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ABSTRACT

Many time series classification tasks, where labels vary over time, are affected by
label noise that also varies over time. Such noise can cause label quality to improve,
worsen, or periodically change over time. We first propose and formalize femporal
label noise, an unstudied problem for sequential classification of time series. In
this setting, multiple labels are recorded over time while being corrupted by a
time-dependent noise function. We first demonstrate the importance of modelling
the temporal nature of the label noise function and how existing methods will
consistently underperform. We then propose methods that can train noise-tolerant
classifiers by estimating the temporal label noise function directly from data. We
show that our methods lead to state-of-the-art performance under diverse types of
temporal label noise on real-world datasets.

1 INTRODUCTION

Many supervised learning datasets contain noisy observations of ground truth labels. Such label noise
can arise due to issues in human annotation or data collection [1, 25], including lack of expertise
among annotators [28, 76], discrepancies in labelling difficulty [13, 27, 76], subjective labeling tasks
[46, 54, 60], and systematic issues in automatic annotation like measurement error [29, 49]. Label
noise is a key vulnerability of modern supervised learning [16, 23, 74]. Intuitively, models trained
with noisy labels may learn to predict noise rather than the ground truth. Such models will then
underperform at test time when they must predict the ground truth.

Label noise is a major problem in machine learning. Over the past decade, this has led to a stream of
work studying label noise. However, the nearly all methods are designed for static prediction tasks
where observations, labels, and label noise do not evolve over time [3, 39, 42, 65].

Many non-static prediction tasks suffer from noisy labels. For instance, time series classification
is a non-static task which requires predicting a label for each observation over time. While the
observations and labels in the time series change over time, we argue that the dynamics of the label
noise can also evolve over time. Consider data collected from a patient in the emergency room of
a hospital. The diagnostic label for this patient will be noisy at first, as they come from screening
procedures. Over time, more testing and procedures are performed that influence the accuracy of
the final diagnostic label. Existing approaches for static label noise cannot handle this phenomenon.
We introduce temporal label noise, relaxing restrictive assumptions of static noise. Learning from
temporal label noise is unstudied, yet clearly exists in a range of tasks. For example:

* Human Activity Recognition. Wearable device studies often ask participants to annotate their
activities over time. But participants may mislabel due to recall bias, time of day, or labelling-at-
random for monetized studies [24, 59].

o Self-Reported Outcomes for Mental Health: Mental health studies often collect self-reported
survey data over long periods of time. Such self-reporting is known to be biased [5, 50, 52, 71],
where participants are more or less likely to report certain features. For example, the accuracy of
self-reported alcohol consumption is often seasonal [8].

* Clinical Measurement Error: The labels used to train clinical prediction models are often derived
from clinician notes in electronic health records. These labels may capture noisier annotations
during busier times, when a patient is deteriorating, or the bedside situation is more chaotic [75].
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Figure 1: Label quality can vary over time due to temporal label noise. Existing methods assume noise is
time-invariant (static) leading to loss in performance. Accurate modeling of temporal label noise, improves
performance. We show performance improvements on a Human Activity Recognition task (har dataset)
comparing reconstruction error and accuracy between static and temporal methods subject to 30% temporal label
noise across 10 draws (see Appendix F for details).

Addressing the problem of temporal label noise is difficult from a technical perspective as adapting
existing methods [45, 47] for this setting is not straightforward. Existing approaches have no
mechanism to incorporate the notion of noise rates varying over time, therefore assuming they are
constant over time. Additionally, the label noise function, temporal or otherwise, is often unknown;
most datasets lack indication for which instances or time steps are more likely to be accurate.

We propose novel time series classification objectives which learn the temporal noise function directly
from noisy data. These methods leverage a temporal loss function, which we prove is robust to
temporal label noise. Our algorithms can be used out of the box and allow practitioners to learn
noise-tolerant time series classifiers, even with unknown, temporal label noise.

Our main contributions include:

1. We formalize the problem of learning from noisy labels in temporal settings.

2. We propose a novel loss function for training models that are robust to temporal label noise. On
its own, this can be used to improve prior methods.

3. We develop versatile methods to learn from temporal noise functions. Our methods can learn
any temporal label noise function from noisy data alone and thereby lead to better time series
classifiers. We pair these with extensions to address practical challenges of time series tasks —e.g.,
a discontinuous estimation procedure for irregular time intervals, and a plug-in approach for low
sample regimes.

4. We present experiments that showcase how existing methods underperform in the presence of
temporal noise, while our proposed methods lead to better classifiers. This highlights the necessity
of accounting for temporal noise.

RELATED WORK

Time Series Machine learning for time series, especially in healthcare, often relies on combining
autoregressive approaches to modelling sequences with deep neural network based methods [11,
37, 63]. Primarily in the context of time series modelling, Recurrent Neural Networks (RNNs) and
state space models have gained attention for their ability to model observed data as emanations from
underlying latent states that evolve over time. Attention-based mechanisms have further enabled
models to prioritize relevant segments of data [70], thereby enhancing performance in tasks such as
patient outcome prediction and treatment optimization [14, 32, 62, 66, 72, 85]. These approaches
primarily rely on supervised learning to model changes in latent states over time. In healthcare
for example, underlying latent states can be understood as clinical labels (i.e: sick vs healthy) that
patients can transition in and out of. An understudied area in this domain is label noise - what happens
when we embrace the idea that real-world time series datasets contain inaccurate labels?
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Label Noise Our work identifies and addresses gaps in the literature on noisy labels [3, 39, 42, 65].
The vast majority of work on noisy labels studies label noise in static prediction tasks. We consider
how label noise can arise in time series — a prediction task where the noise rates can change over
time. There has been some recent work on label noise in this setting [see e.g., 2, 12]. This work
has focused on the task of identifying noisy instances in time series, specifically by exploiting the
notion that labels at neighboring time steps are unlikely to be corrupted together. In contrast, we
focus on the task of developing algorithms to train models that are robust to temporal label noise.
With respect to existing work, our approach can account for label noise in tasks where labels at
neighboring time steps are more likely to be corrupted together (e.g., due to seasonal fluctuations in
annotator error). We develop a way to learn via empirical risk minimization with noise-robust loss
functions [19, 36, 39, 45, 73]. Our work establishes the potential to learn from noisy labels in time
series when we have knowledge of the underlying noise process [c.f., 45, 47], and develops methods
to fit the noise model directly from noisy data [see e.g., 35, 36, 47, 78, 82, 86].

