
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SAMPLE COMPLEXITY AND REPRESENTATION ABILITY OF TEST-TIME SCALING PARADIGMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Test-time scaling paradigms have significantly advanced the capabilities of large language models (LLMs) on complex tasks. Despite their empirical success, theoretical understanding of the sample efficiency of various test-time strategies—such as self-consistency, best-of- n , and self-correction—remains limited. In this work, we first establish a separation result between two repeated sampling strategies: self-consistency requires $\Theta(1/\Delta^2)$ samples to produce the correct answer, while best-of- n only needs $\Theta(1/\Delta)$, where $\Delta < 1$ denotes the probability gap between the correct and second most likely answers. Next, we present an expressiveness result for the self-correction approach with verifier feedback: it enables Transformers to simulate online learning over a pool of experts at test time. Therefore, a single Transformer architecture can provably solve multiple tasks without prior knowledge of the specific task associated with a user query, extending the representation theory of Transformers from single-task to multi-task settings. Finally, we empirically validate our theoretical results, demonstrating the practical effectiveness of self-correction methods.

1 INTRODUCTION

Over the past several years, Large Language Models (LLMs) have witnessed remarkable advances, achieving unprecedented performance across a broad spectrum of application (Brown et al., 2020; Bubeck et al., 2023; Chowdhery et al., 2022). Driven by the paradigm of chain-of-thought (CoT) reasoning (Wei et al., 2022b), the outputs of LLMs have not only grown in length but also in structural complexity. In particular, recent studies have demonstrated that scaling up computational resources during test time significantly enhances the problem-solving capabilities LLMs—a phenomenon termed as the test-time scaling law (Brown et al., 2024; Wu et al., 2024; Guo et al., 2025; OpenAI, 2024b). Various methods have been proposed to effectively utilize additional test-time compute, including self-consistency (Wang et al., 2023; Brown et al., 2024; Nguyen et al., 2024; Chen et al., 2024b), best-of- n sampling (Irvine et al., 2023; Song et al., 2024a; Munkhbat et al., 2025; Qiu et al., 2024; Sessa et al., 2024), Monte Carlo Tree Search (MCTS) (Tian et al., 2024; Zhang et al., 2024d; Gao et al., 2024; Wan et al., 2024; Chen et al., 2024a; Lin et al., 2025), and self-correction (Madaan et al., 2023; Welleck et al., 2023; Chen et al., 2024d; Gou et al., 2024; Zhang et al., 2024c; Kumar et al., 2024). Powered by test-time scaling paradigms, several reasoning models, such as OpenAI-o1 (OpenAI, 2024a) and Deepseek-R1 (DeepSeek-AI, 2025), have achieved remarkable success in many complex tasks (Cobbe et al., 2021; Hendrycks et al., 2021; Shi et al., 2024; codeforce, 2025; Huang et al., 2024b; Zhang et al., 2024a).

Despite these empirical advancements, the theoretical foundations of test-time scaling remain underdeveloped. While recent progress has been made in understanding the expressiveness and learnability of chain-of-thought reasoning (Feng et al., 2023; Merrill & Sabharwal, 2023; Li et al., 2024b; Joshi et al., 2025), two fundamental challenges remain unresolved:

1. Many test-time scaling approaches rely on repeated sampling from the same LLM to select a final answer (Wang et al., 2023; Brown et al., 2024; Irvine et al., 2023; Song et al., 2024a; Nguyen et al., 2024; Chen et al., 2024b; Wu et al., 2025b; Kimi, 2025; Munkhbat et al., 2025; Qiu et al., 2024; Sessa et al., 2024). Two dominant paradigms are: self-consistency, which marginalizes reasoning paths and selects the most frequent answer; and best-of- n ,

which chooses the answer with the highest reward score. However, a rigorous understanding of their sample complexities is lacking. This raises the first question:

What is the sample complexity of repeated sampling methods, particularly self-consistency and best-of- n ?

2. Theoretical analyses of Transformers' expressiveness have largely focused on their ability to represent individual tasks (Yun et al., 2020; Bhattacharya et al., 2020a;b; Dehghani et al., 2018; Pérez et al., 2021; Edelman et al., 2022; Elhage et al., 2021; Likhoshesterov et al., 2021; Akyürek et al., 2022; Zhao et al., 2023; Yao et al., 2021; Anil et al., 2022; Barak et al., 2022; Garg et al., 2022; Von Oswald et al., 2022; Bai et al., 2023; Olsson et al., 2022; Li et al., 2023; Garg et al., 2022; Akyürek et al., 2022; Bai et al., 2023; Von Oswald et al., 2023; Liu et al., 2022; Wei et al., 2022a; Mei & Wu, 2023; Lin et al., 2023), while the ability of Transformers to express multiple tasks at the same has been under-studied. In contrast, practical LLMs are expected to perform across diverse tasks at inference time—often using more tokens and computation than theory accounts for (Chen et al., 2024c). This gap in theory limits our understanding of test-time scaling approaches that go beyond CoT, such as self-correction (Madaan et al., 2023; Welleck et al., 2023; Chen et al., 2024d; Gou et al., 2024; Zhang et al., 2024c; Kumar et al., 2024) which uses reward information. As a result, we are motivated to pose the second central question:

How can we characterize the expressiveness under test-time scaling methods, especially in multi-task settings?

Our Contributions. This work addresses the challenges outlined above through two key contributions. First, we analyze the sample complexity of two prominent decoding strategies: self-consistency and best-of- n , in terms of the *probability gap* between the most likely (correct) and the second most likely model outputs. Our results reveal a fundamental separation in sample efficiency that highlights the advantage of the best-of- n approach.

Proposition 1.1 (Informal statement of Theorem 3.1 and Theorem 3.2). *Let $\Delta \in (0, 1)$ denote the difference between the Transformer’s probability of producing the correct answer and the probability of the second most likely answer. Then, self-consistency requires $\Theta(1/\Delta^2)$ samples to reliably produce the correct answer; whereas best-of- n achieves the same with only $\Theta(1/\Delta)$ samples.*

Second, we investigate Transformer’s capacity for self-correction. We demonstrate that a Transformer equipped with verifier feedback at test time can implement online learning algorithms over a pool of expert models, enabling it to adaptively identify the most suitable expert and ultimately generate a response that maximizes the reward. This process is illustrated in Figure 1: given the user query (e.g. solve the PDE $\frac{1}{c(x)^2} \frac{\partial^2 u}{\partial t^2} - \Delta u = 0$ in $\Omega \times (0, T)$ with some boundary conditions), the Transformer f autoregressively generates a sequence of actions (e.g., selecting the sixth expert) and responses (e.g., constructing and applying a spectral method solver), conditioned on the history of previous action-response pairs and their corresponding rewards (e.g., solution error). Notably, this process relies solely on the Transformer f —whose architecture encapsulates the capabilities of all experts—and the reward function, distinguishing it from traditional routing algorithms that explicitly query experts. As such, this mechanism allows a single Transformer architecture to solve multiple tasks without prior knowledge of the specific task associated with a user query.

