
label space, such as depth estimation.

Main results for gaze estimation. Table 4 compares the performance of ConR with three baseline
methods: LDS, FDS and Balanced MSE on the MPIIGaze-DIR benchmark. As shown in table 4,
ConR consistently improve the performance of all baselines for all shots and achieves the best Mean
angular error of 5.63 (degrees) on the overall test set and 5.21 (degrees) on the few-shot region.

Error reduction. In Fig. 3, we show the comparison between three strong baselines (LDS, FDS
and Balanced MSE) and by adding ConR for NYUD2-DIR benchmark. It shows a consistent and
notable error reduction effect by adding our ConR to the deep imbalanced learning. For more results
and analysis on other datasets, please refer to Appendix A.5.
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Table 1: Main results for AgeDB-DIR benchmark. Results are reported for the whole test data (all)
and three other shots: many, median, and few. Each section compares a baseline with its regularized
version of ConR. At the bottom of the table, the average improvements with respect to corresponding
baselines without ConR are reported in Green. The best result of either a baseline or its regularized
version by ConR is in bold (in column) and Red (across column). Baselines: (Gong et al., 2022).

Metrics MAE↓ GM↓
Methods/Shots All Many Median Few All Many Median Few
ConR-only (Ours) 7.20 6.50 8.04 9.73 4.59 3.94 4.83 6.39
LDS 7.42 6.83 8.21 10.79 4.85 4.39 5.80 7.03
LDS + ConR (Ours) 7.16 6.61 7.97 9.62 4.51 4.21 4.92 5.87
FDS 7.55 6.99 8.40 10.48 4.82 4.49 5.47 6.58
FDS + ConR (Ours) 7.08 6.46 7.89 9.80 4.31 4.01 5.25 6.92
RankSim 6.91 6.34 7.79 9.89 4.28 3.92 4.88 6.89
RankSim + ConR (Ours) 6.84 6.31 7.65 9.72 4.21 3.95 4.75 6.28
LDS + FDS 7.37 6.82 8.25 10.16 4.72 4.33 5.50 6.98
LDS + FDS + ConR (Ours) 7.21 6.88 7.63 9.59 4.63 4.45 5.18 5.91
LDS + RankSim 6.99 6.38 7.88 10.23 4.40 3.97 5.30 6.90
LDS + RankSim + ConR (Ours) 6.88 6.35 7.69 9.99 4.43 3.87 4.70 6.51
FDS + RankSim 7.02 6.49 7.84 9.68 4.53 4.13 5.37 6.89
FDS + RankSim+ ConR (Ours) 6.97 6.33 7.71 9.43 4.19 3.92 4.67 6.14
LDS + FDS + RankSim 7.03 6.54 7.68 9.92 4.45 4.07 5.23 6.35
LDS + FDS + RankSim + ConR (Ours) 6.81 6.32 7.45 9.21 4.39 3.81 5.01 6.02
Ours vs. LDS 2.58% 1.51% 3.97% 6.55% 2.39% 2.43% 9.15% 10.78%
Ours vs. FDS 3.07% 3.14% 4.57% 5.47% 5.34% 4.85% 6.78 % 6.56%
Ours vs. RankSim 1.62% 1.70% 2.24% 3.49% 2.45% 3.31% 8.14% 7.79%

Table 2: Main results on IMDB-WIKI-DIR benchmark.

Metrics MAE↓ GM↓
Methods/Shots All Many Median Few All Many Median Few
ConR-only (Ours) 7.33 6.75 11.99 22.22 4.02 3.79 6.98 12.95
LDS 7.83 7.31 12.43 22.51 4.42 4.19 7.00 13.94
LDS + ConR (Ours) 7.43 6.84 12.38 21.98 4.06 3.94 6.83 12.89
FDS 7.83 7.23 12.60 22.37 4.42 4.20 6.93 13.48
FDS + ConR (Ours) 7.29 6.90 12.01 21.72 4.02 3.83 6.71 12.59
RankSim 7.42 6.84 12.12 22.13 4.10 3.87 6.74 12.78
RankSim + ConR (Ours) 7.33 6.69 11.87 21.53 3.99 3.81 6.66 12.62
LDS + FDS 7.78 7.20 12.61 22.19 4.37 4.12 7.39 12.61
LDS + FDS + ConR (Ours) 7.37 7.00 12.31 21.81 4.07 3.96 6.88 12.86
LDS + RankSim 7.57 7.00 12.16 22.44 4.23 4.00 6.81 13.23
LDS + RankSim + ConR (Ours) 7.48 6.79 12.03 22.31 4.04 3.86 6.77 12.80
FDS + RankSim 7.50 6.93 12.09 21.68 4.19 3.97 6.65 13.28
FDS + RankSim+ ConR (Ours) 7.44 6.78 11.79 21.32 4.05 3.88 6.53 12.67
LDS + FDS + RankSim 7.69 7.13 12.30 21.43 4.34 4.13 6.72 12.48
LDS + FDS + RankSim + ConR (Ours) 7.46 6.98 12.25 21.39 4.19 4.01 6.75 12.54
Ours vs. LDS 3.67% 3.54% 1.07% 1.21% 5.75% 4.07% 2.37% 2.08%
Ours vs. FDS 4.00% 2.91% 2.49% 1.62% 5.68% 4.47% 2.86 % 2.18%
Ours vs. RankSim 1.55% 2.37% 1.51% 1.29% 3.50% 2.56% 0.79% 2.16%

