
Low Rank Quantization-Aware Training for LLMs

Yelysei Bondarenko 1 Riccardo Del Chiaro 1 Markus Nagel 1

Abstract
In this paper we propose LR-QAT – a lightweight
and memory-efficient QAT algorithm for LLMs.
LR-QAT employs several components to save
memory without sacrificing performance: (a)
low-rank quantization-aware reparameterization;
(b) downcasting operation using fixed-point or
double-packing and (c) checkpointing. Unlike
most related work, our method (i) is inference-
efficient, leading to no additional overhead com-
pared to traditional PTQ; (ii) can be seen as a
general extended pre-training framework, mean-
ing that the resulting model can still be utilized for
any downstream task afterwards; (iii) is orthogo-
nal to most of recent PTQ methods and thus can
be seamlessly combined with them. We apply LR-
QAT to the LLaMA-1/2/3 and Mistral model fami-
lies and validate its effectiveness on several down-
stream tasks. Our method outperforms most of
recent LLM quantization approaches and reaches
the same model performance as full-model QAT
at the fraction of its memory usage. Specifically,
we can train a 7B LLM on a single consumer
grade GPU with 24GB memory. Our source
code is available at https://github.com/
qualcomm-ai-research/LR-QAT.

1. Introduction
In recent years, large language models (LLMs) have
emerged as a powerful tool for a plethora of natural lan-
guage processing tasks. As these models continue to grow
in size and capability, addressing their ever increasing com-
putational and memory demands becomes crucial for prac-
tical deployment, especially when considering resource-
constrained edge devices.

One of the most effective methods to tackle this problem is
neural network quantization, which uses low-bit precision

1Qualcomm AI Research, Qualcomm AI Research is an initiative
of Qualcomm Technologies, Inc. Correspondence to: {ybond,
rdelchia, markusn}@qti.qualcomm.com.

Published at ICML 2024 Workshop on Efficient Systems for Foun-
dation Models, Vienna, Austria. Copyright 2024 by the author(s).

Figure 1: Memory requirements for training with various
QAT techniques on LLaMA-2 7B, assuming batch size 1,
sequence length 1024, r = 32, and BF16 compute data type.
‘Intermediate results’ refer to the results of some intermedi-
ate computations, e.g. after rounding/clipping in (1), which
are saved in memory for the backward pass.

for weight and activation tensors. While recent post-training
quantization (PTQ) methods can help with decreasing the
model size and improving the computational efficiency of
LLMs, they typically lead to subpar performance, especially
in the case of low-bit (≤ 4) quantization. Quantization-
aware training (QAT), conversely, yields significantly better
model performance compared to PTQ. However, due to
extreme model sizes of modern LLMs, using traditional
QAT is very computationally expensive and requires a pro-
hibitively high GPU memory usage, making it impractical.

Inspired by parameter-efficient fine-tuning (PEFT) and low-
rank adaptation (LoRA) literature, we propose Low-Rank
Quantization-Aware Training (LR-QAT) – a lightweight
memory-efficient and inference-efficient QAT algorithm for
LLMs. LR-QAT reduces the memory requirements of train-
ing a 7B LLM from >98GB of GPU memory to <21GB (cf.
Figure 1) without degrading the predictive performance com-
pared to traditional full-model QAT, making it possible to
train such models on a single consumer grade GPU. Unlike
most related work that combines low-rank adaptation with
quantization, our method is also inference-efficient: after
the training is complete, the auxiliary matrices are naturally
absorbed into the quantized weight tensor without loss of
accuracy and no extra overhead at inference time. Addition-
ally, LR-QAT does not relax the quantization constraints and
is therefore applicable for any weight quantization granular-
ity. LR-QAT is positioned as a general extended pre-training
method, as opposed to being strictly a fine-tuning method
– the resulting model is a low-bit general pre-trained LLM,

1

https://github.com/qualcomm-ai-research/LR-QAT
https://github.com/qualcomm-ai-research/LR-QAT

Low Rank Quantization-Aware Training for LLMs

that can be utilized for any task afterwards, including fine-
tuning on specific downstream tasks and combining with
LoRA adapters.

LR-QAT introduces and combines several innovations de-
signed to reduce memory use without sacrificing perfor-
mance: (1) A form of QAT with low-rank reparameteri-
zation, in which we put the low-rank weights in the integer
domain such that they are aware of the quantization grid of
the pre-trained weights and can be seamlessly fused at infer-
ence into a single low-bit integer matrix. (2) A downcasting
operator that represents the frozen pre-trained weights as
low-bit INT-b (b ≤ 4) double-packed into INT8 or as fixed-
point values stored in INT8. (3) Finally, we combine the
proposed quantization formulation with gradient checkpoint-
ing to avoid aggressive memory spikes from storing some of
the intermediate results in memory for the backward pass.

We apply LR-QAT to the LLaMA-2/3 and Mistral model
families and demonstrate its effectiveness on several gen-
eral language modeling datasets and zero-shot evaluation
on some of the common reasoning downstream tasks. Our
method outperforms common PTQ approaches and reaches
the same model performance as full model QAT at the frac-
tion of its memory usage.

2. Method
In this section discuss the components of LR-QAT followed
by a formal definition of LR-QAT. A detailed background
and related work discussion can be found in Appendix A.

QAT with low-rank adapters Let’s recall how traditional
QAT works. Given a linear layer with a weight matrix
W ∈ Rm×k and assuming b-bit symmetric uniform affine
quantization, the quantization is simulated as follows:

Ŵ := s · clip
(⌊

W

s

⌉
, n, p

)
, (1)

where n = −2b−1, p = 2b−1 − 1, weights W are trainable
parameters and the quantization scale s can be either fixed
or also learned. To be able to backpropagate through round-
to-nearest operation in (1), it is common to use straight-
through estimator (STE, Bengio et al. 2013), where it is
assumed that ∂⌊t⌉

∂t = 1. When applied to LLMs, it’s easy
to see that this procedure is very expensive: we have to
learn a comparable number of parameters to those used for
pre-training, leading to excessive memory usage.

To make our approach more practical we freeze the pre-
training weights W (denote W0) and introduce low-rank
adapters A ∈ Rm×r, B ∈ Rr×k, r ≪ min {m, k}. We
have to be careful where exactly those adapters are placed.
After the training is complete, we want A and B to be
seamlessly integrated into a single b-bit integer matrix WZ

without loss of accuracy to facilitate the efficient inference.
To accommodate that, we put the auxiliary matrices inside
the rounding operator as follows

Ŵ := s · clip
(⌊

W0

s
+

α

r
AB

⌉
, n, p

)
, (2)

where we are using STE assumption for the rounding op-
eration to compute the gradients of the loss w.r.t. A, B
and s. We further employ a scaling factor α/r used in
LoRA (Hu et al., 2021) to reduce the need to retune the
hyper-parameters as we vary the rank r. After training
is complete, (2) can be represented as regular fixed point
tensor, Ŵ = s · WZ, without any extra effort or loss of
accuracy and therefore enabling efficient inference without
any extra overhead. Note that this is different to most of the
literature, such as QLoRA (Dettmers et al., 2024), where
adapters are placed outside of the quantization function
(such as y = Ŵx+ABx) and typically stored in higher
precision formats such as BF16.

Downcasting operator The formulation (2) is already
significantly more memory efficient compared to standard
full model QAT (cf. (1)). We don’t need to compute neither
gradients w.r.t. weights W nor the respective first or second-
order momentum terms for Adam-based optimizers, and
only need to do so for the auxiliary matrices A and B, which
is noticeably more affordable provided r ≪ min {m, k}.