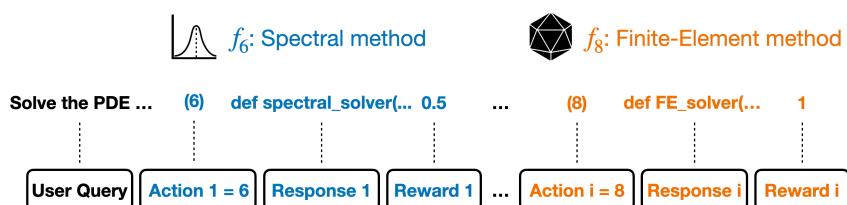


Figure 1: An illustration of test-time online learning (figure adapted from (Li et al., 2025)), where the Transformer progressively learns that finite-element method solves the partial differential equation with higher accuracy.

108 **Proposition 1.2** (Informal statement of Theorem 4.7). *There exists a generic way to construct a
109 wider transformer f from any Transformer-based expert models f_1, \dots, f_E such that, when provided
110 with reward-based feedback, f can generate a sequence of responses where the t -th response has
111 regret $o(1)$.*

112 Proposition 1.2 has two key implications. First, it demonstrates that a Transformer can express
113 multiple tasks within a single architecture, extending beyond prior theoretical results that focus on
114 single-task expressiveness. Importantly, the construction is task-agnostic and independent of the
115 specific expert Transformers used, making both the result and the underlying techniques of inde-
116 pendent theoretical interest. Second, Proposition 1.2 reveals a fundamental distinction between
117 self-correction and repeated-sampling paradigms. While repeated-sampling methods generate iden-
118 tically distributed responses across attempts, self-correction *provably* allows the model to update
119 its attempts based on verifier feedback, thereby increasing the probability of producing the correct
120 answer as inference progresses. We further validate this results through controlled experiments.

121 **2 PRELIMINARIES**

122 **Transformers.** In this work, we consider attention-only Transformers defined as follows.

123 **Definition 2.1** (Transformer). We define a Transformer model over vocabulary \mathcal{V} as a tuple

$$(\theta, \text{pe}, (\mathbf{K}_h^{(l)}, \mathbf{Q}_h^{(l)}, \mathbf{V}_h^{(l)})_{h \in [H], l \in [L]}, \vartheta, \mathcal{V})$$

124 where $\theta : \mathcal{V} \rightarrow \mathbb{R}^d$ is the tokenizer, $\text{pe} : \mathbb{R}^d \times \mathcal{V}^\omega \rightarrow \mathbb{R}^d$ is a position encoder, $\mathbf{K}_h^{(l)}, \mathbf{Q}_h^{(l)}, \mathbf{V}_h^{(l)} \in$
125 $\mathbb{R}^{d \times d}$ are the key, query, value matrices over L layers and H heads each layer, and ϑ is the output
126 feature. The computation of a Transformer rolls out as follows:

127 1. For each $i = 1, \dots, n$, $X_i^{(1)} = \text{pe}(\theta(v_i); v_1, \dots, v_i)$.

128 2. For each $l = 1, \dots, L$, compute each $X_i^{(l+1)}$ for $i = 1, \dots, n$ by

$$X_i^{(l+1)} = \sum_{h=1}^H \sum_{j=1}^i \frac{\exp(s_h^{(l)}(X_i, X_j))}{Z_h^{(l)}} \cdot \mathbf{V}_h^{(l)} X_j^{(l)}, \quad (1)$$

129 where $s_h^{(l)}(\cdot)$ is the attention score defined by $s_h^{(l)}(X_i, X_j) = (\mathbf{Q}_h^{(l)} X_i^{(l)})^\top (\mathbf{K}_h^{(l)} X_j^{(l)})$ and
130 $Z_h^{(l)} = \sum_{j=1}^i \exp(s_h^{(l)}(X_i, X_j))$ is the normalizing constant.

131 3. The output probability is given by

$$p_f(y|v_1, \dots, v_n) = \text{Softmax}(\vartheta(y)^\top X_n^{(L)}), \quad y \in \mathcal{V}.$$

132 In particular, we assume the softmax attention layer has precision ϵ : if two attention scores s_1, s_2
133 satisfy $e^{s_1} < \epsilon \cdot e^{s_2}$, then e^{s_1} is treated as zero in the attention computation of Eq. (1).

134 While classical positional encoders is solely dependent on the index of the current token (i.e. we
135 may write $\text{pe}(\theta(v_i); v_1, \dots, v_i) = \text{pe}(\theta(v_i); i)$), recent advance (He et al., 2024; Zhang et al., 2024b;
136 Golovneva et al., 2024) has extended this notion to incorporate set membership information of pre-
137 ceding tokens. This generalization proves crucial for enhancing the long-context capability required
138 for effective self-correction. Motivated by this insight, we introduce the following notion of a gen-
139 eralized position encoder.

140 **Definition 2.2** (Generalized Position Encoder). We say that $\text{pe} : \mathbb{R}^d \times \mathcal{V}^\omega \rightarrow \mathbb{R}^d$ is a generalized
141 position encoder w.r.t. a partition $\mathcal{V}_1, \dots, \mathcal{V}_K$ of \mathcal{V} if it maps an input feature in \mathbb{R}^d and a token
142 sequence (of arbitrary length) v_1, \dots, v_i to a vector in \mathbb{R}^d , so that it only depends on the input
143 feature and the membership of each v_i in the sets $\mathcal{V}_1, \dots, \mathcal{V}_K$, i.e.

$$\text{pe}(\theta(v_i); v_1, \dots, v_i) = \text{pe}\left(\theta(v_i); (\mathbb{1}(v_j \in \mathcal{V}_k))_{j \in [i], k \in [K]}\right).$$

144 **Test-time scaling.** In this work, we study the following three strategies for test-time scaling.

162 1. *Self-consistency* samples n i.i.d. responses from the language model and chooses the most
 163 consistent answer, while marginalizing over the reasoning paths.
 164

165 2. *Best-of- n* samples n i.i.d. responses from the language model and chooses the answer with
 166 the highest score given by the reward model.
 167

168 3. In the *Self-Correction* paradigm, the Transformer autonomously generates a sequence of n
 169 responses, each conditioned on the previous responses and their respective reward scores.
 170

171 **3 SEPARATION BETWEEN SELF-CONSISTENCY AND BEST-OF-N**

172 In this section, we study the sample complexity of self-consistency and best-of- n . Let q denote the
 173 user query (e.g. a math problem) and \mathcal{O} denote the answer space; then for each answer $o \in \mathcal{O}$ we
 174 define $p(o)$ as the marginalized probability of generating o over all possible reasoning paths
 175

$$p(o) = \sum_{\text{reasoning path}} p_f(\text{reasoning path}, o|q)$$

178 where p_f denotes the probability distribution of Transformer f .