2 FRAMEWORK

Preliminaries We consider a temporal classification task over C classes and T time steps. Each
instance is characterized by a triplet of sequences over T' time steps (X1.7,y1.7,¥1.1) € X X
Y x Y where X C R4*T represents a multivariate time-series and ) = {1,...,C}T represents a
sequence of labels. Here, x1.7, y1.7, and y1.7 are sequences of instances, clean labels and noisy
labels, respectively. For example, we can capture settings where x;.7, y1.7 are recordings from an
accelerometer with true activity labels, and y;.7 represent noisy annotations of activity.

Under temporal label noise, the frue label sequence y;.7 is unobserved, and we only have access to a
set of n noisy instances D = {(x1.7, §1.7); }7_,. We assume that each sequence in D is generated
i.i.d. from a joint distribution Py, .. v, ..-.5...-» Where the label noise process can vary over time. This
distribution obeys two standard assumptions in temporal modeling and label noise [4, 10, 67]:

Assumption 1 (Future Independence). A label at time t depends only on the past sequence of feature

T
vectors up to t: p(y1.r | xi.1) = [[,_1 p(y,%x1:¢)
Assumption 2 (Feature Independence). The sequence of noisy labels is conditionally independent of
the features given the true labels: 1.4 1L x1.4 | y1¢fort=1,...,T

These assumptions are relatively straightforward, as they require that the current observation is
independent of future observations and assume a feature-independent noise regime. Assumption 1
allows the joint sequence distribution to factorize as: p(y1.7|x1.7) = Hthl ¢ (¥4|x1.¢). Here, we
introduce ¢, a slight abuse of notation, to denote a probability that is time-dependent. Assumption 2
allows for the noisy label distribution at ¢ to be further decomposed as:

@ (ilxie) = D @, |y = v)p(y, =y [ x14) M
yey

2.1 LEARNING FROM TEMPORAL LABEL NOISE

Our goal is to learn a temporal classification model hg : R¥** — R® with model parameters € ©
and t < T'. Here, hy(xy.;) returns an estimate of p(y,|x1.;). To infer the label at time step ¢, hy takes
as input a sequence of feature vectors up to ¢, and outputs a sequence of labels by taking the arg max
of the predicted distribution for each time step (see e.g., [4, 67]). We estimate parameters 0 for a
model robust to noise, by maximizing the expected accuracy as measured in terms of the clean labels:
T
0= argmaXE}ﬂ:ﬂxLT Hp(yt = h’H(Xlit) ‘ Xlit)

225 i}
However, during training time we only have access to sequences of noisy labels. To demonstrate how
we can sidestep this limitation, we first need to introduce a flexible way to noise rates varying over
time. Existing methods assume that noise is time-invariant (Fig. 1). To relax this assumption, we
capture the temporal nature of noisy labels using a temporal label noise function, in Def. 1.
Definition 1. Given a temporal classification task with C' classes and noisy labels, the temporal
label noise function is a matrix-valued function Q@ : R — [0, 1]¢* that specifies the label noise
distribution at any time ¢ > 0.
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Table 1: Overview of noise functions for time series classification tasks. We show the noise model Q(¢) and
parameters w needed to model ¢(y, = j | y, = ¢). Practitioners can model label noise by choosing a parameteric
class to capture effects and fit parametric representations from data. The choice of noise model can differ across
classes and subgroups (see the Mixed model in Section 4). We include other models and details in Appendix E.

We denote the output of the temporal noise function at time ¢ as Q; := Q(t). This is a C' x C' matrix
whose i, 5 entry encodes the flipping probability of observing a noisy label j given clean label i at
time ¢: q,(y, = j | y; = ¢). We observe that Q, is positive, row-stochastic, and diagonally dominant
— ensuring that @, encodes a valid probability distribution [36, 47].

Q., denotes a temporal noise function parameterized by a function with parameters w. This parame-
terization can be constructed to encode essentially any temporal noise function. As shown in Table 1,
we can capture a wide variety of temporal noise using this representation.

2.2 Loss CORRECTION

Modeling temporal label noise is the first piece of the puzzle in training time series classifiers robust
to label noise. However, we still need to consider how to leverage these noise models during empirical
risk minimization. It remains unclear if and how existing loss correction techniques work for time
series. Here we present theoretical results showing that learning is possible in our setting when we
know the true temporal noise function Q(¢). We include proofs in Appendix A.

We begin by treating the noisy posterior as the matrix-vector product of a noise transition matrix and
a clean class posterior (Eq. (1)). To this effect, we define the forward temporal loss:

Definition 2. Given a temporal classification task over T time steps, a noise function Q(t), and
a proper composite loss function ¢; [55], the forward temporal loss of a model hy on an instance
('gl:Ta wl:T) is:

T
7seq('g1:T7m1:T7h9) = th(ﬂthjhe(wlzt))
=1

An intriguing property of the forward temporal loss is that the minimizer of the forward temporal
loss over the noisy labels maximizes the likelihood of the data over the clean labels. This suggests
that the forward temporal loss is robust to label noise:

Proposition 1. A classifier that minimizes the empirical forward temporal loss over the noisy labels
maximizes the empirical likelihood of the data over the clean labels.