Given that the weight matrix W0 is frozen, the next natural
step to further reduce the memory utilization is to store it
in a lower-precision format. One could apply downcasting
of W0 directly in (2), however notice how those weights
are divided by the scale s at every forward pass, which
generally has to be stored in a high-precision format to
guarantee stable training. To simplify further, we propose
the following variant of low-rank QAT:

Ŵ := s · clip
(⌊

W0

s0
+

α

r
AB

⌉
, n, p

)
, (3)

where we use the initial scale s0 instead of learned scale
s inside the rounding operator. Now the entire fraction
W0/s0 is fixed and we can store it in a lower-precision
format. Note that the scale s outside of the clipping operator
can still be learned. Empirically, we found that (3) performs
consistently on par or slightly better compared to (2).

During training the pre-trained weights are represented and
stored as follows

Φ0 := φ

(
W0

s0

)
, (4)

where φ (·) – a downcasting operator that encapsulates a
choice of different numeric formats or other pre-processing
computations. In the simplest form, φ (·) would cast the

2

Low Rank Quantization-Aware Training for LLMs

input to one of pre-existing floating-point formats, such
as FP16, BF16, FP8 etc.

Inspired by traditional fixed point quantization, we also
explore integer representations for φ (·). Specifically,
φ (x) = clip (⌊x⌉ , n, p) corresponds to a standard b-bit
integer quantization and can be stored as INT-b number. We
denote this approach φ = INT-b for brevity. In addition to
that, in case of low-bit quantization (b ≤ 4), which is a pri-
mary focus, two INT-b numbers can be double-packed into
a single INT8 number, leading to further memory savings.
This is helpful as many common deep learning frameworks
like PyTorch, at the time of writing this paper, do not na-
tively support low-bit formats such as INT4.

Using φ = INT-b naturally leads to aggressive memory re-
duction by only keeping the integer part of (clipped) W0/s0.
In our preliminary experiments, we found that this setting,
combined with the standard initialization for A and B used
in (Hu et al., 2021), did not work as well compared to
φ = BF16. This indicates the importance of keeping some
information of the fractional part of W0/s0 and potentially
the need for better initialization of auxiliary matrices.

We address this problem in two distinct ways: We adapt and
experiment with a variant of SVD-based initialization for
low-rank matrices A, B proposed in (Li et al., 2023) before
we apply a downcasting operator to W0/s0, to capture some
of the information of its fractional part.

Another way is to use INT8 storage type, use b bits to repre-
sent the integer part as before, but use the remaining 8− b
bits for storing the approximate fractional part (2 ≤ b ≤ 7).
In other words, we represent Φ0 using fixed-point num-
bers. Specifically, assuming the the rest of the computation
is performed in BF16, we define the downcasting and the
corresponding upcasting operators as follows:

φ(x) = INT8
(⌊
28−b · clip (x, n, p)

⌉)
,

φ−1(y) = BF16(y)/28−b.
(5)

Following common fixed-point notation (Oberstar, 2007),
which uses Qn.m for n integer bits and m fractional bits,
we will refer to (5) as φ = Qb.(8− b). Specifically, in this
work we will be mainly focusing on b ∈ {3, 4}, which
corresponds to Q4.4 and Q3.5, respectively.

Gradient checkpointing Note that both in the original
LoRA paper (Hu et al., 2021) and in the related work like
QLoRA (Dettmers et al., 2024), there is no need to compute
the product AB. Instead, those matrices are multiplied with
the activations x as A (Bx). However, we do compute a
product AB in (3), and in an naive implementation of our
method, this product as well as the results of some of the in-
termediate computations (e.g., after rounding and clipping)
will be automatically kept in memory for the backward pass,

leading to increased memory usage. To prevent this, we
employ gradient checkpointing (Chen et al., 2016) on (3).
In other words, we recompute the quantizer function in the
backward pass, leading to a slight runtime overhead but
avoiding significantly increased memory usage.

LR-QAT Using the components described above, we de-
fine LR-QAT for a single layer with a (pre-trained) weight
matrix W0 as follows

Ŵ := s · clip
(⌊

Φ0 +
α

r
AB

⌉
, n, p

)
, (6)

where s – trainable or frozen quantization scale with the ini-
tial value of s0, A, B – trainable rank r auxiliary matrices,
Φ0 := φ (W0/s0) – frozen representation of the original
pre-trained weights, φ is the downcasting operation. To
avoid excessive memory allocation for the results of inter-
mediate computations in (6) involving the product AB, we
apply checkpointing on Ŵ . After the training is complete,
low-rank adapters are naturally integrated into a single inte-
ger matrix WZ = clip (· · ·) without loss of accuracy. Note,
while we presented our method for symmetric quantization
which is commonly used for weights (Nagel et al., 2021),
it can equally be applied for asymmetric quantization by
adding a zero offset z outside the rounding operation as
shown in (7).

3. Experiments
We assess the effectiveness of LR-QAT by conducting ex-
periments on LLaMA 7B (Touvron et al., 2023a), LLaMA-2
7B/13B (Touvron et al., 2023b), LLaMA-3 8B (AI@Meta,
2024), and Mistral-0.1 7B (Jiang et al., 2023). We focus
here on comparing with related literature for weight-only
quantization and comparing to full-model QAT. Ablation
studies on the impact of rank r, the downcasting operator
φ (·), the initialization of auxiliary matrices A, B as well as
weight-activation quantization are discussed in Appendix B.

Experimental setup We experiment with weight-only and
weight-activation quantization.Our default settings are INT4
/ INT3 per-channel (denoted ‘pc’) and group-wise weight
quantization with a group size of 128 (denoted ‘g128’).
We quantize all linear layers, except the classification head.
Following the previous work (Frantar et al., 2022; Xiao
et al., 2023; Shao et al., 2023; Liu et al., 2023b), we evaluate
quantized models by reporting the WikiText-2 (Merity et al.,
2016) perplexity and zero-shot accuracy on a set of common
sense reasoning tasks including BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), Winogrande (Sakaguchi et al.,
2021), ARC (Clark et al., 2018), and HellaSwag (Zellers
et al., 2019).

We train LR-QAT on a small subset of SlimPajama (Sobol-
eva et al., 2023) and initialize it with round-to-nearest quan-

3

Low Rank Quantization-Aware Training for LLMs

Table 1: Weight-only quantization results for LLaMA and Mistral models. We report WikiText-2 test set perplexity
(lower is better) and average zero-shot accuracy (higher is better). Models marked ‘L1’/‘L2’/‘L3’, and ‘M’ denote LLaMA-
1/2/3 and Mistral, respectively. Numbers marked in bold are SOTA or on par (within 0.05). §Uses asymmetric weight
quantization. *Uses a maximum sequence length of 1024 for evaluation.