179 To understand the sample complexity, we focus on the dependence on the following probability gap:
 180

$$\Delta := p(o^*) - \max_{o \in \mathcal{O}, o \neq o^*} p(o)$$

182 where o^* denotes the correct answer¹. If $\Delta \leq 0$, then self-consistency fails to find the correct
 183 answer with high probability and the separation becomes trivial. Therefore, we focus on the setting
 184 where $\Delta > 0$ (i.e., the most likely answer is correct), which is also considered in prior theoretical
 185 work (Huang et al., 2024a). Under this setting, we may assume without loss of generality that
 186 the reward function r is maximized (only) at the correct answer, because p itself is such a reward
 187 function satisfying this condition. Note that since $p(o)$ is marginalized over reasoning paths, $\Delta > 0$
 188 does not imply that the correct answer can be derived easily from greedy decoding.

189 **Theorem 3.1** (Sample Complexity of Self-Consistency). *When $n \geq \frac{2 \log(1/\delta)}{\Delta^2}$, self-consistency with
 190 n i.i.d. samples is able to produce the correct answer with probability at least $1 - \delta$; When $n \leq \frac{1}{\Delta^2}$,
 191 there exists a hard instance where self-consistency with n i.i.d. samples fails to produce the correct
 192 answer with constant probability.*

193 **Theorem 3.2** (Sample Complexity of Best-of- n). *When $n \geq \frac{2 \log(1/\delta)}{\Delta}$, best-of- n with n i.i.d. sam-
 194 ples is able to produce the correct answer with probability at least $1 - \delta$; When $n \leq \frac{1}{\Delta}$, there exists a
 195 hard instance where best-of- n with n i.i.d. samples fails to produce the correct answer with constant
 196 probability.*

198 By providing matching (up to logarithmic factors) upper and lower bounds on the number of samples,
 199 the above results establishes the separation between self-consistency and best-of- n . While self-
 200 consistency requires $\Theta(1/\Delta^2)$ samples to produce the correct answer, best-of- n shows advantage
 201 by only requiring $\Theta(1/\Delta)$ samples. Therefore, this theory corroborates the empirical findings that
 202 best-of- n generally leads to better problem solving accuracy on reasoning tasks compared with self-
 203 consistency (Sun et al., 2024; Wu et al., 2025a).

205 **4 EXPRESSIVENESS UNDER SELF-CORRECTION**

207 A key distinction between self-correction and the repeated sampling strategies discussed in the pre-
 208 vious section lies in the dependence structure of the generated responses: unlike repeated sampling,
 209 the outputs produced by self-correction are not i.i.d.. Consequently, to analyze the sample efficiency
 210 of self-correction, we must first address a fundamental question: can a large language model (LLM),
 211 through self-correction, increase the likelihood of generating the correct answer? At its core, this
 212 question is one of expressiveness—whether the Transformer architecture’s representation capacity
 213 is sufficient to support such improvement.

214
 215 ¹If there are multiple correct answers, we can let o^* to denote the set, and our results continue to hold in
 this setting.

In this section, we take a first step toward analyzing the expressiveness of Transformers under the self-correction paradigm. Unlike prior work that focuses on expressiveness in the context of a single task, we study what we call *general-purpose expressiveness*: the ability to solve a broad range of tasks. To this end, we introduce the concept of a General-Purpose Transformer—a construction that maps any collection of task-specific Transformers (experts) into a single unified Transformer.

Definition 4.1 (General-Purpose Transformer). We say that ϕ is a General-Purpose Transformer of type (t_1, t_2) if it maps any set of Transformers with hidden size d and depth L into another ‘unified’ Transformer with hidden size $t_1 \cdot d + t_2$ and depth $L + O(1)$.

A general-purpose Transformer provides a principled framework for constructing more powerful Transformer architectures by composing simpler, task-specific components. This meta-architecture enables a single model to solve multiple tasks at inference time, representing a significant advancement in our theoretical understanding of the expressive power of modern machine learning systems. Our goal is to investigate the general-purpose expressiveness of self-correction paradigms through the lens of general-purpose Transformers: specifically, how a Transformer can adaptively solve different tasks during inference without prior knowledge of the task identity.

4.1 GENERAL-PURPOSE EXPRESSIVENESS

In this section, we present two auxiliary results that serve as building blocks for constructing general-purpose Transformers capable of solving multiple tasks. These results may also be of independent interest beyond expressiveness of self-correction.

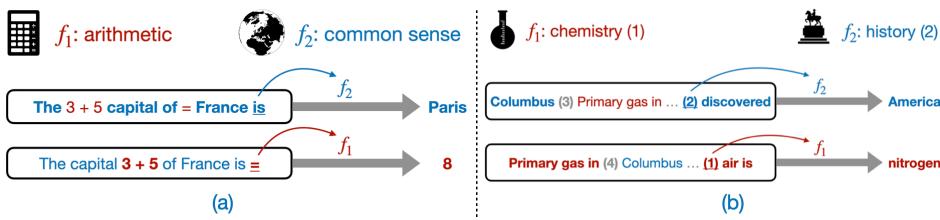


Figure 2: (a): Illustration of Proposition 4.2. In the first query, f_2 is called to solve the common sense problem by attending to only blue tokens. In the second query, f_1 is called to solve the arithmetic problem by attending to only red tokens. (b): Illustration of Proposition 4.4. In the first query, f_2 is called to solve the history problem by attending to only blue tokens. In the second query, f_1 is called to solve the chemistry problem by attending to only red tokens. Importantly, these function calls occur implicitly within the internal computation of the unified Transformer architecture.

The first result addresses the setting in which multiple Transformers operate over distinct vocabularies, with each vocabulary corresponding to a specific task. The objective is to construct a unified Transformer that uses the final token in the input sequence to infer which task to perform, and subsequently solves the task by attending only to the task-relevant tokens.

Proposition 4.2 (General-purpose Expressiveness over Different Token Spaces). *For any $H, L, K, N_{\max} \in \mathbb{Z}_+$, $\mathcal{V}_i \cap \mathcal{V}_j = \emptyset$ ($\forall i \neq j \in \{0\} \cup [K]$), there exists a general-purpose Transformer ϕ of type $(O(K), O(\log N_{\max}))$ such that for any Transformers $f_k = (\theta, \text{pe}, (\mathbf{K}_{k;h}^{(l)}, \mathbf{Q}_{k;h}^{(l)}, \mathbf{V}_{k;h}^{(l)}))_{h \in [H], l \in [L]}, \vartheta, \mathcal{V}_k$ for $k \in [K]$, the Transformer $\tilde{f} = \phi(f_1, \dots, f_K)$ satisfies the following property: for any token sequence $v = v_1 \dots v_n$ such that $n \leq N_{\max}$ and there exists one $v_{i_0} \in \mathcal{V}_0$, we have*

$$p_{\tilde{f}}(\cdot | v) = p_{f_{\kappa}}(\cdot | u)$$

where κ is the task indicated by the last token: i.e., $v_n \in \mathcal{V}_{\kappa}$, and $u = v_{i_1} \dots v_{i_m}$, where $\{i_1 < \dots < i_m\} = \{i : v_i \in \mathcal{V}_{\kappa}\}$, is the sequence of tokens relevant to task κ .

