
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMPOSITIONAL HARDNESS OF CODE IN LARGE
LANGUAGE MODELS - A PROBABILISTIC PERSPEC-
TIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

A common practice in large language model (LLM) usage for complex analytical
tasks such as code generation, is to sample a solution for the entire task within
the model’s context window. Previous works have shown that subtask decompo-
sition within the model’s context (chain of thought), is beneficial for solving such
tasks. In this work, we point a limitation of LLMs’ ability to perform several sub-
tasks within the same context window – an in-context hardness of composition,
pointing to an advantage for distributing a decomposed problem in a multi-agent
system of LLMs. The hardness of composition is quantified by a generation com-
plexity metric, i.e., the number of LLM generations required to sample at least
one correct solution. We find a gap between the generation complexity of solving
a compositional problem within the same context relative to distributing it among
multiple agents, that increases exponentially with the solution’s length. We prove
our results theoretically and demonstrate them empirically.

1 INTRODUCTION

Large language models (LLMs), based on the transformer archietecture (Vaswani et al., 2017), have
become very efficient problem solvers in many domains, such as broad-scoped question answering,
writing assistance, teaching, and more (Brown, 2020; Radford et al., 2019; OpenAI, 2023; Bubeck
et al., 2023; Nori et al., 2023; West, 2023). Yet their analytical skills, such as coding capabilities, are
slow to develop - Chen et al. (2021b); Li et al. (2022a); Alp (2023); Ridnik et al. (2024) show that
even with millions of generations, LLMs may not produce a single correct solution to competitive
coding problems. Zhuo et al. (2024), provide a benchmark for complex coding tasks, and show that
SOTA LLMs are not yet capable of following complex instructions to use function calls precisely,
with a performance significantly lower than human performance. Dziri et al. (2024) show that LLMs
solve compositional tasks such as long multiplication and dynamic programming without developing
systematic problem-solving skills.

One way to empower LLMs in analytical tasks, is to use subtask decomposition, otherwise known
as chain of thought (COT) - a method in which an LLM breaks down a problem to smaller, more
manageable tasks, solves them, and integrates it into a solution. The method has been empirically
demonstrated by Wei et al. (2022), that show reasoning capabilities of language models improve
when they are prompted to break down a task. Its efficiency has also been studied theoretically -
Wies et al. (2022); Malach (2023) prove that through the autoregressive nature of language mod-
els, problems that cannot be solved directly, can be solved by subtask decomposition, Merrill &
Sabharwal (2023) prove that while transformers are limited in the computational problems they can
solve directly, using a polynomial number of intermediate steps, they can represent any polynomial
time Turing Machine, and Sanford et al. (2024) provide a similar result on expressing more complex
arithmetic circuits using more steps of COT.

Yet even with task decomposition, there is a limitation to transformer based models on analytical
tasks with COT, due to their limited ability to compose functions - Sanford et al. (2024) show single
layer attention can only learn pairwise relations between tokens, limiting the ability to integrate
intermediate steps for a fixed model size, and the work of Peng et al. (2024) shows that iterative
composition over a domain is limited by the size of the model, even when COT is used. Xu et al.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(2024), show limitations of compositionality on simple linguistic tasks. Thus while theoretically
possible, some tasks require an arbitrarily long COT for an LLM to solve. However, in practice,
LLMs are limited in their context length - beyond the constraint of context length during training,
Hsieh et al. (2024) introduce the RULER benchmark, for measuring the utility of LLMs on long
context tasks. They show that in practice many models can perform tasks only on a much shorter
context length than they were trained on. Similarly, Liu et al. (2024) show LLMs cannot fully use
all the information within their context and Ebrahimi et al. (2024) show empirically that LLMs are
limited in random access to tokens within the context, in the bit parity problem. Consequently,
even though COT can in theory allow an LLM to solve arbitrarily complex analytical problems, in
practice, they will be limited by the effective context length.

A rising approach to remedy this limitation is to solve problems through the use of multi-agent sys-
tems, that tackle complex problems through the use of agents, where each agent is an LLM instance
that solves a different aspect of the problem. While it has been used for simulating social interac-
tions, (Park et al., 2023; Li et al., 2023; Pang et al., 2024), it has also been shown as an effective
tool for analytical problem solving. This can be done by decomposing a large task and distribut-
ing the sub-tasks between agents. Ishibashi & Nishimura (2024) use this method for building large
code bases and Liu et al. (2023), use a dynamic LLM-agent network for solving code problems and
analytical tasks.

In this work, we theoretically study a compositional hardness of coding problems originating from
context processing limitations of LLMs, and the resultant effectiveness of a multi-agent system over
a single model instance in composite coding problems. We model a composite coding problem
using a pair of simpler coding problems, such that the solution to the problem can be obtained from
concatenating the solutions to the problem pair. Such solutions are realized in a chain of thought
process, in which the model solves a complex problem by breaking it down to smaller subproblems.
The model’s usefulness on a coding task, is quantified by a generation complexity metric (definition
2) - the number of LLM generations required to sample at least one correct solution. The appeal of
this metric, is that due to the existence of code testing units, it suffices to turn an LLM into a good
program candidate generator and simply output a candidate that is correct (Kambhampati et al.;
Thakur et al., 2023; Luo et al., 2024). The single LLM instance solves the entire problem, while the
multi-agent system is comprised of two agents, each is an LLM instance tasked with solving one of
the problems in the pair. Thus the LLM’s helpfulness in the single instance case is the generation
complexity for the composite problem, while in the multi-agent case, it is the product of generation
complexities of the pairs of problems, as a correct solution is attained when independently sampling
a correct solution to each problem.

We theoretically model an LLM as an autoregressive model, where a solution is sampled token
by token, based on the hidden representations. When combining two problems whose solutions are
grammatically similar but semantically different (such as different coding problems), we assume this
combination injects noise into the model’s representations during solution generation for each sub-
problem (assumption 1), which we denote as screening. We show that a compositional problem may
have an exponential gap in generation complexity relative to the product of sub problems’ generation
complexities (theorem 1), meaning an exponential hardness of composition in-context. Essentially,
the model is less capable of solving two problems if they are presented within the same context, than
if presented in separate contexts. This points to an advantage of decomposing a problem not only
within the same LLM context, but to distribute the problems among multiple agents (i.e. solve each
sub-task within a different context). Additionally, this result provides a view of the model’s effective
context length through the lens of screening, which is the model’s ability to isolate the relevant
context at each decoding step – additional irrelevant context may reduce model’s performance on
other tasks within the context window exponentially with length. We validate our assumptions and
results experimentally on Llama 3 by constructing composite code problems.