Bits Method WikiText-2 Perplexity ↓ Avg. zero-shot accuracy ↑
L1-7B L2-7B L2-13B L3-8B M-7B L1-7B L2-7B L2-13B L3-8B M-7B

FP16 5.68 5.47 4.88 6.14 5.25 69.68 70.47 73.18 74.22 75.69

W4 pc

RTN 6.33 6.14 5.21 7.53 5.91 68.51 68.88 71.73 72.19 73.44
GPTQ§ 6.13 5.83 5.13 - - 64.95 - - - -
AWQ 6.08 6.15 5.12 - - - - - - -
OmniQuant§ 5.86 5.74 5.02 - - - - - - -
LLM-QAT 10.9* - - - - 68.63 - - - -
PEQA (our impl.) 5.86 5.71 5.03 7.51 5.56 68.49 69.23 72.51 72.79 73.73
LR-QAT (ours) 5.84 5.66 5.03 6.78 5.46 68.54 69.95 73.19 73.84 74.44

W3 pc

RTN 12.88 26.73 8.71 34.10 9.49 54.66 43.87 55.01 47.46 64.58
GPTQ§ 8.06 8.37 6.44 - - - - - - -
AWQ 11.88 24.00 10.45 - - - - - - -
OmniQuant§ 6.49 6.58 5.58 - - - - - - -
PEQA (our impl.) 6.56 6.45 5.73 26.20 6.51 65.75 65.44 69.81 51.05 71.02
LR-QAT (ours) 6.27 6.13 5.54 8.12 6.03 66.60 67.66 71.22 70.46 71.87

W4 g128

RTN 6.05 5.78 5.04 6.96 5.49 68.93 69.75 72.94 72.30 75.07
GPTQ§ 5.85 5.61 4.98 - - - - - - -
AWQ 5.81 5.62 4.97 - - - - - - -
OmniQuant§ 5.77 5.58 4.95 - - - - - - -
PEQA (our impl.) 5.75 5.67 5.02 6.89 5.48 69.19 69.64 72.80 72.99 73.34
LR-QAT (ours) 5.75 5.59 4.97 6.57 5.37 69.15 69.88 72.91 73.66 75.28

W3 g128

RTN 7.96 7.61 6.20 15.11 6.77 63.50 63.20 67.60 57.74 69.35
GPTQ§ 6.55 6.29 5.42 - - - - - - -
AWQ 6.46 6.24 5.32 - - - - - - -
OmniQuant§ 6.15 6.03 5.28 - - - - - - -
PEQA (our impl.) 6.22 6.05 5.58 9.64 5.85 66.66 68.10 70.29 67.19 72.21
LR-QAT (ours) 6.17 5.99 5.32 7.74 5.80 66.81 67.98 71.51 70.48 72.41

tization (RTN) for which we set the initial scale s0 based
on minimizing the Lp-norms between quantized and un-
quantized weights. All detailed hyperparameters of our
experiments are in Appendix C.

3.1. Weight-only quantization

For weight-only quantization, we compare LR-QAT with
GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023), Om-
niQuant (Shao et al., 2023), and our implementation of
PEQA (Kim et al., 2024), where we use symmetric weight
quantization and following the same experimental setup and
RTN initialization for a fair comparison. We summarize
our weight-only quantization results in Table 1. As we can
see, in almost all cases LR-QAT outperforms or is on par
with prior weight-only quantization methods across vari-
ous LLM families and quantization settings, including both
per-channel and group-wise quantization. In a few cases,
especially in case of group-wise quantization, our method
did not outperform OmniQuant. However, OmniQuant uses
asymmetric quantization which provides an extra degrees of
freedom compared to symmetric quantization. While this
can improves accuracy it also leads to additional inference

Table 2: A comparison of the proposed method (φ = Q4.4)
with the full-model QAT on LLaMA-2 7B with W4 and W3
per-channel quantization.

Method GPU mem. WikiText-2 ↓ Zero-shot acc. ↑
W4pc W3pc W4pc W3pc

Full-model QAT 98.5 GB 5.76 6.14 68.71 66.91
LR-QAT 20.5 GB 5.66 6.13 69.95 67.66

overhead (Nagel et al., 2021). Additionally, PTQ techniques
like OmniQuant are orthogonal to our method and can be
used as an initialization of LR-QAT.

3.2. Comparison with full model QAT

We compare our method with a vanilla full model
QAT (Esser et al., 2020). For full model QAT, we follow
the same training setup and hyper-parameter tuning as for
our method. As we can see in Table 2, training with LR-
QAT leads to a slightly better predictive performance at a
significantly lower memory usage compared to vanilla QAT.

4

Low Rank Quantization-Aware Training for LLMs

4. Conclusions
In this paper we propose LR-QAT, a lightweight and
memory-efficient QAT algorithm for LLMs which enables
training a 7B LLM on a single consumer grade GPU with
24GB memory. Inspired by PEFT methods, we introduce
a low-rank reparameterization that is aware of the quanti-
zation grid. We further reduce the memory requirements
by introducing a downcasting operator to fixed-point and
applying checkpointing. In almost all cases our method out-
performs common PTQ approaches and reaches the same
model performance as full model QAT at the fraction of its
memory usage.

References
AI@Meta. Llama 3 model card, 2024. URL https:
//github.com/meta-llama/llama3/blob/main/
MODEL_CARD.md.

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-
training 4-bit quantization of convolution networks for rapid-
deployment. arXiv preprint arXiv:1810.05723, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Esti-
mating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432,
2013.

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort,
and Nojun Kwak. Lsq+: Improving low-bit quantization
through learnable offsets and better initialization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2020.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa:
Reasoning about physical commonsense in natural language. In
Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 7432–7439, 2020.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Un-
derstanding and overcoming the challenges of efficient trans-
former quantization. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing,
pages 7947–7969, Online and Punta Cana, Dominican Repub-
lic, November 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.emnlp-main.627. URL https:
//aclanthology.org/2021.emnlp-main.627.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort.
Quantizable transformers: Removing outliers by helping at-
tention heads do nothing. Advances in Neural Information
Processing Systems, 36, 2024.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. Zeroq: A novel zero shot quantiza-
tion framework. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13169–13178,
2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M
De Sa. Quip: 2-bit quantization of large language models
with guarantees. Advances in Neural Information Processing
Systems, 36, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Train-
ing deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-
bit quantization of neural networks for efficient inference. In
ICCV Workshops, pages 3009–3018, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom
Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq:
Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish
Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you
have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettle-
moyer. Gpt3. int8 (): 8-bit matrix multiplication for transform-
ers at scale. In Advances in Neural Information Processing
Systems, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, De-
nis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander
Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-
quantized representation for near-lossless llm weight compres-
sion. arXiv preprint arXiv:2306.03078, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettle-
moyer. Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36, 2024.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathi-
nakumar Appuswamy, and Dharmendra S. Modha. Learned
step size quantization. In International Conference on Learning
Representations (ICLR), 2020.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh.
Gptq: Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony
DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Kyle
McDonell, Niklas Muennighoff, et al. A framework for few-
shot language model evaluation. Version v0. 0.1. Sept, page 8,
2021.

Sylvain Gugger, Lysandre Debu, Thomas Wolf, Philipp Schmid,
Zachary Mueller, and Sourab Mangrulkar. Accelerate:
Training and inference at scale made simple, efficient
and adaptable. https://github.com/huggingface/
accelerate, 2022.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. Lq-lora:
Low-rank plus quantized matrix decomposition for efficient
language model finetuning. arXiv preprint arXiv:2311.12023,
2023.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision.
In International conference on machine learning, pages 1737–
1746. PMLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance
on imagenet classification. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 1026–1034, 2015.

5

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://aclanthology.org/2021.emnlp-main.627
https://aclanthology.org/2021.emnlp-main.627
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

Low Rank Quantization-Aware Training for LLMs

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora:
Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. Quantized neural networks: Training neural
networks with low precision weights and activations. The Jour-
nal of Machine Learning Research, 18(1):6869–6898, 2017.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel
Soudry. Improving post training neural quantization: Layer-
wise calibration and integer programming. arXiv preprint
arXiv:2006.10518, 2020.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 2704–2713, 2018.