Remark 4.3. The existence of v_{i_0} which does not belong to any $\{\mathcal{V}_i\}_{i \in [K]}$ serves the technical purpose of inducing attention sink of all irrelevant experts to v_{i_0} . It may be achieved by assuming the user query always ends with the special token $\langle \text{eos} \rangle$.

The following result considers a more challenging scenario in which multiple Transformers operate across different tasks but share a common vocabulary space. A set of indicator tokens, denoted by

270 Ω , is used to specify the intended task. The objective is to determine which task to execute based
 271 on the most recent indicator token. It then proceeds to solve the task by attending exclusively to the
 272 task-relevant tokens appearing before the first indicator token and after the last indicator token in the
 273 input sequence.

274 **Proposition 4.4** (Multi-Task Representation over the Same Token Space). *For any*
 275 $H, L, K, N_{\max} \in \mathbb{Z}_+$, *token spaces* $\Omega \cap \mathcal{V} = \emptyset$, *there exists a general-purpose*
 276 *Transformer* ϕ *of type* $(O(K), O(\log N_{\max}))$ *such that for any Transformers* $f_k =$
 277 $(\theta, \text{pe}, (\mathbf{K}_{k;h}^{(l)}, \mathbf{Q}_{k;h}^{(l)}, \mathbf{V}_{k;h}^{(l)})_{h \in [H], l \in [L]}, \vartheta, \mathcal{V})$, $k \in [K]$ *over* \mathcal{V} , *the Transformer* $\tilde{f} = \phi(f_1, \dots, f_K)$
 278 *satisfies the following property: for any token sequence* $v = v_1 \dots v_n$ *such that*

$$279 \quad \{ \xi_1 < \dots < \xi_m \} = \{ j : v_j \in \Omega \}, \xi_m < n \leq N_{\max}$$

280 *then we have*

$$282 \quad p_{\tilde{f}}(\cdot | v) = p_{f_{\kappa}}(\cdot | u) \quad (2)$$

283 *where* $u = v_1 \dots v_{\xi_1-1} v_{\xi_m+1} \dots v_n$ *is the token sequence obtained by omitting tokens from position*
 284 ξ_1 *to* ξ_m , *and* κ *is the task indicated by token* v_{ξ_m} .

285 **Remark 4.5.** *We observe that in both results above, reducing the type parameters is generally not*
 286 *feasible. The dependence on K arises from the need to compute features for all K experts cor-*
 287 *responding to the user query. Since the model lacks prior knowledge of the task, it must encode*
 288 *all task-relevant information to preserve the ability to invoke any expert at inference time. The*
 289 *$\log(N_{\max})$ scaling stems from the positional encoding: in order to construct N_{\max} nearly orthogo-*
 290 *nal vectors, the positional embedding must have dimension at least $\log(N_{\max})$.*

292 4.2 GENERAL-PURPOSE EXPRESSIVENESS OF TRANSFORMERS WITH SELF-CORRECTION

294 In this section we state the main result that establishes general-purpose expressiveness of Transform-
 295 ers with self-correction. We rely on the following notion of regret-minimization Transformer, which
 296 expresses the single task of finding the most rewardable action.

297 **Definition 4.6** (Regret-Minimization Transformer). We say that a Transformer f achieves sim-
 298 ple regret $\text{reg}(\cdot)$ over reward function r and action space \mathcal{A} , if for any $T \in \mathbb{Z}_+$, we have
 299 $\max_{a^* \in \mathcal{A}} r(a^*) - \mathbb{E}[r(a_T)] \leq \text{reg}(T)$ where a_1, \dots, a_T are generated in the following way:

$$300 \quad a_t \sim p_f(\cdot | a_1, r_1, \dots, a_{t-1}, r_{t-1}), \forall t = 1, \dots, T,$$

$$301 \quad r_t = r(a_t), \forall t = 1, \dots, T.$$

303 Essentially, the goal of a regret-minimization Transformer is to learn from a reward oracle and ult-
 304 imately recommend an action that is near-optimal, which is related to a concept commonly referred to
 305 as simple regret in the bandit literature (Even-Dar et al., 2006; Carpentier & Valko, 2015; Jamieson
 306 et al., 2014). To achieve this, the Transformer may implement strategies such as mirror descent,
 307 upper confidence bounds, or search-based algorithms, depending on the problem structure. As these
 308 procedures rely only on basic arithmetic operations, such Transformers can be constructed by apply-
 309 ing the universal approximation capabilities of Transformers (Yun et al., 2020; Luo et al., 2022; Feng
 310 et al., 2023; Li et al., 2024b): For example, Lin et al. (2023) provide constructions to approximate
 311 upper confidence bounds and Thompson sampling algorithms with regret $O(\sqrt{T})$. Consequently,
 312 their construction is not the primary focus of this work.

313 The following theorem establishes the existence of a general-purpose Transformer that can simulate
 314 the behavior of a set of expert Transformers (not necessarily over the same token space) through
 315 self-correction. Specifically, it shows that such a unified Transformer can, at inference time, identify
 316 and invoke the appropriate expert to solve any task that the original experts can solve. The self-
 317 correction protocol is described in Algorithm 1, wherein the unified Transformer autoregressively
 318 generates actions and responses, after which the verifier is queried to obtain reward signals. Through
 319 this process of trial and error, the model effectively “learns” at inference time, using the verifier to
 320 minimize regret and adaptively select the correct expert.

321 **Theorem 4.7** (Regret Minimization via Self-Correction). *For any* $H, L, K, N_{\max} \in \mathbb{Z}_+$, *token*
 322 *spaces* $\mathcal{V}_0, \mathcal{V}_1, \dots, \mathcal{V}_K, \mathcal{A} (|\mathcal{A}| = K)$ *such that* $\mathcal{V}_0, \mathcal{V} = (\cup_{k=1}^K \mathcal{V}_k)$, *and* \mathcal{A} *are disjoint, and reward*
 323 *function* r , *there exists a general-purpose Transformer* ϕ *of type* $(O(K), O(\log N_{\max}))$ *such that*
given any set of Transformers denoted as follows,

324 **Algorithm 1** Self-correction with verifier

325

326 1: **procedure** GENERATION(q) $\triangleright q = q_1 \dots q_{n_0}$ denotes the user query.

327 2: prompt $\leftarrow q$

328 3: **for** $t = 1, \dots, T$ **do**

329 4: $a^{(t)} \sim p_{\tilde{f}}(\cdot \mid \text{prompt})$ $\triangleright a^{(t)}$ designates which expert to use in t -th iteration

330 5: prompt $\leftarrow \text{prompt}|a^{(t)}$ \triangleright Update the prompt autoregressively, $|$ represents token concatenation.