T

argmin ES’l:T,xlzT 756(] (SllcTa X1:T, h@) = argmin Z ]Ey1:tyx1:t‘€t <Yt7 h’9 (Xlit))
0co beo  —

Proposition 1 implies that we can train on the noisy distribution and learn a noise-tolerant classifier
in expectation.
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3 METHODOLOGY

Our results in the previous section show that we can train models that are robust to label noise.
However, the temporal noise function @ is not available to the practitioner and must be learned from
data. Our algorithm seeks to first learn this function from noisy data then account for noise using
Def. 2. This strategy can be applied in multiple ways. In what follows, we propose a method where
we jointly learn the temporal noise function and the model. We also present extensions for different
use-cases in Section 3.3 and discuss how to choose between methods in Section 3.4

3.1 FORMULATION

We start with a method that simultaneously learns a time series classifier and temporal noise function.
Given a noisy dataset, we learn these elements by solving the following optimization problem
Vit e [1,T):

min - Vol(Q. (1))

2)
st. Qu(t)"ho(x1.s) = p(J: | T1:4)

Eq. (2) is designed to return a faithful representation of the noise function & by imposing the minimum-

volume simplex assumption [36], and a noise-tolerant temporal classifier # by minimizing the forward
temporal loss in Def. 2.

Here, the objective minimizes the volume of the noise matrix, denoted as Vol(Q;). This returns a
matrix ¢, at each time step, that obeys the minimum-volume simplex assumption, which is a standard
condition used to ensure identifiability in static classification tasks [see e.g., 36, 83]. In practice, the
minimum-volume simplex assumption ensures that Q; encloses the noisy conditional data distribution
attime ¢: p(y, | x1.¢). Here containment ensures that the estimated noise matrix could have generated
each point in the noisy dataset — i.e., so that the corresponding noisy probabilities p(¥, | x1.;) obey
Eq. (1). Our use of this assumption guarantees the identifiability of QQ; when the posterior distribution
is sufficiently-scattered over the unit simplex [see also 36, for details].

3.2 ESTIMATION PROCEDURE

The formulation above applies to any generic matrix-valued function according to Def. 1 with
parameters w. Because time series classification tasks can admit many types of temporal label noise
functions (Table 1), we must ensure w has sufficient representational capacity to handle many noise
functions. Therefore in practice, we instantiate our solution as a fully connected neural network with
parameters w, Q,(-) : R — [0, 1]¢*¢, adjusted to meet Def. 1 (see Appendix E.2 for implementation
details). We can now model any temporal label noise function owing to the universal approximation
properties of neural networks.

Provided the function space © defines autoregressive models of the form p(y;|x1.;) (e.g., RNNS,
Transformers, etc.), we can solve Eq. (2) using an augmented Lagrangian method for equality-
constrained optimization problems [6]:

£0,0) = = 5 [1Qu(®) 1 + ARw(0,w) + E[Ru(6,w) ? 3)
T 2
t=1

Here: ||Q. ()| denotes the Frobenius norm of Q. (t), which acts as a convex surrogate for
Vol(Q.(t)) [7]. Likewise, Ry (0,w) = = 37" | £y(§¢,i, Qu(t) "ho(w1.1,:)) denotes the violation of
the equality constraint foreach ¢t = 1...7. A € R is the Lagrange multiplier and ¢ > 0 is a penalty
parameter. Both are initially set to a default value of 1, we gradually increase the penalty parameter
until the constraint holds and A converges to the Lagrangian multiplier for the optimization problem
Eq. (2) [6]. This approach recovers the best-fit parameters to the optimization problem in Eq. (2). We
call this approach Continuous Estimation, and additional details on our implementation can be found
in Appendix B.
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3.3 EXTENSIONS AND ALTERNATIVE APPROACHES

We describe two alternative approaches that extend existing label noise methods to time series tasks.
On there own, each can be used to fit different practitioner needs (see Section 3.4). However, these
also serve as general purpose frameworks for how to modify any static label noise approach to the
temporal setting.

Discontinuous Estimation Another approach is to assume that there is no temporal relationship
between each @, across time and treat each time step independently. This approach is well suited for
tasks where time steps are unevenly spaced (e.g., some clinical data involves labels collected over
years or at different frequencies [53]). We can address such tasks through an estimation procedure
where we learn a model that achieves the same objective without assuming continuity. In contrast to
Eq. (3), this approach Qt is parameterized with a separate set of trainable real-valued weights, fitting
the parameters at each time step using the data from that time step. This approach can be generalized
to extend any state-of-the-art technique for noise transition matrix estimation in the static setting (e.g.,
Li et al. [36], Yong et al. [83], etc.).

Plug-In Estimation It is also advantageous to have a simple, plug-in estimator of the temporal
noise function. Plug-in estimators are model-agnostic, can flexibly be deployed to other models, and
can be efficient to estimate. We can construct a plug-in estimator of temporal label noise using anchor
points, instances whose labels are known to be correct. Empirical estimates of the class probabilities
of anchor points can be used to estimate the noise function. This estimate can then be plugged into
Def. 2 to train a noise-tolerant time series classifier. Formally, in a temporal setting, anchor points

[38, 47, 78] are instances that maximize the probability of belonging to class ¢ at time step ¢:
Ty = argmaxp(y, =i | ©1.) ()]

Tt

Since p(y, =i | #%,,) ~ 1 for the clean label, we can express each entry of the label noise matrix as:
Q)i =p(y, =7 Z1.) &)
We construct a plug-in estimate of Q(t) using a two-step approach: we identify anchor points for

eachclassy € Yand t = 1,...,7 and set each entry of Q(t),] by Eq. (5) (see Appendix C for
formalization). This is a generalization of the approach in static prediction tasks by Patrini et al. [47].

3.4 DISCUSSION

All three methods in Section 3.2 and 3.3 improve performance in temporal classification tasks by
accounting for temporal label noise (see e.g., Fig. 1 and Section 4). However, they each have their
own strengths and limitations. Here we provide practical guidance for users to discriminate between
methods:

 Continuous Estimation (Continuous) imposes continuity across time steps — assuming that nearby
points likely have similar noise levels. This assumption can improve reconstruction, and thus
performance, in settings with multiple time steps as it reduces the effective number of model
parameters. Conversely, it may also lead to misspecification in settings that exhibit discontinuity.
In practice, we can use a DNN to model any temporal noise function because DNNs are universal
function approximators.

