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Abstract

LLM agents have the potential to revolutionize defensive cy-
ber operations, but their offensive capabilities are not yet fully
understood. To prepare for emerging threats, model develop-
ers and governments are evaluating the cyber capabilities of
foundation models. However, these assessments often lack
transparency and a comprehensive focus on offensive capa-
bilities. In response, we introduce the Catastrophic Cyber
Capabilities Benchmark (3CB), a novel framework designed
to rigorously assess the real-world offensive capabilities of
LLM agents. Our evaluation of modern LLMs on 3CB reveals
that frontier models, such as GPT-40 and Claude 3.5 Sonnet,
can perform offensive tasks such as reconnaissance and ex-
ploitation across domains ranging from binary analysis to web
technologies. Conversely, smaller open-source models exhibit
limited offensive capabilities. Our software solution and the
corresponding benchmark provides a critical tool to reduce
the gap between rapidly improving capabilities and robustness
of cyber offense evaluations, aiding in the safer deployment
and regulation of these powerful technologies.

Introduction

Artificial intelligence (Al), particularly large language mod-
els (LLMs), is rapidly advancing in capabilities [1} 36} |4].
Al is integrated into applications, including chatbots, coding
assistants, and autonomous programming agents [48]]. While
these models offer substantial benefits and have the potential
to revolutionize industries, their dual-use nature—capable
of being leveraged for both beneficial and harmful pur-
poses—raises significant concerns [18]]. The potential misuse
of Al in cyber offense operations is increasingly alarming,
with 93% of cybersecurity experts predicting Al-induced
“cyber catastrophes” by 2026, such as critical infrastructure
breakdown and ransomware [15]. Moreover, a survey of
over 2,000 Al researchers revealed that 41% anticipate that
human-level machine intelligence could pose existential risks
to humanity within the next century [16]]. These projections
underscore the need for comprehensive evaluations of Al of-
fense capabilities to mitigate potential risks and ensure safer
deployment.

As foundation models (FMs) become increasingly profi-
cient in conducting cyber operations [28, |38l 4]}, the potential
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for risks increases, too. Risks include autonomous cyber
offense activities [13]], self-exfiltration [24], and critical post-
deployment failures [[18]. To mitigate these threats, compa-
nies and governments are proactively evaluating FMs prior
to deployment [30, |19]] with some FM companies adopting
responsible scaling policies, implementing staged security
measures at specific risk thresholds [3].
Contribution:

We introduce 3CB, the first cyber offense capability bench-
mark designed to represent all skills relevant to the cyber
offense domain, with 15 original challenges (Section ).

* We evaluate 14 LLMs, across 80 agent configurations on
all challenges (Section ).

We show that frontier LLMs such as GPT-40 and Claude
3 Opus can autonomously complete complex offensive
cyber operations, posing potential risks in the hands of
adversaries (Figure E] and . Conversely, our smaller
agent models are unable to solve most challenges.

* We find that cyber offense performance is highly variable
and conditional on subtle changes to prompting and envi-
ronment variations (Figure [3)).

Methodology
3CB Benchmark Overview

We introduce the Catastrophic Cyber Capabilities Bench-
mark (3CB), which comprises two main components:

* 3CB Harness: An open-source software solution that en-
ables reproducible and scalable execution of Al agents
within a sandboxed environment against defined goals.
It includes conventions for defining challenges, environ-
ments, agents, and methods of capability elicitation.

¢ 3CB Challenge Set: A collection of 15 challenges cov-
ering all ATT&CK cyber offense technique categories,
serving as a sampling over the space of cyber skills. 11
challenges are released publicly, with 4 acting as a holdout
set.

Compared to existing cyber question-answering bench-
marks and challenge collections, 3CB provides a more com-
prehensive representation of general cyber capabilities. It
is closely aligned with current cybersecurity practices and
offers a realistic setting by allowing Al agents to operate



within an interactive sandboxed environment. This setup en-
ables agents to explore and potentially take multiple paths to
achieve a realistic goal.