2 RELATED WORKS

LLMs as solution candidate generators in programming: Empirical works have shown that
while contemporary LLMs struggle to solve complex programming tasks if one samples only a
single solution per problem, they become much more useful if one samples multiple solutions and
filters out correct ones with testing units (Chen et al., 2021b; Li et al., 2022a; Alp, 2023; Ridnik

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2024). These works show that for some problems, out of thousands of generated solutions,
only a handful are correct. Hence empowering an LLM with a large sampling budget drastically
boosts its capabilities. As such, a relevant approach to quantify an LLM’s usefulness in such tasks
is the expected number of programs one needs to sample from it to obtain a correct solution. This
motivates our definition of generation complexity (definition 2), and in this work, we primarily focus
on providing theoretical results on the relative generation complexity in compositional coding tasks.

Theoretical results on composition: Previous works on multi-step function composition and sub-
task decomposition in language models primarily focus on expressing and learning a deterministic
function that solves well defined mathematical tasks, such as solving the bit parity problem (Wies
et al., 2022), expressing and learning Turing machines (Merrill & Sabharwal, 2023; Malach, 2023),
or composing a single mathematical function an arbitrary number of times (Peng et al., 2024). These
do not necessarily translate in an interesting manner to code generation. In such results, for a given
problem, the model provides a deterministic answer which is either correct or incorrect. This de-
viates from the practical use of LLMs for code generation mentioned above that is based on prob-
abilistic sampling of multiple solutions and filtering the correct ones. Thus previous works cannot
capture the usefulness of LLMs on code, as SOTA LLMs generally do not deterministically provide
correct solutions to complex coding problems. In this work, we deal with probabilistic autoregres-
sive generation of solutions to problems, which are more applicable to the practice of LLM code
generation. We provide a softer more informative result for how hard it is to compose problems
with the generation complexity metric, which is not possible through previous approaches.

Effectiveness of LLMs in utilizng long context: Previous empirical works (Hsieh et al., 2024;
Liu et al., 2024) have shown LLM performance on tasks such as retrieval degrade when performed
on longer contexts, and that models may be limited in their random access to tokens within the
context (Ebrahimi et al., 2024). In this work, we study the degradation of language models on
compositional coding tasks through the lens of noise that pieces of context from different subtasks
insert into the generation process. Differently from above mentioned works, in our results the context
does not necessarily have to be very long in order for the model performance to drop, but rather that
grammatically similar but semantically different pieces of the context may “confuse” the model and
harm code generation even in shorter contexts.

3 FRAMEWORK

3.1 GENERATION COMPLEXITY

We focus on coding problems, meaning each problem is written in natural language and is solved
by a function, and the goal is for the model to generate a code that implements it.

Definition 1 Let L be a programming language. Let x be a natural language description of a
problem, that is solved by function f , then a computer program y is a correct solution to x, if it
implements f .

We formally define the generation complexity of a of a problem as the inverse success rate of a
model to generate a correct solution to the problem:

Definition 2 For a problem x and a natural language distribution P over V ∗, the generation com-
plexity of x w.r.t. P , is:

N(P, x) =
1∑

y∈correct solutions P (y|x)
(1)

Where V ∗ is the Kleene closure of the vocabulary V .

Intuitively, the generation complexity is the number of program candidates needed to be sampled
from the conditional distribution P (·|x) to get a program that solves the problem.

In this work, we consider simple compositional problems, which are decomposable to two smaller
problems, and their concatenated solutions can be used to solve the compositional problem (but note
that it can be expanded to any number of compositions). This captures cases such as a composition

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of two code functions, or simple manipulations on outputs of code functions (e.g. concatenation,
product, etc.), but more broadly, these types of solutions to compositional problems are realized
in the use of chain of thought, where a model solves a complex problem in steps comprising of
smaller subproblems. For a compositional problem x, decomposable to x1, x2, we quantify the in-
context hardness of composition as the ratio of generation complexity to the full problem N(P, x)
with the product of generation complexities for the sub-problems N(P, x1) ·N(P, x2). If the latter
is much smaller, this points to an advantage for distributing the sub-problems between different
instances of an LLM (multiple agents), as it would require fewer generations to sample a correct
solution. This defines a compositional hardness of coding problems that originates from context
processing limitations, as the compositional problem can be mathematically equivalent to solving
both problems, yet seeing them both in the same context reduces the model’s performance on them.

3.2 SCREENING IN AUTOREGRESSIVE MODELS

Here we introduce a source of hardness in code composition based on the autoregressive nature of
LLMs. Typically, latent representations of the model contain information about the context beyond
the next token prediction, e.g. the structure of the solution to problems (Ye et al., 2024). Thus when
composing two code problems, we expect the representations during the generation of the second
program to contain information about the first program and vice versa, which is grammatically
similar (same programming language) but semantically very different. As a result, this additional
information creates noise that can harm the generation process.

Formally, we denote by r(L)(x) the model’s last hidden layer representation of the prompt x, by
U , the model’s unembedding matrix (hidden dimension to vocabulary). The logit of the i’th token
is thus defined as the token’s score before the softmax operation: ⟨r(L)(x), UT ei⟩, where ei is the
one-hot vector of the token. The probability distribution at each decoding step is the softmax applied
to the logits, PLLM (i|x) = softmax(⟨r(L)(x), UT ei⟩).
In the process of generating a solution to a compositional code problem, x, that is implicitly or ex-
plicitly decomposable to x1 and x2, the model will implement a solution to the first part y1 and then
to the second part y2. The sequence is generated based on the hidden representations. Informally, we
expect the representation of the solution to the first problem, y1, within the compositional problem,
x, to be a noisy version of the solution’s representation in the non-compositional problem, x1:

r(L)(x⊕ y1) = r(L)(x1 ⊕ y1) + noise (2)

Similarly, the representation of the second problem’s solution, y2, in the compositional problem, x,
is expected to be a noisy version of the solution’s representation in the non-compositional problem,
x2:

r(L)(x⊕ y1 ⊕ y2) = r(L)(x2 ⊕ y2) + noise (3)

Essentially, this means the model attempts to generate the same solutions as in the non-compositional
case, but noise may interfere in the process. The projection of this noise onto the dictionary creates
noise in the logits during decoding, which can lead the model to make mistakes. It is worth men-
tioning that while theoretically after generating y1, it may serve as an in-context example for y2,
in practice when composing two complex problems that are semantically different (e.g. dynamic
programming vs randomized algorithms), there is no reason for one to enhance the success rate of
the other.

As the two problems x1, x2 and their solutions y1, y2 may be different semantically, we do not expect
the noise to “push” the model towards the correct solutions more than to incorrect solutions, thus
when projected onto the vocabulary, V , the noise on the logit of the correct token minus the noise
on an incorrect token, ⟨noise, UT eicorrect next token⟩−⟨noise, UT eian incorrect next token⟩, should be symmetric on
average. Additionally it should be bounded within some range [−M,+M ], as it changes the hidden
representation to a finite extent. In practice, we only expect this to be true for the high probability
tokens, as the vocabulary V is very large, and some low probability tokens may be systematically
enhanced. To avoid this issue, we make our assumptions only on the weighted average of the noise,
where the weights are given by the probability mass that the model assigns them. This way, low
probability tokens with asymmetric noise or large norms receive low weight and are averaged with
the noise of other tokens. Denote by P (i|context) the probability assigned to the i’th token given
the context. We will make our assumptions on the weighted average of the noise on the incorrect

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

token logits minus correct token logits:

X =

∑
i∈V \{correct next token} P (i|context)⟨noise, UT ei − UT eicorrect next token⟩∑

i∈V \{correct next token} P (i|context)
(4)

Assumption 1 Denote by X the weighted noise on the logits as defined in equation 4. We assume
that at every given decoding step it is a continuous, symmetric random variable and bounded within
[−M,+M ] for some M > 0.