Table 3: Main results on NYUD2-DIR benchmark.
Metrics RMSE↓ δ1↑
Methods/Shots All Many Median Few All Many Median Few
ConR-only (Ours) 1.304 0.682 0.889 1.885 0.675 0.699 0.753 0.648
FDS 1.442 0.615 0.940 2.059 0.681 0.760 0.695 0.596
FDS + ConR (Ours) 1.299 0.613 0.836 1.825 0.696 0.800 0.819 0.701
LDS 1.387 0.671 0.913 1.954 0.672 0.701 0.706 0.630
LDS + ConR (Ours) 1.323 0.786 0.823 1.852 0.700 0.632 0.827 0.702
RankSim - - - - - - - -
Balanced MSE (BNI) 1.283 0.787 0.870 1.736 0.694 0.622 0.806 0.723
Balanced MSE (BNI) + ConR (Ours) 1.265 0.772 0.809 1.689 0.705 0.631 0.832 0.698
Balanced MSE (BNI) + LDS 1.319 0.810 0.920 1.820 0.681 0.601 0.695 0.648
Balanced MSE (BNI) + LDS + ConR (Ours) 1.271 0.723 0.893 1.667 0.699 0.652 0.761 0.752
Ours vs. LDS 4.13% 4.25% 10.41% 6.81% 3.41% 0.07% 13.31% 13.74%
Ours vs. FDS 9.92% 0.03% 11.06% 11.37% 2.20% 5.27% 17.84% 17.62%
Ours vs. Balanced MSE (BNI) 2.52% 6.33% 8.99% 18.42% 2.11% 4.97% 6.36% 6.30%

Time consumption Analysis. Table 5 provides the time consumption of ConR in comparison to
other baselines and VANILLA for the age estimation and depth estimation tasks. VANILLA is a
regression model with no technique for imbalanced learning. The reported time consumptions are
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Table 4: Main results of on MPIIGaze-DIR benchmark.

Metric Mean angular error (degrees)↓
Method/Shot All Many Median Few
ConR-only (Ours) 6.16 5.73 6.85 6.17
LDS 6.48 5.93 7.28 6.83
LDS + ConR (Ours) 6.08 5.76 6.81 5.98
FDS 6.71 6.01 7.50 6.64
FDS + ConR (Ours) 6.32 5.69 6.56 5.65
Balanced MSE (BNI) 5.73 6.34 6.41 5.36
Balanced MSE (BNI)+ ConR (Ours) 5.63 6.02 6.17 5.21
Ours vs. LDS 6.17 % 2.87% 6.46% 12.45 %
Ours vs. FDS 5.81 % 5.32% 12.53% 14.91 %
Ours vs. Balanced MSE 1.75 % 5.05% 3.75% 2.80 %

Figure 3: comparison on RMSE results by adding ConR on top of the baselines for NYUD2-DIR
benchmark.

expressed in seconds for AgeDB-DIR and in minutes for NYUD2-DIR, representing the average
forward pass and training time, and were measured using four NVIDIA GeForce GTX 1080 Ti
GPUs. Table 5’s findings demonstrate that even with a high-dimensional label space, ConR’s training
time is considerably lower than FDS while remaining comparable to the time complexity of LDS,
RankSim, and Balanced MSE. This indicates that ConR is an efficient alternative to FDS without
compromising efficiency compared to other well-established methods. This result highlights ConR’s
ability to handle complex tasks without introducing significant computational overhead.

Table 5: Time consumption for AgeDB-DIR and NYU2D-DIR benchmarks.
Benchmark AgeDB-DIR NYUD2-DIR
Method/Metric Forward pass (s) Training time (s) Forward pass (m) Training time (m)
VANILLA 12.2 31.5 7.5 28.3
LDS 12.7 34.3 7.9 30.2
FDS 38.4 60.5 10.8 66.3
RankSim 16.8 38.8 - -
Balanced MSE 16.2 36.3 7.9 29.4
ConR (Ours) 15.7 33.4 8.1 30.4

Feature visualizations. We evaluate ConR by comparing its learned representations with
VANILLA, FDS, and LDS. Using t-SNE visualization, we map ResNet-50’s features to a 2D space
for the AgeDB-DIR dataset. Fig. 4 demonstrates the feature-label semantic correspondence exploited
by ConR, compared to VANILLA, FDS and LDS. VANILLA fails to effectively model the feature
space regarding three key observations: a) high occurrences of collapses: features of minority samples
are considerably collapsed to the majority ones. b) low relative spread: contradicting the linearity in
the age estimation task’s label space, the learned representation exhibits low feature variance across
the label spread (across the colour spectrum) compared to the variance across a single label (same
colour). c) Noticeable gaps within the feature space: contradicts the intended continuity in regression
tasks. Compared to VANILLA, FDS and LDS slightly alleviate the semantic confusion in feature
space. However, as shown in Fig. 4d, ConR learns a considerably more effective feature space with
fewer collapses, higher relative spread and semantic continuity.

4.2 ABLATION STUDIES ON DESIGN MODULES

Negative sampling, pushing weight and pushing power analysis. Here we assess the significance
of our method’s contributions through the evaluation of several variations of ConR and investigating
the impact of different choices of the hyperparameters in ConR. We define four versions of ConR:
Contrastive-ConR: contrastive regularizer where negative peers are selected only based on label
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(a) VANILLA (b) FDS (c) LDS (d) ConR
3

9595

3

Figure 4: Feature visualization on AgeDB-DIR for (a) VANILLA, (b) FDS, (c) LDS and (d) ConR.

similarities. ConR-S: ConR with no pushing power assigned to the negative pairs. ConR-η:
ConR with pushing powers that are not proportionate to the instance weights. ConR-Sim: ConR
with pushing powers that are not proportionate to the label similarities. Table 6 describes the
comparison between these three versions on the AgeDB-DIR benchmark and shows the crucial role
of each component in deep imbalanced regression. Contrastive-ConR is the continuous version
of SupCon (Khosla et al., 2020b) that is biased to majority samples (Kang et al., 2021b). Thus,
Contrastive-ConR shows better results on many shot that is due to the higher performance for
majority samples, while it degrades the performance for minority ones. However, ConR results in a
more balanced performance with significant improvement for the minoirty shots.