* Discontinuous Estimation (Discontinuous) can handle discontinuous temporal noise processes —
assuming the noise levels of nearby points are independent of one another. However, it requires
fitting more parameters, which scales according to 7" — this can lead to computational challenges
and overfitting, especially for long sequences.

* Plug-In Estimation (Plug-In) has a simpler optimization problem, useful when separate datasets are
used in noise estimation and classifier training, but verifying anchor points is difficult [78].

4 EXPERIMENTS

We benchmark our methods on a collection of temporal classification tasks from real-world applica-
tions. Our goal is to evaluate methods in terms of robustness to temporal label noise, and characterize
when it is important to consider such noise. Appendix E has more details on setup and results.
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4.1 SETUP

Datasets We use four real-world datasets from healthcare. Each dataset reflects binary classification
tasks over a complex feature space where we have labeled examples across multiple time steps and
where the labels are likely to exhibit label noise. The tasks include: activity recognition from temporal
accelerometer data in adults (moving) [56]), activity recognition in seniors (senior [41]), and
sleep detection (s leeping [20]), and blink detection (b1 inking [57]) both from continuous EEG
data.

Noise Models We consider labels in the training sample as “ground truth” clean labels and corrupt
them using one of five temporal label noise functions, as well as a time-independent function
(i.e., static label noise) at various noise levels. Fig. 2 shows two of these functions. This setup
reflects a standard approach used to evaluate algorithms for label noise in the literature [see e.g.,
45, 39, 40, 83, 47]. In our setting, it allows us to control the noise model and explain the mechanism
through ablation. Specifically, we can (1) evaluate the performance of each method across different
noise models; (2) attribute the gains to our ability to capture for temporal noise and optimize jointly
via ablation.

Methods We train time series classifiers using the three techniques described in Section 3: Continu-
ous, Discontinuous, and Plug-In. As baselines, we compare these models to NLL loss that assumes no
label noise exists (Ignore), and methods that assume a static noise model across time steps: Anchor
[38, 47, 78] and VolMinNet [36].

Evaluation We split each dataset into a noisy training sample (80%, used to train the models
and correct for label noise), and a clean test sample (20%, used to compute unbiased estimates of
out-of-sample performance). We evaluate each model in terms of the test accuracy on test data and
characterize how well each method learns the temporal noise function, using the Approximation Error

Error(Q:, Qt) = % Zthl 1Q: — Qt” between the true Q; and estimated Q; for all ¢.

4.2 RESULTS

We summarize the results of our experiments for two temporal noise models in Table 2 and Table 3.
We show the ability of our methods to accurately learn the underlying temporal noise function in
Fig. 2. Additional results for other levels of noise and noise models as well as multi-class classification
can be found in the Appendices and in our anonymized repository. In what follows we discuss these
results.

On the Improved Performance from Modeling Temporal Noise First, we show clear value in
accounting for temporal label noise. Table 2 shows the performance of each method on all five
datasets. We find that the temporal methods are consistently more accurate than their non-temporal
counterparts, highlighting the impact of modelling temporal noise. For example, Plug-In is a temporal
extension of Anchor and we see that Plug-In outperforms Anchor in most settings. The results in
Table 2 highlight the significant gains from accounting for temporal label noise. For example, on
moving, the temporal method reduces the test error by over 10% compared to the nearest-performing
static counterpart. This shows that our methods are robust to label noise despite being trained on
data that is 30% corrupted with noisy labels, with no prior knowledge of the noise. This can have
important consequences in e.g., health data in time series, where the noise is uknown and accurate
models can make life-or-death decisions.

Among the temporal methods, Continuous achieves the best performance in comparison to Plug-In
and Discontinuous. Continuous’ superiority is even clearer when compared to the static methods.
Comparing the results for Table 2 (which assumes a Mixed noise model) and Table 3 (which assumes
a Sinusoidal noise model), we can see that these results hold across multiple types of temporal label
noise. Fig. 2 demonstrates the ability of of our methods to accurately reconstruct the underlying label
noise. More importantly, the benefit of Continuous becomes more evident as the amount of noise
increases in the data. In all these cases, we observe that the temporal methods are consistently more
robust to both temporal and static label noise. Overall, these findings suggest that we can improve
performance by explicitly modeling how noise varies across time instead of assuming it is distributed
uniformly in time.


https://anonymous.4open.science/r/TemporalLabelNoise-Public
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Static Temporal
Dataset Metric Ignore Anchor VoIMinNet Plug-In  Discontinuous Continuous
moving [56] Test Error 294+ 1.7% 209+2.6% 149+27% 20.0+1.8% 159+27%  42+2.2%
n=192,d =14,T =50 Approx. Error - 424+34% 353+08% 368+1.7% 326+05% 10.3+3.9%
senior [41] Test Error 227+ 1.7% 207+ .01% 19.0+0.7% 18.8+1.1% 13.6 £ 1.2% 11.0 + 0.3%
n=444,d =6,T =100 Approx. Error - 359+25% 363+04% 269+12% 21.7+02% 6.4+ 0.8%
blinking [57] Test Error  34.1 £2.0% 34.1+23% 29.6+22% 29.6+28% 299+3.0% 29.6+23%
n=299,d=14,T =50 Approx. Error - 353+08% 3524+07% 196+1.1% 26.6+09% 14.9+2.3%

sleeping [20] Test Error 287 £08% 249+1.1% 268+14% 204+ 1.8% 19.6 £0.8% 16.3 +£0.4%
n=964,d =77 =100 Approx. Error - 343+18% 41.8+01% 19.1+3.5% 224+02% 4.9+ 0.5%

Table 2: Model performance and approximation error for all methods and datasets. We report the clean test error
(%) and mean approximation error of Q(t) =+ st.dev over 10 runs. The best-performing methods are highlighted
in Green. Continuous outperforms all baselines. Results are shown for the Mixed noise function (average 30%
label noise across all time steps, one class with decreasing noise rate, one class with increasing noise rate).
Additional noise model results are in Appendix F.

