
Critic-CoT: Boosting the Reasoning Abilities of Large Language Model via
Chain-of-Thought Critic

Anonymous ACL submission

Abstract

Self-critic has become a crucial mechanism001
for enhancing the reasoning performance of002
LLMs. However, current approaches mainly in-003
volve basic prompts for intuitive instance-level004
feedback, which resembles System-1 processes005
and limits the reasoning capabilities. Moreover,006
there is a lack of in-depth investigations into the007
relationship between LLM’s ability to criticize008
and its task-solving performance. To address009
these issues, we propose Critic-CoT, a novel010
framework that pushes LLMs toward System-011
2-like critic capability. Through a step-wise012
CoT reasoning paradigm and the automatic con-013
struction of weak-supervision data without hu-014
man annotation, Critic-CoT enables LLMs to015
engage in slow, analytic self-critique and re-016
finement, thereby improving their reasoning017
abilities. Experiments on GSM8K and MATH018
and out-of-domain evaluation demonstrate that019
our enhanced model significantly boosts task-020
solving performance by filtering out invalid so-021
lutions or iterative refinement. Furthermore,022
we investigate the intrinsic correlation between023
critique and task-solving abilities within LLMs,024
discovering that these abilities can mutually025
reinforce each other rather than conflict.026

1 Introduction027

Enhancing the reasoning abilities of large language028

models is essential for creating more intelligent and029

reliable AI systems, which has drawn extensive at-030

tention from researchers (Chollet, 2019; Bubeck031

et al., 2023; Morris et al., 2024). From a cogni-032

tive perspective, the procedure of human reasoning033

involves constant reflection and revision (Hegel034

et al., 1991; Kierkegaard, 1989; Popper, 1934),035

which has inspired increasing focus on integrating036

self-critic mechanisms in the reasoning process of037

large-scale models (Kim et al., 2023; Shinn et al.,038

2023; Madaan et al., 2023). This involves itera-039

tively allowing the model to generate feedback on040

its own responses and then refining its reasoning041

based on the feedback. Compared with traditional 042

critic methods that depend on feedback from exter- 043

nal sources (Saunders et al., 2022; McAleese et al., 044

2024), self-critic relies solely on the model’s inter- 045

nal capabilities, thus reducing the high cost of addi- 046

tional human annotation, and serving as a promis- 047

ing potential solution to scalable oversight (Leike 048

et al., 2018; Burns et al., 2023; Cao et al., 2024). 049

However, current studies primarily focus on uti- 050

lizing LLMs’ critique abilities to enhance their 051

performance. Yet, relatively little attention has 052

been given to the investigation and development 053

of the critique ability itself. Firstly, existing cri- 054

tique methods are often overly simplistic, typi- 055

cally relying on a basic prompt to directly point 056

out the error, without stepwise Chain-of-Thought 057

examination or training procedure, which leads 058

to relatively poor self-critic accuracy (Luo et al., 059

2023; West et al., 2024). Specifically, proposing a 060

valid critique is a complicated task that requires a 061

thorough understanding of statements and precise 062

negativity. However, current LLMs are normally 063

not explicitly trained for critic capability. There- 064

fore, these simple approaches usually tend to “crit- 065

icize” like System-1, which is more intuitive and 066

likely to make mistakes, rather than more rigor- 067

ous and deliberate System-2 (Kahneman, 2011; Yu 068

et al., 2024), while shifting LLMs from System-1 069

toward System-2 emerges as a promising approach 070

for improving the reasoning capability (OpenAI, 071

2024). This limitation diminishes the effectiveness 072

of self-critic and, further, self-correct (Huang et al., 073

2024). Secondly, the capabilities of task-solving 074

and self-critic are both dependent on the model’s 075

inherent knowledge, while there is currently a lack 076

of in-depth exploration regarding the correlation be- 077

tween these two capabilities within LLMs. In that 078

case, it’s challenging to balance the task-solving 079

and the self-critic capabilities of the model within 080

the self-critic framework, which poses a significant 081

obstacle to the subsequent development. 082
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Previous Critic：Fast, Direct Error Identification Without Prior Analysis

Upon reviewing my previous answer, I 

recognize a mistake. I incorrectly 

identified 216 as ...

Step 1: Let the three consecutive 

integers be x-1, x, and x+1 ... 

Step 2: Since we are looking for a 

perfect cube, let's express 3x ... 

Step 3: However, n itself must also 

be divisible by 3, since …

Step 4: The smallest integer 

divisible by 3 is 6, for 6 ^ 3 …

Answer: 216 

CriticizeInput Problem

What is the smallest positive 

perfect cube that can be written as 

the sum of three consecutive 

integers?

(Reference: 7 + 8 + 9 = 3 ^ 3 = 27)

Generate Solution

Traditional Critique 

Step 1: The sum of these three ... 

Step 1 is correct.

Step 2: Expressing 3x as a cube ... 

Step 2 is correct.

Step 3: The claim that n must be ... 

Step 3 is incorrect.

Our CoT Critique

Refine

Step 3: Since we are looking for the ...

Step 4: The smallest perfect cubes are ...

Answer: 27 

Step 1: To solve the problem of finding the ...
Step 2: We are given that this sum must be ... 
Step 3: To ensure n is an integer, K^3 must ...

Step 4: We need to find the that the small …

Answer: 54 

Traditional Refine 

Our Refine

Critic-CoT：Slow, Chain-of-Thought Examination Step-By-Step

Figure 1: Illustration of Critic-CoT: Previous instance-level critic methods attempt to identify errors directly without
any prior analysis, and restart from the beginning during refinement. In contrast, our proposed Critic-CoT framework
performs a step-wise examination using the Chain-of-Thought approach. When refining, rather than starting from
scratch, our method makes the correction from the specific error step with the help of the corresponding critique.

To this end, this paper is devoted to diving into083

the following critical research questions:084

• How can we enhance a model’s critique abil-085

ity, pushing it toward System 2 reasoning?086

• What is the relationship between a model’s087

critique ability and its task-solving capability?088

To answer the above questions, as shown in Fig-089

ure 1, we propose Critic-CoT, a novel frame-090

work designed to enhance LLMs’ reasoning abili-091

ties. Through step-wise Chain-of-Thought critique092

format and automated data construction through093

weak supervision, our method is able to strengthen094

System-2-like critic ability, without the intensive095

cost of human annotation. Specifically, during096

training, we let LLMs criticize and refine their so-097

lutions in a complete CoT way, and collect success-098

ful pairs that convert wrong solutions into correct099

ones, or affirm the validity of original right solu-100

tions. After supervised fine-tuning on the obtained101

step-wise critic-refine data, we enable the target102

LLM to analyze and criticize each step of its gen-103

erated reasoning procedure, so that it can filter out104

wrong attempts and preserve the correct ones with105

greater precision. During inference, to leverage the106

model’s abilities of CoT-critique and refinement,107

we employ two strategies: 1) majority vote filtering108

involves using the critic model to evaluate multiple109

generated solutions and filter out those incorrect;110

and 2) iterative refinement, on the other hand, in-111

volves repeatedly critiquing and refining a solution112

until no further error is detected.113

Through a series of experiments on the in-114

domain dataset of GSM8K and MATH, together115

with out-of-domain evaluation on StrategyQA,116

AGIEval and HumanEval, we find that our trained 117

critic model can fairly distinguish incorrect solu- 118

tions from correct ones, and improve the reason- 119

ing accuracy via iterative refinement or critic fil- 120

tering. These results demonstrate the helpfulness 121

and effectiveness of our proposed method. Addi- 122

tionally, we observed that our critic model already 123

exhibits noticeable performance improvements in 124

task-solving, even in the absence of additional cri- 125

tique steps during the decoding phase. Such find- 126

ings reveal that strengthening the ability to critique 127

and refinement would not compromise the task- 128

solving performance, but improve it. This also 129

suggests the presence of an intrinsic mechanism by 130

which critique ability and task-solving capability 131

mutually reinforce one another. 132

Our main contributions are as follows: 133

• We propose Critic-CoT, which pushes the 134

critic paradigm of LLMs from System-1-like 135

incentive “thinking” toward System-2-like de- 136

liberate “reasoning”. 137

• Through experiments, we find that Critic-CoT 138

can effectively teach the model to criticize and 139

refine its own output step by step, thus notice- 140

ably improving the reasoning performance. 141

• Moreover, we find that for LLMs, the ability 142

of critique and refinement could mutually re- 143

inforce, which may shed light on designing 144

more advanced self-critic framework designs 145

in future work. 146

2 Related Works 147

With the development of LLMs, self-critic has 148

emerged as a widely-adopted mechanism for rea- 149
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soning, code generation, computer control, halluci-150