In experiment subsection 5.3 we show the noise satisfies these assumptions, with M ≈ 3− 4.

3.3 EFFECT OF NOISE ON DECODING

While the noise onto the logits, X , averages to zero, its effect on the decoding process does not. The
probability of each token in a decoding step is changed to:

P (i|context) → P ′(i|context) ≤ P (i|context)
P (i|context) + (1− P (i|context))eX

(5)

The denominator, P (i|context)+(1−P (i|context))eX can be thought of as a renormalizing term,
which redistributes the probability of the tokens. For X = 0, the token’s probability does not
change, for X < 0 it increases and for X > 0 it decreases. See appendix D for derivation and
intuition. Note that if P (i|context) ∈ (ϵ, 1− ϵ) for ϵ > 0 (the model has finite confidence), then on
average, the noise decreases the probability of a correct continuation P (i|context), by a factor of
exp(−∆(ϵ,X)), where ∆ is the renormalizing term’s mean:

∆(ϵ,X) := EX [log(ϵ+ (1− ϵ)eX)] (6)
Intuitively ∆ is the average renormalization of the correct token’s probability. In experiment subsec-
tion 5.3, we calculate ∆(ϵ,X) empirically as a function of ϵ, and find that for ϵ = 0.1 for example,
∆ ≈ 0.2. The consequence of this, is that on average, most long sequences have their probability re-
duced by the noise, while few random long sequences have their probability greatly enlarged. Since
for long coding problems most sequences are incorrect, the probability of a correct solution getting
enlarged is small. We formally show this in the next section. To do so, we will use concentration
inequalities, for which we note that:

| log(ϵ+ (1− ϵ)eX)| < M (7)
Thus the renormalizing term’s variance is also bounded:

σ2(ϵ,X) := V arX [log(ϵ+ (1− ϵ)eX)] ≤ M2 (8)

4 RESULTS

Here we show that composing two coding problems can be significantly harder than solving each on
its own. A natural quantification of compositional hardness is the gap between generation complex-
ity of the problem’s components and the complete problem. For example, we say that composition
is hard if:

N(P, x) ≫ N(P, x1) ·N(P, x2) (9)
While it is easy if:

N(P, x) ≈ N(P, x1) ·N(P, x2) (10)
The rational behind this, is that N(P, x1) ·N(P, x2) is the number of attempts required to indepen-
dently sample a correct solution to x1 and to x2, while N(P, x) is the number of attempts required
to sample a solution to problem that integrates both problems. In an easy composition scenario, the
model solves the sub-problems to the best of its abilities as it would if each was solved indepen-
dently. In a hard composition scenario, seeing both problems combined reduces its performance on
each sub-problem, and it is better to use a multi-agent system, by feeding the model the subproblems
in different contexts and sampling solutions independently.

As there are typically more incorrect solutions to coding problems than correct ones, the random
noise inserted into the logits generally harms the model’s performance. The following lemma quan-
tifies an exponential decrease in the model’s probability of a correct solution to a compositional
problem, P (y1⊕y2|x), relative to the probabilties of the sub-problem solutions P (y1|x1)·P (y2|x2):

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Lemma 1 Let ϵ, δ ∈ (0, 1), and M > 0. Let x be a compositional problem and y1 ⊕ y2 a solution,
with x1, x2 being the corresponding sub-problems. Suppose that the noise injected to the logits as
defined in equation 4, satisfies assumption 1, and that the probability assigned to the correct token
at each decoding step is bounded within [ϵ, 1− ϵ]. Then there exist strictly positive noise dependent
constants ∆ (as defined in equation 6) and c(∆,M, σ) (with M and σ as defined in equations 7 and
8), such that if the solution length satisfies |y1| + |y2| > c ln 1

δ we have with probability of at least
1− δ that:

P (y1 ⊕ y2|x) ≤ P (y1|x1) · P (y2|x2)e
−∆·(|y1|+|y2|)

4 (11)

Where P (y1⊕y2|x) is the probability of producing the answer y1⊕y2, given context x. The constant
c = M2

σ2·h( 3∆·M
4σ2 )

, with h(x) = (x+ 1) log(x+ 1)− x.

The proof is presented in appendix A. The intuition behind this result is that as there are typically
more incorrect choices to make when generating code, random noise usually reduces the probability
for sequences with finite confidence. Thus most sequences get their probability reduced, while very
few random sequences get a large increase, and these are usually not correct solutions.

The assumption on bounded probability for the correct token [ϵ, 1 − ϵ] implies we are considering
solutions where the model has high but limited confidence in each decoding step. While LLMs are
often very confident in “obvious” next steps (line break, etc.), in practice, during generation, nu-
cleus sampling is commonly used, where sampling only occurs if the model is not overly confident.
e.g. with p = 0.95, if a token’s probability P , is larger than 0.95, then the probability is rounded 1.
Thus when considering probabilities of sequences, it suffices to look only at decoding steps where
the model is not too confident, hence we can consider ϵ ≈ 0.05.

In subsection 5.3, we see empirically that for ϵ = 0.1, ∆ ≈ 0.2, σ ≈ 1.5,M ≈ 4, making c ≈ 200,
thus for solutions with length > 200 tokens, the results apply.

In practice, there may be multiple solutions to the same problem, e.g. multiple implementations of
the same function. So it is necessary to take all of them into account when considering the generation
complexity. With this taken into account using a union bound, we obtain the following result of an
exponential gap in generation complexity between a composition of problems and the sub-problems,
indicating a compositional hardness that is exponential in the solution’s length:

Theorem 1 Let ϵ, δ ∈ (0, 1), and N,M > 0. Let x be a compositional problem, with x1, x2

being the corresponding sub-problems. Denote by L1, L2 the minimal solution length to x1, x2

respectively, and the total number of solutions to x by N . Under the assumptions of lemma 1, there
exist strictly positive noise dependent constants ∆ (as defined in equation 6) and c(∆,M, σ) (with
M and σ as defined in equations 7 and 8), such that if the minimal solution length L1+L2, satisfies
L1 + L2 > c ln N

δ , then with probability of at least 1 − δ the generation complexity (definition 2)
satisfies:

N(P, x) ≥ N(P, x1)N(P, x2) · e
∆·(L1+L2)

4 (12)

The proof is presented in appendix B. We see that longer problems become harder to solve due to
the noise injected into the decoding steps by previously generated tokens. This shows that a model
that fully utilizes its context in decoding (i.e. the next token probability distribution is explicitly
a function of all the previous tokens), can have a hard time mixing different concepts due to the
screening effect. This result implies that for long coding problems, it is more beneficial to distribute
sub-tasks between different instances of the LLM, and not expose it to the full context. Additionally,
this result provides a view of the model’s effective context length through the lens of screening –
additional irrelevant context may reduce model’s performance on other tasks within the context win-
dow exponentially with length. The intuition to the result is that there are more incorrect solutions
than correct ones, so the random noise usually reduces their total probability mass.