Static Temporal
Dataset Metric Ignore Anchor VolMinNet Plug-In  Discontinuous Continuous
moving [56] Test Error  24.0+5.1% 18.0+3.6% 13.5+6.0% 18.5+43% 140+£57% 1.7+0.6%
n=192,d =14,T7 =50 Approx. Error - 499+47% 435+3.0% 48.1+£44 335+£50% 91+1.6%
senior [41] Test Error  22.5+22% 20.1+15% 164+29% 199+13% 14.1£2.6% 10.6 £0.7%
n =444,d =6,T = 100 Approx. Error - 473+40% 424+39% 469+39% 205+2.1% 9.7+27%
blinking [57] Test Error 374 +3.1% 358+27% 332+28% 358+23% 320+£29% 304+31%
n=299,d=14,T =50 Approx. Error - 493+42% 424+39% 464+44% 247+33% 10.5+3.3%
sleeping [20] Test Error 233 +3.1% 228 +27% 224+3.0% 22.1+2.0% 20.1+35% 15.2+0.8%
n=964,d=7,T =100 Approx. Error - 449+40% 426+41% 439+43% 19.1+1.8% 88+2.6%

Table 3: Model performance and approximation error for all methods and datasets. We report the clean test error
(%) and mean approximation error of Q(t) = st.dev over 10 runs. The best-performing methods are highlighted
in Green. Continuous outperforms all baselines. Results are shown for the Sinusoidal noise function (average
30% label noise across all time steps, noise rate fluctuates over time). Additional noise model results are in
Appendix F.

On Learning the Temporal Noise Function Our results show that the performance increases hand
in hand with our ability to estimate the noise model. In particular, we observe that low values of
reconstruction consistently lead to low values of error rates.

We note that Continuous has the best reconstruction error (Approx. Error) on all datasets (Table 2) We
qualitatively compare estimated noise functions and the ground truth for Continuous, Discontinuous,
and other baselines in Fig. 2. We use a DNN to model @, which consistently estimates the noise
function with lower mean absolute error across different families of noise functions. Appendix F has
extended results on all other datasets (including multiclass).

On the Risk of Misspecification In many practical applications, we face the risk of misspecifying
noise models due to a lack of access to true labels that would verify the underlying noise structure.
Our results emphasize the limitations of static approaches, which will always fail to capture the
correct noise function when it is temporal. As shown in Section 2.2, accurately specifying the
temporal noise process leads to more noise-tolerant models. However, most existing §-estimators
assume static, time-invariant label noise, thereby prone to misspecification.

We validate this experimentally by comparing our forward temporal loss method, which uses the
true temporal noise function, to a static approximation (the average noise over time). As shown in
Fig. 5 (Appendix F), static misspecification consistently results in poor performance, particularly
in the Mixed noise setting, where class-conditional noise amplifies this weakness. Notably, when
the temporal noise process is uniform, performance remains unchanged, indicating no downside to
modeling temporal effects.rewrite this simpler two sentences

In summary, practitioners who assume that label noise is static in their time series datasets are at risk
of poor model performance due to the inherent misspecification of the noise model. However, using
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Figure 2: Our Temporal methods can learn the true label noise function across different noise patterns. The
resulting noise models have variable lower reconstruction error but are superior to static approaches. We show
results for Sinusoidal and Mixed noise (class-conditional noise each class has increasing or decreasing noise
over time) on adult. We show the noise rate for the negative class only for clarity.

our temporal approaches they can relax this assumption to admit different types of temporal label
noise. There is no cost to doing so, as our methods are competitive even if the noise model is truly
static. Practitioners have everything to gain and nothing to lose by accounting for temporal label
noise.

5 REAL-WORLD DEMONSTRATION

We now present experiments on a real-world stress detection task where we have both clean labels
and noisy labels. This demonstrates a natural source of temporal label noise, without synthetic noise
injection, and the clear effectiveness of our methods. We use a dataset from Goodday [22] monitoring
stress in healthcare workers using both self-reported and physiological measures. Stress detection
models are a common feature in smartwatches [9, 18] and can guide interventions to mitigate clinical
burnout [21, 26].

Setup Temporal label noise arises naturally in this setting due to subjectivity, forgetfulness, and
seasonal patterns in self-reported outcomes over time [50]. Given these effects, physiological
measures are the standard to measure stress and guide interventions. However, self-reported stress
labels are often the only information available for modeling. Given just the self-reported, noisy stress
label, we want to train a time series classifier that generalizes well to the clean physiological indicator
of stress.

The dataset contains n = 289 unique individuals over 7" = 50 time steps (days). Each sequence has
d = 9 features. Here, the noisy label is: 7j; ; = 1 if person 7 subjectively self-reports stress on day t.
The clean label is y; , = 1 if the objective physiological measure of stress for person ¢ indicates stress
on day t. We train sequential classifiers to predict stress over time. Our training setup is identical to
the one in Section 4, except that our training labels reflect real-world noisy labels. We report a subset
of baselines to showcase the baseline via ablation.

Results In Fig. 3, the black line indicates the average disagreement rates between the noisy self-
reported label of stress and the clean physiological label over time. We can see clear temporal patterns
in label noise, where participants under-report stress in a seasonal manner. Temporal label noise
methods (in this case, Continuous) perform the best at approximating this noise and therefore lead to
superior predictive performance on the clean physiological labels. These results are consistent with
the experiments in Section 4.2: improvements in estimation error across time lead to improvements
in training and test accuracy (Table 4).

6 CONCLUSION

Many classification tasks, such as those found in healthcare, require classifying labels in a temporal
fashion under unobserved label noise. It is well-known that noisy labels cause problems for static
classification. In time series, however, labels that are observed temporally may admit differing noise
rates over time. For example, label quality may improve or worsen over time. Existing methods work
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Figure 3: Temporal effects in label noise in a real-world stress detection task. We show noise rates when
individuals are stressed (left) and not stressed (right). True noise rate is the average disagreement rates between
clean and noisy labels over time. We can see clear, temporal label noise patterns, Our temporal label noise
methods do a superior job of approximating it.