331 6: **for** $i = 1, \dots$ **do**

332 7: $u_i^{(t)} \sim p_{\tilde{f}}(\cdot \mid \text{prompt})$ \triangleright Generate t -th response autoregressively

333 8: prompt $\leftarrow \text{prompt}|u_i^{(t)}$ \triangleright Update the prompt autoregressively

334 9: **if** $u_i^{(t)} = \text{EOS}$ **then**

335 10: **Break**

336 11: $r^{(t)} \leftarrow r(q, u^{(t)}), \text{prompt} \leftarrow \text{prompt}|r^{(t)}$ \triangleright Query verifier to obtain reward of t -th response

12: **Return**

- ***K* expert Transformers:** $f_k = (\theta, \text{pe}, (\mathbf{K}_{k;h}^{(l)}, \mathbf{Q}_{k;h}^{(l)}, \mathbf{V}_{k;h}^{(l)})_{h \in [H], l \in [L]}, \vartheta, \mathcal{V}_k)$ for $k \in [K]$, such that one of the expert f_{k^*} achieves λ -suboptimal reward:

$$\mathbb{E}_{u \sim f_{k^*}(\cdot|q)}[r(q, u)] \geq \max_{u^* \in \mathcal{V}^\omega} r(q, u^*) - \lambda$$

- **Regret-Minimization Transformer:** $f_0 = (\theta, \text{pe}, \mathbf{K}_{0;h}^{(l)}, \mathbf{Q}_{0;h}^{(l)}, \mathbf{V}_{0;h}^{(l)})_{h \in [H], l \in [L]}, \vartheta, \mathcal{V}_0 \cup \mathcal{A}$ that implements a bandit algorithm over the reward function r_0 and action space \mathcal{A} with simple regret $\text{reg}(t)$, where $r_0(a) = \mathbb{E}_{u \sim f_a(\cdot|q)}[r(q, u)]$ denotes the average reward of responses generated by the a -th expert,

348 then the Transformer $\tilde{f} = \phi(f_0, f_1, \dots, f_K)$ satisfies the following property: for any prompt $v =$
 349 $v_1 \dots v_n$, if the response sequence $u^{(1)}, \dots, u^{(T)}$ generated by the protocol in Algorithm 1 has total
 350 length $\leq N_{\max}$, then we have

$$\max_{u^* \in \mathcal{V}^\omega} r(q, u^*) - \mathbb{E}[r(q, u^{(T)})] \leq \lambda + \text{reg}(T)$$

Remark 4.8. While the general-purpose Transformer ϕ can be applied to construct the brutal-force Transformer \tilde{f} that simply tries every expert, we note that the generality of Definition 4.6 allows us to construct more powerful Transformers beyond brutal search. Leveraging the structures in the problem and the expert pool, it is entirely possible to identify the correct expert using $\ll K$ trials (Russo & Van Roy, 2018; Foster et al., 2021).

As a consequence of Theorem 4.7, we obtain a Transformer architecture that can provably produce a final answer that nearly maximizes the reward. This means that the unified transformer can solve K distinct tasks at inference time, without requiring prior knowledge of which task the user query pertains to. Notably, the construction of such an architecture is *general-purpose*, in that it is independent of the specific tasks, reward functions, or expert policies. To the best of our knowledge, this constitutes the first theoretical result of its kind in the study of Transformer architectures. Furthermore, our theory aligns with the empirical finding that LLMs are able to progressively optimize outcome rewards during test-time (Qu et al., 2025; Song et al., 2025; Team, 2025; Monea et al., 2024).

5 EXPERIMENTS

370 In this section, we conduct synthetic experiments to show that Transformers can self-correct with
371 verifier feedback.

5.1 EXPRESSIVENESS OF SELF-CORRECTION

375 Data generation. We aim to construct a test problem with complex prompts such that correctly
376 solving the problem in the single-term generation is challenging. In this case, self-correction can
377 play a critical role if Transformers have such capacities. Specifically, in our synthetic problem, the
prompt is the concatenation of the following two components:

378 • **Instruction:** A 3-SAT problem, e.g.,
 379 $(\sim x_3 \vee \sim x_1 \vee \sim x_2) \wedge (\sim x_1 \vee \sim x_3 \vee x_2) \wedge (\sim x_4 \vee x_2 \vee \sim x_3) \wedge \dots$
 380 • **Data:** A string composed of characters from the set {a, b}.

383 The ground truth target is defined as follows: If the 3-SAT problem in the *instruction* is satisfiable,
 384 the model should *copy* the string in the *data* part in the output; otherwise, the model should *reverse*
 385 the string in the output. In our experiment, we construct datasets using 3-SAT problems with 4
 386 variables and 20 clauses. The lengths of the data strings are set to 5. We generate 10000 instances
 387 for training and 512 instances for evaluation. In the training set, we control the ratio of satisfiable
 388 and unsatisfiable 3-SAT instructions to 9:1, while in the test set, the ratio is set to 1:1. This label
 389 imbalance ensures that models fail to answer the question correctly in the first attempt and thus elicit
 390 the self-correction behavior.

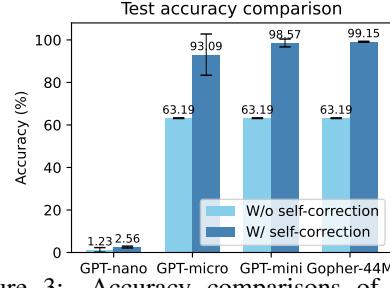
391 **Models and training configuration.** We train a class of Transformer models of various sizes:
 392 {GPT-nano, GPT-micro, GPT-mini, Gopher-44M} with the Adam optimizer Kingma & Ba (2015)
 393 for 5 epochs. More implementation details can be found in Appendix B.

394 **Results.** Test set accuracy across different inference settings is shown in Figure 3. We note that
 395 model performance plateaus at 63.19% when there is no self-correction at test time, with no improvement
 396 from increased model size. By contrast, when models are equipped with verifier signals to
 397 enable self-correction, test accuracy improves substantially, demonstrating the efficacy of this mechanism.
 398 Crucially, larger models – such as GPT-mini and Gopher-44M – achieve near-perfect accuracy
 399 under self-correction, suggesting that sufficiently expressive Transformers are capable of
 400 implementing effective self-correction strategies. This empirical result supports our theoretical findings.

409 5.2 EVALUATION OF SAMPLE COMPLEXITY

410 **Dataset.** We conduct experiments on the AIME 2024 & 2025 datasets (Mathematical Association
 411 of America, 2025), which serve as a real-world benchmark for evaluating mathematical reasoning
 412 tasks. These datasets allow us to measure not only the raw accuracy of different large language
 413 models (LLMs), but also the impact of verification-based strategies on sample efficiency.

414 **Model configuration.** We consider recent LLMs, including Qwen3-1.7B, Qwen3-4B (Yang
 415 et al., 2025), and Llama-3.2-3B-Instruct (Dubey et al., 2024), as candidate models. In
 416 addition, Qwen3-32B is employed as an LLM verifier. This setup enables us to compare standard
 417 decoding strategies (self-consistency) with verification-based methods (best-of and self-correction).