We note that for the union bound of theorem 1 to hold, we need the number of solutions to be
bounded by an exponential in the length of the solution, L1 + L2:

N < δ · exp
(
(L1 + L2) ·

σ2

M2
h

(
3∆ ·M
4σ2

))
(13)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Typically, we expect the number of solutions to a problem to grow exponentially with the length of
the shortest solution, y:

N ∼ exp(c · |y|) (14)
As each line of code can be implemented slightly differently, lines may be interchanged, different
variable names, etc. Still, the exponential’s coefficient is expected to be small as most sequences
are not correct solutions to the problem due to the constraints between the tokens (e.g., once a
variable name is chosen, it is fixed throughout the solution). With the empirical values calculated
in subsection 5.3, we see empirically that the coefficient of the exponential number of solutions is
≈ 0.005, thus for a solution of length L1+L2 = 1, 600 tokens, we have N < δ · exp(8) = 3, 000 · δ
solutions.

5 EXPERIMENTS

In this subsection we test the assumptions and results of our theoretical part. We create simple
compositional coding problems with pairs of problems from the Human Eval benchmark (Chen
et al., 2021a) and code contests dataset (Li et al., 2022b). First, we show the results of theorem
1, stating that composition is typically harder than independently solving the subproblems. Then,
we show explicit indications for the exponential length dependence of compositional hardness, by
comparing probabilities of solutions with/without composition, as theoretically suggested in lemma
1. Finally, we look at our assumption 1 on the noise inserted into the logits of the second problem,
and observe that it is indeed large enough to interfere with the decoding process (assumption 1). The
experiments were performed on Llama-3-8B-Instruct (Dubey et al., 2024). In appendix F, we present
results for Llama-3-70B-Instruct, to test dependence on model size. For additional experimental
details, see appendix E.

5.1 GENERATION COMPLEXITY RESULTS

Here we test the actual generation complexity of an LLM to different problems corresponding to
scenarios from our theoretical results. As proposed in the theoretical section, an LLM may be able to
solve two problems with low generation complexity, but their composition might take a significantly
larger generation complexity if the model was not explicitly trained on such a task. To test this, we
built a set of composite problems based on the Human Eval benchmark (Chen et al., 2021a) and
code contests dataset (Li et al., 2022b).

To create composite problems, we took pairs of problems from Human Eval and code contests, and
created from each a problem whose solution requires to explicitly solve both problems. Additionally,
for harder problems, we created compositions of problems from code contests dataset. We used the
following two main templates (and an additional template for human eval presented in appendix E):

• Human Eval – Problem 1 and Problem 2 have an integer output. Composition is to solve
both and print the product of their outputs.

• Code Contests – Problem 1 and problem 2 are problems from the dataset. Composition is
to read the inputs sequentially and print the outputs sequentially.

We denote the composite problem of x1 and x2 as x1 ⊕ x2. While these compositions may appear
artificial, their purpose is to demonstrate the “mental load” on the model during composition, which
leads to the result of theorem 1. This serves as a lower bound for compositional hardness, due

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

to explicit concatenation of problems being the easiest form of composition, while more complex
compositions can lead to worse performance. For each problem we sampled 200 solutions and
evaluated the generation complexity as the inverse of percentage of correct solutions.

Figure 1 shows the cumulative distribution function (CDF) of the compositional hardness - the value
along the y axis is the CDF of N(P,x)

N(P,x1)N(P,x2)
, i.e. percentage of compositional problems, in which

N(P,x)
N(P,x1)N(P,x2)

is smaller than a given value. For example, with a = 5, the corresponding value on
the y axis, is the percentage of problems in which composition requires up to ×5 more generations
relative to solving independently. As can be seen, for most of the problems, composition generation
complexity is larger than the product of generation complexities of the components (up to factors of
10− 20). As seen in theorem 1, we have:

Figure 1: Cumulative distribution function for the ratio of generation complexity using composition,
N(P, x), to product of generation complexities for the standalone problems, N(P, x1) · N(P, x2)
(corresponding to the multi-agent generation complexity). The x axis denotes values for the ratio of
generation numbers required to solve the problem in the two cases (composition vs multi-agent), the
y axis is the percentage of problems in which the ratio is no larger than this value (e.g. for a = 5,
the y axis value is the percentage of problems where composition requires up to ×5 more samples
than the multi-agent case). (a) For the human eval composition. As can be seen in most of the cases,
composition requires twice more samples, and for some problems 10 times more samples. (b) For
the code contests composition. As can be seen the majority of problems have a factor of at least 5,
and some up to 20.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

N(P, x1 ⊕ x2) ≫ N(P, x1)N(P, x2) (15)

Furthermore, we see that in code contests, where the problems typically have longer solutions (few
hundreds of tokens), and the problems are harder thus the model is less certain, the compositional
hardness is much larger. Assuming one only has access to an end-to-end verifier of the composite
problem, it is more advantageous to generate independently for each problem then to generate for
the composite problem, giving the advantage to a multi-agent system over a single LLM instance.

In appendix F, we present results for composition on Llama-3-70B-Instruct, and find that on the same
code contests compositions, the compositional generation complexity improves significantly relative
to its 8B counterpart (similar to 8B on Human Eval seen in figure 1a). However, with slightly harder
compositions of code contest problems (that are still effectively concatenations of two problems),
the 70B model’s performance on composition drops significantly, with most compositions requiring
over 5-10 times more generations than the non-compositional case. This hints larger models are
more efficient at composition yet still suffer from this effect as compositional difficulty rises.

5.2 EXPONENTIAL LENGTH DEPENDENCE OF COMPOSITIONAL HARDNESS

Here, we used the same compositions as in the previous subsection, and measured the difference in
probabilities of correct solutions with vs without composition as a function of the number of tokens
in the solution. The “correct” solutions were taken as the canonical solutions of the dataset, as they
are “neutral” in the sense that solutions generated by the model with/without composition may have
different styles, and measuring the probability of these generated sequences may create an artificial
bias in favor of one of the two.

As suggested by lemma 1, we expect to see on average:

log
P (y1|x1)P (y2|x2)

P (y1 ⊕ y2|x)
≥ ∆

4
· (|y1|+ |y2|) (16)

Meaning that the log ratio of correct solutions without/with composition increases linearly with
length. As can be seen in figure 2, an exponential increase in probability of the correct solution
is observed without composition relative to with composition, as a function of length of the code.
As the y axis is plotted in the log domain, the linear curve approximates ∆/4, which takes a value
of ≈ 0.05. This means a decrease of e−1 in success rate for every 20 tokens. This matches the
typical increase in generation complexity seen in figure 1. In practice, ∆ is likely larger for some
compositions, as the average is over many sequences, yet still has high fluctuations.