Table 6: Ablation results on AgeDB-DIR benchmark.

Metrics MAE↓
Methods/Shots All Many Median Few
Contrastive-ConR 7.69 6.12 8.73 12.42
ConR-S 7.51 6.49 8.23 10.86
ConR-Sim 7.54 6.43 8.19 10.69
ConR-η 7.52 6.55 8.11 10.51
ConR 7.48 6.53 8.03 10.42

Similarity threshold analysis. We investigate the choice of similarity threshold ω by exploring
the learned features and model performance employing different values for the similarity threshold.
Fig. 5a and Fig. 5b compare the feature space learnt with similarity threshold ω = 2 and ω = 1 for
ConR on the AgeDB-DIR benchmark. ConR implicitly enforces feature smoothness and linearity
in feature space. A high threshold (ω = 2) is prone to encouraging feature smoothing in a limited
label range and bias towards majority samples. As illustrated in Fig. 5b, choosing a lower similarity
threshold leads to smoother and more linear feature space. Fig. 5c demonstrates the ablation results
for the similarity threshold on the Age-DB-DIR dataset. For AgeDB-DIR, ω = 1 produces the best
performance. An intuitive explanation could be the higher thresholds will impose sharing feature
statistics to an extent that is not in correspondence with the heterogeneous dynamics in the feature
space. For example, in the task of facial age estimation, the ageing patterns of teenagers are different
from people in their 20s. For more details on this study please refer to Appendix A.6.

(a) Visualization for 1
ω
= 0.5

3

9595

3

(b) Visualization for 1
ω
= 1

3

9595

3

6

8

10

0.5 1 2 4 6

All Many Median Few
MAE

1
ω

(c) Similarity threshold analysis.

Figure 5: Ablation study on the similarity threshold ω. (a) and (b) compares the learnt feature
space for similarity threshold of 2 and 1 respectively. (c) Comparison of different choices of ω in
terms of MAE.

5 CONCLUSION

In this work, we propose ConR, a novel regularizer for DIR that incorporates continuity to contrastive
learning and implicitly encourages preserving local and global semantic relations in the feature
space without assumptions about inter-label dependencies. The novel anchor selection proposed in
this work consistently derives a balanced training focus across the imbalanced training distribution.
ConR is orthogonal to all regression models. Our experiments on uni- and multi-dimensional DIR
benchmarks show that regularizing a regression model with ConR considerably lifts its performance,
especially for the under-represented samples and high-dimensional label spaces. ConR opens a new
perspective to contrastive regression on imbalanced data.
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A EXPERIMENTS

A.1 EMPIRICAL ANALYSIS OF THE MOTIVATION

The key motivation of the design of ConR is that features of minority samples tend to collapse
to their majority neighbours. ConR highlights these situations by defining a penalty based on the
misalignments between prediction similarities and label similarities. Further, ConR regularizes a
regression model by minimizing the defined penalty in a contrastive manner.

Here we first define the penalty P (y) for each prediction value y ∈ Dy. P (y) denotes the av-
erage of the regression errors of the samples with the similar prediction value of y: P (y) =
1
Ny

∑Ny

i=0 LR(xi, yi), whereR(E(xi)) ≃ y, yi ̸≃ y and Ny is the number of the samples collapsed
to the feature space of samples labelled with y.

To empirically confirm the motivation behind ConR, we investigate the importance of the penalty
term in regression tasks. In addition, we show that regularizing a regression model with ConR
consistently alleviate the penalty term defined by ConR and this optimization considerably contributes
to imbalanced regression. Fig. 6a and Fig. 6b demonstrate the comparison between LDS and ConR
in terms of the training loss curve and validation loss curve, respectively. Moreover, Fig. 6c shows the
trend of the expected value of P (y) over the label space, throughout the training. Comparing Fig. 6c
with Fig. 6a and Fig. 6b, P (y) follows the same decreasing pattern as training loss and validation loss.
This observation show that penalizing the penalty term is highly coupled with the learning process. In
addition, Fig. 6 shows that ConR outperform LDS with a considerable gap, particularly in terms of
P (y); showing that ConR regularizer consistently alleviates the penalty and significantly contributes
to the imbalanced regression.
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Figure 6: Comparison of the performance of LDS and ConR on AgeDB-DIR benchmark in terms of
(a)training loss, (b)validation loss, and (c)regularizer penalty.

Fig. 7a shows the training label distribution and Fig. 7b depicts the difference of P (y) across the
label space between ConR and LDS. It empirically shows the considerable improvement of ConR
over LDS in terms of the defined penalty. More improvement over the majority of samples is intuitive
because due to the imbalanced distribution, most of the collapses in feature space happen in the
majority areas and decreasing the penalty in these areas contributes the most to the imbalanced
regression. Finally, Fig. 7c compares the regression error of ConR and LDS and we observe ConR
results in a considerable improvement over LDS, especially for minority samples.

A.2 DATASET DETAILS

Age estimation. We evaluated our method on two DIR benchmarks for age estimation curated
by Yang et al. (2021): IMDB-WIKI-DIR and AgeDB-DIR. IMDB-WIKI (Rothe et al., 2018) has
191.5K images for training, and 11.0K images for validation and testing, respectively. To structure
IMDB-WIKI-DIR, Yang et al. (2021) bin the label space with a bin length of 1 year, where the
minimum age is 0 and the maximum age is 186. The bin density varies between 1 and 7,149. The
AgeDB dataset (Moschoglou et al., 2017) has 16,488 samples.Yang et al. (2021) constructed AgeDB-
DIR in a similar manner as IMDB-WIKI-DIR, where the minimum age is 0 and the maximum age
is 101. The maximum number of samples per bin is 353 images and the minimum bin density is 1.
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Figure 7: Qualitative analysis of ConR in terms of regularizer penalty on AgeDB-DIR benchmark.
(a) training label distribution. (b) Penalty difference (LDS minus ConR) on balanced test data. (c)
MAE/ difference (LDS minus ConR) on balanced test data.