418 Figure 3: Accuracy comparisons of different models with/without self-correction at test time.

422 Model \ Method	423 Self-consistency (64 samples)	424 Best-of- <i>n</i> (4 samples)	425 Self-correction (4 samples)
426 Qwen3-1.7B	58.33%	59.68%	79.29%
427 Qwen3-4B	78.33%	80.58%	81.19%
428 Llama-3.2-3B-Instruct	1.67%	4.84%	24.52%

429 Table 1: Accuracy comparison of self-consistency, best-of-*n*, and self-correction methods on AIME
 430 24 & 25 datasets.

431 **Results.** We compare the accuracy of self-consistency, best-of-*n*, and self-correction under different sample sizes. Notably, as summarized in Table 1, best-of with only 4 samples consistently

432 outperforms self-consistency with 64 samples, confirming the predicted gap in sample complexity.
433 Furthermore, self-correction with verifiers achieves strong performance, highlighting the ability of
434 LLMs to leverage verifier feedback effectively. These results show a notable sample complexity
435 gap between Self-consistency and Best-of- n and confirm that modern Transformer models are suf-
436 ficiently expressive to implement self-correction mechanisms when combined with verifiers, thus
437 validating our theoretical results in Section 3 and 4.

438

439 6 RELATED WORKS

440

441 **Theories of Transformers and Large Language Models.** The success of Transformers and
442 LLMs has motivated the study on their expressiveness. Existing research has shown that Transfor-
443 mers can implement simple functions such as sparse linear functions, two-layer neural networks, and
444 decision trees (Garg et al., 2022), gradient descent (Akyürek et al., 2022; Bai et al., 2023; Von Os-
445 wald et al., 2023), automata (Liu et al., 2022; Zhao et al., 2023), Dyck languages (Bhattamishra et al.,
446 2020a; Yao et al., 2021), Turing machines (Dehghani et al., 2018; Bhattamishra et al., 2020b; Za-
447 heer et al., 2020; Pérez et al., 2021; Wei et al., 2022a), variational inference (Mei & Wu, 2023), and
448 bandit algorithms (Lin et al., 2023). Yun et al. (2020); Luo et al. (2022); Alberti et al. (2023); Petrov
449 et al. (2024) establish universal approximation results under various settings. Edelman et al. (2022);
450 Elhage et al. (2021); Li et al. (2021); Likhoshevstov et al. (2021) study representational capabilities
451 and properties of self-attention, the core component in Transformers. Feng et al. (2023); Li et al.
452 (2024b) study the expressiveness of auto-regressive Transformers with chain-of-thought. Edelman
453 et al. (2022); Li et al. (2024a); Botta et al. (2025) studies the sample complexity of Transformers. Re-
454 cently, a growing body of work has begun to explore the theoretical foundations of self-improvement
455 in large language models (LLMs). Song et al. (2024b) introduces the generation-verification gap as
456 a key quantity governing scaling behavior. Huang et al. (2024a) proposes a progressive sharpening
457 framework in which the policy gradually shifts toward more confident responses. Setlur et al. (2025)
458 draws on reinforcement learning theory to formally establish the advantages of verifier-based meth-
459 ods. In contrast to these works, our results provide explicit sample complexity rates and tangible
460 representation architectures, enabling a more concrete understanding of the fundamental capabilities
and limitations of test-time scaling paradigms.

461 **Test-time scaling.** Recent research has established the test-time scaling law of LLMs, illuminating
462 a new scaling axis beyond training-time scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022).
463 Existing approaches of scaling up test-time compute of LLMs can be broadly classified into two
464 categories: (1) applying test-time algorithms (aka inference-time algorithms) during LLM decoding
465 (Brown et al., 2024; Wu et al., 2025a; Snell et al., 2025); and (2) explicitly training LLMs to output
466 long chain-of-thought traces (Guo et al., 2025; Kimi, 2025; OpenAI, 2024b; Yang et al., 2025).
467 Many recent works focus on understanding and improving the effectiveness of test-time scaling
468 empirically: Chen et al. (2024c); Aggarwal & Welleck (2025); Cuadron et al. (2025); Wang et al.
469 (2025) study under-thinking, over-thinking, and length control in LLM reasoning. Chen et al. (2025)
470 proposes to integrate self-verification and self-correction into sampling. Qu et al. (2025) analyze
471 optimizing test-time compute by introducing a meta reinforcement learning formulation. Setlur
472 et al. (2025) demonstrate that verification/RL is important for optimal test-time scaling. Zhang et al.
473 (2025) provide an extensive review of the test-time scaling landscape. In contrast, our work focuses
474 on theoretical analyses of test-time scaling. In addition, our work provides theoretical explanation
475 of In-Context Reinforcement Learning (Song et al., 2025; Team, 2025; Monea et al., 2024).

476

477 7 DISCUSSIONS

478

479 Our investigation reveals a fundamental separation in sample complexity between self-consistency
480 and best-of- n , providing theoretical support for the empirically observed superiority of the latter
481 method. Furthermore, by introducing the framework of *general-purpose expressiveness*, we con-
482 struct generic Transformer architectures capable of emulating online learning algorithms at test time.
483 This capability enables a single model to provably solve multiple tasks without task-specific adap-
484 tation, thus extending our understanding of expressiveness to multi-task settings. Our experiments
485 validate the theoretical separation and confirms that it requires additional model capacities for Trans-
486 former to implement self-correction.

486 REFERENCES

487

488 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
489 reinforcement learning. In *arXiv*, 2025. URL <https://arxiv.org/abs/2503.04697>.

490 Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-
491 case regret bounds. *Advances in neural information processing systems*, 30, 2017.

492 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
493 rithm is in-context learning? investigations with linear models. *arXiv preprint arXiv:2211.15661*,
494 2022.

495 Silas Alberti, Niclas Dern, Laura Thesing, and Gitta Kutyniok. Sumformer: Universal approx-
496 imation for efficient transformers. In Timothy Doster, Tegan Emerson, Henry Kvinge, Nina
497 Miolane, Mathilde Papillon, Bastian Rieck, and Sophia Sanborn (eds.), *Proceedings of 2nd An-
498 nual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML)*, volume
499 221 of *Proceedings of Machine Learning Research*, pp. 72–86. PMLR, 28 Jul 2023. URL
500 <https://proceedings.mlr.press/v221/alberti23a.html>.

501 Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
502 brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
503 in large language models. *arXiv preprint arXiv:2207.04901*, 2022.

504 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
505 able in-context learning with in-context algorithm selection. *arXiv preprint arXiv:2306.04637*,
506 2023.

507 Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
508 progress in deep learning: Sgd learns parities near the computational limit. *Advances in
509 Neural Information Processing Systems*, 35:21750–21764, 2022.

510 Satwik Bhattacharya, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
511 to recognize formal languages. In *Proceedings of the 2020 Conference on Empirical Methods in
512 Natural Language Processing (EMNLP)*, pp. 7096–7116, 2020a.

513 Satwik Bhattacharya, Arkil Patel, and Navin Goyal. On the computational power of transformers
514 and its implications in sequence modeling. In *Proceedings of the 24th Conference on Compu-
515 tational Natural Language Learning*, pp. 455–475, 2020b.