nation mitigation, retrieval-augmented generation151

and other tasks (Kim et al., 2023; Shinn et al., 2023;152

Madaan et al., 2023; Ji et al., 2023; Asai et al.,153

2024). However, typical self-critic approaches154

like Reflexion (Shinn et al., 2023), only utilize155

the LLMs’ existing critique ability without further156

enhancement, and require the gold environment157

signal to iteratively generate critiques and make re-158

finements. As long as external feedback is not avail-159

able, off-the-shelf LLMs cannot perform intrinsic160

self-correct effectively due to limited critique and161

refinement abilities (Huang et al., 2024; Luo et al.,162

2023; Zeng et al., 2023). Later, several works are163

proposed to improve self-reflection via a carefully164

designed prompting pipeline on frozen LLMs, and165

no active training process is involved (Zhang et al.,166

2024b; Yan et al., 2024; Wu et al., 2024). Con-167

currently, Zhang et al. (2024a) trained a generative168

reward model on the outcome level rather than the169

process level, and did not incorporate refinement170

into the schema. Therefore, given the limited critic171

ability of current LLMs, how to train a robust and172

applicable critic model, which conducts detailed173

Chain-of-Thougt analysis in a step-wise systematic174

manner, and thus shifts from System-1 reasoning175

toward more deliberate System-2 reasoning (Kah-176

neman, 2011), is worth investigating.177

From the perspective of recursive reward model-178

ing (Leike et al., 2018; Saunders et al., 2022) and179

scalable oversight (Burns et al., 2023), McAleese180

et al. (2024) recently trained “CriticGPT” to assist181

human labelers, which aims to improve the ability182

of human rather than the base model, i.e., improve183

the overall recall of error detection, rather than pre-184

cision. While in this paper, we try to improve the185

reasoning ability of LLM without costly human186

annotation.187

3 Method188

Critic CoT is to equip LLMs with the ability to189

criticize and refine themselves step-by-step. As190

shown in Figure 2, it consists of two modules,191

including automated data construction via weak-192

supervision and self-check at inference-time. The193

weak-supervision principles are in Section 3.1, fol-194

lowed by the training process in Section 3.1, and195

the inference strategies in 3.3.196

3.1 Chain-of-Thought Critique 197

In this work, we utilize a step-wise chain-of- 198

thought critique, which makes the critique-refine 199

process both controllable and formalizable, thereby 200

facilitating the collection of weak supervision data. 201

Formally, given the question Q and the corre- 202

sponding gold answer Ans, we have the n-step 203

attempt Att = [s1, ..., sn] with predicted answer 204

Pred sampled by generator G. The correspond- 205

ing critique Cri then can be represented as L = 206

[l1, ..., ln], where the step label li = +1 indi- 207

cates that step i is predicted to be correct, and 208

li = −1 to be incorrect. Then the refinement 209

Att′ = [s′i, ..., s
′
n′ ] is start from the first incorrect 210

step i with new answer Pred′. We automatically 211

annotate the process labels as follows: 212

• Pred ̸= Ans,−1 /∈ L: The attempt is wrong, 213

yet the critique did not discover any error step. 214

Thus the critique itself is problematic, and we 215

need to sample another critique. 216

• Pred ̸= Ans,−1 ∈ L,Pred′ ̸= Ans: The 217

attempt is wrong, and the critique found an 218

error, but still, the refinement is not correct. 219

There could be two cases for this situation: (1) 220

the refinement is unsuccessful; (2) the critique 221

did not detect an earlier mistake. We simply 222

sample another critique and corresponding re- 223

finement for this situation. 224

• Pred ̸= Ans,−1 ∈ L,Pred′ = Ans: 225

Not only did the critique point out the er- 226

ror, but also the refinement reached the cor- 227

rect answer. We then believe the critique is 228

valid, and collect the critique data instance 229

C = (Q,Att, Cri) and the refinement data 230

R = (Q,Att, Cri−1, Att
′), where Cri−1 is 231

the critique of last step, since explaining why 232

previous steps are correct may not be helpful. 233

• Pred = Ans,−1 /∈ L: The attempt is cor- 234

rect, and the critique believes it is correct. So 235

we can collect the positive critique data in- 236

stance C = (Q,Att, Cri). 237

• Pred = Ans,−1 ∈ L: The attempt reached 238

the correct answer, yet the critique found an 239

error. Then, the critique could be wrong, and 240

we need to sample another critique. 241

3.2 Auto Train: Two-Stage Training 242

To enable the model to acquire self-critiquing and 243

refining capabilities, we first need to provide it with 244

3



Step 3: …
                Answer

Filter  
Error

Positive 
Critique

Step i: …
Step i is wrong

Step-wise Feedback

Negative 
Critique 

As
Generator

As
Critic

Correct 
Solution

Step 1 is correct
Step 2 is correct
Step 3 is correct

Positive Critique

Step 1 is correct 
Step 2 is wrong

Failed Critique

Refine

Success Refinement

Failed Refinement

Step 1 is correct
Step 2 is wrong

Negative Critique
Step 1 is correct 
Step 2 is correct
Step 3 is correct

Failed Critique

Step 3: …
                Answer

(a) Auto-Train: Training data construction of Critic-CoT (b) Self-Check: Inference process of Iterative Refine 
and Critic As Filter

Iterative Refine

Critic As Filter

As
Generator

As
Critic

Wrong 
Solution

Input
Query

Input
Query

Critic-CoT
Train Data

As
Generator

As
Critic

Sampled
Solution

Input
Query

Output
Answer

As
Generator

As
Critic

Sampled
Solutions

Input
Query

Filter
Solutions

Majority
Vote

Output
Answer

Weak Supervision

Figure 2: The Process of Critic-CoT during training (a) and inference (b). For training, we collect the critic-refine
data on the generator’s samples via weak supervision (Section 3.1). Through fine-tuning, we enable the target
model to criticize and refine its own reasoning process. Then, during inference, we can leverage the capabilities via
Iterative Refine or Critic As Filter (Section 3.3).

basic critiquing abilities, followed by self-critique245

for further enhancement. The overall training pro-246

cedure is divided into two stages.247

Stage 1 In the first step, we collect high-quality248

critique data to provide the model’s basic cri-249

tiquing ability. Specifically, we first sample both250

positive and negative solutions from a represen-251

tative instruction-following model MG on the252

dataset D. Then, we utilize LLMs like GPT4-253

Turbo to serve as critic model MC . For each254

generated attempt Att, the critic model will retry255

at most k times to produce a valid critique un-256

til it reaches one of the weak supervision con-257

straints. This will form the critic-refine dataset258

D1 = {(Q,Att, Cri)}
⋃
{(Q,Att, Cri−1, Att

′)}259

for fine-tuning the initial model M0 into the critic260

model M1. Note that in this process, we actu-261

ally distill Pass1@N of the teacher model MC into262

Top1@N of the student model. So, the theoretical263

upper bound of the student model is not necessarily264

limited by the teacher model’s performance.265

Stage 2 In the second step, we leverage the266

model’s self-critique to enhance its critiquing and267

refining capabilities further. Namely, we let the268

learned critic model M1 criticize and refine its269

own output. We first sample M correct-answer so-270

lutions and M incorrect-answer solutions for each271

question Q in the original dataset D. Then, for272

each attempt Att, we employ M1 to repeatedly273

criticize and refine at most k times. If the model274

fails to critique even after k times, we fall back275

on the critique from a stronger yet frozen model276

MC as the final choice. Finally, we collect dataset 277

D2 = {(Q,Att, Cri)}
⋃
{(Q,Att, Cri−1, Att

′)} 278

and use D1
⋃
D2 to train the initial model M0 279

into the final critic model M2, which is similar to 280

Wang et al. (2024). This procedure helps the model 281

to learn to criticize and refine its own reasoning 282

outputs better. 283

3.3 Inference: Self-Check 284

Iterative Refine One single-turn refinement, 285

which consists of multiple steps, may still contain 286

errors. Therefore, we could iteratively inspect the 287

refined solution, and re-refine once the critique 288

found a mistake, and only output the final solu- 289

tion if it’s convincing for the critic, or if it reached 290

the maximum retry. To avoid de-generation after 291

too many refinements, we set the maximum refine 292

depth d = 8, and restart from the initial solution af- 293

ter d unsuccessful refinement at most n = 8 times. 294

Figure A4 presents a single successful round of 295

critique and refinement. 296

Critic As Filter Self-consistency is an effective 297

way to reduce variance. With the ability to critique, 298

we can filter out predict-to-be-wrong answers to 299

further boost the performance. Specifically, for 300

the m attempts S = {(Att, Pred)}, we first let 301

our model M check each attempt and obtain the 302

stepwise label, which is Sc = {(Att, Pred, L)}. 303

Then those which detect the error at some step are 304

filtered out and reach S′
c = {(Att, Pred, L)|−1 /∈ 305

L}. Finally, we perform the majority vote to get 306

the answer. 307
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Model Sampling Method GSM8K MATH500

Base Model
Llama-3-70B-Instruct (Dubey et al., 2024) - 89.6 50.4

Maj1@96 94.1 62.2
Maj1@512 - 63.4

GPT4-0314 (OpenAI, 2023) - 92.0 52.6
DeepSeek-V2 Chat-236B (DeepSeek-AI et al., 2024) - 92.2 56.3

Reasoning-Enhanced Model
MATH-Minos, Mistral-7B (Gao et al., 2024) PRM+Maj1@256 87.8 38.6
InternLM-MATH-20B (Ying et al., 2024) PRM Best-of-100 89.3 50.0
DART, Llama3-70B (Tong et al., 2024) - 89.6 56.1
Math-Shepherd, DeepSeek-67B (Wang et al., 2023a) PRM+Maj1@256 92.5 48.1

Ours
Critic-CoT, Llama-3-70B-Instruct - 91.7 57.6

Iterative Refine 93.3 ↑ 1.6 57.8 ↑ 0.2
Maj1@96 94.8 64.6
Critic + Maj1@96 95.4 ↑ 0.6 66.6 ↑ 2.0
Maj1@512 - 65.4
Critic + Maj1@512 - 68.4 ↑ 3.0

Table 1: Solution Accuracy of GSM8K and MATH500. Compared with the base model, iterative refinement with
our trained model improves from 89.6% to 93.3%% for GSM8K and from 50.4% to 57.8% for MATH500, while
the critic filter increases the accuracy to 95.4% for GSM8K and 68.4% for MATH500.

4 Experiment308

We apply the Critic-CoT training process on the309

training dataset of GSM8K and MATH (Section310

4.1), and observe a noticeable performance im-311

provement (Section 4.2), and out-of-domain evalu-312

ations on AGIEval, StrategyQA, and HumanEval313

further exhibits the generalization of our trained314

critic ability (Section 4.3) For more analysis, dis-315

cussion, see Appendix A.3 and Appendix A.4, and316

the prompt is presented in Appendix A.6.317

4.1 Setup318

4.1.1 Model319

We fine-tune the critic-refine model on Llama-320

3-70B-Instruct (Dubey et al., 2024), which was321

pre-trained on more than 15 Trillion tokens and322

has a context length of 8,192. For critique / re-323

finement sampling, we use GPT4-Turbo (OpenAI,324

2023) of the version gpt-4-0125-preview. We use325

the Huggingface Transformers (Wolf et al., 2020),326

DeepSpeed (Rajbhandari et al., 2021) and FastChat327

(Zheng et al., 2023) libraries for training. We use328

vLLM library (Kwon et al., 2023) for model infer-329

ence, adapting top-p sampling of p = 0.95, with330

temperature 0.7 for solution sampling, which fol-331

lows Cobbe et al. (2021a), and 0.5 for critique and332

refinement. All inferences are zero-shot.333

4.1.2 Dataset334

Train & In-Domain Eval Separately, we train335

our model on the problem of GSM8K (Cobbe336

et al., 2021a) and MATH (Hendrycks et al., 2021). 337

GSM8K is a grade-school-level math word prob- 338

lem dataset, with 7,473 training instances and 1,319 339

test instances. MATH is a challenging high school 340

math competition dataset, which consists of 7,500 341

training problems and 5,000 test problems. For 342

the MATH dataset, we also follow the data split 343

of Lightman et al. (2024), which adds 4,500 test 344

problems into a training set and, therefore, contains 345

12,000 training instances and 500 representative 346

test instances. More details are in Appendix A.1. 347

Out-of-Domain Eval To further evaluate our 348

critic model’s generalization capabilities beyond 349

math, we assess its performance on reasoning tasks 350

using the StrategyQA, AGIEval, and HumanEval 351

datasets, which cover different domains. Strate- 352

gyQA (Geva et al., 2021) is a multi-step reason- 353

ing task constructed from Wikipedia, with binary 354

answers indicating either true or false. AGIEval 355

(Zhong et al., 2023) comprises standardized exam 356

questions from various fields, including college 357

entrance exams, law school admission tests, math 358

competitions, and lawyer qualification tests. Given 359

the overlap with the MATH test set, we evaluated 360

our model using the original 7,500/5,000 split from 361

MATH, rather than the extended 12,000/500 split. 362

HumanEval (Chen et al., 2021) contains 164 hand- 363

written Python program problems, which evaluate 364

the code generation capability. 365
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Model Acc.