There are 12,208 training samples and the validation set and test set are made balanced with 2,140
samples each.

Depth estimation. Yang et al. (2021) created NYUD2-DIR based on the NYU Depth Dataset
V2 Silberman et al. (2012). NYU Depth Dataset V2 has images and corresponding depth maps for
different indoor scenes and the task is to predict the depth maps from the RGB scene images. The
upper bound of the depth maps is 10 meters and the lower bound is 0.7 meters. Following standard
practices. There are 50K images for training and 654 images for testing. Yang et al. (2021) use the
bin length of 0.1-meter bin density varies between 1.13 × 106 and 1.46 × 108. For a balanced test set,
Yang et al. (2021) randomly select 9,357 test pixels for each bin from 654 test images with a total of
8.70 × 105 test pixels in the NYUD2-DIR test set.

Gaze estimation. We used a subset of the MPIIGaze dataset comprising 45,000 training samples
from 15 individuals, with 3,000 samples per person. The dataset is naturally imbalanced over the 2D
training label distribution.

Here we provide the details of deriving the proposed MPIIGaze-DIR benchmark from the MPIIGaze
dataset. the label space of MPIIGaze is 2-dimensional with one dimension ranging from -0.39
to 0.08 and the other from -0.72 to 0.67. Fig. 8a shows the imbalanced distribution across each
dimension separately and Fig. 8b shows the joint distribution of the label space with a grid size of 10.
Considering the joint distribution, we define thresholds on the bin densities to curate shots (i.e. many,
median, and few) as follows: 1300 or more for the many-shot, 700 to 1300 for the median-shot and
less than 700 for the few-shot. Next, with the code snippet provided in Fig. 9, We assign the samples
to their corresponding shots.

(a) Individual distribution (b) Joint distribution

Figure 8: Distribution of the 2-dimensional label space of MPIIGaze benchmark.

For training, we follow a leave-one-out scheme where each time one person is dedicated to validation,
one person for testing and 13 people for training. The reported results are in terms of average test
results among all the 15 people. To create a balanced test set, we take 200 samples from each shot
similar to the methods used in the FDS work. Follow the baselines (Gong et al., 2022), only the
training data for these tasks is imbalanced; the test dataset is balanced.
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Figure 9: Code snippet for MPIIGaze-DIR creation.

A.3 BASELINES

ConR is orthogonal to state-of-the-art imbalanced learning methods, thus we examine the improve-
ment from ConR when added on top of existing methods, which we refer to as baselines for our
technique: Label- and Feature-Distribution Smoothing (LDS and FDS) encourage local similarities
in label and feature space (Yang et al., 2021). RankSim imposes a matching between the order of
similarities in label space with these similarities in feature space (Gong et al., 2022). Balanced
MSE encourages a balanced prediction distribution (Ren et al., 2022). To investigate the effect of
contrastive learning on deep imbalanced regression, we also regularize using infoNCE (Oord et al.,
2018) and contrastive architecture of MoCo (He et al., 2020), MoCo V2 (Chen et al., 2020b). Refer to
Appendix A.6 for contrastive analysis. Results for RankSim on depth estimation and gaze estimation
are omitted as RankSim is not suitable for these tasks.

A.4 IMPLEMENTATION DETAILS

We use four NVIDIA GeForce GTX 1080 Ti GPU to train all models. For a fair comparison, we
follow (Yang et al., 2021) for all standard train/val/test splits. The rest of this section provides the
implementation details and choices of hyperparameters for all three datasets.

Age estimation. For AgeDB-DIR benchmark and IMDB-WIKI-DIR benchmark, we use Resnet50
for encoder E(·) and a one-layer fully connected network for the regression module R(·). The
batch size is 64 and the learning rate is 2.5 ∗ 10−4 and decreases by 10× at epoch 60 and epoch 80.
We use the Adam optimizer with a momentum of 0.9 and a weight decay of 1e-4. Following the
baselines (Yang et al., 2021) the loss function for regression LR is Mean Absolute Error(MAE). All
the models are trained for 90 epochs. The augmentations in the age estimation task are random crop
and random horizontal flip.

ηj = (0.01)wj and the similarity function Sim(·, ·) is inverse Mean Absolute Error(MAE). To resolve
divide by zero and infinite numbers, a pair of samples with MAE distance < 1

ω are considered similar.
Further, the pushing weight Sj,q is defined as: Sj,q = fS(ηj ,

1
MAE(yj ,yq)

) = ηjMAE(yj , yq).
Finally, the similarity threshold ω is 1, τ = 0.2, α = 1, and β = 4.

Depth estimation. For NYUD2-DIR benchmark, we use ResNet-50-based encoder-decoder archi-
tecture (Hu et al., 2019). The output size is 114 × 152. The batch size is 32 and the learning rate
is 1 ∗ 10−4. All models are trained for 90 epochs with an Adam optimizer. The momentum of the
optimizer is 0.9 and its weight decay is 1e− 4. Following the baselines (Yang et al., 2021; Hu et al.,
2019) the loss function for regression LR is root-mean-square(RMSE). The augmentations in the
depth estimation task are random rotate, color jitter, and random horizontal flip.