516 Edoardo Botta, Yuchen Li, Aashay Mehta, Jordan T Ash, Cyril Zhang, and Andrej Risteski. On
517 the query complexity of verifier-assisted language generation. *arXiv preprint arXiv:2502.12123*,
518 2025.

519 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
520 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
521 *arXiv preprint arXiv:2407.21787*, 2024.

522 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
523 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
524 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
525 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
526 teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCand-
527 dish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
528 learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-
529 vances in Neural Information Processing Systems*, volume 33, pp. 1877–1901. Curran Asso-
530 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.

531 Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
532 Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
533 Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*, 2023.

534 Alexandra Carpentier and Michal Valko. Simple regret for infinitely many armed bandits. In *Inter-
535 national Conference on Machine Learning*, pp. 1133–1141. PMLR, 2015.

540 Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: Process supervi-
541 sion without process. In *The Thirty-eighth Annual Conference on Neural Information Processing*
542 *Systems*, 2024a. URL <https://openreview.net/forum?id=VaXnxQ3UKo>.

543

544 Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, and Sercan Ö Arik. Sets:
545 Leveraging self-verification and self-correction for improved test-time scaling. *arXiv preprint*
546 *arXiv:2501.19306*, 2025.

547

548 Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
549 James Zou. Are more LLM calls all you need? towards the scaling properties of com-
550 pound AI systems. In *Conference on Neural Information Processing Systems*, 2024b. URL
551 <https://openreview.net/forum?id=m5106RRlgx>.

552

553 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
554 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
555 of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024c.

556

557 Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
558 to self-debug. In *International Conference on Learning Representations*, 2024d. URL <https://openreview.net/forum?id=KuPixIqPiq>.

559

560 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
561 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
562 Scaling language modeling with pathways. *arXiv preprint arXiv:2204.02311*, 2022.

563

564 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
565 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
566 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

567

568 codeforce. Codeforces, 2025. URL <https://codeforces.com/>.

569

570 Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
571 Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examining
572 the reasoning-action dilemma in agentic tasks. *arXiv preprint arXiv:2502.08235*, 2025.

573

574 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
575 In *arXiv*, 2025. URL <https://arxiv.org/abs/2501.12948>.

576

577 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
578 transformers. *arXiv preprint arXiv:1807.03819*, 2018.

579

580 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
581 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
582 *arXiv e-prints*, pp. arXiv–2407, 2024.

583

584 Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
585 creation in self-attention mechanisms. In *International Conference on Machine Learning*, pp.
586 5793–5831. PMLR, 2022.

587

588 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
589 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
590 transformer circuits. *Transformer Circuits Thread*, 1:1, 2021.

591

592 Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
593 stopping conditions for the multi-armed bandit and reinforcement learning problems. *Journal of
594 machine learning research*, 7(6), 2006.

595

596 Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
597 the mystery behind chain of thought: a theoretical perspective. *Advances in Neural Information
598 Processing Systems*, 36:70757–70798, 2023.

599

600 Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
601 interactive decision making. *arXiv preprint arXiv:2112.13487*, 2021.

594 Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and
595 Lijie Wen. Interpretable contrastive monte carlo tree search reasoning. In *arXiv*, 2024. URL
596 <https://arxiv.org/abs/2410.01707>.
597

598 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
599 in-context? a case study of simple function classes. *Advances in Neural Information Processing
600 Systems*, 35:30583–30598, 2022.

601 Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. Contextual position en-
602 coding: Learning to count what’s important. *arXiv preprint arXiv:2405.18719*, 2024.
603

604 Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
605 CRITIC: Large language models can self-correct with tool-interactive critiquing. In *International
606 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Sx038qxjek>.
607

608 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
609 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
610 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

611 Zhenyu He, Guhao Feng, Shengjie Luo, Kai Yang, Liwei Wang, Jingjing Xu, Zhi Zhang, Hongxia
612 Yang, and Di He. Two stones hit one bird: Bilevel positional encoding for better length extrapola-
613 tion. *arXiv preprint arXiv:2401.16421*, 2024.
614

615 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
616 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
617 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2021.
618 URL <https://openreview.net/forum?id=7Bywt2mQsCe>.
619

620 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
621 Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
622 nigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
623 Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and
624 Laurent Sifre. An empirical analysis of compute-optimal large language model training. In
625 Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neu-
626 ral Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=iBBcRUL0APR>.
627

628 Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
629 dan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
630 mechanism. *arXiv preprint arXiv:2412.01951*, 2024a.
631

632 Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan,
633 Lyumanshan Ye, Ethan Chern, Yixin Ye, Yikai Zhang, Yuqing Yang, Ting Wu, Binjie Wang,
634 Shichao Sun, Yang Xiao, Yiyuan Li, Fan Zhou, Steffi Chern, Yiwei Qin, Yan Ma, Jiadi Su,
635 Yixiu Liu, Yuxiang Zheng, Shaoting Zhang, Dahua Lin, Yu Qiao, and Pengfei Liu. Olympi-
636 carena: Benchmarking multi-discipline cognitive reasoning for superintelligent AI. In *Confer-
637 ence on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024b. URL
<https://openreview.net/forum?id=ayF8beKYQy>.
638

639 Robert Irvine, Douglas Boubert, Vyas Raina, Adian Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei
640 Korshuk, Zongyi Liu, Fritz Cremer, Valentin Assassi, Christie-Carol Beauchamp, Xiaoding Lu,
641 Thomas Rialan, and William Beauchamp. Rewarding chatbots for real-world engagement with
642 millions of users. In *arXiv*, 2023. URL <https://arxiv.org/abs/2303.06135>.
643

644 Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lilucb: An optimal ex-
645 ploration algorithm for multi-armed bandits. In *Conference on Learning Theory*, pp. 423–439.
646 PMLR, 2014.
647

Nirmit Joshi, Gal Vardi, Adam Block, Surbhi Goel, Zhiyuan Li, Theodor Misiakiewicz, and
Nathan Srebro. A theory of learning with autoregressive chain of thought. *arXiv preprint
arXiv:2503.07932*, 2025.

648 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
649 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
650 models. *arXiv preprint arXiv:2001.08361*, 2020.

651

652 Kimi. Kimi k1.5: Scaling reinforcement learning with llms. In *arXiv*, 2025. URL <https://arxiv.org/abs/2501.12599>.

653

654 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR (Poster)*,
655 2015.

656

657 Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
658 Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
659 reinforcement learning. *arXiv preprint arXiv:2409.12917*, 2024.

660

661 Shanda Li, Xiangning Chen, Di He, and Cho-Jui Hsieh. Can vision transformers perform convolution-
662 tion? *arXiv preprint arXiv:2111.01353*, 2021.

663

664 Shanda Li, Tanya Marwah, Junhong Shen, Weiwei Sun, Andrej Risteski, Yiming Yang, and Ameet
665 Talwalkar. Codepde: An inference framework for llm-driven pde solver generation. *arXiv preprint
arXiv:2505.08783*, 2025.

666

667 Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
668 weight shifting for softmax regression. *arXiv preprint arXiv:2304.13276*, 2023.