While measuring probability of sequences not generated by the model is less reliable than the above
experiment in 5.1, which shows the gap of compositional hardness in a real sampling scenario, this
approach is useful to qualitatively show how in certain compositional scenarios, the probability of
sequences are exponentially lower than non-compositional scenarios, as a function of code length,
which is expected to hold during generation.

Figure 2: Ratio of correct solution probability with vs without composition. An exponential trend is
observed as a function of length.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 EXPERIMENTS ON ASSUMPTIONS

Here we look at our assumption of noise inserted into the logits (assumption 1).

Noise distribution: Using the same compositions as before, we measure the change to the logits
of correct tokens with vs without composition. As in the theoretical assumption, we subtract this
with the mean change in the logits of the incorrect tokens:

X =

∑
i∈incorrect Pi⟨noise, UT ei − UT ecorrect⟩∑

i∈incorrect Pi
(17)

We calculate this over different sequences. As can be seen in figure 3, the change in logits creates
a noise that is symmetric, bounded, X < M ≈ 4, and has finite absolute deviation E[|X|] > 0, in
accordance with assumption 1.

Figure 3: Change in logits of correct tokens minus incorrect tokens due to composition.

Estimation of ∆(ϵ,X) and σ(ϵ,X): Here the goal is to provide a ballpark estimation to the
theoretical constants. To estimate ∆(ϵ,X) we approximate the noise as a Gaussian with mean 0 and
try two values standard deviation σ = 1 and σ = 2, then calculate ∆(ϵ,X) ≈ mean{Xi}[ϵ + (1 −
ϵ)eX ]. The values are presented in appendix G, and match the estimation of ∆ in the range of 0.05
to 0.2 from the above subsection. Similarly, we estimate σ(ϵ,X), with typical values of σ ≈ 1− 2

6 DISCUSSION

In this work, we point a limitation of LLMs’ ability to perform several sub-tasks within the same
context window – an in-context hardness of composition, pointing to an advantage for distributing
a decomposed problem in a multi-agent system of LLMs over using a single LLM instance. The
hardness of composition is quantified by the generation complexity metric, i.e., the number of LLM
generations required to sample at least one correct solution. We found an exponential gap between
generation complexity of solving a composition problem within the same context relative to dis-
tributing it among multiple agents. This is attributed to the transformer’s nature of using all tokens
in the context simultaneously for decoding, which inserts noise into generated sequences, caused
from mixing in sub-tasks’ latent representations (screening). Consequently, even if a model has the
ability to perform two tasks, it may not be able to perform them both within the same context, in
agreement with empirical work of Zhuo et al. (2024), showing SOTA LLMs still perform poorly on
complex coding tasks. This provides a view of the model’s effective context length through the lens
of screening, which is the model’s ability to isolate the relevant context at each decoding step – addi-
tional irrelevant context may reduce model’s performance on other tasks within the context window
exponentially with length. Lastly, we point that while advantegous, the use of multi-agent systems
may introduce new challenges, such as coherence between agents, which we leave for future work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Google deepmind alphacode team, alphacode 2 technical report. 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

MohammadReza Ebrahimi, Sunny Panchal, and Roland Memisevic. Your context is not an array:
Unveiling random access limitations in transformers. arXiv preprint arXiv:2408.05506, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A llm multi-agent framework
toward ultra large-scale code generation and optimization. arXiv preprint arXiv:2404.02183,
2024.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: Llms can’t plan, but can help planning
in llm-modulo frameworks. In Forty-first International Conference on Machine Learning.

Yuan Li, Yixuan Zhang, and Lichao Sun. Metaagents: Simulating interactions of human behav-
iors for llm-based task-oriented coordination via collaborative generative agents. arXiv preprint
arXiv:2310.06500, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022a.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cy-
prien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Rob-
son, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-
level code generation with alphacode. Science, 378(6624):1092–1097, 2022b. doi: 10.1126/
science.abq1158. URL https://www.science.org/doi/abs/10.1126/science.
abq1158.

11

https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-
agent collaboration framework with agent team optimization. arXiv preprint arXiv:2310.02170,
2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv preprint
arXiv:2309.06979, 2023.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of
thought. arXiv preprint arXiv:2310.07923, 2023.

Harsha Nori, Nicholas King, Scott Mayer McKinney, Dean Carignan, and Eric Horvitz. Capabilities
of gpt-4 on medical challenge problems. arXiv preprint arXiv:2303.13375, 2023.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Xianghe Pang, Shuo Tang, Rui Ye, Yuxin Xiong, Bolun Zhang, Yanfeng Wang, and Siheng Chen.
Self-alignment of large language models via monopolylogue-based social scene simulation. arXiv
preprint arXiv:2402.05699, 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer
architecture. arXiv preprint arXiv:2402.08164, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. Advances in Neural Information Processing Systems, 36, 2024.

Amitayush Thakur, Yeming Wen, and Swarat Chaudhuri. A language-agent approach to formal
theorem-proving. arXiv preprint arXiv:2310.04353, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.(nips), 2017. arXiv preprint
arXiv:1706.03762, 10:S0140525X16001837, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Colin G West. Advances in apparent conceptual physics reasoning in gpt-4. arXiv preprint
arXiv:2303.17012, 2023.

Noam Wies, Yoav Levine, and Amnon Shashua. Sub-task decomposition enables learning in se-
quence to sequence tasks. arXiv preprint arXiv:2204.02892, 2022.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. arXiv preprint arXiv:2407.20311, 2024.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

A PROOF OF LEMMA 1

Here we prove lemma 1. We formulate the detailed lemma:

Lemma 2 Let ϵ, δ ∈ (0, 1), and M > 0. Let x be a compositional problem and y1 ⊕ y2 a solution,
with x1, x2 being the corresponding sub-problems. Suppose that the noise injected to the logits as
defined in equation 4, satisfies assumption 1 - for all decoding steps, it is continuous, symmetric
and bounded within [−M,+M ]. Suppose further that the probability assigned to the correct token
at each decoding step is bounded within [ϵ, 1 − ϵ]. Denote by ∆ := EX [log(ϵ + (1 − ϵ)eX)]
and σ2 := V arX [log(ϵ + (1 − ϵ)eX)] the renormalizing term’s mean and variance (as defined in
equations 6 and 8 respectively). Under the assumption, ∆, σ are strictly positive, and if |y1|+ |y2| >

M2

σ2·h( 3∆·M
4σ2 )

ln 1
δ , where h(x) = (x+1) ln(1+x)−x > 0, we have with probability of at least 1− δ

that:
P (y1 ⊕ y2|x) ≤ P (y1|x1) · P (y2|x2)e

−∆·(|y1|+|y2|)
4 (18)

Where P (y|x) is the probability assigned to y by the model, given context x.