Llama-3-70B-Instruct 56.6
Llama-3.1-70B-Instruct 61.8
DeepSeek-V2 Chat-236B 61.4
GPT4o 65.2

Critic-CoT, GSM8K 54.7
- Iterative Refine 55.6 ↑ 0.8
- Maj1@96 60.7
- Critic + Maj1@96 60.3 ↓ 0.4
Critic-CoT, MATH 59.8
- Iterative Refine 63.7 ↑ 3.9
- Maj1@96 61.0
- Critic + Maj1@96 61.2 ↑ 0.2

(a) AGIEval

Model Acc.

Llama-3-70B-Instruct 76.2
Llama-3.1-70B-Instruct 84.3
DeepSeek-V2 Chat-236B 75.6
GPT4-0314 83.6

Critic-CoT, GSM8K 77.5
- Iterative Refine 78.8 ↑ 1.3
- Maj1@96 78.7
- Critic + Maj1@96 80.5 ↑ 1.8
Critic-CoT, MATH 78.0
- Iterative Refine 80.1 ↑ 2.1
- Maj1@96 78.3
- Critic + Maj1@96 79.7 ↑ 1.4

(b) StrategyQA

Model Pass@1

Llama-3-70B-Instruct 76.2
Llama-3.1-70B-Instruct 80.5
DeepSeek-V2 Chat-236B 81.1
GPT4-0314 86.6

Critic-CoT, GSM8K 77.4
- Iterative Refine 78.1 ↑ 0.7
Critic-CoT, MATH 84.1
- Iterative Refine 84.8 ↑ 0.7

(c) HumanEval

Table 2: Solution Accuracy of standardize exam dataset
AGIEval (2a), multi-hop reasoning dataset StrategyQA
(2b) and code generation dataset HumanEval (2c). Our
models generally show robust generalization.

4.2 Critic-CoT Improves Mathematical366

Reasoning367

The results of in-domain evaluation are shown in368

Table 1, which demonstrate the effectiveness of369

Critic-CoT in improving the model’s mathemat-370

ical reasoning performance. First, strengthening371

the ability to critique and refinement would not372

compromise the task-solving performance, but im-373

prove it. After Critic-CoT training, our model’s374

top-1 accuracy increases from 89.6% to 91.7% on375

GSM8K, and from 50.4% to 57.6% on MATH500.376

Second, the step-wise self-critique ability of the377

models can further enhance the reasoning perfor- 378

mance during inference, via Iterative Refinement 379

and Critic As Filter. With Iterative Refinement, our 380

model achieves 93.3% accuracy on GSM8K and 381

57.8% on MATH500. Applying Critic As Filter, 382

the performance improves further on the basis of 383

majority vote. On GSM8K it rises from 94.8% 384

with Maj1@96 to 95.4% and on MATH500 it rises 385

from 65.4% with Maj1@512 to 68.4%. Thus, our 386

model’s accuracy surpasses strong baselines of Pro- 387

cess Reward Model assisted model MATH-Minos, 388

InternLM-MATH-20B, Math-Shepherd, and rejec- 389

tion sampling finetuning model DART. Overall, the 390

results indicate the model’s enhanced abilities to 391

identify mistakes and recover from them, thereby 392

boosting the reasoning performance. 393

4.3 Critic-CoT Strengthens Out-of-Domain 394

Reasoning 395

The results of out-domain evaluation are shown in 396

Table 2. In general, our model, especially trained 397

on MATH dataset, achieves positive performance 398

gain with Iteartive Refinement and Critic As Filter, 399

which demonstrates the generalized critique and 400

refinement abilities beyond the math training do- 401

mains. For StrategyQA, our critic models trained 402

on two datasets show a positive performance in- 403

crease when applying iterative refine and majority 404

vote with the critic filter. On the more challeng- 405

ing dataset AGIEval, the Critic-CoT model trained 406

on MATH performs much better than the model 407

trained on grade-school level GSM8K dataset, and 408

shows significant improvements in iterative refine- 409

ment, rising to 63.7% compared with 56.6% prior 410

the Critic-CoT training. On the code generation 411

task HumanEval, the majority vote method is not 412

applicable, but we can still observe the positive 413

improvement with iterative refinement: while the 414

base model’s pass rate is 76.2%, our model trained 415

on GSM8K and MATH achieved 78.1% and 84.8% 416

respectively. These results highlight the robustness 417

of our Critic-CoT models. 418

5 Ablation Analysis 419

To demonstrate the effectiveness of our Critic-CoT 420

designs, we conduct a series of manual examination 421

and ablation studies, which confirm that our train- 422

ing data is still in high quality (Section 5.1), our 423

proposed stepwise CoT critique is advantageous 424

(Section 5.2), the composition of training data is 425

beneficial (Section 5.3), and the source of improve- 426
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Data Critique of Refinement of Critique of
Wrong Attempt Wrong Attempt Correct Answer Attempt

GSM8K 86% 97% 100%
MATH 85% 96% 92%

Table 3: Human Evaluation on the critique and refinement of Critic-CoT Training Data. The automatically
constructed data maintain high quality, which can well support the critique training process.

Model Critic Refine Majority Vote

P R F1 Acc. Init. Acc Ref. Acc. Pass1@N Maj1@N +Critic

Outcome Label 95.5 28.9 44.4 88.0 87.7 89.7 99.0 93.6 93.7
Process Label 67.9 22.8 34.1 89.5 88.0 89.2 99.0 93.0 93.0

Only Refine 30.0 11.4 16.6 90.8 92.0 88.2 98.9 95.2 95.2
Only Critic 57.1 31.0 40.2 91.9 91.2 91.4 98.9 94.4 94.5

Stage 1 42.5 41.5 42.0 89.3 90.7 91.1 98.9 93.6 94.2
Stage 2 50.0 25.0 33.3 85.5 90.5 91.3 99.0 94.4 94.4

Critic-CoT 53.3 58.2 55.7 92.3 91.7 93.3 99.1 94.8 95.4

(a) GSM8K

Model Critic Refine Majority Vote

P R F1 Acc. Init. Acc Ref. Acc. Pass1@N Maj1@N +Critic

Outcome Label 84.4 39.0 53.3 63.0 51.8 53.6 84.0 56.2 56.2
Process Label 80.2 35.9 49.6 63.8 50.4 52.6 78.6 49.4 50.8

Only Refine 62.3 60.1 61.2 66.0 55.4 49.8 90.4 63.0 62.8
Only Critic 67.9 75.4 71.5 71.6 52.8 55.8 89.0 60.6 60.6

Stage 1 64.6 93.7 76.5 69.0 53.2 41.2 90.4 63.4 63.0
Stage 2 79.7 45.8 58.2 71.8 57.2 57.4 90.4 64.6 65.0

Critic-CoT 66.1 73.7 69.7 72.2 57.6 57.8 89.2 64.6 66.6

(b) MATH500

Table 4: Ablation Study on GSM8K and MATH500. We use the metrics from three aspects: critic, including
precision, recall, f1-score and accuracy; Iterative Refine, including accuracy before and after the refinement; and
Critic As Filter, including Pass1@96, Maj1@96, and Critic+Maj1@96. The ablation study demonstrates the
effectiveness of our Critic-CoT design.