Noise Estimation Model Performance
Method What It Represents Approx. Error  Train Error Test Error
Ignore ignoring label noise completely 176 £0.0% 31.0£03% 31.1+43%
Static static label noise correction per time step 164+1.1% 31.0£03% 29.5+4.0%
Discontinuous  temporal label noise correction with discontinuity 114+ 08% 271+0.7%  26.0 £2.5%
Continuous temporal label noise correction imposing continuity 97+13% 211+05% 255+1.7%

Table 4: Noise rate estimation error and model performance for stress detection. We train sequential classifiers to
predict stress using the training setup in Section 4. We report results for four methods to highlight the mechanism
driving performance improvements through an ablation study. We show the approximation error noise rates
(left); and the clear label error rate on the training sample (middle) and test sample (right) All values correspond
to the mean 10-CV estimates =+ st.dev.

to construct noise-tolerant classifiers in the static setting and are ill-equipped to handle temporal label
noise. Our work shows existing methods substantially underperform when subject to temporal label
noise. To mitigate this, we show how to learn provably robust classifiers from time series data that
have been corrupted with temporal label noise using knowledge of the underlying noise function.
Given that the noise function is often unknown, we also propose methods to learn noise-tolerant
time series classifiers without prior knowledge of the temporal noise function. Finally, we perform
a demonstration on a real-world source of temporal label noise — self-reported labels in digital
health studies. In this setting, we find our methods continue to outperform methods that ignore such
noise. We hope that this can inspire the curation of more time-series datasets with noisy and clean
annotations.

Limitations and Future Work Our methods rely on Assumption 1 and 2. Though these are
standard assumptions in time series modeling, they may be difficult to verify in practice. Existing
work in Empirical Risk Minimization (ERM) on highly dependent sequences may serve as a promising
direction for relaxing these assumptions [43, 44, 58]. We also work with stationary time series, where
the predictive distribution is stable over time. Though this is a standard assumption in time series work
(see e.g., [80, 81, 77, 84]), it is a limitation that can be addressed. For example, our loss-correction
technique can be extended with learning theory from the study of non-stationary time series [30, 31].
We assume that all time series in a dataset have the same underlying label noise function. This may
not be true as different annotators can introduce differing noise patterns. We can potentially relax this
assumption by considering multi-annotator noisy labels works [61, 34, 68] or generative models that
admit clusters of temporal noise patterns (i.e., mixture modeling).
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A PROOFS

In what follows, we use vector notation for completeness and clarity of exposition. We use Assump-
tion 1 and Assumption 2 to allow us to factor the noisy label distribution as follows:

.
pFrr | xir) = [ a3, | x10). (6)
t=1

Definitions We start by defining some of the quantities that will be important for the proof:

Quantity

Definition

p(Yt | Xl:t) = [p(Yt =c ‘ Xl:t)]cTzl:C

Vector of probabilities for each label value, for the clean
label distribution p(y, | x1.¢) € RE*!

Py, | x1:4) == [P(Yt =c| Xl:t)];hc

Vector of probabilities for each possible label value, for
the noisy label distribution p(y, | x;.;) € RE*?

ho(x1.t) = po(y, | X1:6 = T1:¢)

Classifier that predicts label distribution at ¢ given preced-
ing observations R?** — R¢

h@(wl:t) = 1/)_1(99(131:15))

When hy is a deep network, gy is the final logits, and
1 : A®~1 — R represents an invertible link function
(e.g., softmax)

Q: = [Qt(yt =k|y, = j)]j,k

The temporal noise matrix at time t: Q; € R“*¢

gt(yhh@(ml:t)) = _logpe(yt =Yt ‘ X1:t = ml:t)

Lossatt: Y x RC -5 R

Ly o (ye, ho(x1:0)) = Le(ye, ¥ he(x1.t))

A composite loss function using a link function ¥

Ci(ho(@ 1)) = [le(e, ho(x1))]

Vector of NLL losses for each possible value of the ground
truth RY — R¢

7oyl ho(@10) = 4(c, Q7 - v (g0))

Forward loss for class ¢

7S€q,w(y1:T> ho(x1.4)) = Yp, 7t,w(07 ho(x1:1))

Sequence forward loss

Table 5: Quantities and definitions used for the following proof

Proof of Proposition 1

Proof. Our goal is to show:

T

argmin Egy r v € seqs (1.7 90 (x0:7)) = argmin > Eyronbio(yirs go(xir)).

First, note that:

t=1

7t71/1(}]t7 ho(x1:t)) = Ly, Q) ¥ (go(x1:4))) @)
=L, t(Yego(X1:0)), 8)

where ¢, Ly lo Q. Thus, ¢, : A®~! — R is invertible, and is thus a proper composite loss

[55].

Thus, as shown in Patrini et al. [47]:

16




Under review as a conference paper at ICLR 2025

argmin B, i lot (Ve 9o (X1:¢)) = argmin B, 1x1.0 Lt (e 90 (X1:0)) ©)
= ¢, (p(¥; | x1:)) (property of proper composite losses)
=9((Q7 ") P, | x14))) (10)
= P(p(y, | X14)) (11)

The above holds for the minimizer at a single time step, not the sequence as a whole. To find the
minimizer of the loss over the entire sequence:

argénin EXLT,S/LT786¢L¢ (S’liT7 9o (XliT)) = argénin IES"l:T|x1:T 7S€q,¢(y1:T7 9o (XlZT)) (12)

T
. - -~
= a’rg;nln IE:)7'1:T|><1:T Z 4 tﬂb(thga(Xlit)) (13)

t=1
.
= a‘rgéninzE§1;T|X1;T7t7’¢(}~’tag@(xlzt)) (14)
t=1
il —
= arg;ninz B, 1y £ 60§y 96 (X1:0)) (15)
t=1
T
= arg;ninz By, 1xr., Lo (V0 G0 (X1:1)) (16)
t=1

As the minimizer of the sum will be the function that minimizes each element of the
sum, then argming Ey, . x,.. £ sequ(Y1:7,90(X1:7)) = P (p(y1.r | *x1.7)). Note that the
argming >, By, s beo (i, go(xir)) = (p(yir | Xir)), because the minimizer
of the NLL is the data distribution. Thus, argmingEg, . x,.; € sequ(Y1.7:90(X1.7)) =
argming 3, Ey, . x., b0 (Y17, 9o (X1:7))-