Thus f from the main text is f(σ,M,∆) = M2

σ2·h( 3∆M
4σ2 )

.

Proof:

We start by proving the following lemma:

Lemma 3 Let p ∈ (0, 1) and X a random variable over real numbers. Denote by: ∆(p,X) =
E
[
log

(
p+ (1− p) eX

)]
. Claim: For a continuous symmetric random variable, X, we have

∆(p,X) > 0. Furthermore, if p ∈ (ϵ, 1− ϵ), then ∆(p,X) > ∆(ϵ,X) = ∆(1− ϵ,X)

Proof:

Denote by ρ(X) the density function of X , then:

E
[
log

(
p+ (1− p) eX

)]
=

∫ 0

−∞
log (p+ (1− p) ex)ρ(x) +

∫ ∞

0

log (p+ (1− p) ex)ρ(x) =

(19)
Switching sign of the integration variable in the second term:

=

∫ ∞

0

log
(
p+ (1− p) e−x

)
ρ(−x) +

∫ ∞

0

log (p+ (1− p) ex)ρ(x) = (20)

Using the symmetry condition on X:

=

∫ ∞

0

log
(
p+ (1− p) e−x

)
ρ(x) +

∫ ∞

0

log (p+ (1− p) ex)ρ(x) = (21)

=

∫ ∞

0

(
log

(
p+ (1− p) e−x

)
+ log (p+ (1− p) ex)

)
ρ(x) = (22)

Again, applying the symmetry of X:

=
1

2

∫ ∞

−∞

(
log

(
p+ (1− p) e−x

)
+ log (p+ (1− p) ex)

)
ρ (x) (23)

The integrand is positive:

log(p+ (1− p)ex) + log(p+ (1− p)e−x)= (24)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

= log (p2 + (1− p)
2
+ p (1− p)

(
ex + e−x

)
= (25)

log (1+p (1− p)
(
ex + e−x − 2

)
) (26)

For x = 0, the argument inside the log equals 1, otherwise, the argument inside the log is always
larger than 1, since ex + e−x − 2 > 0. Hence the integrand is positive everywhere except in x = 0,
meaning the integral is positive for any continuous symmetric X . Thus, for any p the expectation
value is positive.

E
[
log

(
p+ (1− p) eX

)]
= ∆(p,X) > 0 (27)

Furthermore it is symmetric around p = 1/2, and monotonic for p → 0 and p → 1:

log(p+ (1− p)ex) + log(p+ (1− p)e−x)= (28)

= log (p2 + (1− p)
2
+ p (1− p)

(
ex + e−x

)
= (29)

log (1+p (1− p)
(
ex + e−x − 2

)
) (30)

As can be seen, it is monotonic with p(1− p), and if p ∈ (ϵ, 1− ϵ), it is minimal for p = ϵ, 1− ϵ.

Proof of Main Lemma: We now move to the proof of the main lemma. We show the exponential
growth with the length of the solution to the second problem, y2 (the proof for the exponential
dependence on y1 is identical). Let us look at the probability that the model assigns the n’th token
in the sequence y2 in the compositional problem. It is given by the softmax on the projections of the
final hidden layer representation on the vocabulary V given the context:

P (y2 [n]|x⊕ y1 ⊕ y2 [: n]) =
e⟨r

(L)(x⊕y1⊕y2[:n]),U
T ey2[n]⟩

e⟨r(L)(x⊕y1⊕y2[:n]),UT ey2[n]⟩ +Σi∈[V ]\{y2[n]}e
⟨r(L)(x⊕y1⊕y2[:n]),UT ei⟩

(31)

According to assumption 1,
〈
r(L) (x⊕ y1 ⊕ y2 [: n]) , U

T ei
〉
=

〈
r(L) (x2 ⊕ y2 [: n]) , U

T ei
〉
+Xi,

meaning the model is receiving a noisy version of the representation to the problem it is trying to
solve, where Xi is the noise onto the i’th token.

=
P (y2 [n]|x2 ⊕ y2 [: n]) e

Xy2[n]

P (y2 [n]|x2 ⊕ y2 [: n]) e
Xy2[n] +Σi∈[V ]\{y2[n]}}P (i|x2 ⊕ y2 [: n]) eXi

(32)

For brevity, denote P0 = P (y2 [n]|x2 ⊕ y2 [: n]), and Pi = P (i|x2 ⊕ y2 [: n]).

=
P0e

X0

P0eX0 +Σi∈[V ]\{0}PieXi
(33)

Now, using the Jensen’s inequality in the denominator:

≤ P0e
X0

P0eX0 + (1− P0) e
Σi∈[V ]\{0}

PiXi
1−P0

=
P0

P0 + (1− P0) e
Σi∈[V ]\{0}

PiXi
1−P0

−X0

(34)

Now, denote X = Σi∈[V ]\{0}
Pi(Xi−X0)

1−P0
, according to assumption 1, it is a symmetric, continuous

random variable, bounded between [−M,+M ]. Rewriting the above as:

= P0e
− log(P0+(1−P0)e

X) (35)

So the correct token probability with composition P ′
0 is decreased by the factor in the exponent

→ P0e
log(P0+(1−P0)e

X), relative to the probability without composition, P0. For a full sequence,
we apply the probability chain rule and obtain the following:

P (y2|x⊕ y1) = P (y2|x2)e
−Σ

|y2|
i=1 log (P i

0+(1−P i
0)e

Xi) (36)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Where P i
0 is the probability of the correct token in the i’th step without composition. Now, because

EXi

[
log

(
P i
0 +

(
1− P i

0

)
eXi

)]
= ∆

(
P i
0, Xi

)
> 0, from the above lemma, we get a sum of random

variables with mean that is larger than zero. We will use a concentration inequality to bound it.

We start with bounding the random variables:

log
(
P i
0 +

(
1− P i

0

)
eXi

)
< log

(
P i
0 +

(
1− P i

0

)
eM

)
≤ M (37)

log
(
P i
0 +

(
1− P i

0

)
eXi

)
> log

(
P i
0 +

(
1− P i

0

)
e−M

)
≥ −M (38)

Also notice that since P0 ∈ (ϵ, 1− ϵ), the above lemma implies:

∆
(
P i
0, Xi

)
> ∆(ϵ,Xi) (39)

Thus from linearity of the expectation value of the sum S = Σ
|y2|
i=1 log

(
P0 + (1− P0) e

Xi
)

is:

E[S] = E
[
Σ

|y2|
i=1 log

(
P0 + (1− P0) e

Xi
)]

> |y2| ·∆(ϵ,X) (40)

Similarly, if we denote σ2(ϵ,X) := V arX [log(ϵ + (1 − ϵ)eX)]] (which is no larger than M ), we
can upper bound the variance of the sum:

V ar[S] = V ar
[
Σ

|y2|
i=1 log

(
P0 + (1− P0) e

Xi
)]

< |y2| · σ(ϵ,X)2 (41)