Hyesung Jeon, Yulhwa Kim, and Jae-joon Kim. L4q: Parameter
efficient quantization-aware training on large language models
via lora-wise lsq. arXiv preprint arXiv:2402.04902, 2024.

Yongkweon Jeon, Chungman Lee, Kyungphil Park, and Ho-young
Kim. A frustratingly easy post-training quantization scheme
for llms. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 14446–14461,
2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian
Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park,
Kang Min Yoo, Se Jung Kwon, and Dongsoo Lee. Memory-
efficient fine-tuning of compressed large language models via
sub-4-bit integer quantization. Advances in Neural Information
Processing Systems, 36, 2024.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna
Rumshisky. Bert busters: Outlier dimensions that disrupt trans-
formers. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 3392–3405, 2021.

Raghuraman Krishnamoorthi. Quantizing deep convolutional net-
works for efficient inference: A whitepaper. arXiv preprint
arXiv:1806.08342, 2018.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eun-
hyeok Park. Owq: Outlier-aware weight quantization for effi-
cient fine-tuning and inference of large language models. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 13355–13364, 2024.

Jangwhan Lee, Minsoo Kim, Seungcheol Baek, Seok Joong
Hwang, Wonyong Sung, and Jungwook Choi. Enhancing com-
putation efficiency in large language models through weight
and activation quantization. arXiv preprint arXiv:2311.05161,
2023a.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee.
Flexround: Learnable rounding based on element-wise division
for post-training quantization. In International Conference on
Machine Learning, pages 18913–18939. PMLR, 2023b.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Ab-
hishek Thakur, Patrick von Platen, Suraj Patil, Julien Chau-
mond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davi-
son, Mario Sasko, Gunjan Chhablani, Bhavitvya Malik, Simon
Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gug-
ger, Clément Delangue, Théo Matussière, Lysandre Debut, Stas
Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar,
François Lagunas, Alexander Rush, and Thomas Wolf. Datasets:
A community library for natural language processing. In Pro-
ceedings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pages 175–
184, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. URL https:
//aclanthology.org/2021.emnlp-demo.21.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karam-
patziakis, Weizhu Chen, and Tuo Zhao. Loftq: Lora-fine-tuning-
aware quantization for large language models. arXiv preprint
arXiv:2310.08659, 2023.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang,
Fengwei Yu, Wei Wang, and Shi Gu. Brecq: Pushing the limit
of post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang,
and Song Han. Awq: Activation-aware weight quantiza-
tion for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan
Xiao, Chuang Gan, and Song Han. Qserve: W4a8kv4 quan-
tization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei
Cai, and Bohan Zhuang. Qllm: Accurate and efficient low-
bitwidth quantization for large language models. arXiv preprint
arXiv:2310.08041, 2023a.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre
Stock, Yashar Mehdad, Yangyang Shi, Raghuraman Krish-
namoorthi, and Vikas Chandra. Llm-qat: Data-free quanti-
zation aware training for large language models. arXiv preprint
arXiv:2305.17888, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Yan Luo, Yangcheng Gao, Zhao Zhang, Jicong Fan, Haijun Zhang,
and Mingliang Xu. Long-range zero-shot generative deep net-
work quantization. Neural Networks, 166:683–691, 2023.

Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark Grob-
man. Same, same but different: Recovering neural network
quantization error through weight factorization. In International
Conference on Machine Learning, pages 4486–4495. PMLR,
2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard
Socher. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max
Welling. Data-free quantization through weight equalization and
bias correction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1325–1334, 2019.

6

https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21

Low Rank Quantization-Aware Training for LLMs

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos
Louizos, and Tijmen Blankevoort. Up or down? Adaptive
rounding for post-training quantization. In International Con-
ference on Machine Learning (ICML), 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei
Bondarenko, Mart van Baalen, and Blankevoort Tijmen. A
white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Erick L Oberstar. Fixed-point representation & fractional math.
Oberstar Consulting, 9:19, 2007.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Neural Information
Processing Systems (NeuRIPS). 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. Winogrande: An adversarial winograd schema
challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui
Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao, Yu Qiao, and Ping
Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang Han, Lei
Lu, Peiyan Dong, Cheng Lyu, Chih-hsiang Li, Xuehang Guo,
Zhihao Shu, et al. Edgeqat: Entropy and distribution guided
quantization-aware training for the acceleration of lightweight
llms on the edge. arXiv preprint arXiv:2402.10787, 2024.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R
Steeves, Joel Hestness, and Nolan Dey. SlimPajama: A
627B token cleaned and deduplicated version of RedPajama.
https://www.cerebras.net/blog/slimpajama-
a-627b-token-cleaned-and-deduplicated-
version-of-redpajama, June 2023. URL
https://huggingface.co/datasets/cerebras/
SlimPajama-627B.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Mas-
sive activations in large language models. arXiv preprint
arXiv:2402.17762, 2024.

Hanlin Tang, Yifu Sun, Decheng Wu, Kai Liu, Jianchen Zhu, and
Zhanhui Kang. Easyquant: An efficient data-free quantization
algorithm for llms. arXiv preprint arXiv:2403.02775, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,
Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Na-
man Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Am-
jad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya
Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023b.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong,
Shanghang Zhang, Qi Zhang, Fengwei Yu, and Xianglong Liu.
Outlier suppression: Pushing the limit of low-bit transformer
language models. arXiv preprint arXiv:2209.13325, 2022.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Rui-
hao Gong, Jinyang Guo, and Xianglong Liu. Outlier sup-
pression+: Accurate quantization of large language models
by equivalent and optimal shifting and scaling. arXiv preprint
arXiv:2304.09145, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault,
Rémi Louf, Morgan Funtowicz, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the
2020 conference on empirical methods in natural language
processing: system demonstrations, pages 38–45, 2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien De-
mouth, and Song Han. Smoothquant: Accurate and efficient
post-training quantization for large language models. In Inter-
national Conference on Machine Learning, pages 38087–38099.
PMLR, 2023.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang,
Hengheng Zhang, Zhensu Chen, Xiaopeng Zhang, and Qi Tian.
Qa-lora: Quantization-aware low-rank adaptation of large lan-
guage models. arXiv preprint arXiv:2309.14717, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia
Wu, Conglong Li, and Yuxiong He. Zeroquant: Efficient and
affordable post-training quantization for large-scale transform-
ers. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems, volume 35, pages 27168–27183. Curran
Associates, Inc., 2022. URL https://proceedings.
neurips.cc/paper_files/paper/2022/file/
adf7fa39d65e2983d724ff7da57f00ac-Paper-
Conference.pdf.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang,
Yuzhang Shang, Guangyu Sun, Qiang Wu, Jiaxiang Wu, and
Bingzhe Wu. Rptq: Reorder-based post-training quantization
for large language models. arXiv preprint arXiv:2304.01089,
2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and
Yejin Choi. Hellaswag: Can a machine really finish your sen-
tence? arXiv preprint arXiv:1905.07830, 2019.

Cheng Zhang, Jianyi Cheng, George A Constantinides, and Yiren
Zhao. Lqer: Low-rank quantization error reconstruction for
llms. arXiv preprint arXiv:2402.02446, 2024.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru
Zhang. Improving neural network quantization without retrain-
ing using outlier channel splitting. In International conference
on machine learning, pages 7543–7552. PMLR, 2019.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and
Yuheng Zou. Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

7

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf

Low Rank Quantization-Aware Training for LLMs

A. Background and related work
Neural network quantization is one of the most powerful
ways to reduce model footprint, data transfer and compute
requirements. By quantizing a model, high bit-width float-
ing point weights and activations can be represented using
low-bit numbers. On top of that, using low-bit fixed-point
representations, such as INT8, one can further reduce energy
consumption since the fixed-point operations are more effi-
cient than their floating-point counterparts. Quantizing to
8 bits or lower, however, typically introduces quantization
noise in the model, resulting in a potential drop in accuracy.