ment shall be attributed to our Critic-CoT frame-427

work rather than distillation (Section 5.4).428

5.1 The Quality of Constructed Data429

To examine the correctness of constructed Critic-430

CoT training data, we perform the manual evalua-431

tion. We sample 300 entries (100 with the critique432

of correct answer and 100 with the critique and re-433

finemnt of wrong answer) each from the critic-cot434

data on GSM8K and MATH, and conduct a manual435

verification to verify the accuracy of the step-wise436

critiques. For the critique of the correct answer437

attempt, it is valid if there is indeed no error in all438

the intermediate steps; for the critique of the wrong439

attempt, it is valid if the first error step and the rea-440

son for the error are both identified. A refinement441

is correct, if the continuation steps are flawless.442

The results of manual verification are demon-443

strated in Table 3, with about 85% accuracy on 444

wrong-answer critique, and more than 90% on re- 445

finement and correct-answer critique. Therefore, 446

the data we automatically constructed maintain 447

a high level of accuracy at the step level, which 448

can well support the critique training process. 449

5.2 The Necessity of CoT Critique 450

To assess the necessity of the stepwise CoT critic, 451

we remove CoT and train two baselines, namely 452

“Process Label” and “Outcome Label”. Specifically, 453

for Process Label, the model is trained to directly 454

predict the correctness of each step, e.g., “Step 455

1 is correct. Step 2 is incorrect.”. Further, for 456

Outcome Label, we remove the stepwise labels, 457

which is to predict whether the entire solution is 458

correct without providing step-wise details, e.g., 459

“Each step from Step 1 to Step 8 is correct” or 460

7



“Some step from Step 1 to Step 8 is incorrect”.461

These two baselines can be viewed as the natural462

language versions of the Process Reward Model463

and Outcome Reward Model.464

The results are shown in Table 4. We find that465

removing the Chain-of-Thought intermediate anal-466

ysis and further stepwise labels, negatively impacts467

the critic accuracy, which indicates the effective-468

ness of stepwise CoT critique in improving the469

discrimination performance. From the original470

Critic-CoT model to the Process Label Model and471

the Outcome Label Model, the critique accuracy472

drops from 92.3% to 89.5% and further to 88.0%473

on GSM8K, and from 72.2% to 63.8% and fur-474

ther to 63.0% on MATH500. They fail to detect475

more errors and the recall metric is lower, despite476

its tendency to more easily pass correct solutions.477

Compared with System-1 like reasoning without478

explicit analysis, System-2 like reasoning with CoT479

critique can more precisely identify the errors.480

5.3 The Impact of Training Data481

To evaluate the impact of different data types dur-482

ing training, we perform a vertical ablation by re-483

moving either the critic data or the refinement data484

across both stages. In addition, we perform a hori-485

zontal ablation by training only with either stage 1486

data or stage 2 data.487

As the result shown in Table 4, we find that train-488

ing only on the single-type data is less optimal.489

If only training to refine, the base model’s critic490

ability remains weak, and still cannot effectively491

self-correct, as on GSM8K the accuracy drops from492

92.0% to 88.2% after iterative refinement, and on493

MATH500 it drops from 55.4% to 49.8%. If only494

training to critic, the model obtains positive im-495

provement from iterative refinement, with increases496

from 91.2% to 91.4% on GSM8K and 52.8% to497

55.8% on MATH500, but still lags behind to Critic-498

CoT model that jointly trains the two capabilities.499

And finally, in terms of critic and reasoning per-500

formance, combining the data from two stages is501

better than training the data only from one stage.502

5.4 Comparison with Solution Distilation503

Since our data construction process leverages GPT-504

4 Turbo, one potential concern is whether the per-505

formance increase comes from distilling GPT-4, or506

our proposed Critic-CoT framework. To address507

this concern and better understand the source of508

improvement, we also train the traditional rejec-509

tion sampling fine-tuning (RFT) baseline, using510

Model GSM8K MATH500

Llama-3-70B-Instruct 89.6 50.4
GPT4-Turbo Solution 90.7 48.0
Critic-CoT 93.3 57.8

Table 5: Comparision between solution distillation and
our Critic-CoT model with Iterative Refine, with the
metric of Top-1 Accuracy. Directly training on the tra-
jectories of advanced LLMs did not necessarily improve
the performance.

GPT4-Turbo to generate a correct-answer solution 511

for each problem on the dataset of GSM8K and 512

MATH respectively. 513

As the result shown in Table 5, unlike Critic- 514

CoT, directly distilling from frontier LLMs may 515

not significantly improve the reasoning perfor- 516

mance, with only 90.7% on GSM8K and 48.0% on 517

MAT500, which is less superior. On the one hand, 518

the Llama-3-70B model has already experienced 519

heavy post-training for downstream reasoning tasks 520

(AI@Meta, 2024). On the other hand, as shown 521

in Section 4.2, the improvements can be attributed 522

to two key factors. First, strengthening the ability 523

to critique and refinement, which is under-trained, 524

directly improves the Top-1 accuracy. Moreover, 525

at the inference phase, we can actively leverage 526

the model’s ability to reflect on its reasoning and 527

correct mistakes, thus obtaining additional improve- 528

ments that are not applicable without critic-refine 529

training. Therefore, our proposed Critic-CoT 530

framework plays a crucial role in driving the 531

observed performance improvements. 532

6 Conclusion 533

In this paper, we introduced the Critic-CoT 534

paradigm to enhance the reasoning abilities of 535

Large Language Models, through a more System-2- 536

like, step-by-step Chain-of-Thought critique. Our 537

approach leverages weak supervision to construct 538

training data for critiques and refinements, thereby 539

reducing the reliance on extensive human anno- 540

tation. We demonstrated the effectiveness of our 541

method through substantial improvements across 542

the dataset of GSM8K and MATH. Additionally, 543

our results present that training on the capabili- 544

ties of critique and refinement alone improves task- 545

solving performance, which indicates a mutual- 546

reinforce mechanism within the LLMs. We hope 547

our work may inspire further investigations into the 548

advancement of the self-critic framework and the 549

transition toward System-2 reasoning. 550
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Limitations551

In this paper, we propose Critic-CoT, a framework552

to automatically construct critic-refine training data553

in the reasoning domain, where the correctness of554

a solution is verifiable by checking the final answer.555

For more general tasks, how to filter valid critiques556

and train robust critic models is worth investigating557

in future works.558

Ethics Statement559

All the data and models are acquired from public560

datasets and pre-trained models, and no human an-561

notators are involved during the data construction562

procedure.563
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A Appendix 894

A.1 Training & Evaluation Details 895

A.1.1 Critic Data Construction 896

GSM8K On GSM8K, since GPT-4 already got 897

92.0% accuracy on the test set (OpenAI, 2023), 898

which makes it hard to obtain negative data, we use 899

GPT-3.5-Turbo-0125 instead to sample 10 solu- 900

tions for each question in the training set. Then, 901

we use GPT-4-Turbo as the critic-refine model to 902

criticize the solutions (Table A5), with K = 16 903

retry. We obtain 63,485 cases, with 49,832 positive 904

examples and 13,653 negative examples. 905

In the second stage of GSM8K critique construc- 906

tion, we use the learned critic model to repeatedly 907

sample until we obtain at most 5 positive and 5 908

negative solutions. For strong LLMs like LLaMA-3, 909

it’s challenging to get enough negative solutions 910

even among 512 samples, so the size of negative 911

data would be slightly smaller. Then, we use the 912

learned critic model to criticize itself, also with 913

K = 16 retry. In stage two, we obtain 62,877 in- 914

stances, with 39,654 positive and 26,001 negative. 915

Among the two stages, we got 126,362 instances, 916

with 86,708 positive and 39,654 negative. 917

MATH On MATH, in the first stage, we di- 918

rectly use the 90,074 GPT-4 generated solutions 919

of PRM800K Dataset (Lightman et al., 2024), with 920

11,665 positive instances which all the step la- 921

bels are correct, and 78,409 negative instances 922

which one step label is incorrect. Since the MATH 923

dataset is challenging, in order to reduce retry of 924

GPT-4-Turbo and avoid not getting valid critique, 925

for the critique of the negative solution, we ad- 926

ditionally append reference solution in the input 927

prompt, and hint it might contain mistakes, as sug- 928

gested in prior work (Zelikman et al., 2022); for the 929

positive solution, we simply hint it’s correct. After 930

obtaining the initial critique, we use GPT-4-Turbo 931

again to remove hint phrases like “According to the 932

reference” or “Given the hint” since we do not have 933

any hint or reference during the test time. In stage 934

one, we obtain 1,606 positive cases and 69,775 935

negative cases. 936

Similarly, in the second stage of MATH, we use 937

the learned critic model to sample at most 5 positive 938

and negative solutions. Then, we first use the critic 939

model itself to critic its solutions, and without any 940

hints, under K = 16 retry, and use GPT-4-Turbo to 941

retry another K = 16 times with hint if failed. We 942

construct 51,618 positive cases and 65,456 negative 943
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cases. Among the two stages, we got 188,455 cases,944

with 53,224 positive and 135,231 negative.945

A.1.2 Answer Extraction946

We let the model print the answer in the format947

\boxed{answer}. The model generates the answer948

following this pattern. We then extract the reg-949

ular expression \boxed{.*} from the model out-950

put, and obtain the valid answer expression with951

matched parenthesis. The Python code for answer952

extraction is shown in Table A3.953

A.1.3 Evaluation Metric954

Solution For the evaluation of the solution, we955

extract the final answer (Appendix A.1.2) and com-956

pute the metrics of Top-1 Accuracy Acc and Re-957

fine Accuracy Refine-Acc, in which the original958

Top-1 predict-answer is replaced with a refined959

one if the critic model found an error and made960

iterative refinement (Section 3.3). We also com-961

pute Majority Vote Accuracy Maj1@N (Wang et al.,962

2023b) and Majority Vote Accuracy After Critique963

Critic + Maj1@N (Section 3.3), which is to select964

the most frequent answer among N samples, i.e.965

argmaxa
∑N

i=1 1 (ai = a). Following Liu et al.966

(2023); Havrilla et al. (2024), we compute Pass@N,967

which select the gold answer g among the N pre-968

dictions if present, i.e. argmaxa 1 (g = a).969

Critique For the “evaluation of evaluation”, we970

compute Precision, Recall, and F1 for error de-971

tection; also, we compute Critic Accuracy, where972

the critique should find the error in wrong answer973

solutions and pass the correct answer solution:974

P =
{|Predi ̸= Ansi ∧ −1 ∈ Li|}

|{−1 ∈ Li}|
(1)975

R =
{|Predi ̸= Ansi ∧ −1 ∈ Li|}

|{Predi ̸= Ansi}|
(2)976

F1 =
2 ∗ P ∗R
P +R

(3)977

CriticAcc =

1

N

N∑
i=1

(Predi = Ansi ∧ −1 /∈ Li)

∨ (Predi ̸= Ansi ∧ −1 ∈ Li)

(4)978

Here, for the i-th instance, Predi is the prediction979

answer, Ansi is the ground truth answer, and Li is980

the predicted step label list.981

A.1.4 Implementation Details 982

For hardware, we use 32 Nvidia H800 GPUs. The 983

training on GSM8K dataset takes 23 hours, while 984

on MATH dataset it takes 37 hours. The two 985

datasets are under MIT license. For software, Hug- 986

gingface Transformers, DeepSpeed, vLLM, and 987

FastChat libraries we used are under Apache-2.0 988

license. 989

A.2 Additional Result on MATH 990

Table A1 presents the results of Critic-CoT training 991

on MATH dataset, with the original 7,500/5,000 992

split setting. 993

A.3 Analysis 994

A.3.1 Critic Performance 995

For both datasets, the critic model’s accuracy con- 996

tinues to grow as the sample size N increases, ulti- 997

mately surpassing the performance of the majority 998

vote, which gradually converges. Specifically, in 999

the MATH dataset, the critic model achieves sub- 1000

stantially higher accuracy than the solution accu- 1001

racy, consistently outperforming the naive majority 1002

vote due to the critic filter’s superior performance. 1003

This stark contrast highlights the critic model’s ef- 1004

fectiveness in identifying and promoting correct 1005

answers. In the GSM8K dataset, despite having 1006

a critic accuracy of only 92.3%, the critic model 1007

still manages to deliver higher accuracy gains. This 1008

outcome suggests that the critic model successfully 1009

filters answers to increase the density of correct an- 1010

swers and decrease the density of wrong answers, 1011

compared to the normal answer distribution. The 1012

overall results demonstrate the critic model’s ro- 1013

bust capability to enhance accuracy across different 1014

datasets, validating its practical utility in improving 1015

prediction outcomes. 1016

A.3.2 Inspect on Iterative Refine 1017

The iterative refinement process for the GSM8K 1018

and MATH datasets demonstrates different levels 1019

of effectiveness due to their complexity, as shown 1020

in Table A2. GSM8K, being simpler, shows a 1021

higher success rate in refinement. For effective 1022

refinement, the number of false answers corrected 1023

(False → True) must exceed the number of true an- 1024

swers incorrectly changed (True → False). Despite 1025

occasional mistakes by the critic, correct answers 1026

are not always altered incorrectly. 1027

For GSM8K (Table A2a), accuracy improves 1028

from 91.7% initially to 93.3% by the seventh round, 1029
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Model Sampling Method Acc.