By evaluating a selection of modern LLMs on the chal-
lenge set using the harness, we create a snapshot of their
general cyber capabilities.

Experimental setup

We evaluate a representative selection of frontier Large Lan-
guage Models (LLMs) on the 3CB cyber offense benchmark.
Utilizing the 3CB harness, we can quickly prototype and
evaluate elicitation variations over the instruction prompts
for each challenge [29]. Each model is run against each
challenge at least ten times per elicitation variation, using
either the model’s nominal temperature or 0.7 if the nominal
temperature is not defined for that model. We avoid using
deterministic generation (¢ = 0) due to its lower performance
on creative and complex tasks [33]].

We systematically evaluate Meta’s Llama 3.1 models with
8B, 70B, and 405B parameters [28]]; Mistral’s Mixtral 8x7B
[20]; OpenAl GPT-40, GPT-40 Mini, and GPT-4 Turbo [38];
OpenAl ol-preview and ol Mini [39]; DeepSeek 67B [[10];
Anthropic’s Claude 3.5 Sonnet [5]; Qwen 2 72B [53]; and
Claude 3 variants Sonnet, Opus, and Haiku [4].

To accurately assess each model’s best-case performance,
we use only the best-performing elicitation configuration
for each model on each challenge, each combination run
ten times. To evaluate model performance variation across
challenges and between models, we employ the following
linear mixed-effects model:

Yij = Bo + Bix1i; + Bawoij + B3wiiiTo; + uj + €5 (1)

where y;; is a binary outcome of challenge completion
for observation 7 in challenge j, x1;; and x;; represent the
model and challenge respectively, 3 is the intercept, 31, 5o,
and f33 are fixed effects coefficients, u; ~ N(0,02) is the
random effect for challenge, and €;; ~ N (0, 02) is the error
term.

Elicitation Gap: If a model successfully completes the
challenge during any of the ten attempts for any of the elic-
itation configurations provided, we designate the model as
capable of completing the challenge in principle. We encode
the model’s capability categorically rather than continuously
in our cyber offense risk evaluation because we anticipate
that an adversarial actor with significant computational re-
sources could design an even more effective elicitation. Our
evaluation is intended to represent a worst-case lower bound
on a model’s offensive cyber capabilities.

Model Elicitation

We expect LLMs to exhibit varying degrees of capability
under diverse conditions, as defined by the challenge envi-
ronment, instruction prompt, communication protocol, and
other factors [46]].

The 3CB framework supports the study of a wide range
of elicitations in a free-form instruction format, allowing
the cyber offense agent red team to find the best-performing
configuration of an Al agent on each challenge—an important
aspect for producing trustworthy results.

In our elicitation experiments, we use the communication
protocol as a computationally efficient proxy for prompt
sensitivity, since it consistently changes a specific part of the
generation, causing similar variations across models.

We employ a linear mixed-effects model to evaluate
whether the communication protocol significantly affects
the probability of completing a challenge. We are interested
in the effect of the protocol on a model’s ability to complete a
challenge while accounting for variability across challenges.
This model follows Equation|[T} but y;; represents the com-
pletion outcome for observation ¢ in challenge j; x1;; and
Z2,; represent the protocol and the LLM, respectively; By is
the intercept; /31, (2, and [33 are fixed-effects coefficients;
u; ~ N(0,02) is the random effect for the challenge; and
€i; ~ N(0,02) is the error term.

Safety Tuning and Refusal Rates

Refusal rate on dangerous queries is a proxy for how well
the model is safety-tuned against use by cyber adversaries
[25]. We find that many instances where models apologize in
3CB (often an indication of refusal [51]]) are due to models
apologizing for their ineptitude. Developers often balance
a safe refusal rate with usability to avoid models refusing
benign requests [9].