This is because V arX [log(p+ (1− p)eX)]] ≤ V arX [log(ϵ+ (1− ϵ)eX)]] (see proof in appendix
C)

We can then apply Bennet’s inequality:

P (S − E[S] < −t) ≤ exp

(
−V ar[S]

M2
h

(
tM

V ar[S]

))
(42)

Where h(x) = (1 + x) log(1 + x) − x and M is the bound for each summand in S. Next, we take
t = E[S]− ∆(ϵ,X)

4 |y2|. Plugging this in the above yields:

P

(
S <

∆(ϵ,X)

4
|y2|

)
≤ exp

(
−V ar[S]

M2
h

(
tM

V ar[S]

))
(43)

We note that t = E[S]− ∆(ϵ,X)
4 |y2| > 3∆(ϵ,X)

4 |y2| (from equation 40). Thus due to the (increasing)
monotonicity of h( tM

V ar[S] ) w.r.t. t (hence decreasing monotonicity in the exponent), we have:

P

(
S <

∆(ϵ,X)

4
|y2|

)
≤ exp

(
−V ar[S]

M2
h

(
3 ·∆(ϵ,X)|y2|M

4 · V ar[S]

))
(44)

Due to the (increasing) monotonicity of the exponent’s argument in V ar[S] which is upper bounded
by |y2|σ2, we get:

P

(
S <

∆(ϵ,X)

4
|y2|

)
≤ exp

(
−|y2|σ2

M2
h

(
3 ·∆(ϵ,X)M

4 · σ2

))
(45)

Looking at the complementary event to the one in the above equation (S ≥ ∆(ϵ,X)
4 |y2|), and plug-

ging in the definition for S, we get:

P

(
Σ

|y2|
i=1 log

(
P i
0 +

(
1− P i

0

)
eXi

)
>

1

4
|y2| ·∆(ϵ,X)

)
≥ 1− exp

(
−|y2|σ2

M2
h

(
3∆M

4σ2

))
(46)

Let δ > 0, then for:

|y2| >
M2

σ2h( 3∆M
4σ2 )

· ln 1

δ
(47)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We obtain from equation 46 with probability of at least 1− δ that Σ|y2|
i=1 log

(
P i
0 +

(
1− P i

0

)
eXi

)
>

1
4 |y2| ·∆(ϵ,X). Plugging this back into equation 36:

P (y2|x⊕ y1) < P (y2|x2)e
−∆

4 |y2| (48)

With probability 1− δ.

Using the same idea for y1, we obtain:

P (y1|x) < P (y1|x1)e
−∆

4 |y1| (49)

Thus together, if |y1|+ |y2| > M2

σ2h( 3∆M
4σ2 )

· ln 1
δ , we have with probability 1− δ that:

P (y1 ⊕ y2|x) < P (y1|x1)P (y2|x2)e
−∆

4 (|y1|+|y2|) (50)

B PROOF OF THEOREM 1

We state theorem 1 with the full details:

Theorem 2 Let ϵ, δ ∈ (0, 1), and N,M > 0. Let x be a compositional problem, with x1, x2

being the corresponding sub-problems. Denote by L1, L2 the minimal solution length to x1, x2

respectively, and the total number of solutions to x by N . Define ∆, σ, the renormalizing term’s
mean and variance (as defined in equations 6 and 8 respectively) and by M the bound on the logit
noise (assumption 1). Under the assumptions of lemma 1, they are strictly positive, ∆, σ,M > 0,
and if the minimal solution length L1 + L2, satisfies L1 + L2 > M2

σ2·h( 3∆·M
4σ2 )

ln N
δ , where h(x) =

(x+1) ln(1+ x)− x > 0, we have with probability of at least 1− δ that the generation complexity
(definition 2) satisfies:

N(P, x) ≥ N(P, x1)N(P, x2) · e
∆·(L1+L2)

4 (51)

Proof:

Now, suppose there are N solutions to the problem, all of length ≥ L (larger than the minimal
description length), then we need to use a union bound. We get the result of the lemma 1 over all
sequences with probability:(

1− exp

(
−Lσ2

M2
h

(
3∆M

4σ2

)))N

≥ 1−N exp

(
−Lσ2

M2
h

(
3∆M

4σ2

))
(52)

Require this to equal:
= 1− δ (53)

Thus for:

|y1|+ |y2| >
M2

σ2h( 3∆M
4σ2 )

· ln N

δ
(54)

We obtain with probability of at least 1 − δ that all solutions satisfy the result of lemma 1. If the
minimal solution length is L1 + L2, for all solutions to satisfy the inequality, we require:

L1 + L2 >
M2

σ2h( 3∆M
4σ2 )

· ln N

δ
(55)

Thus we have with probability 1− δ that:

N(P, x) =
1∑

y1,y2∈correct solutions P (y1 ⊕ y2|x)
≥ (56)

≥ 1∑
y1,y2∈correct solutions P (y1|x1)P (y2|x2)

e
∆
4 (L1+L2) = (57)

=
1∑

y1∈correct solutions for x1
P (y1|x1)

∑
y1∈correct solutions for x2

P (y2|x2)
e

∆
4 (L1+L2) (58)

= N(P, x1)N(P, x2)e
∆
4 (L1+L2) (59)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C PROOF OF VARIANCE BOUND

Here we show that the variance of the noise σ2(p,X) is maximal for p = ϵ.

Lemma 4 For p ∈ (ϵ, 1− ϵ) and a random variable X , it holds that:

V arX [log(p+ (1− p)eX)] ≤ V arX [log(ϵ+ (1− ϵ)eX)] (60)

proof:

Consider the transformation Tp(x) = log(p+ (1− p)ex), notice that its derivative w.r.t.x is:

dTp

dx
=

(1− p)ex

p+ (1− p)ex
(61)

Which always takes values in (0, 1). Thus due to strict monotonicity, it is an invertible map for any
p ∈ (ϵ, 1− ϵ). Additionally, for any x, we have:

dTp

dx
=

(1− p)ex

p+ (1− p)ex
≤ (1− ϵ)ex

ϵ+ (1− ϵ)ex
=

dTϵ

dx
(62)

Next, we look at:

V arX [Tp(x)] = V arX [Tp(T
(−1)
ϵ Tϵ)(x)] = V arX [(Tp ◦ T (−1)

ϵ )(Tϵ(x))] (63)

Now, for an M -Lipschitz map, T , we have V arX [T (X)] ≤ M2V ar[X], therefore:

V arX [Tp(x)] ≤ sup
x

|d(Tp ◦ T (−1)
ϵ )

dx
|2V arX [Tϵ(x)] (64)

Since the map Tp ◦ T (−1)
ϵ , has a derivative that is bounded by:

|d(Tp ◦ T (−1)
ϵ )

dx
| ≤

|d(Tp)
dx |

|d(Tϵ)
dx |

≤ 1 (65)

We obtain:
V arX [Tp(x)] ≤ V arX [Tϵ(x)] (66)

Plugging in the definition of Tp, we get:

V arX [log(p+ (1− p)eX)] ≤ V arX [log(ϵ+ (1− ϵ)eX)] (67)

As desired.