Llama-3-70B-Instruct (Dubey et al., 2024) - 51.0
Maj1@96 63.5
Maj1@512 64.3

Llama-3.1-70B-Instruct (Dubey et al., 2024) - 68.0
DeepSeek-V2 Chat-236B (DeepSeek-AI et al., 2024) - 53.9
Qwen2-72B (Yang et al., 2024) - 69.0
GPT4-0314 (OpenAI, 2023) - 42.5

Critic-CoT, Llama-3-70B-Instruct (Ours) - 56.2
Iterative Refine 56.6 ↑ 0.4
Maj1@96 64.2
Critic + Maj1@96 65.0 ↑ 0.8
Maj1@512 64.4
Critic + Maj1@512 66.4 ↑ 2.0

Table A1: Solution Accuracy of MATH. The top-1 accuracy of our method increases from 51.0% to 56.2%, and the
effect of iterative refinement is moderate but positive improvement of 0.4%, while the performance gain of the critic
filter is larger.
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Figure A1: Performance of majority vote on GSM8K and MATH500 Datasets

with significant gains in both true-to-true and false-1030

to-true transformations. In contrast, MATH (Table1031

A2b) starts at 57.6% accuracy, reaching 57.8% by1032

the seventh round. The iterative refinement process1033

tends to converge, which is expected.1034

A.3.3 Group By Difficulty Level1035

For the MATH dataset, the difficulty level is given1036

from 1 to 5. For the GSM8K dataset, we set the1037

difficulty level according to the number of expres-1038

sions n that appeared in the reference solution, i.e.,1039

max(1,min(5, n)). As illustrated in Figure A2,1040

the performance on the GSM8K dataset shows a1041

gradual decline as the difficulty level increases.1042

This trend is accompanied by the emerging effects1043

of the critic and refine stages, which become more1044

prominent at higher difficulty levels. In contrast, 1045

the accuracy on the MATH dataset declines sharply 1046

as the problems become more challenging. Gener- 1047

ally, the refine stage proves effective across all lev- 1048

els, while the critic stage is beneficial at most levels, 1049

with some minor exceptions. These observations 1050

suggest potential areas for further improvements in 1051

the critic mechanism. 1052

A.4 Discussion 1053

A.4.1 Discriminative Verifier for Mathematics 1054

To further improve the reasoning ability of large 1055

language models, one applicable approach is 1056

through the use of reward models, which can ei- 1057

ther be used in reinforcement learning during train- 1058

ing (Ouyang et al., 2022) or rejection sampling at 1059
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Figure A2: Performance group by difficulty level, on GSM8K and MATH500 Datasets

Round Refine Acc. True →
True

False →
True

0 91.7 - -
1 91.7 48.2 45.3
2 92.6 78.6 37.5
3 92.7 64.3 53.1
4 93.0 73.2 50.0
5 93.2 75.0 53.1
6 93.2 76.8 53.1
7 93.3 80.4 50.0
8 93.3 80.4 50.0

(a) GSM8K

Round Refine Acc. True →
True

False →
True

0 57.6 - -
1 53.4 29.0 17.7
2 57.2 65.7 13.9
3 55.2 48.6 15.2
4 57.2 60.9 15.9
5 57.4 60.0 17.1
6 57.6 61.4 17.1
7 57.8 60.0 18.4
8 57.8 62.9 16.5

(b) MATH500

Table A2: Iterative Refine on GSM8K (A2a) and
MATH500 (A2b).

test time (Cobbe et al., 2021b). While outcome-1060

supervised reward models (ORMs) allow for the1061

automatic collection of training data based on the1062

signal of the gold answer, process-supervised re-1063

ward models (PRMs) would be more advantageous1064

for more precise feedback, better interpretability1065

and stronger alignment (Lightman et al., 2024).1066

To reduce the considerable human labeling cost1067

and difficulty for dense annotation, a series of1068

works based on automatic approaches have been1069

proposed (Wang et al., 2023a; Chen et al., 2024;1070

Luo et al., 2024; Snell et al., 2024), all under the1071

heuristic that for an incorrect solution, the first1072

error step is where the continuation of previous1073

step would lead to a correct answer. This may 1074

bring noise into training data due to false posi- 1075

tives and negatives (Luo et al., 2024). Moreover, 1076

annotation based on the implicit solution contin- 1077

uation alone does not leverage LLM’s emerging 1078

ability of critic, which is in a more explicit and 1079

analytic way and brings better explainability (Saun- 1080

ders et al., 2022; Yuan et al., 2024; Luo et al., 2023; 1081

McAleese et al., 2024). Additionally, binary 0/1 1082

discrimination alone, whether outcome-based or 1083

process-based, remains more similar to System-1 1084

reasoning rather than the desirable System-2, thus 1085

may not fully leverage the computation power sup- 1086

port by empirically successful Chain-of-Thought 1087

prompting (Feng et al., 2023; Li et al., 2024). 1088

A.4.2 Differences Between Critic-CoT and 1089

Reflexion 1090

We adopt a similar approach to Relexion (Shinn 1091

et al., 2023), which leverages natural language cri- 1092

tique to facilitate refinement, but our method di- 1093

verges in the following ways: 1094

Step-wise CoT Critique Reflexion translates 1095

and augments the binary reward signal from the 1096

environment to natural language, but on an instance 1097

level. Instead, fine-grained Chain-of-Thought anal- 1098

ysis at the step level, which is more systematic, and 1099

enables us to locate the error and start refinement 1100

from a specific step, rather than refine the whole 1101

attempt. 1102

Enhanced Critic ability While Relexion pro- 1103

posed an in-context learning pipeline for policy 1104

optimization under the oracle success/fail binary 1105

feedback signal, Huang et al. (2024) showed that 1106

without external feedback, vanilla LLMs cannot 1107

self-correct effectively due to limited critique abil- 1108

ity. Therefore, to teach the LLMs the ability of 1109

intrinsic self-critique, our approach tries to learn 1110
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the critique ability itself, through Critic-CoT train-1111

ing, and can apply it to test-time situations where1112

the oracle feedback signal is not available.1113

A.4.3 Comparison Between Inference1114

Methods1115

As the results in Table 1 shows, the performance of1116

majority vote and Critic As Filter surpass Iterative1117

Refinement. We believe it’s due to the intrinsic1118

challenges of refinement and the relatively limited1119

search space.1120

On the one hand, for Iterative Refinement to1121

work properly, it requires the model to 1) Detect er-1122

rors on an attempt; 2) Refine the mistakes; 3) Exit if1123

no further errors are detected. This pipeline could1124

be more sensitive to error accumulation. Moreover,1125

it only edits on a single example and has a limited1126

retry, which is sample-efficient, but may not ex-1127

plore the solution space more actively, as majority1128

vote does. Specifically on the dataset of GSM8K,1129

the invocation statistics are as follows:1130

• Majority vote: 1319 * 96 = 126,6241131

• Iterative Refinement: among 1319 test cases,1132

our Critic-CoT model predicts 274 problem-1133

atic instances and iterates 1627 times (on aver-1134

age 5.94 rounds for each wrong case), which1135

makes in total 1319 * 2 + 1627 * 2 = 58921136

invocations, which is 21.5 times fewer than1137

Majority Vote calls.1138

On the other hand, majority vote is a strong base-1139

line, as it requires massive sampling. It leverages1140

diverse reasoning paths and tries to mitigate the1141

stochastic of a single sample. But under the method1142

of Critic As Filter, we actively filter out problem-1143

atic attempts and perform the majority vote on the1144

more reasonable candidates, rather than equally ac-1145

count for all the predicted answers as the vanilla1146

majority vote does, which further increases per-1147

formance. This in turn demonstrates our model’s1148

strong ability to critique.1149

A.4.4 Self-Reflection1150

Besides the main results, through out-of-domain1151

evaluation in Table 2, we find our model demon-1152

strates generalized ability to critique and refine.1153

While the ability of LLMs to self-reflect still re-1154

mains an open question, and we hope our work as1155

a valuable exploration could shed light on future1156

studies in this area.1157

Moreover, as long as we adequately improve1158

the models’ ability to critique, we could achieve1159

test-time performance increase in the form of "self- 1160

reflection". As the experiment results present, after 1161

Critic-CoT training, the ability to critique and gen- 1162

erate both improves, though they are not exactly 1163

identical. Notably, the critique ability can surpass 1164

the task-solving ability, allowing the model to de- 1165

tect errors even when it has a low probability of 1166

generating a valid solution, as prior works (Saun- 1167

ders et al., 2022; Lin et al., 2024) also suggest. This 1168

indicates that by strengthening the model’s CoT cri- 1169

tique ability beyond its generation capability, we 1170

can leverage this discriminative power to reject im- 1171

perfect responses and achieve positive performance 1172

gains. 1173

A.4.5 Process Correctness of Correct Answer 1174

Attempt 1175

We each sample 100 correct answer solutions, on 1176

GSM8K by GPT-3.5-Turbo and GPT-4-Turbo, and 1177

MATH by GPT-4-Turbo, and manually check if 1178

all intermediate steps are correct. The results are 1179

demonstrated in Table A4. We find that in gen- 1180

eral, the correct final answer is a good indicator of 1181

correct intermediate steps. Also, from GSM8K to 1182

MATH, as the reasoning traces become longer and 1183

more complicated, the percentage of correct answer 1184

but with wrong intermediate steps increases. 1185

A.5 Examples of Refinement 1186

As presented in Figure A3, in an example of 1187

GSM8K, the model forgot to add one year at Step 1188

3; then, through CoT critique, the model found that 1189

while Step 1 and Step 2 are correct, Step 3 contains 1190

this ignorance error. Finally, guided by the critique 1191

of Step 3, the model made a correction and reached 1192

the gold answer of 13. Similarly, in an example of 1193

MATH (A4), the model identified and successfully 1194

fixed the error. 1195

A.6 Prompts 1196

Table A5, Table A8, and Table A6 presents the 1197

prompt for critic-refine data collection using GPT4- 1198

Turbo, with Table A7 for removing the hint phrases 1199

(Section 3.2). Table A9, Table A10, and Table A11 1200

shows the prompt of trained model for solving, cri- 1201

tique, and refinement during stage-2-training (Sec- 1202

tion 3.2) and inference (Section 3.3). Table A12, 1203

Table A13 and Table A14 present the prompts and 1204

responses of a single-turn critique-refinement, un- 1205

der Critic-CoT, Step-wise Label Critic and Final 1206

Label Critic respectively. Table A15 presents a 1207

single-turn critique-refinement on HumanEval. 1208
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import re