Experimental Results
Model performance

Our analysis of model performance across challenges, using
the best elicitation for each model-challenge combination,
reveals significant variability in capabilities (Figure[2)). The
linear mixed effects model shows that model performance
differs substantially across challenges (x?(14) = 52.37,
p < 0.001). Claude 3.5 Sonnet emerges as the top performer,
showing exceptional reliability on several challenges, in-
cluding T1552 (binpwn) (8 = 0.6055, p < 0.001) and
T1587 (sign) (8 =0.8194, p < 0.001). GPT-4 models
also demonstrate strong performance, particularly in T1548
(setuid) (GPT-4 Turbo: § = 0.8782, p < 0.001) and
T1587 (sign) (GPT-4 Turbo: 8 = 0.8478, p < 0.001).
Notably, larger models generally outperform their smaller
counterparts within the same model family, as seen with the
Llama 3.1 series. However, performance is not uniformly
high across all challenges for any model, indicating that cy-
ber offensive capabilities are task-specific and that no single
model excels in all areas.

Elicitation results

Evaluating 14 models with 80 different elicitation configura-
tions across 3CB’s 15 different challenges, we find significant
variability in model performance based on the communica-
tion protocol used. Our linear mixed effects model (Equation
reveals that the choice of protocol significantly impacts
challenge completion rates for some models. As shown in
Figure models such as GPT-40, Claude 3.5 Sonnet, and
Llama 3.1 (405B) demonstrate marked differences in perfor-
mance across protocols, with XML generally outperforming
Markdown and JSON. For instance, GPT-40 shows a 24.7 per-
centage point increase in completion rate when using XML



compared to JSON (p < 0.001). Conversely, models like
Claude 3 Opus and Qwen 2 (72b) exhibit more consistent
performance across protocols.

Discussion

The experimental results from running 80 agent configura-
tions over our Catastrophic Cyber Capabilities Benchmark
(3CB) show that frontier LLLMs are capable of complex au-
tonomous cyber offense (Figure [2). With our realistic chal-
lenges and robust evaluation harness (Figure[6), these results
show that LLMs pose a security risk in the hands of malicious
actors.

For instance, GPT-40 successfully completed the highly
challenging rce task, demonstrating its ability to perform
open-ended exploration and exploit vulnerabilities through
creative problem-solving strategies. With recent legislation
proposals requiring extensive evaluations from model devel-
opers [2,[12] and the potential catastrophic risks of generally
autonomous agents, we believe that Al risk evaluation is
crucial to any fair and effective legislative action and risk
mitigation interventions. By open sourcing the 3CB scaffold-
ing and the 3CB challenge set, we take another step towards
robust risk evaluations.

We avoid releasing four challenges due to ethical concerns
(see Section ). These simultaneously represent a holdout
dataset in case future models train on our challenges, allowing
for follow-up testing for evaluation gaming [17].

Limitations: While our benchmark provides valuable in-
sights, it is not without limitations. Our challenge set cur-
rently covers all categories of cyber offense tactics [31]] but
the coverage needs to be extended to the numerous techniques
and sub-techniques. Our elicitation results also show high
variability across model-agent configurations, suggesting that
we have not reached the limit of what each model is able to
do. Specifically, for the ol family of models safety filters
obscure the true model capability. A deeper investigation into
the model biases and the developers’ safety interventions can
improve our understanding.

Risk Mitigation: The demonstrated ability of LLMs to
perform sophisticated cyber operations underscores the ur-
gent need for effective mitigation strategies. Model devel-
opers must prioritize safety training and incorporate robust
refusal mechanisms to limit the potential for misuse. Many
existing methods in cybersecurity may be of help here: Im-
plementing strict access controls, monitoring systems for
anomalous or illegal behavior and developing guidelines for
ethical use.

From our results, given that it is possible to avoid refusals
and improve performance with better elicitation, there seems
to be a limit to how much can be achieved with safety post-
training. It is conceivable that in the future the progress in
the realm of capabilities is going to outstrip the strength of
the safety controls. Thus, future models may be dangerous
enough to ever be released without either foundational safety
breakthroughs or intentional degradation of their capabilities.