In this section we provide a brief overview of uniform affine
quantization and a summary of recent methods for LLM
quantization. We will discuss some of the trade-offs of
those techniques. Finally, we touch upon the challenges of
LLM quantization and some of the limitations of current
approaches.

Uniform affine quantization We use the following defi-
nition of the quantization function:

x̂ := q (x; s, z, b) = s ·
(
clip

(⌊x
s

⌉
+ z;n, p

)
︸ ︷︷ ︸

=: xZ

− z
)
, (7)

where n = −2b−1, p = 2b−1 − 1, x denotes the quantizer
input (i.e., network weights or activations), s the higher
precision quantization scale, z the integer zero point, and b
the bitwidth. ⌊·⌉ denotes the round-to-nearest-integer opera-
tor. Quantization parameters s, z can be shared across the
components of x. One can see that such a quantizer approx-
imates an original floating point vector as x ≈ s · (xZ − z),
where each element in xZ is a b-bit integer value. This
quantization scheme is called uniform affine or asymmetric
quantization (Hubara et al., 2017; Krishnamoorthi, 2018;
Zhou et al., 2016) and it is one of the most commonly used
quantization schemes because it allows for efficient imple-
mentation of fixed-point arithmetic. In the case of symmetric
quantization, we restrict the quantization grid to be symmet-
ric around z = 0.

Post-training quantization methods Post-training quan-
tization (PTQ) algorithms take a pre-trained high preci-
sion (FP32 / FP16 / BF16) network and convert it directly
into a fixed-point network without the need for the origi-
nal training pipeline (Banner et al., 2018; Cai et al., 2020;
Choukroun et al., 2019; Hubara et al., 2020; Krishnamoor-
thi, 2018; Li et al., 2021; Meller et al., 2019; Nagel et al.,
2019; 2020; Zhao et al., 2019). These methods are either
data-free or only require a small calibration dataset and are
generally quite easy to use. Having almost no hyperparam-
eter tuning makes them usable via a single API call as a
black-box method to quantize a pre-trained neural network
in a computationally efficient manner.

Post-training quantization of LLMs is a challenging task
due to presence of numerical outliers in weights and ac-
tivations (Bondarenko et al., 2021; 2024; Kovaleva et al.,
2021; Dettmers et al., 2022; Sun et al., 2024). Existing LLM
PTQ methods can be broadly categorized into weights-only
quantization and weight-activation quantization.

Weights-only quantization focuses on converting weights to
low-bit values. For instance, GPTQ (Frantar et al., 2022) em-
ploys second-order information to iteratively round grouped
weights and correct the quantization error in the remaining
groups. SpQR (Dettmers et al., 2023), AWQ (Lin et al.,
2023) and OWQ (Lee et al., 2024) emphasize the impor-
tance of (so-called “salient”) weights that correspond to
high-magnitude activations. Other recent W-only methods
include (Jeon et al., 2023; Lee et al., 2023b; Luo et al., 2023;
Chee et al., 2024).

Weight-activation quantization compresses both weights
and activations. SmoothQuant (Xiao et al., 2023),
LLM.int8() (Dettmers et al., 2022) and Outlier Sup-
pression (Wei et al., 2022) achieve W8A8 quantization by
managing activation outliers. LLM.int8() uses mixed-
precision decomposition, while the other two employ
channel-wise scaling. OmniQuant (Shao et al., 2023) modu-
lates the extreme values of weights by optimizing the clip-
ping threshold and shifts the challenge of quantization from
activations to weights by employing the learnable equiva-
lent transformation. Some of the other recent W&A PTQ
methods are (Lee et al., 2023a; Liu et al., 2023a; Wei et al.,
2023; Yuan et al., 2023; Tang et al., 2024; Yao et al., 2022;
Lin et al., 2024).

Quantization-aware training methods Quantization-
aware training (QAT) methods (Bhalgat et al., 2020; Esser
et al., 2020; Gupta et al., 2015; Jacob et al., 2018; Kr-
ishnamoorthi, 2018) simulate quantization during training,
allowing the model to find more optimal solutions com-
pared to post-training quantization. However, better accura-
cy/perplexity comes at the cost of neural network training,
i.e., longer training times, need for labeled data and hyper-
parameter search.

The excessive training cost and memory usage of traditional
QAT methods make them unsuitable for quantizing modern
LLMs. A few works that apply QAT to LLMs include LLM-
QAT (Liu et al., 2023b) that combine QAT with data-free
knowledge distillation, and EdgeQAT (Shen et al., 2024)
that only considers tiny (sub 100M parameter) language
models.

Low-rank adapters for fine-tuning Low-rank adaptation
(LoRA) (Hu et al., 2021) is a parameter efficient fine-tuning
(PEFT) method that reduces memory requirements. LoRA
freezes the pretrained weight W = W0, and only trains

8

Low Rank Quantization-Aware Training for LLMs

a small set of low-rank trainable parameters, often termed
adapters. Given a linear projection y = Wx with W ∈
Rm×k, LoRA computes

y = Wx+
α

r
ABx, (8)

where A ∈ Rm×r, B ∈ Rr×k, r < min {m, k} – rank,
and α is a scalar that is constant in r. The benefits of
LoRA are that it’s much cheaper and often performs on par
or better than full fine-tuning and also that the fine-tuned
(floating-point) model can be deployed without extra cost
as the low-rank matrices can be fused into the pretrained
weights after fine-tuning (W := W0 + α

rAB).

Naturally, there have been several works that explored the
combination of LoRA and quantization. QLoRA (Dettmers
et al., 2024) quantizes the pretrained weights to 4 bit using
NF4 format and dequantizes them in the forward pass to
further reduce fine-tuning memory footprint. QA-LoRA (Xu
et al., 2023), uses INT4 quantization and introduces group-
wise operators to enable quantization during inference stage.
LoftQ (Li et al., 2023) proposed an iterative SVD-based
procedure for initializing A, B that yields faster fine-tuning
convergence when used together with low-bit quantization.
LQ-LoRA (Guo et al., 2023) further extends initialization
technique from LoftQ to mixed precision and data aware
cases. Other recent works include (Jeon et al., 2024; Zhang
et al., 2024).

Finally, the closest work to ours is PEQA (Kim et al., 2024),
that attempts to combine the benefits of inference-efficiency
of QAT together with memory-efficiency of PEFT methods.
However, their approach is different since they focus on
a task-specific fine-tuning as opposed to being a general
extended pre-trinaing method. In addition to that, PEQA
has significantly less degrees of freedom compared to our
method, leading to a subpar performance.

Motivation PTQ, while generally fast and simple, suffers
from limited performance in low-bit scenarios. Although
QAT methods still perform well in low-bit regimes, their
high training costs and memory usage make them impracti-
cal for LLMs.

LoRA-based methods address memory issues for efficient
fine-tuning, however, in most cases they don’t consider
efficient inference. The adapters A, B are typically stored
in higher precision format such as BF16 and at inference
they dequantize the low-bit integer matrix WZ to the same
data format, resulting in runtime overhead.