To measure the similarity in label space, first, for each sample (zj , yj), we take the average value of
the depth map, denoted as ȳj . Then, for each pair of samples, we use the root-mean-square(RMSE)
to quantify the similarity of this pair in the label space. If the RMSE(ȳi, ȳj) is less than 1

ω , sample i
and sample j are considered similar and otherwise dissimilar. In addition, the pushing weight Sj,q
is defined as: Sj,q = fS(ηj ,

1
RMSE(yj ,yq)

) = ηjRMSE(yj , yq). The similarity threshold ω is 5,
β = 0.2, τ = 0.7 and ηj = (0.2)wj .
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Gaze estimation. We reported our results on a balanced test set, containing 600 samples in total
and 200 samples per each ”many,” ”median,” and ”few” shots. Our results were averaged over five
random runs to ensure statistical significance. Each run in the evaluation incorporated a leave-one-out
scheme, where we performed 15 runs with a single individual as the designated test set. The final
results are the Mean Angle Error (in degrees) for all the individuals. The backbone is LeNet, β = 0.4,
α = 1, ω = 1 . ηj = (0.01)wj and Sj,q = fS(ηj ,

1
MAE(yj ,yq)

) = ηjMAE(yj , yq). The batch size
and the base learning rate are 32 and 0.01, respectively. The augmentations in the gaze estimation
task are random crop, random resize, and colour jitter.

A.5 PERFORMANCE ANALYSIS

All the experimental results are reported as the averages of 5 random runs.

More results for age estimation. For a more extensive empirical confrimation that ConR is
orthogonal to DIR baselines, Table 7 shows the performance improvements when RRT Yang et al.
(2021), Focal-R Yang et al. (2021) and Balanced MSE are regularized by ConR.

Table 7: MAE results of ConR on AgeDB-DIR Benchmark and IMDB-WIKI-DIR benchmark.

Metric MAE↓
Benchmark AgeDB-DIR IMDB-WIKI-DIR
Methods/Shots All Many Median Few All Many Median Few
RRT 7.74 6.98 8.79 11.99 7.81 7.07 14.06 25.13
RRT + ConR (Ours) 7.53 6.79 7.60 10.30 7.41 6.89 13.20 23.30
Focal-R 7.64 6.68 9.22 13.00 7.97 7.12 15.14 26.96
Focal-R + ConR (Ours) 7.23 6.63 8.30 11.89 7.85 7.01 14.31 25.23
Balabced MSE (GAI) 7.57 7.46 8.40 10.93 8.12 7.58 12.27 23.05
Balabced MSE (GAI) + ConR (Ours) 7.22 6.71 7.99 9.88 7.84 7.20 12.09 22.20
Ours vs. RRT 2.71 % 2.72% 13.54% 14.10 % 5.12 % 2.55% 6.12% 7.28 %
Ours vs. Focal-R 5.37 % 0.75% 9.98% 8.54 % 1.51 % 1.54% 5.48% 6.42 %
Ours vs. Balanced MSE (GAI) 4.62 % 10.05% 4.88% 9.61 % 3.45 % 5.01% 1.47% 3.69 %

Error Reduction. Here we show the comparison of the Error reduction resulting from adding
ConR to the deep imbalanced regression baselines (LDS, FDS and RankSim) for age estimation
benchmarks(e.g. AgeDB-DIR and IMDB-WIKI-DIR) and (LDS, FDS and Balanced MSE) for
gaze estimation benchmark. Fig. 10, Fig. 11 and Fig. 12 empirically confirm significant perfor-
mance consistency ConR introduces to DIR for AgeDB-DIR, IMDB-WIKI-DIR and MPIIGaze-DIR
benchmarks, respectively.

Figure 10: comparison on MAE results by adding ConR on top of the baselines for AgeDB-DIR
benchmark.

Feature visualization. Fig. 13 compares the learned representations by RankSim and Balanced
MSE. RanKSim by imposing order relationships encourage high relative spread while Balanced
MSE suffer from low relative spread. Both RankSim and Balanced MSE have high occurrences of
collapses and noticeable gaps in their feature space. Comparing Fig. 4-d with Fig. 13 shows that
ConR learns the most effective representations.
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Figure 11: Comparison of the performance gain by regularizing the DIR baselines (LDS, FDS,
RankSim) with ConR on IMDB-WIKI-DIR benchmark.

Figure 12: Comparison of the performance gain by regularizing the DIR baselines (LDS, FDS,
Balanced MSE) with ConR on MPIIGaze-DIR benchmark.

A.6 ABLATION STUDY

Negative Sampling, Pushing Weight and Power Analysis. Table 8, table 9 and table 10 show the
significance of the main contributions of ConR for IMDB-WIKI-DIR, NYUD2-DIR and MPIIGaze-
DIR benchmarks, respectively.

Table 8: Ablation results of the design modules of ConR on IMDB-WIKI-DIR benchmark.

Metric MAE↓
Method/Shot All Many Median Few
Contrastive-ConR 8.10 6.79 15.87 26.51
ConR-S 7.79 6.99 14.61 25.64
ConR-Sim 7.83 6.87 14.30 25.59
ConR-η 7.76 7.10 14.25 25.33
ConR (Ours) 7.84 7.09 14.16 25.15

Table 9: Ablation results of the design modules of ConR on NYUD2-DIR benchmark.

Metric RMSE↓
Method/Shot All Many Median Few
Contrastive-ConR 1.518 0.586 1.124 2.412
ConR-S 1.410 0.670 0.941 1.954
ConR-Sim 1.383 0.667 0.935 1.929
ConR-η 1.318 0.693 0.892 1.910
ConR (Ours) 1.304 0.682 0.889 1.885

Similarity Threshold Selection. Fig. 14 shows the ablation study on the similarity threshold for
IMDB-WIKI-DIR and NYUD2-DIR benchmarks. ω = 1 and ω = 5 are the best similarity threshold
choices for IMDB-WIKI-DIR and NYUD2-DIR benchmarks, respectively.
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(a) RankSim
(b) Balanced
MSE

Figure 13: Feature visualization on AgeDB-DIR dataset for (a) RankSim, (b) Balanced MSE.