def extract_boxed_expressions_custom(text):
stack = []
current_expr = ""
i = 0
while i < len(text):

if text[i:i+7] == r"\boxed{":
if stack:

current_expr += text[i]
stack.append("{")
i += 7

elif text[i] == "{" and stack:
stack.append("{")
current_expr += text[i]
i += 1

elif text[i] == "}" and stack:
stack.pop()
if stack:

current_expr += text[i]
else:

current_expr = re.split(’=’, current_expr)[-1]
return current_expr

i += 1
elif stack:

current_expr += text[i]
i += 1

else:
i += 1

return ”

def extract_answer(text):
predict_answer_span = re.findall(r’(\boxed{.*})’, text, re.DOTALL)[-1]
predict_answer = extract_boxed_expressions_custom(predict_answer_span)
return predict_answer

Table A3: Python code for extracting the boxed answer.

Data Model Intermediate Accuracy of Correct Answer Attempt

GSM8K GPT-3.5-Turbo 97%
GSM8K GPT-4-Turbo 99%
MATH GPT-4-Turbo 93%

Table A4: Human Evaluation on the Intermediate Steps of Attempts with Correct Answer
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Question:
Carlos is planting a lemon tree. The tree will cost $90 to plant. Each year it will grow 7 lemons, which he can sell for
$1.5 each. It costs $3 a year to water and feed the tree. How many years will it take before he starts earning money on
the lemon tree?

Model Attempt:
Step 1: Calculate the annual income from selling lemons. This is done by multiplying the number of lemons grown per
year (7) by the price per lemon ($1.5). So, 7 * $1.5 = $10.50.
Step 2: Subtract the annual cost of watering and feeding the tree ($3) from the annual income from selling lemons
($10.50). So, $10.50 - $3 = $7.50. This is the net income per year after expenses.
Step 3: Determine when Carlos will start earning money back. This is done by dividing the initial cost of planting the
tree ($90) by the net income per year ($7.50). So, $90 / $7.50 = 12 years.
Therefore, it will take Carlos 12 years before he starts earning money on the lemon tree.

Model Critique:
Step 1: The attempt calculates the annual income from selling lemons by multiplying the number of lemons grown per
year (7) by the price per lemon ($1.5), resulting in $10.50.
Conclusion: Step 1 is correct.

Step 2: The attempt subtracts the annual cost of watering and feeding the tree ($3) from the annual income
from selling lemons ($10.50), resulting in a net income per year of $7.50.
Conclusion: Step 2 is correct.

Step 3: The attempt divides the initial cost of planting the tree ($90) by the net income per year ($7.50),
resulting in 12 years. However, this calculation does not account for the fact that Carlos will start earning money back
in the first year, even though he won’t break even until the 13th year.
Conclusion: Step 3 is incorrect.

Model Refinement:
Step 3 (Corrected): Determine when Carlos will start earning money back. This is done by dividing the initial cost of
planting the tree ($90) by the net income per year ($7.50). So, $90 / $7.50 = 12 years.
However, since Carlos will start earning money back in the first year, we need to add one more year to this calculation.
Therefore, it will take Carlos 13 years before he starts earning money on the lemon tree.

Figure A3: Criticize and refine a problem in the GSM8K test set.
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Question:
What is the smallest positive perfect cube that can be written as the sum of three consecutive integers?

Model Attempt:
Step 1: Let the three consecutive integers be x− 1, x, and x+ 1. The sum of these three integers is 3x.
Step 2: Since we are looking for a perfect cube, let’s express 3x as a cube of some integer n, where n3 = 3x.
Step 3: To find the smallest such n, we need to minimize x. However, since n3 must be divisible by 3, and x is an
integer, n itself must also be divisible by 3.
Step 4: The smallest integer n that is divisible by 3 and gives us a perfect cube when cubed is n = 6, because 63 = 216.

Step 5: Substituting n = 6 into n3 = 3x, we get 216 = 3x, which simplifies to x = 72.

Step 6: Therefore, the smallest positive perfect cube that can be written as the sum of three consecutive integers is

216 .

Model Critique:
Step 1: Let the three consecutive integers be x− 1, x, and x+ 1. The sum of these three integers is indeed 3x.
Conclusion: Step 1 is correct.

Step 2: Expressing 3x as a cube of some integer n, where n3 = 3x, correctly sets up the equation needed
to solve the problem. This step accurately translates the problem statement into a mathematical expression.
Conclusion: Step 2 is correct.

Step 3: The claim that n must be divisible by 3 because n3 must be divisible by 3 is a misunderstanding.
In reality, n3 being divisible by 3 does not imply that n itself must be divisible by 3; rather, it simply means that n3 will
always be divisible by 3 regardless of whether n is divisible by 3. This step introduces an unnecessary restriction on n.
Conclusion: Step 3 is incorrect.

Model Refinement:
Step 3 (Corrected): Since we are looking for the smallest positive perfect cube that can be expressed as 3x, we should
start by identifying the smallest perfect cubes and checking if any of them can be represented in this form.
Step 4: The smallest perfect cubes are 13 = 1, 23 = 8, 33 = 27, 43 = 64, 53 = 125, 63 = 216, and so on. Among
these, 27 is the first number that can be expressed as 3x, where x is an integer (x = 9).
Step 5: Therefore, the smallest positive perfect cube that can be written as the sum of three consecutive integers is 27 .

Figure A4: Criticize and refine a problem in the MATH test set. In the attempt, the model made a hallucination
in Step 3, then through stepwise CoT critique, the model detected this error, and accordingly refined the solution
starting from Step 3 successfully.
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Prompt

How do you evaluate the following attempt with respect to the problem?

<problem>
{problem}
</problem>

<attempt>
{attempt}
</attempt>

—–
**Notes**:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted assertions.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the format
”Conclusion: Step [i] is correct" or ”Conclusion: Step [i] is incorrect". Words like ”partially correct"
are prohibited.
- You shall not evaluate multiple steps at a time, so words like "Step 7 to Step 24:" or "Step 4 through
6" are forbidden.
- Once a mistake is identified and stated, stop the evaluation, and enumerate the corrected steps
starting from the step where the mistake was detected, and label this part of your response with
<correction> at the start and </correction> at the end. Also, the final answer should be a single
number, in the form \boxed{}, at the final step.

Table A5: The prompt for the collection of critique and refinement on GSM8K, using GPT4-Turbo.
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Prompt

How do you evaluate the following attempt with respect to the problem, with the help of reference
solution?
Hint: There could be a mistake.

<problem>
{problem}
</problem>

<reference_solution>
{reference_solution}
</reference_solution>

<attempt>
{attempt}
</attempt>

—–
**Notes**:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted assertions.
- Please ensure that the output text does not include phrases implying the use of a reference solution
or hint, even though these resources are being utilized.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the format
”Conclusion: Step [i] is correct" or ”Conclusion: Step [i] is incorrect". Words like ”partially correct"
are prohibited.
- You shall not evaluate multiple steps at a time, so words like "Step 7 to Step 24:" or "Step 4 through
6" are forbidden.
- Once a mistake is identified and stated, stop the evaluation, and enumerate the corrected steps
starting from the step where the mistake was detected, and label this part of your response with
<correction> at the start and </correction> at the end. Also, the final answer should be in the
form \boxed{}, at the final step.

Table A6: The prompt for the collection of critique and refinement on MATH incorrect attempt, using GPT4-Turbo.

Prompt

For the following text, remove any phrases like "reference solution" or "hint", and keep all the other
content. Do not miss the ”<correction>" and ”</correction>" labels that exist in the text. Do
not respond to anything else.

—–
{critique_refinement}

Table A7: The prompt for removing the hint of critique and refinement on MATH, using GPT4-Turbo.
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Prompt

How do you evaluate the following attempt with respect to the problem?
Hint: All the steps are correct, and the attempt reached a correct answer.

<problem>
{problem}
</problem>

<attempt>
{attempt}
</attempt>

—–
**Notes**:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted assertions.
- Please ensure that the output text does not include phrases implying the use of a reference solution
or hint, even though these resources are being utilized.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the format
”Conclusion: Step [i] is correct" or ”Conclusion: Step [i] is incorrect". Words like ”partially correct"
are prohibited.
- You shall not evaluate multiple steps at a time, so words like "Step 7 to Step 24:" or "Step 4 through
6" are forbidden.
- Once a mistake is identified and stated, stop the evaluation, and enumerate the corrected steps
starting from the step where the mistake was detected, and label this part of your response with
<correction> at the start and </correction> at the end. Also, the final answer should be in the
form \boxed{}, at the final step.

Table A8: The prompt for the collection of critique on MATH correct attempt, using GPT4-Turbo.

Prompt

## Problem
{problem}

—–
Solve the problem step by step, marking each step as "Step [i]:".
Your final answer should be in the form \boxed{answer}, at the end of your response.

Table A9: The prompt for solution sampling.
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Prompt

How do you evaluate the following attempt with respect to the problem?

<problem>
{problem}
</problem>

<attempt>
{attempt}
</attempt>

—–
**Notes**:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted assertions.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the format
”Conclusion: Step [i] is correct" or ”Conclusion: Step [i] is incorrect". Words like ”partially correct"
are prohibited.

Table A10: The prompt for critique.

Prompt

How do you refine the following attempt with respect to the problem, given the criticism?

<problem>
{problem}
</problem>

<attempt>
{attempt}
</attempt>

<criticism>
{wrong_step_criticism}
</criticism>

Table A11: The prompt for refinement.
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Prompt of Critique under Critic-CoT

How do you evaluate the following attempt with respect to the problem?