Simply quantizing adapters after training will lead to a dif-
ferent quantization grid compared to W , and quantizing
them specifically using the same quantization grid as W
will lead to high error. QA-LoRA is the only work we are
aware of that attempts to fuse auxiliary LoRA weights back

Method Accuracy Memory efficiency Inference efficiency

PTQ ✕ ✓ ✓
(Full-model) QAT ✓ ✕ ✓
LoRA / PEFT ✓ ✓ ✕

LR-QAT (ours) ✓ ✓ ✓

Table 3: A comparison between existing approaches and the
proposed method.

Figure 2: The performance of LR-QAT (φ = Q4.4) de-
pending on the rank r of auxiliary matrices A and B on
LLaMA-2 7B with W4 per-channel quantization. We report
mean and standard deviation over 5 runs with different ran-
dom seeds.

into the frozen WZ. However, their method is designed
to only work with group-wise quantization with high num-
ber of groups (a small group size of 32). In addition to
that, QA-LoRA and most of LoRA-based methods combine
their proposed technique with the task-specific fine-tuning
whereas we propose LR-QAT as an extended pre-training
method.

We are inspired by LoRA-based methods to make QAT more
memory and runtime efficient. In addition to that, our goal
is to design a method that is inference efficient, i.e. where
the low-rank adapters can be fused back into a low-bit in-
teger matrix WZ without any loss of accuracy/perplexity,
yielding PTQ level of inference efficiency. Contrary to QA-
LoRA (Xu et al., 2023), we are not relaxing the quantization
constraints – our method is applicable at any weight quanti-
zation granularity. Finally, we see our method as a general
extended pre-training framework. The resulting model can
afterwards still be used on any task. We summarize different
trade-offs for the discussed techniques in Table 3.

B. Additional results
B.1. The impact of rank r

We investigate the effect of different values of rank r of the
auxiliary matrices A and B and present results in Figure 2.
Increasing the rank from 1 to 32 leads to progressively

9

Low Rank Quantization-Aware Training for LLMs

Table 4: The performance of LR-QAT applied to LLaMA-2 7B depending on the choice of downcasting operator φ(·),
compute data type, and initialization method for low-rank auxiliary matrices. We report WikiText-2 test set perplexity, lower
is better, and average zero-shot accuracy of 6 tasks, higher is better. Numbers marked in bold are the best results.

φ(·) dtype A, B init. WikiText-2 ↓ Zero-shot acc. ↑
W4 pc W3 pc W4 pc W3 pc

FP32 FP32 LoRA 5.69 6.21 69.28 66.62

FP16 FP32 LoRA +0.00 +0.01 −0.13 −0.01
BF16 FP32 LoRA −0.01 +0.01 +0.11 +0.45
Q4.4 / Q3.5 FP32 LoRA −0.01 +0.01 +0.16 +0.31
Q4.4 / Q3.5 BF16 LoRA −0.01 +0.01 +0.15 +0.31
INT-4 / INT-3 FP32 LoRA +0.02 +20.5 −0.04 −22.8
INT-4 / INT-3 FP32 LoftQ (T = 1) +0.28 +0.18 −0.67 +0.26
INT-4 / INT-3 FP32 LoftQ (T = 64) +0.40 +1.37 −1.40 −2.01

slightly better performance, excluding one outlier. The fact
that using r > 32 doesn’t lead to further improvement in
perplexity is likely because of the limited number of training
steps we used for this experiment (103), and more steps
needed for the procedure to fully converge. Interestingly,
a rank r as small as 1 already performs really well. We
hypothesize that this is the case because of the following.
Even though rank (AB) = 1, due to applying a low-rank
approximation inside the rounding and clipping operators
in (6), this can overall leads to a high-rank perturbation
to the original weights Φ0 (in the integer domain). Going
forward, we use r = 32 in all our experiments1.

B.2. The impact of downcasting operator φ (·) and
initialization

We study the effect of several choices of the downcasting
operator and summarize results in Table 4. We can see that
by going from FP32 to BF16, and finally to an 8-bit fixed-
point representation of Φ0, aside from memory savings
we also maintain the same WikiText-2 perplexity and even
slightly improve in terms of zero-shot accuracy. The latter is
likely due to a slight regularization effect caused by the fact
that we discard some of the information in the fractional
part in W0/s0, some of which might be noise. One step
further, however, while φ = INT-b still leads to a good
model performance in the case of 4-bit weight quantization,
it completely breaks for W3.

So far, we initialized matrices A and B following the proce-
dure proposed in LoRA (Hu et al., 2021) where B is initial-
ized to zero, and A is initialized randomly as in (He et al.,
2015). We refer to this initialization scheme as ‘LoRA’. We
hypothesize that a poor performance of φ = INT3 can be
explained by the fact that we lose all the information in the
fractional part of W0/s0 and that without that information

1This amounts to only 1.2% of the total number of parameters for
7B LLaMA model.

it is difficult for low rank approximation to learn. To address
this, we adapt and experiment with a variant of SVD-based
initialization proposed in LoftQ (Li et al., 2023). We see
that using LoftQ initialization with T = 1 step recovers
almost all the predictive performance compared to a fixed-
point representation. Increasing number of LoftQ steps, or
applying it to a 4-bit case did not help, however.

Finally, when using the fixed point representation for Φ0,
we still maintain the same model performance by switching
the compute data type2 from FP32 to BF16, where the latter
is what is commonly used for LLMs.

B.3. Weight-activation quantization

In weight-activation quantization, defaults are INT4
per-channel weight and per-token activation quantiza-
tion (Dettmers et al., 2022). Following OmniQuant (Shao
et al., 2023) we quantize all inputs to matmuls with
exception of the softmax output and additionally quan-
tize the KV-cache as in LLM-QAT (Liu et al., 2023b).
For weight-activation quantization, we compare to RTN,
SmoothQuant (Xiao et al., 2023) and LLM-QAT (Liu et al.,
2023b). Following (Liu et al., 2023b), we compare to them
in several different settings, where the weights, activations
and KV cache values are quantized to different levels (de-
noted as W-A-KV). To compare to the above literature, we
apply LR-QAT to LLaMa-1 7B (Touvron et al., 2023a).

We present our results for weight-activation quantization
applied to LLaMA-1 7B in Table 5. LR-QAT consistently
outperforms the PTQ baselines and is on par or better com-
pared to LLM-QAT. This demonstrates that the proposed
method is readily applicable not only to weight-only quan-
tization but also weight-activation quantization, a setting
that allows for a very efficient inference using fixed-point
arithmetic. Finally, our method can still be combined with

2A data type used for activations, gradients, and frozen parameters.

10

Low Rank Quantization-Aware Training for LLMs

Table 5: Weight and activation quantization results for LLaMA-1 7B. We report WikiText-2 test set perplexity (lower is
better) and zero-shot accuracy of 6 tasks (higher is better). Numbers marked in bold are SOTA. §Uses asymmetric weight
quantization. *Uses a maximum sequence length of 1024 for evaluation.

Bits
(W-A-KV) Method WikiText-2 ↓ Zero-shot accuracy ↑

BoolQ PIQA Winogrande ARC-e ARC-c HellaSwag Avg.