O

17



Under review as a conference paper at ICLR 2025

B CONTINUOUS LEARNING ALGORITHM

We summarize the augmented Lagrangian approach to solving the Continuous objective in Algo-
rithm 1

Algorithm 1 Continuous Learning Algorithm

Input: Noisy Training Dataset D, hyperparameters y and
Output: Model 6, Temporal Noise Function w
c+land A <1
fork=1,2,3,...,do
0F Wk = arg min, , £(6,w) > Computed with SGD using the Adam optimizer
A= A+ cx Ry(0F, wF) > Update Lagrange multiplier
if £ > 0and R;(0%,w") > yR,(0*~!,w*~1) then
¢4 nc
else
céc
end if
if R, (6%, w*) == 0 then
break
end if
end for

For all experiments we set A = 1,c = 1, v = 2, and = 2. k and the maximum number of SGD
iterations are set to 15 and 10, respectively. This is to ensure that the total number of epochs is 150,
which is the max number of epochs used for all experiments.

C PLUG-IN PROCEDURE

1. Fit a probabilistic classifier to predict noisy labels from the observed data.
2. Foreachclassy € Yandtimet € [1...T]:

i Identify anchor points for class y: :Eg =argmax, p(y, =y | T1.4).

ii Set QA(t)y,y/ as the probability of classifier predicting class ¥’ at time ¢ given & .

D NOISE FUNCTION INDEPENDENT APPROACHES

We also include static methods that do not rely on the noise transition matrix (e.g., DivideMix [33])
in Appendix E, but find these methods are difficult to get working in the time-series setting and
underperform (i.e., hyper-parameter tuning, complexity issues).

E EXPERIMENTAL DETAILS

Our code is available in an anonymized repository.

Dataset Classification Task n d T
eeg_eye [57] Eye Open vs Eye Closed 299 14 50
eeg_sleep [20] Sleep vs Awake 964 7 100
har [56] Walking vs Not Walking 192 9 50
har70 [41] Walking vs Not Walking 444 6 100
synth N(0,1.5) vs N(1,1.5) 1,000 50 100

Table 6: Datasets used in the experiments. Classification tasks, number of samples (n), dimensionality at each
time step (d), and sequence length (7") are shown.

18


https://anonymous.4open.science/r/TemporalLabelNoise-Public

Under review as a conference paper at ICLR 2025

E.1 DATASET DETAILS

Synthetic We generate data for binary and multiclass classification with n = 1 000 samples and
d = 50 features over 1" = 100 time steps. We generate the class labels and obvservations for each
time step using a Hidden Markov Model (HMM). The transition matrix generating the markov chain
is uniform ensuring an equal likelihood of any state at any given time. We corrupted them using
multidimensional (50) Gaussian emissions. The mean of the gaussian for state/class c is set to ¢
with variance 1.5 (i.e. class 1 has mean 1 and variance 1.5). The high-dimensionality and overlap in
feature-space between classes makes this a sufficiently difficult task, especially under label noise. We
use a batchsize of 256

HAR from UC Irvine [56] consists of inertial sensor readings of 30 adult subjects performing
activities of daily living. The sensor signals are already preprocessed and a vector of features at each
time step are provided. We apply z-score normalization at the participant-level, then split the dataset
into subsequences of a fixed size 50. We use a batchsize of 64.

HAR70 from UC Irvine [41] consists of inertial sensor readings of 18 elderly subjects performing
activities of daily living. The sensor signals are already preprocessed and a vector of features at each
time step are provided. We apply z-score normalization at the participant-level, then split the dataset
into subsequences of a fixed size 100. We use a batchsize of 256.

EEG SLEEP from Physionet [20] consists of EEG data measured from 197 different whole nights
of sleep observation, including awake periods at the start, end, and intermittently. We apply z-score
normalization at the whole night-level. Then downsample the data to have features and labels each
minute, as EEG data is sampled at 100Hz and labels are sampled at 1Hz. We then split the data into
subsequences of a fixed size 100. We use a batchsize of 512.

EEG EYE from UC Irvine [57] consists of data measured from one continuous participant tasked
with opening and closing their eyes while wearing a headset to measure their EEG data . We apply
z-score normalization for the entire sequence, remove outliers (>5 SD away from mean), and split
into subsequences of a fixed size 50. We use a batchsize of 128.

Train-Test Splitting Splitting strategies depended on the dataset. For example, in the real-world
stress detection demonstration, the training and testing splits did not share individuals, as there is one
time series per individual. For all other datasets, such as ‘moving’ and ‘senior’, we used the given
train-test splits in the dataset.

E.2 SPECIFIC IMPLEMENTATION DETAILS

GRU the GRU 7 : R% x Z — R x Z produces an output vector such that the output of r(x;, z;_1)
is our model for hy(x;.;), and a hidden state z; € 7 that summarizes x1.;. We use a softmax
activation on the output vector of the GRU to make it a valid parameterization of pg(y: | ©1.¢). The
GRU has a single hidden layer with a 32 dimension hidden state.

Continuous Continuous uses an additional fully-connected neural network with 10 hidden layers
that outputs a C' * C'-dimensional vector to represent each entry of a flattened Qt. To ensure the
output of this network is valid for Def. 1, we reshape the prediction to be C' x C, apply a row-wise
softmax function, add this to the identity matrix to ensure diagonal dominance, then rescale the rows
to be row-stochastic. These operations are all differentiable, ensuring we can optimize this network
with standard backpropagation.

VolMinNet and Independent We do a similar parameterization for VolMinNet and Independent,
using a set of differentiable weights to represent the entries of Q; rather than a neural network.

Anchor and Plug-In Patrini et al. [47] show that in practice taking the 97th percentile anchor
points rather than the maximum yield better results, so we use that same approach in our experiments.
They also describe a two-stage approach: 1) estimate the anchor points after a warmup period 2) use
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the anchor points to train the classifier with forward corrected loss. We set the warmup period to 25
epochs.