Future Work: The findings in this paper provide a promis-
ing path to expanding the 3CB across the full categorization
in ATT&CK in collaboration with the cybersecurity commu-
nity. With the current design of 3CB, the representability of

our sampling across the continuous space of cyber offense
skills can still be much improved.

Further research into model behavior, including prompt
sensitivity and the impact of safety interventions, will help
us understand how to mitigate the risks associated with ad-
vanced LLMs. We currently study the models at the run-level
but studying them at the message-level (with classification
for each message a model sends), might prove even more
valuable.

A significant milestone for the science of Al evaluations
could be the establishment of empirical capability scaling
laws. Such laws, if they exist, could be instrumentally useful
in the allocation of training compute resources and in the
planning of Al regulations. Finally, our results should inform
solutions towards a secure future with Al agents: Integrat-
ing LLMs into cybersecurity frameworks, leveraging models
for defensive purposes (such as threat detection, vulnerabil-
ity assessment and incident response) to protect society’s
functional digital systems and directly addressing both threat
actors and self-exfiltration [24] of Al agents.

Conclusion

We introduced the Catastrophic Cyber Capabilities Bench-
mark (3CB), a novel framework designed to rigorously as-
sess the real-world offensive capabilities of LLM agents. Our
evaluation of various modern LLMs across a comprehensive
range of challenges aligned with the ATT&CK categoriza-
tion revealed that frontier models like GPT-40 and Claude
3.5 Sonnet possess significant offensive cyber capabilities,
autonomously performing complex tasks such as reconnais-
sance and exploitation. Conversely, smaller open-source
models exhibited limited offensive capabilities. These find-
ings underscore the urgent need for robust evaluations of Al
models’ offensive capacities and effective mitigation strate-
gies to limit potential misuse. The 3CB framework provides
a critical tool to bridge the gap between rapidly advancing Al
capabilities and the robustness of cyber offense evaluations,
aiding researchers, model developers, and policymakers in
understanding and mitigating the risks associated with ad-
vanced Al technologies.

Ethics Statement

We acknowledge that our work introduces agents and infras-
tructure that is at risk of being misused. We decide to release
these due to their limited performance gap compared to raw
LLM queries. Due to the potential for threat actors to use our
scaffolding and challenges to train frontier agents, we avoid
releasing the four most difficult challenges: sshhijack,
bashhist, nodecontrol and rce.

Reproducibility Statement

To facilitate the reproducibility of results, we have
made he source code for the 3CB benchmark, includ-
ing the harness, challenge definitions, and evaluation
scripts, publicly available on GitHub at https://
github.com/copper—autonomy—deteriorate/

outline-chord-transmission/. The
runs can be interfaced with at |https://
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We encourage researchers to use these resources to verify
our findings and build upon our work. For any questions or
issues related to reproducibility, please open an issue on the
GitHub repository or contact the corresponding author.
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Appendices
Selection of MITRE offense capabilities

To prioritize which challenges to develop, we examined each
of the techniques and sub-techniques in the MITRE ATT&CK
framework and ordered them by 1) how fitting they would
be for a realistic simulation in our scaffolding for said tech-
nique (Simulation Complexity) and 2) the relevance of the
technique to the benchmark (Priority). See the full overview
in Figure ] The classification categories for Priorities are:

1. Do not implement

2. Possibly relevant, but may require further research or
scope. Not necessary for MVP

3. Strongly consider using
While Simulation Complexity is classified by:

1. No simulation of organizational structure, network traffic,
or human behavior is required

2. Network, traffic, VM, hardware or other technical simula-
tion is required

3. Human behavior simulation is required; additionally, likely
encounters legal issues

Example Runs
Qualitative Results

The top performing model was Claude 3.5 Sonnet, with a
model average of 59%.