FP16 5.68 75.05 79.16 70.01 72.85 44.80 76.21 69.68

4-8-8

RTN 6.88 71.35 76.66 66.46 66.84 41.55 72.10 65.83
SmoothQuant 13.7* 71.00 76.00 66.00 67.40 42.80 67.80 65.17
LLM-QAT 11.2* 74.60 77.50 67.70 70.20 45.60 73.50 68.18
PEQA (our impl.) 5.89 74.86 78.24 70.01 70.12 42.83 75.14 68.53
LR-QAT (ours) 5.85 73.76 78.51 71.19 71.09 41.81 75.10 68.58

4-8-4

RTN 7.66 68.81 75.46 62.12 62.46 39.51 68.33 62.78
SmoothQuant 163.6* 54.70 55.40 51.50 43.90 27.70 38.90 45.35
LLM-QAT 11.6* 69.50 75.40 64.60 66.00 43.80 69.20 64.75
PEQA (our impl.) 6.15 72.97 77.80 67.72 67.13 40.27 73.35 66.54
LR-QAT (ours) 6.07 73.64 77.91 67.56 69.28 41.30 73.25 67.16

4-4-4

RTN 17.75 50.49 64.25 52.41 48.27 30.12 52.04 49.60
SmoothQuant 25.25 49.10 49.80 48.00 30.40 25.80 27.40 38.42
LLM-QAT - 61.30 51.50 51.90 27.90 23.90 31.10 41.27
LLM-QAT + SQ - 62.40 55.90 50.60 35.50 26.40 47.80 46.43
OS+ - 60.21 62.73 52.96 39.98 30.29 44.39 48.43
OmniQuant§ 11.26 63.51 66.15 53.43 45.20 31.14 56.44 52.65
PEQA (our impl.) 8.60 65.69 72.31 59.83 56.52 34.22 61.79 58.39
LR-QAT (ours) 8.47 67.16 71.76 59.59 58.42 34.73 62.34 59.00

most of the related PTQ methods including OmniQuant
that shift the difficulty of activation quantization to weight
quantization, and lead to even better results.

B.4. Extended results

In this section, we provide additional detailed results.

11

Low Rank Quantization-Aware Training for LLMs

Table 6: A comparison between min-max and the best range setting used for round-to-nearest (RTN) initialization for
LLaMA and Mistral models. We report WikiText-2 test set perplexity (lower is better) and average zero-shot accuracy
(higher is better). Numbers marked in bold are the best results.

Model # Bits RTN init. WikiText-2 ↓ Zero-shot accuracy ↑

LLaMA-1 7B

FP16 5.68 69.68

W4 pc min-max 6.85 66.23
best (L4) 6.33 68.51

W3 pc min-max 2.4e4 36.02
best (L3.5) 12.88 54.66

W4 g128 min-max 6.08 68.96
best (L5) 6.05 68.93

W3 g128 min-max 8.10 62.69
best (L5) 7.95 63.50

LLaMA-2 7B

FP16 5.47 70.47

W4 pc min-max 7.14 66.41
best (L3.5) 6.14 68.88

W3 pc min-max 1.9e4 35.71
best (L3.5) 26.73 43.87

W4 g128 best = min-max 5.78 69.75

W3 g128 min-max 8.22 64.07
best (L4) 7.61 63.20

LLaMA-2 13B

FP16 4.88 73.18

W4 pc min-max 5.40 72.19
best (L3.5) 5.21 71.73

W3 pc min-max 2.3e3 37.85
best (L5) 8.71 55.01

W4 g128 best = min-max 5.04 72.94

W3 g128 min-max 6.14 66.81
best (L5) 6.20 67.60

LLaMA-3 8B

FP16 6.14 74.22

W4 pc min-max 10.53 67.44
best (L3.5) 7.53 72.19

W3 pc min-max 1.6e5 35.78
best (L3.5) 34.10 47.46

W4 g128 min-max 6.99 72.95
best (L4) 6.96 72.30

W3 g128 min-max 29.38 54.54
best (L5) 15.11 57.74

Mistral 7B

FP16 5.25 75.69

W4 pc min-max 6.33 71.84
best (L4) 5.91 73.44

W3 pc min-max 3.2e3 36.78
best (L4) 9.49 64.58

W4 g128 min-max 5.51 74.98
best (L5) 5.49 75.07

W3 g128 min-max 7.22 68.35
best (L5) 6.77 69.35

12

Low Rank Quantization-Aware Training for LLMs

Table 7: LM-eval weight-only quantization results for LLaMA and Mistral models. We report zero-shot accuracy of 6
tasks (higher is better).

Model # Bits Method BoolQ PIQA Winogrande ARC-e ARC-c HellaSwag Avg.

LLaMA-1 7B

FP16 75.05 79.16 70.01 72.85 44.80 76.21 69.68

W4 pc
RTN 73.18 78.78 69.14 71.38 44.37 74.22 68.51
GPTQ 67.70 76.00 66.70 66.90 43.00 69.40 64.95
LLM-QAT 75.50 78.30 69.00 70.00 45.00 74.00 68.63
PEQA (our impl.) 74.71 78.29 70.09 70.33 42.24 75.27 68.49
LR-QAT (ours) 74.13 78.29 70.01 71.21 42.41 75.16 68.54

W3 pc
RTN 58.93 70.40 55.72 55.01 32.17 55.75 54.66
PEQA (our impl.) 72.69 77.15 65.90 68.27 38.91 71.60 65.75
LR-QAT (ours) 73.24 78.18 67.40 67.47 40.53 72.77 66.60

W4 g128
RTN 74.77 78.51 70.64 71.30 43.60 74.74 68.93
PEQA (our impl.) 75.75 79.17 70.17 70.75 43.60 75.71 69.19
LR-QAT (ours) 75.29 78.62 69.61 71.59 44.11 75.67 69.15

W3 g128
RTN 69.48 76.33 64.40 64.44 38.65 67.67 63.50
PEQA (our impl.) 71.65 78.24 68.51 68.18 40.10 73.30 66.66
LR-QAT (ours) 72.84 78.02 67.40 68.52 41.04 73.04 66.81

LLaMA-2 7B

FP16 77.74 79.11 69.14 74.58 46.25 75.98 70.47

W4 pc
RTN 76.36 78.07 68.19 71.21 44.80 74.65 68.88
PEQA (our impl.) 77.49 78.24 69.61 70.96 43.52 75.54 69.23
LR-QAT (ours) 77.43 78.45 69.69 73.15 45.48 75.51 69.95

W3 pc
RTN 46.27 60.28 54.85 38.05 23.29 40.47 43.87
PEQA (our impl.) 71.62 76.82 66.14 65.66 39.76 72.63 65.44
LR-QAT (ours) 74.43 77.15 68.03 69.95 43.09 73.29 67.66

W4 g128
RTN 76.76 78.18 69.77 72.60 45.73 75.43 69.75
PEQA (our impl.) 76.88 78.89 69.85 72.18 44.11 75.95 69.64
LR-QAT (ours) 76.73 78.62 70.48 72.85 44.97 75.62 69.88

W3 g128
RTN 66.42 75.57 65.19 64.90 38.14 68.96 63.20
PEQA (our impl.) 75.38 77.97 68.59 70.62 42.32 73.74 68.10
LR-QAT (ours) 73.30 78.07 67.72 71.46 43.77 73.53 67.98

LLaMA-2 13B

FP16 80.55 80.52 72.22 77.44 48.98 79.38 73.18

W4 pc
RTN 79.30 79.71 70.01 75.51 48.89 76.96 71.73
PEQA (our impl.) 78.99 80.14 71.27 76.43 48.98 79.24 72.51
LR-QAT (ours) 80.15 80.09 72.06 77.65 49.91 79.28 73.19

W3 pc
RTN 55.05 71.06 54.22 56.19 32.25 61.27 55.01
PEQA (our impl.) 74.28 78.67 69.06 74.87 45.99 76.00 69.81
LR-QAT (ours) 78.62 79.49 72.61 73.99 45.56 77.05 71.22