<problem>
Consider the geometric sequence 125

9 , 253 , 5, 3, . . .. What is the eighth term of the sequence? Express
your answer as a common fraction.
</problem>

<attempt>
Step 1: Identify the first term of the sequence.
The first term a1 is:

a1 =
125

9

Step 2: Calculate the common ratio r.
The common ratio r can be found by dividing the second term a2 by the first term a1:

r =
a2
a1

=
25
3

125
9

=
25

3
× 9

125

Calculating the right-hand side:

=
25 · 9
3 · 125

=
225

375

Now simplify 225
375 :

=
225÷ 75

375÷ 75
=

3

5

Thus, the common ratio is:

r =
3

5

Step 3: Use the formula for the n-th term of a geometric sequence.
The n-th term of a geometric sequence can be calculated using the formula:

an = a1 · rn−1

Step 4: Calculate the eighth term a8.
Substituting n = 8 into the formula:

a8 = a1 · r8−1 =
125

9
·
(
3

5

)7

Step 5: Calculate
(
3
5

)7.
Calculating

(
3
5

)7: (
3

5

)7

=
37

57
=

2187

78125

Step 6: Substitute back into the expression for a8.
Now we compute:

a8 =
125

9
· 2187

78125

Step 7: Multiply the fractions.
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Prompt of Critique under Critic-CoT

To multiply:

a8 =
125 · 2187
9 · 78125

Calculating the denominator:
9 · 78125 = 703125

Calculating the numerator:
125 · 2187 = 273375

Thus:
a8 =

273375

703125

Step 8: Simplify the fraction 273375
703125 .

To simplify: First, calculate the GCD of the numerator and denominator. We can find that both
273375 and 703125 are divisible by 135.
Calculating:

273375÷ 135

703125÷ 135
=

2025

5205

Continuing to simplify, both 2025 and 5205 are divisible by 15:

2025÷ 15

5205÷ 15
=

135

347

This is now fully simplified because 135 and 347 have no common factors.
Final Answer:
Thus, the eighth term of the sequence is:

135

347

</attempt>

—–
**Notes**:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted assertions.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the format
”Conclusion: Step [i] is correct" or ”Conclusion: Step [i] is incorrect". Words like ”partially correct"
are prohibited.

Response of Critique under Critic-CoT

Step 1: The first term a1 =
125
9 is identified correctly.

Conclusion: Step 1 is correct.
Step 2: The common ratio r is calculated as:

r =
a2
a1

=
25
3

125
9

=
25

3
× 9

125
=

225

375
=

3

5

This calculation is correct.
Conclusion: Step 2 is correct.
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Response of Critique under Critic-CoT

Step 3: The formula for the n-th term is correctly stated as:

an = a1 · rn−1

Conclusion: Step 3 is correct.
Step 4: The eighth term is computed as:

a8 =
125

9
·
(
3

5

)7

This is correct.
Conclusion: Step 4 is correct.
Step 5: Calculating

(
3
5

)7: (
3

5

)7

=
2187

78125

This calculation is correct.
Conclusion: Step 5 is correct.
Step 6: Substituting back:

a8 =
125

9
· 2187

78125

This is correct.
Conclusion: Step 6 is correct.
Step 7: Multiplying the fractions:

a8 =
125 · 2187
9 · 78125

The denominator calculation is correct:

9 · 78125 = 703125

However, for the numerator:
125 · 2187 = 273375

This is also correct.
Conclusion: Step 7 is correct.
Step 8: The goal is to simplify the fraction 273375

703125 . The attempt made to find the GCD and simplify.
To simplify the fraction, we need to find the greatest common divisor (GCD) of 273375 and 703125.
The standard approach involves either prime factorization or using the Euclidean algorithm.
Prime Factorization:
- 273375:
- Dividing by 5: 273375÷ 5 = 54675
- Dividing by 5 again: 54675÷ 5 = 10935
- Dividing by 5 again: 10935÷ 5 = 2187
- The number 2187 is 37.
- Therefore, 273375 = 53 · 37.

- 703125:
- Dividing by 5: 703125÷ 5 = 140625
- Dividing by 5 again: 140625÷ 5 = 28125
- Dividing by 5 again: 28125÷ 5 = 5625
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Response of Critique under Critic-CoT

- Dividing by 5 again: 5625÷ 5 = 1125
- Dividing by 5 again: 1125÷ 5 = 225
- Dividing by 5 again: 225÷ 5 = 45
- Finally, 45 = 32 · 51.
- Therefore, 703125 = 56 · 32.

The GCD can now be derived from the lowest powers of the common factors:
- For 5: 53

- For 3: 32

Thus, the GCD is:
53 · 32

Therefore, 273375 and 703125 are not divisible by 135.
Conclusion: Step 8 is incorrect.

Prompt of Refinement under Critic-CoT

How do you refine the following attempt with respect to the problem, given the criticism?

<problem>
Consider the geometric sequence 125

9 , 253 , 5, 3, . . .. What is the eighth term of the sequence? Express
your answer as a common fraction.
</problem>

<attempt>
Step 1: Identify the first term of the sequence.
The first term a1 is:

a1 =
125

9

Step 2: Calculate the common ratio r.
The common ratio r can be found by dividing the second term a2 by the first term a1:

r =
a2
a1

=
25
3

125
9

=
25

3
× 9

125

Calculating the right-hand side:

=
25 · 9
3 · 125

=
225

375

Now simplify 225
375 :

=
225÷ 75

375÷ 75
=

3

5

Thus, the common ratio is:

r =
3

5

Step 3: Use the formula for the n-th term of a geometric sequence.
The n-th term of a geometric sequence can be calculated using the formula:

an = a1 · rn−1
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Prompt of Refinement under Critic-CoT

Step 4: Calculate the eighth term a8.
Substituting n = 8 into the formula:

a8 = a1 · r8−1 =
125

9
·
(
3

5

)7

Step 5: Calculate
(
3
5

)7.
Calculating

(
3
5

)7: (
3

5

)7

=
37

57
=

2187

78125

Step 6: Substitute back into the expression for a8.
Now we compute:

a8 =
125

9
· 2187

78125

Step 7: Multiply the fractions.
To multiply:

a8 =
125 · 2187
9 · 78125

Calculating the denominator:
9 · 78125 = 703125

Calculating the numerator:

125 · 2187 = 273375

Thus:
a8 =

273375

703125

Step 8: Simplify the fraction 273375
703125 .

To simplify: First, calculate the GCD of the numerator and denominator. We can find that both
273375 and 703125 are divisible by 135.
Calculating:

273375÷ 135

703125÷ 135
=

2025

5205

Continuing to simplify, both 2025 and 5205 are divisible by 15:

2025÷ 15

5205÷ 15
=

135

347

This is now fully simplified because 135 and 347 have no common factors.
Final Answer:
Thus, the eighth term of the sequence is:

135

347

</attempt>
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Prompt of Refinement under Critic-CoT

<criticism>
Step 8: The goal is to simplify the fraction 273375

703125 . The attempt made to find the GCD and simplify.
To simplify the fraction, we need to find the greatest common divisor (GCD) of 273375 and 703125.
The standard approach involves either prime factorization or using the Euclidean algorithm.
Prime Factorization:
- 273375:
- Dividing by 5: 273375÷ 5 = 54675
- Dividing by 5 again: 54675÷ 5 = 10935
- Dividing by 5 again: 10935÷ 5 = 2187
- The number 2187 is 37.
- Therefore, 273375 = 53 · 37.

- 703125:
- Dividing by 5: 703125÷ 5 = 140625
- Dividing by 5 again: 140625÷ 5 = 28125
- Dividing by 5 again: 28125÷ 5 = 5625
- Dividing by 5 again: 5625÷ 5 = 1125
- Dividing by 5 again: 1125÷ 5 = 225
- Dividing by 5 again: 225÷ 5 = 45
- Finally, 45 = 32 · 51.
- Therefore, 703125 = 56 · 32.

The GCD can now be derived from the lowest powers of the common factors:
- For 5: 53

- For 3: 32

Thus, the GCD is:
53 · 32

Therefore, 273375 and 703125 are not divisible by 135.
Conclusion: Step 8 is incorrect.
</criticism>
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Prompt of Refinement under Critic-CoT

<correction>
Step 8: Simplify 273375

703125 . First, we divide it by 375.
Calculating:

273375÷ 375

703125÷ 375
=

729

1875

Step 9: Further simplify 729
1875 . The numerator 729 is 36 and the denominator 1875 is 3 · 625. The

GCD is 3.
Calculating:

729÷ 3

1875÷ 3
=

243

625

This fraction is fully simplified.
Final Answer: Thus, the eighth term of the sequence is:

243

625

</correction>

Table A12: Full example of Critic-CoT. The model got the wrong common factor in Step 8, and through CoT
critique, identified this mistake, then took the refinement and reached the correct answer.

Prompt of Critique under Step-wise Label Critic

How do you evaluate the following attempt with respect to the problem?

<problem>
[...]
</problem>

<attempt>
[...]
</attempt>

—–
**Notes**:
- For each step, you only need to output ”Step [i] is correct" if right, or ”Step [i] is incorrect" if
wrong. Do not provide anything else in your output.

Response of Critique under Step-wise Label Critic

Step 1 is correct.
Step 2 is correct.
Step 3 is correct.
Step 4 is correct.
Step 5 is incorrect.
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Prompt of Refinement under Step-wise Label Critic

How do you refine the following attempt with respect to the problem, given the criticism?

<problem>
[...]
</problem>

<attempt>
[...]
</attempt>

<criticism>
Step 5 is incorrect.
</criticism>

Response of Refinement under Step-wise Label Critic

<correction>

Step 5: Calculate
(
3
5

)7. (
3

5

)7

=
37

57
=

2187

78125
(correct)

Step 6: Substitute back into the expression for a8.

a8 =
125

9
· 2187

78125

Step 7: Multiply the fractions. Calculating the numerator:

125 · 2187 = 273375 (correct)

Calculating the denominator:
9 · 78125 = 703125 (correct)

Step 8: Simplify the fraction 273375
703125 . To simplify: Calculating the GCD shows that both 273375 and

703125 are divisible by 675, so:
273375÷ 675

703125÷ 675
=

405

1045

Continuing to simplify, both 405 and 1045 are divisible by 5:

405÷ 5

1045÷ 5
=

81

209

Thus, the final answer is:
81

209

</correction>

Table A13: Full example of Step-wise Label Critic. The problem and the attempt are the same in Table A12, so we
skip them. Without CoT critique, the model incorrectly believed that Step 5 is wrong, then made the refinement
starting from Step 5, which is unsuccessful.
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Prompt of Critique under Outcome Label Critic

How do you evaluate the following attempt with respect to the problem?