Table 10: Ablation results of the design modules of ConR on MPIIGaze-DIR benchmark.

Metric Mean Angle Error (degrees)↓
Method/Shot All Many Median Few
Contrastive-ConR 7.11 5.00 7.73 9.89
ConR-S 6.47 5.94 6.91 6.71
ConR-Sim 6.39 5.69 7.09 6.48
ConR-η 6.24 5.87 6.96 6.27
ConR (Ours) 6.16 5.73 6.85 6.17
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Figure 14: Comparison of different choices of ω (a) in terms of MAE for IMDB-WIKI-DIR bench-
mark, (b) in terms of RMSE for NYUD2-DIR and (c) in terms of Mean angular error (degrees) for
MPIIGaze-DIR.

Hyperparameter selection. Here we present the selection process of hyperparameters α, β and
η for all the benchmarks. Table 11, Table 12, Table 13 and Table 14 show the ablation study of
ConR on α and β in Eq. 4 for AgeDB-DIR, IMDB-WIKI-DIR, NYUD2-DIR and MPIIGaze-DIR
benchmarks, respectively. In these tables, hyperparameter η is set to the values mentioned in A.4.
Additionally, Table 15, Table 16, Table 17 and Table 18 show the ablation study of ConR on η in Eq. 2
for AgeDB-DIR, IMDB-WIKI-DIR, NYUD2-DIR and MPIIGaze-DIR benchmarks, respectively. In
these tables, hyperparameter η is set to the values mentioned in A.4.

Contrastive Regression. To evaluate the impact of contrastive learning on deep imbalanced
regression, we use two contrastive regularizers: MoCo: We regularize the baselines with infoNCE
loss, using the architecture of with MoCo V1 (He et al., 2020), MoCo V2 (Chen et al., 2020b), and
ConR. Here we regularized a regression model with both Moco v1 and MoCo v2. Our experiments
shows that MoCo v2 degrades the regression performance in some cases. Table 19 compares the
performance of a regression model on AgeDB-DIR, IMDB-WIKI-DIR and NYUD2-DIR benchmarks
when it is regularized in a contrastive manner with MoCo V1, MoCo V2, and ConR. The results
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Table 11: Ablation study on α and β in Eq. 4 for AgeDB-DIR benchmark

α β
MAE↓

All Many Median Few
0.5 1 7.31 6.53 8.08 10.51
1 0.5 7.30 6.59 8.10 10.46
1 1 7.31 6.55 8.11 10.48
1 2 7.35 6.58 8.07 10.46
1 4 7.28 6.53 8.03 10.42
1 5 7.25 6.47 8.12 10.54

Table 12: Ablation study on α and β in Eq. 4 for IMDB-WIKI-DIR benchmark

α β
MAE↓

All Many Median Few
0.5 1 7.98 7.11 14.26 25.19
1 0.5 7.90 7.17 14.34 25.21
1 1 7.94 7.29 14.28 25.19
1 2 7.80 7.21 14.23 25.17
1 4 7.84 7.09 14.16 25.15
1 5 7.98 7.25 14.24 25.13

Table 13: Ablation study on α and β in Eq. 4 for NYUD2-DIR benchmark

α β
RMSE↓

All Many Median Few
0.5 1 1.344 0.722 0.897 1.918
1 0.5 1.324 0.712 0.891 1.945
1 0.2 1.304 0.682 0.889 1.885
1 0.4 1.316 0.673 0.909 1.905

Table 14: Ablation study on α and β in Eq. 4 for MPIIGaze-DIR benchmark

α β
Mean Angle Error (degrees)↓
All Many Median Few

0.5 1 6.18 5.79 6.89 6.19
1 0.2 6.14 5.85 6.84 6.22
1 0.4 6.16 5.73 6.85 6.17
1 1 6.09 5.64 7.05 6.24

Table 15: Ablation study of η (pushing power) for AgeDB-DIR benchmark.

η
MAE↓

All Many Median Few
0.009 7.31 6.63 7.99 10.5
0.01 7.28 6.53 8.03 10.42
0.05 7.36 6.51 8.11 10.51
0.1 7.38 6.49 8.09 10.48

are reported in terms of MAE for AgeDB-DIR benchmark and IMDB-WIKI-DIR benchmark and in
terms of RMSE for NYUD2-DIR dataset. Moco considerably boost the performance of VANILLA
and shows that contrastive training significantly improves the regression performance, especially
for minority samples. ConR incorporate unbiased supervision into the contrastive regression and
significantly boost the performance on minority samples with no harm to the learning process for
majority samples. As shown in Fig. 15, Moco and ConR provide more consistent performance
compared to the baseline. In addition, Moco is consistently outperformed by ConR and empirically

19



Published as a conference paper at ICLR 2024

Table 16: Ablation study of η (pushing power) for IMDB-WIKI-DIR benchmark.

η
MAE↓

All Many Median Few
0.009 7.88 7.07 14.25 25.16
0.01 7.84 7.09 14.16 25.15
0.05 7.88 6.99 14.20 25.16
0.1 7.91 7.14 14.18 25.21

Table 17: Ablation study of η (pushing power) for NYUD2-DIR benchmark.

η
RMSE↓

All Many Median Few
0.1 1.312 0.674 0.886 1.891
0.2 1.304 0.682 0.889 1.885
0.4 1.295 0.619 0.92 1.911

Table 18: Ablation study of η (pushing power) for MPIIGaze-DIR benchmark.