W4 g128
RTN 81.10 79.82 72.38 76.73 49.06 78.52 72.94
PEQA (our impl.) 80.28 80.63 71.74 76.14 48.38 79.62 72.80
LR-QAT (ours) 80.73 80.30 71.74 76.14 49.06 79.51 72.91

W3 g128
RTN 74.65 76.93 69.14 70.16 42.66 72.06 67.60
PEQA (our impl.) 78.56 78.73 69.85 73.61 44.28 76.69 70.29
LR-QAT (ours) 79.79 79.60 70.64 74.24 46.76 78.00 71.51

LLaMA-3 8B

FP16 81.44 80.79 72.85 77.74 53.33 79.16 74.22

W4 pc
RTN 79.02 78.56 72.85 75.97 49.32 77.44 72.19
PEQA (our impl.) 79.57 78.67 72.93 77.19 51.11 77.25 72.79
LR-QAT (ours) 81.62 79.98 72.85 78.32 52.05 78.19 73.84

W3 pc
RTN 58.65 61.75 56.04 39.60 23.81 44.91 47.46
PEQA (our impl.) 63.18 64.74 57.62 43.39 26.88 50.48 51.05
LR-QAT (ours) 77.46 78.51 69.85 74.83 47.35 74.73 70.46

W4 g128
RTN 79.48 79.27 73.56 75.08 48.81 77.61 72.30
PEQA (our impl.) 80.98 80.14 72.61 76.18 49.57 78.45 72.99
LR-QAT (ours) 80.40 80.90 73.48 77.44 51.11 78.60 73.66

W3 g128
RTN 65.47 68.39 65.19 54.00 33.45 59.96 57.74
PEQA (our impl.) 72.26 76.06 67.80 69.02 46.08 71.89 67.19
LR-QAT (ours) 72.97 79.38 71.67 74.37 49.06 75.44 70.48

Mistral 7B

FP16 83.58 82.10 73.88 79.59 53.92 81.07 75.69

W4 pc
RTN 81.22 80.63 72.53 76.77 50.09 79.41 73.44
PEQA (our impl.) 81.80 81.12 72.61 77.23 50.17 79.43 73.73
LR-QAT (ours) 81.99 81.28 73.56 78.20 51.02 80.57 74.44

W3 pc
RTN 68.13 77.64 63.93 63.93 41.13 72.73 64.58
PEQA (our impl.) 80.03 80.09 69.93 72.90 45.82 77.32 71.02
LR-QAT (ours) 81.62 80.09 70.96 74.75 46.08 77.71 71.87

W4 g128
RTN 84.16 81.77 74.43 77.95 51.71 80.42 75.07
PEQA (our impl.) 80.89 81.72 73.80 75.42 48.46 79.76 73.34
LR-QAT (ours) 83.55 81.61 74.51 78.28 52.90 80.84 75.28

W3 g128
RTN 78.44 79.60 69.14 71.17 43.00 74.75 69.35
PEQA (our impl.) 81.99 81.18 69.61 74.92 47.18 78.37 72.21
LR-QAT (ours) 81.71 80.90 70.48 75.08 47.78 78.50 72.41

13

Low Rank Quantization-Aware Training for LLMs

C. Experimental details
In this section, we list the details related to hyperparameters
and other settings used in our experiments. If not stated
otherwise, the standard hyperparameters that we use are the
one shown in Table 8.

Hyperparameter Value / Search space

Optimizer AdamW
Learning rate for A, B {10−5, 10−4, 10−3, 10−2}
Learning rate for quantization scale (s) {0*, 10−5}
Learning rate schedule for A, B linear (with warmup)
Learning rate schedule for quantization scale (s) linear (with warmup)
Weight decay for A, B 0
Weight decay for quantization scale (s) 0
Adam (β1, β2) (0.9, 0.95)
Training steps 104

Warmup steps 10% of Training steps
Batch size 32
Maximum sequence length (during training) 1024
L2-norm gradient clipping (maximum norm) 1.0
α in (6) 1.0

Table 8: Common hyperparameters used for experiments.
*Is equivalent to freezing the quantization scale obtained
after initial range estimation (s = s0).

Quantization We experiment with both weight-only and
weight-activation quantization. The default settings are INT4
/ INT3 per-channel (denoted ‘pc’) and group-wise weight
quantization with a group size of 128 (denoted ‘g128’).
We always use symmetric uniform affine quantization. We
quantize all linear layers, except the classification head.
RMSNorm and embedding layers are always kept at full
precision. In weight-activation quantization, defaults are
INT4 per-channel weight and per-token activation quantiza-
tion (Dettmers et al., 2022). Following OmniQuant (Shao
et al., 2023) we quantize all inputs to matmuls with excep-
tion of the softmax output and additionally quantize the
KV-cache as in LLM-QAT (Liu et al., 2023b).

Libraries We implement our method in PyTorch (Paszke
et al., 2019) and use training and evaluation pipelines from
HuggingFace libraries (Gugger et al., 2022; Lhoest et al.,
2021; Wolf et al., 2020). For zero-shot evaluation, we use
the LM Evaluation Harness framework (Gao et al., 2021).

Datasets and training To optimize the learnable param-
eters, we use AdamW optimizer (Loshchilov and Hutter,
2017) with weight decay set to zero, (β1, β2) = (0.9, 0.95)
and linear learning rate warm up over the first 10% steps,
following by a linear decay to zero by the end of training.
We use a separate maximum learning rate for quantization
scales and for low-rank adapters, which are tuned depending
on the experiment.

We apply our methods to all linear layers in the attention
blocks (both in self-attention and in the feed-forward net-
work). We only train low-rank auxiliary matrices A, B and

the quantization parameters s. Specifically, we freeze em-
bedding layers, the final classification heads and RMSNorm
parameters.

We train on a small subset of SlimPajama (Soboleva et al.,
2023), which is a close open-source replica of the dataset
used for pre-training LLaMA models. We select hyper-
parameters based on the perplexity of a small subset of
Wikipedia validation set3 (512 sequences). For weight-only
and weight-activation quantization results, including the
comparison with full-model QAT in Section 3.2, we train
for 104 steps. For ablation studies in Sections B.1 and B.2,
we use shorter training of 103 steps. Since the full-model
QAT experiment requires more than 80GB of GPU memory,
we used CPU optimizer state offloading to be able to run the
experiment on an NVidia A100 GPU with 80GB VRAM.
The rest of the hyperparameters and their search spaces are
listed in Table 8.

PTQ initialization We compare with vanilla round-to-
nearest quantization (RTN), where we explore several
choices of range setting and report the best one based
on Wikipedia validation set perplexity, and also use that
as initialization for our method. Specifically, we ex-
perimented with min-max range estimator and with Lp-
norm range estimator with the following values for p:
{2.0, 2.4, 3.0, 3.5, 4.0, 5.0}.

Computational Resources Each experiment for which
we reported results, was executed on a single NVidia A100
GPU equipped with 80GB of VRAM. LLaMA-2 7B and
13B experiments needed respectively around 3 and 5 days
for 10k training steps experiments. Mistral 7B and LLaMA-
3 8B needed around 1.6 days for 5k training steps experi-
ments. For obtaining all the results in the paper, including
the ablations, we needed 107 GPU days (A100). Including
preliminary experiments that did not make it in the final
paper and hyperparameter turning we estimate the total
compute costs of this research to approximately 500 GPU
days.

3Specifically, we use the English subset of Wiki40b, https:
//huggingface.co/datasets/wiki40b, that contains
cleaned-up text of English Wikipedia and training/validation
splits.

14

https://huggingface.co/datasets/wiki40b
https://huggingface.co/datasets/wiki40b