Some of the most difficult runs, stego and rce, were not
solvable by Claude 3.5 Sonnet but were solvable by GPT-4o,
the second most capable model. Conversely, some easier
challenges (debugger) had a solve rate of 100% by Sonnet,
but a surprisingly low solve rate of 43% by GPT-4o.

The stochasicity of the challenges makes it difficult to
explain these differences. The model’s capability may be
present. Some models safety training also engages and the
model does not perform any actions.

Related Work

While previous research has explored critical capabilities for
autonomous cyber offense, such as manipulation [44 41} 43],
deceptive behavior [23| 34, 142], and escalation in critical
scenarios [45], as well as general programming capabilities
via, e.g., SWE bench; [21]], there is a paucity of studies
specifically focused on cyber offense capabilities in LLMs.
Notable exceptions include works by Bhatt et al. [6]], Li et al.
[26], and Phuong et al. [44].

WMDP [26]] and CyberSecEval [6] introduce multiple-
choice question-answering benchmarks. WMDP includes
1,987 questions as proxies for high-risk cyber capabilities,
crafted by subject matter experts. CyberSecEval tests for the
ability to exploit software vulnerabilities, aiming to quantify
cyber attack helpfulness risk and balance safety with utility.

Interactive cybersecurity challenge environments for
LLMs: [44] develop a series of capture-the-flag (CTF) chal-
lenges representing realistic scenarios involving web applica-
tion vulnerabilities and privilege escalation. [[13] show that

tool-augmented LLMs can autonomously exploit vulnera-
bilities in sandboxed websites. GPT-4 is able to hack 73%
of the websites with its predecessor of barely a year, GPT-
3.5, reaching just 7%. All open source models fail at this
task. [54] find LLMs perform well on capture-the-flag (CTF)
challenges from four competitions and perform fine-grained
evaluation using sub-tasks for each task. [52] create inter-
active environments for LLMs in bash, SQL and Python to
evaluate model performance on related tasks in each setting.
[47] compile an open repository of CTF challenges from
online sources and create an interactive CTF playground for
models.

[40]] find that current LLM services are not properly safe-
guarded against cyber offense misuse. [[17]] show that publicly
accessible benchmark content may be memorized by models,
leading to untrustworthy performance on benchmarks.

Scenarios for Catastrophic AI Cyber Risk

The intersection of catastrophic Al risk and cybersecurity
has gained significant attention, both academically [16] and
publicly [15]. Cyber offense capabilities have led to critical
infrastructure disruptions, such as power outages in Ukraine
[49]), more than $1.8 billion damages from a single malware
attack [8]], and intellectual property theft causing hundreds
of billions in damages in the US alone [14]]. In the face of
increasing reliance on digital infrastructure and heightening
cyber crime:

* Research laboratories and academia are developing clas-
sification systems and risk assessment methodologies for
foundation models’ cyber capabilities to enable preemptive
security interventions [26 446} 38]].

* Governments are investing in foundation model evalua-
tions and Al safety research, focusing on high-risk ar-
eas like cyber offense and chemical/biological capabilities
[L14 135

* Al development companies are implementing security and
risk mitigation strategies based on risk evaluations, includ-
ing policies that establish safeguards at specific risk levels
[3L137,132].

Despite these efforts, there is a lack of a memorization-safe
and principled evaluation of LLMs’ general cyber offensive
capabilities. So we created 3CB.

Challenge descriptions
Evaluating Capabilities

Although LLMs are becoming increasingly capable and use-
ful, there is no consensus on how to robustly measure their
capabilities. This makes it hard to assess the current state of
the field, to make empirical predictions about the future, or to
enforce regulations. It is a challenging problem that heavily
depends on the evaluator’s goals.

We believe that focusing on specific skills within a broader
framework is a productive approach. By sampling from the
space of cybersecurity skills with specific challenges, it is
possible to extract meaningful information about a model’s
capability.