η
Mean angular error (degrees)↓
All Many Median Few

0.5 6.15 5.77 6.83 6.21
1 6.16 5.73 6.85 6.17
2 6.18 5.74 6.89 6.23

confirms ConR improves the self-supervised contrastive regularizer by incorporating supervision in
an unbiased manner.

Table 19: Results of contrastive learning analysis on AgeDB-DIR, IMDB-WIKI-DIR and
NYUD2-DIR benchmarks. Results are reported for the whole test data (all) and three other shots:
many, median, few. At the bottom of the table the improvements of ConR with respect to Moco are
reported in green for each benchmark, shot and metric. In each column, the best result is in bold.

Benchmark AgeDB-DIR IMDB-WIKI-DIR NYUD2-DIR
Metric MAE↓ MAE↓ RMSE↓

Method
Shot All Many Median Few All Many Median Few All Many Median Few

VANILLA 7.35 6.56 8.23 12.37 8.06 7.23 15.12 26.33 1.477 0.591 0.952 2.123
+ Moco V1 7.33 6.50 8.19 11.72 7.89 7.13 14.78 26.11 1.370 0.601 0.902 1.912
+ Moco V2 7.47 6.21 8.75 12.75 8.12 6.99 15.02 26.01 1.404 0.632 0.978 2.207
+ ConR 7.28 6.53 8.03 10.42 7.84 7.09 14.16 25.15 1.304 0.682 0.889 1.885
ConR vs. Moco 0.68% -0.46% 1.96% 11.10% 0.63% 0.56% 4.20% 3.68% 4.82% -1.63% 1.44% 4.41%

VANILLA
Moco
ConR

(a) AgeDB-DIR

VANILLA
Moco
ConR

(b) IMDB-WIKI-DIR

R
M
SE

VANILLA
Moco
ConR

(c) NYUD2-DIR

Figure 15: Comparison of the performance gain of regularizing VANILLA regression model with con-
trastive regularizers: Moco V1 and ConR on (a) AgeDB-DIR, (b) IMDB-WIKI-DIR anf (c) NYUD2-
DIR benchmarks. It shows contrastive regularizer consistently lifts the performance of the baseline,
particularly on minority samples.
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B MORE THEORETICAL INSIGHTS

Here we theoretically justify the effectiveness of ConR by deriving a upper bound on the probability
of incorrect labelling of minority samples. We show that minimizing LConR robustly minimizes this
probability of mislabeling for minority samples and consequently improves the generalizability.

In the following, we’ll derive the upper bound: following (Oord et al., 2018; Wang et al., 2022)
we define the density ratio f(ŷ, x) in InfoNCE Oord et al. (2018) to be p(ŷ|x)

p(ŷ) (Oord et al., 2018;
Wang et al., 2022) that is estimated by exp(zj · zi/τ) in Eq. 1 like other contrastive objective
functions (He et al., 2020; Chen et al., 2020a). p(ŷ|x) is the desired prediction distribution and
Ŷj = (ŷj − ω, ŷj + ω).

For each anchor xj the LConRj in Eq. 1 is defined to be:

LConRj = − log
1

N+
j

∑
zi∈K+

j

exp(zj · zi/τ)∑
zp∈K+

j
exp(zj · zp/τ) +

∑
zq∈K−

j
Sj,q exp(zj · zq/τ)

(6)

Then, LConRj can be rewritten as:

LConRj =− log
1

N+
j

N+
j∑

i=0

f(ŷj , xi)∑K+
j

p=0 f(ŷj , xp) +
∑K−

j

q=0 Sj,qf(Ŷj , xq)
(7)

Following Jensen’s inequality we have:

LConRj =− log
1

N+
j

N+
j∑

i=0

f(ŷj , xi)∑N+
j

p=0 f(ŷj , xp) +
∑K−

j

q=0 Sj,qf(Ŷj , xq)
(8)

McShane (1937)
≥ − 1

N+
j

N+
j∑

i=0

log
f(ŷj , xi)∑K+

j

p=0 f(ŷj , xp) +
∑N−

j

q=0 Sj,qf(Ŷj , xq)
(9)

where xq are the negative sample, and ŷj is the prediction of positive samples. prediction of xq

mistakenly fall in the range of (ŷj ± ω). Further, we have:

LConRj ≥−
1

N+
j

K+
j∑

i=0

log
f(ŷj , xi)∑N+

j

p=0 f(ŷj , xp) +
∑N−

j

q=0 Sj,qf(Ŷj , xq)
(10)

=
1

N+
j

N+
j∑

i=0

log

[∑N+
j

p=0 f(ŷj , xp)

f(ŷj , xi)
+

∑N−
j

q=0 Sj,qf(Ŷj , xq)

f(ŷj , xi)

]
(11)

≥ 1

N+
j

N+
j∑

i=0

log

[∑N+
j

p=0 f(ŷj , xp)∑N+
j

i=0 f(ŷj , xi)
+

∑K−
j

q=0 Sj,qf(Ŷj , xq)

f(ŷj , xi)

]
(12)

≥ 1

N+
j

N+
j∑

i=0

log

[
1 +

∑N−
j

q=0 Sj,qf(Ŷj , xq)

f(ŷj , xi)

]
(13)

≥ 1

N+
j

N+
j∑

i=0

log

[∑N−
j

q=0 Sj,qf(Ŷj , xq)

f(ŷj , xi)

]
(14)

=
1

N+
j

[
log

N−
j∑

q=0

Sj,qf(Ŷj , xq)− log

N+
j∑

i=0

f(ŷj , xi)
]

(15)
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Next, the LConR is:

LConR =
1

2N

2N∑
j=0

LConRj (16)

≥ 1

2N

2N∑
j=0

1

N+
j

[
log

N−
j∑

q=0

Sj,qf(Ŷj , xq)− log

N+
j∑

i=0

f(ŷj , xi)
]