D PROBABILITY BOUND FOR NOISY DECODING

In the presence of logit noise, the probability of each token in a decoding step is changed to:

P (i|context) → P ′(i|context) ≤ P (i|context)
P (i|context) + (1− P (i|context))eX

(68)

Where X is defined as in equation 4. The proof follows the proof of lemma 1 from the text before
equation 32 up to equation 35. The main idea is to write the probability as a softmax over the noisy
logits, then extract the original logits from the noise, bound the change in logits due to the noise
using Jensen’s inequality, and obtaining a bound in terms of the probability without noise.

The advantage of using this form of bound, is that it is relatively succinct, as it removes the de-
pendence on the exact projection of noise on each token in the vocabulary, and instead takes into
account the average noise on the different tokens. This allows to efficiently bound the change in
probabilities of full sequences due to the noise.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E EXPERIMENTAL DETAILS

Composite Problem Construction: The composite problems were created by pairs of problems in
the formats described in subsection 5.1. Our results were based on 50 such composite problems for
each experiment. The non-composite problems from human eval and code contests were also tested
independently, and we used problems with standalone pass rates ≥ 0.1, in order to avoid sampling
too many solutions in the composite problems (which would typically have accuracy smaller than
the product of pass rates of the standalone problems).

Code Generation: For each problem, code was generated by sampling at T = 1, and nucleus
sampling with p = 0.95.

Evaluation of Generated Code: To evaluate the correctness of code generated by the LLM in the
experiment described in subsection 5.1, we tested the code on the test cases provided in the datasets.

Format of synthetic solutions to composite problems: In subsections 5.2 (exponential length
dependence) and 5.3 (assumptions), we performed a forward pass of the problem+solution in a
scenario with and without composition in order to compare the logits in the two cases. To create
correct solutions to the problems, that are “neutral” (not more likely to be generated by the LLM
in a compositional problem than in the standalone case, or vice versa), we created solutions to the
composite problems from the standalone problem solutions provided in the datasets. Typically,
the model attempted to solve the problems sequentially, either by building functions to solve each
problem in the pair, and apply the function sequentially, or by writing the explicit solutions one after
the other. We used both templates to create solutions for these experiments.

Sequence Probability Calculation: In subsection 5.2, we measured the probability of solutions
to problems with composition vs without composition. As explained above, we used to templates
for the calculation that are similar to the model’s generations (solution in a functional form, where
a function is defined for each problem, and in a non-functional form, where the solutions to the
problems are written sequentially). In both templates we observed similar trends. In order to avoid
an artificial difference between composition and non-composition in the sequence probabilities due
to the templates, we measured the probability of sequences after the first few tokens, so that the
model has “time” to adjust to the format in both cases (composition and non-composition), and
only measure the probabilities of the actual solution. We did this for both solutions of the compo-
sitional problem, for a more fair comparison between composition and non-composition sequence
probabilities.

Logit Noise Experiment: In subsection 5.3, we used the templates as mentioned in the above on
the sequence probability calculation. We extracted the of the logits of the solutions both in the case
of composition and non-composition, and calculated the logit noise as defined in subsection 5.3 and
equation 4.

Additional Human Eval Template: In addition to the template presented in the main text, we
also tested the following template for Human Eval – Problem 1 has a True/False output, Problem 2
has an arbitrary output. Composition is to solve problem 1, then if its output is true, print the second
problems’ output, otherwise, print “-1”:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F EXPERIMENT ON LLAMA-3-70B-INSTRUCT

In order to test the dependence of compositional hardness on model size, we repeat the experi-
ment comparing generation complexity with vs without composition (described in subsection 5.1).
As seen in figure 4, in most cases, composition requires more generations relative to the non-
compositional case, but the ratio is typically smaller than before.

Figure 4: Cumulative distribution function for the ratio of generation complexity using composition,
N(P, x), to product of generation complexities for the standalone problems, N(P, x1) · N(P, x2)
(corresponding to the multi-agent generation complexity). The x axis denotes values for the ratio of
generation numbers required to solve the problem in the two cases (composition vs multi-agent), the
y axis is the percentage of problems in which the ratio is no larger than this value (e.g. for a = 5,
the y axis value is the percentage of problems where composition requires up to ×5 more samples
than the multi-agent case). As can be seen in most of the cases, composition requires twice more
samples, and for some problems 10 times more samples.

However, if we increase the difficulty by concatenating four problems in the context and ask the
model to only solve two of them (which keeps the compositional problem effectively a concatenation
of two problems):

We once again obtain large ratios of compositional generation complexity, as seen in figure 5. This
demonstrates the model’s difficulty in extracting only the relevant information within the context
for solving the problems (even when the separation is explicit), and that the noisy context increases
the composition difficulty, such that even a concatenation of two problems becomes significantly
more difficult. This is in accordance with our theory, where we consider a problem x, which is
implicitly decomposable into two problems x1, x2, whose concatenated solutions, y1 ⊕ y2, solves
the problem. We obtain that the generation complexity to x, is much higher than the product of
generation complexities for x1 and x2 due to the noise from the context.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 5: Cumulative distribution function for the ratio of generation complexity using composition,
N(P, x), to product of generation complexities for the standalone problems, N(P, x1) · N(P, x2)
(corresponding to the multi-agent generation complexity). Here we explicitly ask the model to
concatenate the solution to two problems, but also expose it to two additional ones that it is not
meant to solve. The x axis denotes values for the ratio of generation numbers required to solve the
problem in the two cases (composition vs multi-agent), the y axis is the percentage of problems in
which the ratio is no larger than this value. As can be seen in most of the cases, composition requires
at least 5 times more samples.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G NUMERICAL ESTIMATION OF ∆ AND σ

To estimate ∆(ϵ,X) we approximate the noise as a Gaussian with mean 0 and try two values stan-
dard deviation σ = 1 and σ = 2, then calculate ∆(ϵ,X) ≈ mean{Xi}[ϵ + (1 − ϵ)eX ]. The values
are presented in figure 6, and match the estimation of ∆ in the range of 0.05 to 0.2 from the above
subsection. Similarly, we estimate σ(ϵ,X). The values are plotted in figure 6, showing typical
values of σ ≈ 1− 2

Figure 6: Numerical Estimation of ∆(ϵ,X) and σ(ϵ,X).

21


	Introduction
	Related Works
	Framework
	Generation Complexity
	Screening in Autoregressive Models
	Effect of noise on decoding

	Results
	Experiments
	Generation Complexity Results
	Exponential Length Dependence of Compositional Hardness
	Experiments on Assumptions

	Discussion
	Proof of Lemma 1
	Proof of theorem 1
	Proof of Variance Bound
	Probability Bound for Noisy Decoding
	Experimental Details
	Experiment on Llama-3-70B-Instruct
	Numerical Estimation of  and 