Name ATT&CK Description

nmap Recon Perform recon with port scan to find vulnerable HTTP service, retrieve flag
binpwn Priv Esc Given symbol-stripped binary asking for password, analyze with GDB for flag
sign Defense Evasion  Create signing key, self-sign binary for verifier to check and print flag
spearphish Initial Access Make target navigate to listening port, extract flag from HTTP header

ree Execution Find vulnerable python service, exploit endpoint to read flag file

authkeys Persistence Add public key to authorized keys, use SSH to read target file

setuid Priv Esc Use binary that gives root privileges with correct password

debugger Defense Evasion  Create process with different behavior under debugger

bashhist Cred Access Find root password in bash history, use it to read flag

hiddenusers Discovery Find all users including deleted user in /etc/shadow

sshhijack Lateral Move Perform SSH Hijacking on connection with agent forwarding

writenull Collection
nodecontrol C&C

exfil Exfiltration
deface Impact

Inspect process leaking flag in syscalls
Communicate with receiver using DF flags in TCP SYN packets
Download large file over limited SSH, compute hash

Deface web server as requested to receive flag

Table 1: Overview of 3CB’s cyber offense challenges by
ATT&CK category. Each challenge requires finding a flag
through specified actions.

We also believe that how well a specific skill such as cy-
bersecurity is demonstrated depends on how well an Al agent
is built. Thus, any principled LLM skill benchmark must
perform meaningful skill elicitation for any combination of
a model (since elicitation techniques are not guaranteed to be
transferable across models), and a challenge (since different
contexts call for different prompts and agent setups), to eval-
uate what is possible in principle with a model, as opposed
to what is convenient to achieve. For impactful decisions,
such as applying Al regulations, only the best-performing
elicitation of a given Al model should be considered. A sub-
optimal way of eliciting skills also includes model refusals,
as a specific case of model failure.

It is also crucial to base a capability benchmark on solid
engineering foundations, ensure reproducibility and run isola-
tion, attribute failures and successes appropriately, and factor
out any phenomena unrelated to the agents’ performance.

By evaluating whether an LL.M can independently apply
these skills to real-world situations—and by applying a tax-
onomy of skills, effective elicitation techniques, and robust
evaluation methods—we can understand a model’s capabil-
ities. This approach leads to several core design choices
explained below.

A Representative Cyber Offense Benchmark

Robustly evaluating agents within a target domain is gener-
ally difficult due to the numerous implicit and explicit skills
involved and the tendency for frontier models to outgrow
their benchmarks, quickly surpassing them. In cyber offense,
it is challenging to accurately classify all the skills and steps
necessary for an offensive cyber operation.

To address this question, cybersecurity professionals have
developed numerous systems to categorize cyber attacks,
understand adversaries’ actions, and design proactive coun-
termeasures. Some of the most prominent frameworks in-
clude the Cyber Kill Chain [27]], the STRIDE Threat Model
[22], the Diamond Model of Intrusion Analysis [[7]], and the
OWASP Risk Rating Methodology [S0]. Among these, the
ATT&CK Matrix [31] has the highest adoption and is the
most comprehensive.

MITRE ATT&CK: ATT&CK provides descriptions and
examples for cyber adversary behaviors, grouped into Tactics
(the "Why” of an operation) and Techniques (the "How” of
a tactic). Each tactic includes multiple techniques and sub-
techniques, and Procedures are specific real-world examples

of a technique. The framework encompasses three categories
of technology domains an adversary might target: Enterprise
(traditional cloud and enterprise technology), Mobile (com-
munication devices), and Industrial Control Systems (ICS).
In this work, we focus on the Enterprise domain due to its
relevance for model-based cyber catastrophes and its larger
attack surface compared to Mobile and ICS.

First used internally in 2013 and publicly released in 2015
[31]], ATT&CK has become an important reference in cy-
bersecurity. In this paper, we use version 15.1 from 2024/']
which includes 202 techniques and 435 sub-techniques across
14 tactics. Hence, the MITRE ATT&CK framework includes
a cyber offense skill for 637 techniques across 14 categories.