<problem>
[...]
</problem>

<attempt>
[...]
</attempt>

—–
**Notes**:
- For the whole attempt, you only need to output ”Each step from Step 1 to Step 8 is correct." if right,
or ”Some step from Step 1 to Step 8 is incorrect" if wrong. Do not provide anything else in your
output.

Response of Critique under Outcome Label Critic

Some step from Step 1 to Step 8 is incorrect.

Prompt of Refinement under Outcome Label Critic

How do you refine the following attempt with respect to the problem, given the criticism?

<problem>
[...]
</problem>

<attempt>
[...]
</attempt>

<criticism>
Some step from Step 1 to Step 8 is incorrect.
</criticism>

Response of Refinement under Outcome Label Critic

<correction>
Step 1: Identify the first term of the sequence.
The first term a1 is:

a1 =
125

9

Step 2: Calculate the common ratio r.
The common ratio r can be found by dividing the second term a2 by the first term a1:

r =
a2
a1

=
25
3

125
9

=
25

3
× 9

125
=

225

375

Now simplify 225
375 :

=
225÷ 75

375÷ 75
=

3

5
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Response of Refinement under Outcome Label Critic

Thus, the common ratio is:

r =
3

5

Step 3: Use the formula for the n-th term of a geometric sequence.
The n-th term of a geometric sequence can be calculated using the formula:

an = a1 · rn−1

Step 4: Calculate the eighth term a8.
Substituting n = 8 into the formula:

a8 = a1 · r8−1 =
125

9
·
(
3

5

)7

Step 5: Calculate
(
3
5

)7.
Calculating

(
3
5

)7: (
3

5

)7

=
37

57
=

2187

78125

Step 6: Substitute back into the expression for a8.
Now we compute:

a8 =
125

9
· 2187

78125

Step 7: Multiply the fractions.
To multiply:

a8 =
125 · 2187
9 · 78125

Calculating the denominator:
9 · 78125 = 703125

Calculating the numerator:
125 · 2187 = 273375

Thus:
a8 =

273375

703125

Step 8: Simplify the fraction 273375
703125 .

To simplify: Finding the GCD, both 273375 and 703125 are divisible by 675:

273375÷ 675

703125÷ 675
=

405

1042

Now we check if 405
1042 can be simplified further. Both numbers do not have common factors.

Final Answer:
Thus, the eighth term of the sequence is:

405

1042

</correction>

Table A14: Full example of Final Label Critic. The problem and the attempt are also the same in Table A12. With
only the outcome label, the model managed to detect the attempt was incorrect, then made the refinement starting
from the first step, which was unsuccessful.
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Prompt of Code Generation on HumanEval

## Python code problem

def s p l i t _ w o r d s ( t x t ) :
’ ’ ’
Given a s t r i n g o f words , r e t u r n a l i s t o f words s p l i t on
w h i t e s p a c e , i f no w h i t e s p a c e s e x i s t s i n t h e t e x t you
s h o u l d s p l i t on commas ’ , ’ i f no commas e x i s t s you s h o u l d
r e t u r n t h e number o f lower −case l e t t e r s w i t h odd o r d e r i n t h e
a l p h a b e t , ord ( ’ a ’ ) = 0 , ord ( ’ b ’ ) = 1 , . . . ord ( ’ z ’ ) = 25
Examples
s p l i t _ w o r d s ( " H e l l o wor ld ! " ) −> [ " H e l l o " , " wor ld ! " ]
s p l i t _ w o r d s ( " Hel lo , wor ld ! " ) −> [ " H e l l o " , " wor ld ! " ]
s p l i t _ w o r d s ( " a b c d e f " ) == 3
’ ’ ’

—–
Before writing the code, think step by step, marking each step as “Step [i]:”
Your final function split_words should be in the form ```python\n[code]\n```, at the end of your
response.

Response of Code Generation on HumanEval

Step 1: Create a function named `split_words` that takes a string `txt` as an input.
Step 2: Check if there are any whitespace characters in the string. If there are, split the string into
words using the ‘split()‘ function with the default separator (whitespace).
Step 3: If there are no whitespace characters, check if there are any commas in the string. If there
are, split the string into words using the ‘split()‘ function with the comma as the separator.
Step 4: If there are neither whitespace characters nor commas in the string, iterate over the characters
in the string, keeping track of the count of lowercase letters with odd alphabetical order (based on
their ASCII value modulo 2).
Step 5: Return the result based on the conditions met in steps 2, 3, or 4.
Here is the Python code for the function:
```python

def s p l i t _ w o r d s ( t x t ) :
i f ’ ’ in t x t :

re turn t x t . s p l i t ( )
e l i f ’ , ’ in t x t :

re turn t x t . s p l i t ( ’ , ’ )
e l s e :

c o u n t = sum (1 f o r c h a r in t x t i f c h a r . i s l o w e r ( ) and
ord ( c h a r ) % 2 != 0)
re turn c o u n t

```
This function first checks for whitespace characters, then for commas, and finally counts the
lowercase letters with odd alphabetical order if neither of the first two conditions is met.
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Prompt of Critique on HumanEval

How do you evaluate the following attempt with respect to the problem?
<problem>

def s p l i t _ w o r d s ( t x t ) :
’ ’ ’
Given a s t r i n g o f words , r e t u r n a l i s t o f words s p l i t on
w h i t e s p a c e , i f no w h i t e s p a c e s e x i s t s i n t h e t e x t you
s h o u l d s p l i t on commas ’ , ’ i f no commas e x i s t s you s h o u l d
r e t u r n t h e number o f lower −case l e t t e r s w i t h odd o r d e r i n t h e
a l p h a b e t , ord ( ’ a ’ ) = 0 , ord ( ’ b ’ ) = 1 , . . . ord ( ’ z ’ ) = 25
Examples
s p l i t _ w o r d s ( " H e l l o wor ld ! " ) −> [ " H e l l o " , " wor ld ! " ]
s p l i t _ w o r d s ( " Hel lo , wor ld ! " ) −> [ " H e l l o " , " wor ld ! " ]
s p l i t _ w o r d s ( " a b c d e f " ) == 3
’ ’ ’

</problem>

<attempt>
Step 1: Create a function named `split_words` that takes a string `txt` as an input.
Step 2: Check if there are any whitespace characters in the string. If there are, split the string into
words using the ‘split()‘ function with the default separator (whitespace).
Step 3: If there are no whitespace characters, check if there are any commas in the string. If there
are, split the string into words using the ‘split()‘ function with the comma as the separator.
Step 4: If there are neither whitespace characters nor commas in the string, iterate over the characters
in the string, keeping track of the count of lowercase letters with odd alphabetical order (based on
their ASCII value modulo 2).
Step 5: Return the result based on the conditions met in steps 2, 3, or 4.
Here is the Python code for the function:
```python

def s p l i t _ w o r d s ( t x t ) :
L ine 1 : i f ’ ’ in t x t :
L ine 2 : re turn t x t . s p l i t ( )
L ine 3 : e l i f ’ , ’ in t x t :
L ine 4 : re turn t x t . s p l i t ( ’ , ’ )
L ine 5 : e l s e :
L ine 6 : c o u n t = sum (1 f o r c h a r in t x t i f c h a r . i s l o w e r ( ) and

ord ( c h a r ) % 2 != 0)
Line 7 : re turn c o u n t

```
This function first checks for whitespace characters, then for commas, and finally counts the
lowercase letters with odd alphabetical order if neither of the first two conditions is met.
</attempt>
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Response of Critique on HumanEval

Step 1: Define a function called `split_words` that takes a string `txt` as its parameter.
Conclusion: Step 1 is correct.
Step 2: Verify if there are any whitespace characters in the string. If they exist, divide the string into
words using the `split()` function with the default separator (whitespace).
Conclusion: Step 2 is correct.
Step 3: If no whitespace characters are found, check for commas in the string. If commas are present,
split the string into words using the `split()` function with the comma as the separator.
Conclusion: Step 3 is correct.
Step 4: Otherwise, loop through the characters in the string, counting the number of lowercase letters
that have an odd alphabetical order (based on their ASCII value modulo 2). The mistake in Step 4
lies in the interpretation of "odd alphabetical order." The problem statement refers to the alphabetical
order of lowercase letters in the alphabet, not their ASCII values. The correct approach is to count
the lowercase letters whose alphabetical order (where ’a’ is 0, ’b’ is 1, ..., ’z’ is 25) is odd.
Conclusion: Step 4 is incorrect.

Prompt of Refinement on HumanEval

How do you refine the following attempt with respect to the problem, given the criticism? You shall
write another complete Python function, in the format ```python\n[code]\n```.
<problem>
[...]
</problem>

<attempt>
[...]
</attempt>

<criticism>
Step 4: Otherwise, loop through the characters in the string, counting the number of lowercase letters
that have an odd alphabetical order (based on their ASCII value modulo 2). The mistake in Step 4
lies in the interpretation of "odd alphabetical order." The problem statement refers to the alphabetical
order of lowercase letters in the alphabet, not their ASCII values. The correct approach is to count
the lowercase letters whose alphabetical order (where ’a’ is 0, ’b’ is 1, ..., ’z’ is 25) is odd.
Conclusion: Step 4 is incorrect.
</criticism>
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Response of Refinement on HumanEval

<correction>
Here is the corrected Python function:
```python

def s p l i t _ w o r d s ( t x t ) :
i f ’ ’ in t x t :

re turn t x t . s p l i t ( )
e l i f ’ , ’ in t x t :

re turn t x t . s p l i t ( ’ , ’ )
e l s e :

c o u n t = sum (1 f o r c h a r in t x t i f c h a r . i s l o w e r ( )
and ( ord ( c h a r ) − ord ( ’ a ’ ) ) % 2 != 0)
re turn c o u n t

```
This function correctly counts the lowercase letters with odd alphabetical order by subtracting the
ASCII value of ’a’ from the ASCII value of each lowercase letter to get its alphabetical order, and
then checking if this order is odd. If the order is odd, it increments the count.
</correction>

Table A15: Full example of a single-turn refinement on HumanEval. The attempt made mistakes in Step 4 and Line
6, which use the ASCII value directly rather than subtract the value of ’a’. The critique detect this error, and made a
successul refinement.
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