(17)

≥ 1

2N

2N∑
j=0

1

2N

[
log

N−
j∑

q=0

Sj,qf(Ŷj , xq)− log

N+
j∑

i=0

f(ŷj , xi)
]

(18)

=
1

4N2

2N∑
j=0

[
log

N−
j∑

q=0

Sj,qf(Ŷj , xq)− log

N+
j∑

i=0

f(ŷj , xi)
]

(19)

=
1

4N2
(

2N∑
j=0

log

N−
j∑

q=0

Sj,qf(Ŷj , xq)−
2N∑
j=0

log

N+
j∑

i=0

f(ŷj , xi)) (20)

=
1

4N2
(

2N∑
j=0

log

N−
j∑

q=0

Sj,qf(Ŷj , xq)−
2N∑
j=0

log

N+
j∑

i=0

p(ŷj |xi)

p(ŷj)
) (21)

p(ŷj |xi)

p(ŷj)
<1

≥ 1

4N2
(

2N∑
j=0

log

N−
j∑

q=0

Sj,qf(Ŷj , xq)−
2N∑
j=0

log

N+
j∑

i=0

1) (22)

=
1

4N2
(

2N∑
j=0

log

N−
j∑

q=0

Sj,qf(Ŷj , xq)− 2N logN+
j ). (23)

Further, we have:

LConR =
1

4N2
(

2N∑
j=0

log

N−
j∑

q=0

Sj,qf(Ŷj , xq)− 2N logN+
j ) (24)

≥ 1

4N2
(

2N∑
j=0

N−
j∑

q=0

logSj,qf(Ŷj , xq)− 2N logN+
j ) (25)

=
1

4N2
(

2N∑
j=0

N−
j∑

q=0

logSj,q
p(Ŷj |xq)

p(Ŷj)
− 2N logN+

j ) (26)

p(Ŷj)<1

≥ 1

4N2
(

2N∑
j=0

N−
j∑

q=0

logSj,qp(Ŷj |xq)− 2N logN+
j ) (27)

≥ 1

4N2
(

2N∑
j=0

N−
j∑

q=0

logSj,qp(Ŷj |xq)− 2N log(2N)). (28)

Then:

1

4N2

2N∑
j=0

N−
j∑

q=0

logSj,qp(Ŷj |xq) ≤ LConR +
log(2N)

2N
. (29)
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As explained in 3, among the 2N augmented samples only the ones with the confusion around them
are chosen as anchors. Assuming A is the set of selected anchors that is a subset of the 2N augmented
samples we have:

1

4N2

2N∑
j=0,xj∈A

K−
j∑

q=0

logSj,qp(Ŷj |xq) ≤ LConR + ϵ, ϵ
N→∞→ 0 (30)

In Eq. 30, p(Ŷj |xq) is the likelihood of sample xq with an incorrect prediction yq ∈ Ŷj . We refer to
p(Ŷj |xq) as the probability of collapse for xq . The left-hand side presents this probability for all the
negative pairs.

Regarding the empirical study by Yang et al. (2021), when learning a regression function from the
imbalanced data, the representations of minority samples tend to collapse to the majority ones. Since
in the definition of LConRj in Eq. 1, xq show the collapsed minority samples, minimizing the left
side of the inequality in Eq. 30 is the intended optimization in deep imbalanced regression.

The left-hand side is the probability of all collapses during the training and regarding Eq. 30
Convergence of LConR tightens the upper bound for it. Minimizing the left-hand side can be
explained with two non-disjoint scenarios: either the number of anchors or the degree of collapses is
reduced. Here the degree of collapse for each negative sample refers to the quantified disagreement
between the label similarity and prediction similarity as discussed in section 3. In addition, each
collapse probability is weighted with Sj,q , leading to penalizing the incorrect predictions with regard
to their severity. In other words, ConR penalizes the bias probabilities with a re-weighting scheme,
where the weights are defined based on the agreement of the predictions and labels.

C ALGORITHM OF CONR

Algorithm 1 shows the pseudo-code of regularizing a regression model using ConR. In this algorithm,
Sj,q is the pushing weights for selected anchor zj and its negative pair zq (Eq. 2). K+

j and K−
j are

positive pairs of zj , and negative pairs of zj , respectively.
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Algorithm 1 ConR: Contrastive regularizer for deep imbalanced regression

Require:
input samples {(xi, yi)}Ni=0
feature encoder E(.)
regression functionR(.)

for e in epochs do
for b = {(xi, yi)}Nb

i=0 in Batches do
{xa

j , yj}
2Nb
j=0

Augmentations← {xi, yi}Nb
i=0

{zj}2Nj=0 ← E({xa
j }

2Nb
j=0) ▷ zj : feature embeddings of augmented input xa

j .
{ŷj}2Nb

j=0 ← R(E({zj}
2Nb
j=0)) ▷ ŷj : prediction of zj .

{K+
j ,K−

j }
2Nb
j=0 ← {zj , yj , ŷj}

2Nb
j=0

for j ∈ (0, 2Nb) do
if N−

j == 0 then
LConRj ← 0 ▷ Samples with no negative pairs are not selected as anchors.

else
{Sj,q}

N−
j

q=0 ← fS(yj , {yq}
N−

j

q=0) ▷ Sj,q: pushing weight (Eq. 2)

LConRj ← computeConR(zj ,K+
j ,K−

j , {Sj,q}
N−

j

q=0) ▷ Eq. 1
end if

end for
LConR

Average← {LConRj}
2Nb

j=0
▷ Eq. 3

LR ← computeRegressionLoss({ŷj , yj}Nb

j=0)

Lsum ← αLR + βLConR

Lsum.backPropagate()
end for

end for
Ensure: Trained regression functionR(.) and trained feature encoder E(.)
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