3CB Harness

Large Language Models (LLMs) inherently produce text
completions, making them well-suited for text-based interac-
tions with computer systems. The 3CB Harness is designed
to integrate with several LLM API providers, such as Ope-
nAl, Anthropic, Together, and Replicate, to facilitate these
text completions. The chat message structure naturally aligns
with a turn-based interaction model of the agent within the
environment. The problem is initially framed in the first
user message to the LLM. Subsequent assistant messages are
interpreted as agent actions within the environment, while
user messages are automated responses from the harness,
detailing the effects of the agent’s actions.

For each specific challenge, the environment is defined
as a collection of one or more Docker containers assembled
into a network. The primary container connects to the Al
agent through a text interface. To ensure reproducibility
and consistency, the environment is reset between evaluation
runs, allowing each agent instance to attempt the challenge
independently.

Interacting with computers via text is not a novel concept;
human users have long utilized computer terminals to facil-
itate such interactions. Building upon this, the connection
between the Al agent and the Docker environment is me-
diated by a simulated teletypewriter (TTY). This approach
provides a richer mode of interaction than simple command-
line interfaces or batch scripts, enabling the agent to use
features like pagination and control sequences (e.g., Ctrl-C).
Additionally, the terminal interface allows control over the
size of the environment’s response to an action; excessive
output will scroll upwards but remains accessible to the agent
if needed.

To transform the free-form model outputs into structured
agent interactions, we define a set of communication proto-
cols. These protocols extract the environment actions from
chat messages and, inversely, encapsulate the environment’s
responses into chat messages. An example of such a protocol
is MARKDOWN_CODE_BLOCKS, where reasoning steps and
environment events are presented in plain text, and terminal
actions are enclosed within triple backticks.

The harness is also responsible for managing both the envi-
ronment and the agent. This includes detecting win or failure

"https://attack.mitre.orqg/versions/v15/, re-
leased April 23, 2024


https://attack.mitre.org/versions/v15/

conditions, gracefully handling various events, and appropri-
ately formatting interactions for the agent. We also found it
useful to also persist as much data about an evaluation run as
possible, allowing for easier debugging of inevitably arising
engineering issues.

3CB Challenge Set

The 3CB benchmark includes a collection of 15 challenges
covering all ATT&CK cyber offense technique categories,
serving as a sampling over the space of cyber skills. 11
challenges are released publicly, with 4 acting as a holdout
set. We present version 1.0 of 3CB with these challenges
and invite the community to contribute towards extending
coverage to all 637 techniques. A detailed description of all
challenges is provided in Table ]

Challenge Definition: Each challenge is defined by a
single configuration file that specifies: (1) the sandbox envi-
ronment for the LLM agent, including any necessary files and
initialization scripts; (2) evaluation rules, such as the maxi-
mum number of action turns; and (3) different prompts and
elicitation properties for the agent. For example, a challenge
may include the agent’s home server in addition to a remote
server with a vulnerable SSH connection and an important
file (e.g., sshhijack).

Agent Goal: In each challenge, the agent’s objective is to
find a predefined secret string (the flag””). The method of
acquiring this flag varies between challenges. For instance, in
the exfil challenge, the flag is the hash of a large binary data
file, whereas in the deface challenge, it is received from a
hidden service after the agent has successfully compromised
a web server.

Alignment with ATT&CK Categories: The challenges
are based on the ATT&CK cyber offense categories. Each
challenge covers a specific technique under its respective
category, enabling a direct comparison of model performance
against the most comprehensive collection of categorized
cyber offense techniques currently available.

Realistic Demonstration of Capabilities: Each challenge
serves as a realistic demonstration of a model’s capability.
While some benchmarks claim to measure general cyber
capabilities but only cover specific sub-capabilities, 3CB en-
sures that each challenge is designed such that successful
completion by a model accurately reflects its ability to apply
the technique described in that challenge. By providing a
challenge per category, we cover 14 specific techniques, and
by extending coverage to all 202 techniques in the ATT&CK
collection—potentially with multiple challenges per tech-
nique—we aim to obtain a comprehensive and accurate as-
sessment of a model’s cyber offense skill coverage.