E.3 EXPERIMENTAL PARAMETERS

Given that the learning algorithm only has access to a noisy training dataset and performance is
evaluated on a clean test set, a validation set must be drawn from clean test data or by manually
cleaning the noisy training dataset which may be impractical. This makes hyperparameter tuning
difficult in noisy label learning. As the optimal set of hyperparameters within each could vary for
each method, noise type, amount of noise, and dataset, this represents a difficult task. To be fair
for our experimental evaluations, we use the same set of hyperparameters for experiment, and only
manually set batch size for each dataset.

Each model was trained for 150 epochs using the adam optimizer with default parameters and a
learning rate of 0.01.

For VolMinNet, Independent, and Continuous we use adam optimizer with default parameters and a

learning rate of 0.01 to optimize each respective Q,-estimation technique. A was set to le — 4 for
VolMinNet and Independent for all experiments, based on what was published previously [36] .

E.4 NOISE INJECTION

To the best of our knowledge there are no noisy label time series datasets (i.e.: standardized datasets
with both clean and noisy labels) to evaluate our methods. In line with prior experimental approaches,
we propose a noise injection strategy which assumes some temporal noise function that can give us a
noisy distribution to evaluate from. We deliberately pick a wide variety of noise types, varying the
amount and functional form of time-dependent noise, including static noise setting (uniform noise at
every time, akin to what baseline methods assume), and class-dependent noise structure Fig. 4.
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Figure 4: Temporal functions that can be specified using a temporal label noise function Q(t). We present
six examples for binary classification task (from top-left clockwise): time independent, exponential decay
sinusoidal noise, mixed class-dependent noise, linear decay noise, sigmoid increasing noise. Each plot shows the
off-diagonal entries of various parameterized forms of Q(t).
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F COMPLETE RESULTS
F.1 STATIC APPROXIMATION

Here we study the performance of forward temporal loss where we know the noise function Q(t) —
that is, even if we could perfectly estimate the noise process — and where we have a static estimate of
Q(¢) (the average over time). We find that even if the noise process is perfectly estimated, accounting
for temporal noise outperforms a static estimate.

Figure 5: Comparing performance of models trained with backward temporal loss and forward temporal loss on
synth with varying degrees of temporal label noise using either the true temporal noise function (Temporal) or
the average temporal noise function (Static). Error bars are st. dev. over 10 runs.
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F.2 REAL TEMPORAL LABEL NOISE

Prior work in the static noisy label literature typically aim to demonstrate the effectiveness of their
methods on a real world noisy dataset, where the noise function is not imposed by the researcher.
The primary dataset used is the ClothinglM dataset [79]. Despite containing real label noise,
Clothing1M is inapplicable in our setting: it is not temporal data and each instance has only one label.
In the spirit of evaluating Continuous on real-world noisy labels, we discovered and experimented
with ext rasensory, a noisy-labelled time series dataset [69]. ext rasensory includes human
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activity data from smartphones and smartwatches collected from 60 users spread across 300,000
minutes of measurements. In contrast to har and har70 (datasets originally used in our paper),
extrasensory has no expert-labelled annotations, all the labels are user-provided and therefore
are highly noisy. Users often misreport falling asleep and waking up, so we expect particularly high
label noise during sleep/awake transitions

In order to identify the label noise in this temporal data, we partition and center the dataset from all
users around sleep/awake transition periods. That is, for a fixed length window of 50, sleep/awake
transitions occur around the ¢ = 25 point. We then train our Continuous objective with the same
model architecture and hyperparameters as above to classify sleep and awake over time. Since there
are no ’clean’ labels, we demonstrate that Continuous successfully identifies an interpretable temporal
noise function.

In Fig. 6, we see Continuous predicts there exists higher label noise near sleep/awake transitions
(around t = 25). We hope our work also encourages the community to seek further sources of real
temporal noise.

Figure 6: Continuous-estimated Qt for extrasensory. Error bars are st. dev. over 10 runs.
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F.3 CLASS DEPENDENT AND CLASS INDEPENDENT

Table 7: Comparison of clean test-set Accuracy (%) and MAE of all methods on Class Indepenent and Class
Dependent sinusoidal label noise for a fixed degree of label noise (30%) on har. Dashed line separates Static
and Temporal methods.

Class Independent Class Dependent
Accuracy 1 MAE | Accuracy T MAE |

o  Uncorrected 76.0£5.1 - 76.4£3.1 -
'g Anchor 82.0£3.6  0.15+0.014 84.24+2.2  0.13+0.012
“ VolMinNet 86.5£6.0 0.13£0.009 92.6+1.9 0.12+0.012
E Plug-In 81.5+4.3  0.14+0.013  84.1£23  0.13£0.010
% Discontinuous ~ 86.0+5.7  0.10£0.015  91.5+2.1  0.08%+0.004
&  Continuous 98.3+0.6  0.03+0.005 98.4+0.7  0.02+0.005
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F.4 MULTICLASS CLASSIFICATION

Figure 7: Comparison of clean test set Accuracy (%) for synth across varying degrees of temporal label noise
comparing all methods for 3-class classification. Error bars are st. dev. over 10 runs.
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Figure 8: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for synth across varying

degrees of temporal label noise comparing all methods for 3-class classification. Error bars are st. dev. over 10
runs.
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Figure 9: Comparison of clean test set Accuracy (%) for eeg_sleep across varying degrees of temporal label
noise comparing all methods for 3-class classification. Error bars are st. dev. over 10 runs.
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Figure 10: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for eeg_sleep across

varying degrees of temporal label noise comparing all methods for 3-class classification. Error bars are st. dev.
over 10 runs.
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Figure 11: Comparison of clean test set Accuracy (%) for har across varying degrees of temporal label noise

comparing all methods for 4-class classification. Error bars are st. dev. over 10 runs.
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Figure 12: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for har across varying

degrees of temporal label noise comparing all methods for 4-class classification. Error bars are st. dev. over 10
runs.
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