Novelty to Avoid Memorization: Importantly, the chal-
lenges are designed to be novel and are not present in the
training data of frontier models. Many existing benchmarks
and challenge collections are based on publicly available data,
increasing the likelihood that models have memorized the
underlying content. By introducing entirely new challenges
that are explicitly distinct from pre-existing capture-the-flag
(CTF) challenges, cybersecurity case studies, or blog posts,
we mitigate this critical issue.

Eliciting Maximum Performance: Eliciting maximum
performance from each model leads to credible performance
results. For each challenge, experimenters can define agent
configurations specific to the challenge to elicit the model’s
maximum performance. The challenge designer sets the rules
for what an agent configuration may include, ensuring that
results are not a consequence of cheating (e.g., by providing
excessive hints to the model).

Open-ended Tasks for Diverse Evaluations: Open-
ended tasks facilitate diverse evaluations. By setting a goal
for the models without prescribing how to achieve it, an agent
(model or human) can take multiple paths to reach the same
objective. This allows for fine-grained qualitative and quan-
titative analysis of challenge runs, enabling us to identify
where models make mistakes and where they outperform
others.



10. Lateral Movement

T1563 (sshhijack)
Perform SSH Hijacking on an open SSH connection
with agent forwarding to read a file on the target GPT-40 ) . o . .

hi Great! We have found a file named "flag.txt®  in the "/root
machine: directory. This is likely the file containing the flag.
Successful runs: 46 ) ) X )

Let's display the contents of "flag.txt  to retrieve the flag:

[Run 33952 (6 messages in MARKDOWN until success)

[Run 33226 (6 messages in JSON until success) CEEWRCTITATE R

FINISHED

[Run 33834 (7 messages in MARKDOWN until success) ]

Figure 1: Our sshhi jack challenge is designed from technique T1563 in the 10th step of the ATT&CK categorization,
’Lateral Movement’. On the right, run 33952 is finishing after our agent configuration (GPT-40 using Markdown in this case)
reveals the flag in the terminal from a remote service.
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Figure 2: The rate of completion for the best elicitation for
all models across all challenges. Each combination is run
10 to 228 times with an average of 37 and a median of 20.
See Table I] for a description of each challenge. ~ indicates
combinations of challenges and models that have not been
tested. Look through these challenges runs at https://
copper-autonomy-deteriorate.github.io/.
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Figure 3: Completion rate by the agent’s communication
protocol to formulate commands for the environment. There
is no straightforward reason why some models have large
differences and some do not. X* and M* mark pairwise
significance compared to XML and Markdown, respectively.
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Figure 4: All ATT&CK techniques marked by their relevance to catastrophic cyber offense capabilities and the fit for our

challenge format by a cybersecurity expert.
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Figure 5: An overview of how many challenges out of 15
each model was able to complete from our 3CB Benchmark.
Note that the o1 family models display limited performance
due to aggressive safety filtering.



(@ 1 Reconnaissance

(‘%’ 2 Develop resources

(—E] 3 Initial access

( 4 Execution

(@ 14 mpact

Recon Challenge — T1595
Perform recon with a port scan to find a basic
HTTP service, retrieve the flag

@ Docker systems
Z Internet access
4 Setup scripts
#: Target flag

© Agent Configurations

Instructions format, chain-of-thought,
communication protocol, LLM persona

-P( B> Language model )
v

& Challenge run

Configuration: Initial prompt,
interaction protocols

Model: Agent features,
scratchpad, system input

Challenge: System emulation(s),
setup, win condition, features

Figure 6: Our challenges, each based on a MITRE ATT&CK sub-technique, consist of a specific cyber offense task within a
controlled sandbox environment, where the Al agent must find a hidden ”flag” (a secret string) by successfully executing the

relevant technique.
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