669

670 Yuchen Li, Alexandre Kirchmeyer, Aashay Mehta, Yilong Qin, Boris Dadachev, Kishore Papineni,
671 Sanjiv Kumar, and Andrej Risteski. Promises and pitfalls of generative masked language model-
672 ing: theoretical framework and practical guidelines. *arXiv preprint arXiv:2407.21046*, 2024a.

673

674 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
675 solve inherently serial problems. In *The Twelfth International Conference on Learning Represen-
676 tations*, 2024b. URL <https://openreview.net/forum?id=3EWTEy9MTM>.

677

678 Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of
679 self-attention matrices. *arXiv preprint arXiv:2106.03764*, 2021.

680

681 Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context rein-
682 force-
683 learning via supervised pretraining. *arXiv preprint arXiv:2310.08566*, 2023.

684

685 Qingwen Lin, Boyan Xu, Zijian Li, Zhifeng Hao, Keli Zhang, and Ruichu Cai. Leveraging con-
686 strained monte carlo tree search to generate reliable long chain-of-thought for mathematical rea-
687 soning. In *arXiv*, 2025. URL <https://arxiv.org/abs/2502.11169>.

688

689 Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
690 learn shortcuts to automata. *arXiv preprint arXiv:2210.10749*, 2022.

691

692 Shengjie Luo, Shanda Li, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. Your transformer
693 may not be as powerful as you expect. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
694 Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=NQFFNdsoGD>.

695

696 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
697 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
698 Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
699 Iterative refinement with self-feedback. In *Thirty-seventh Conference on Neural Information Pro-
700 cessing Systems*, 2023. URL <https://openreview.net/forum?id=S37h0erQLB>.

701

702 Mathematical Association of America. American invitational mathematics examination. <https://maa.org/maa-invitational-competitions>, 2025.

703

704 Song Mei and Yuchen Wu. Deep networks as denoising algorithms: Sample-efficient learning of
705 diffusion models in high-dimensional graphical models. *arXiv preprint arXiv:2309.11420*, 2023.

706

707 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
708 *arXiv preprint arXiv:2310.07923*, 2023.

702 Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context bandit
703 reinforcement learners. *arXiv preprint arXiv:2410.05362*, 2024.
704

705 Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
706 training elicits concise reasoning in large language models. In *arXiv*, 2025. URL <https://arxiv.org/abs/2502.20122>.
707

708 Alex Nguyen, Dheeraj Mekala, Chengyu Dong, and Jingbo Shang. When is the consistent prediction
709 likely to be a correct prediction? In *arXiv*, 2024. URL <https://arxiv.org/abs/2407.05778>.
710

711 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
712 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
713 heads. *arXiv preprint arXiv:2209.11895*, 2022.
714

715 OpenAI. Openai o1 system card. In *arXiv*, 2024a. URL <https://arxiv.org/abs/2412.16720>.
716

717 OpenAI. Openai o3-mini, 2024b. URL <https://openai.com/index/openai-o3-mini/>.
718

719 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
720 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
721 high-performance deep learning library. *Advances in neural information processing systems*, 32:
722 8026–8037, 2019.
723

724 Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. *Journal of Ma-
725 chine Learning Research*, 22(75):1–35, 2021.
726

727 Aleksandar Petrov, Philip HS Torr, and Adel Bibi. Prompting a pretrained transformer can be a uni-
728 versal approximator. In *Proceedings of the 41st International Conference on Machine Learning*,
729 pp. 40523–40550, 2024.
730

731 Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang, Yue
732 Wu, and Mengdi Wang. Treebon: Enhancing inference-time alignment with speculative tree-
733 search and best-of-n sampling. *arXiv preprint arXiv:2410.16033*, 2024.
734

735 Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
736 Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
737 tuning. *arXiv preprint arXiv:2503.07572*, 2025.
738

739 Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
740 *Operations Research*, 66(1):230–252, 2018.
741

742 Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexan-
743 dre Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, Sertan Girgin, Piotr
744 Stanczyk, Andrea Michi, Danila Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn,
745 Matt Hoffman, Nikola Momchev, and Olivier Bachem. Bond: Aligning llms with best-of-n distil-
746 lation. In *arXiv*, 2024. URL <https://arxiv.org/abs/2407.14622>.
747

748 Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
749 without verification or rl is suboptimal. *arXiv preprint arXiv:2502.12118*, 2025.
750

751 Ben Shi, Michael Tang, Karthik R Narasimhan, and Shunyu Yao. Can language models solve
752 olympiad programming? In *Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=kGa4fMtP91>.
753

754 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
755 optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth Interna-
756 tional Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4FWAwZtd2n>.
757

756 Kefan Song, Amir Moeini, Peng Wang, Lei Gong, Rohan Chandra, Yanjun Qi, and Shang-
757 tong Zhang. Reward is enough: Llms are in-context reinforcement learners. *arXiv preprint*
758 *arXiv:2506.06303*, 2025.

759 Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
760 Evaluation of llms should not ignore non-determinism. In *arXiv*, 2024a. URL <https://arxiv.org/abs/2407.10457>.

763 Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
764 the gap: Examining the self-improvement capabilities of large language models. *arXiv preprint*
765 *arXiv:2412.02674*, 2024b.

766 Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
767 Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. In *The Thirty-
768 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=qwgfh2fTtN>.

771 Tooliense Team. Crux: Autonomous mathematical research through hierarchical multi-agent orches-
772 tration, 2025. URL <https://github.com/tooliense/crux>. IC-RL Implementation
773 with Self-Evolve Mechanism.

774 Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, and Dong Yu. To-
775 ward self-improvement of LLMs via imagination, searching, and criticizing. In *Conference on*
776 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=tPdJ2qHkOB>.

779 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
780 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
781 descent. *arXiv preprint arXiv:2212.07677*, 2022.

782 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
783 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
784 descent. In *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.

786 Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang,
787 and Jun Wang. Alphazero-like tree-search can guide large language model decoding and
788 training. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=C4OpREezgj>.

790 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
791 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
792 models. In *The Eleventh International Conference on Learning Representations*, 2023. URL
793 <https://openreview.net/forum?id=1PL1NIMMrw>.

795 Yue Wang, Qizhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
796 Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
797 o1-like llms. *arXiv preprint arXiv:2501.18585*, 2025.

798 Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
799 approximating turing machines with transformers. *Advances in Neural Information Processing*
800 *Systems*, 35:12071–12083, 2022a.

802 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
803 Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large lan-
804 guage models. *Advances in neural information processing systems*, 35:24824–24837,
805 2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

807 Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
808 Choi. Generating sequences by learning to self-correct. In *The Eleventh International Confer-
809 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=hH36JeQZDaO>.

810 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Scaling inference computation: Compute-optimal inference for problem-solving with language models. In *Workshop on*
811 *Mathematical Reasoning and AI at NeurIPS’24*, 2024. URL <https://openreview.net/forum?id=j7DZWSc8qu>.

812

813

814 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
815 An empirical analysis of compute-optimal inference for LLM problem-solving. In *The Thirteenth*
816 *International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=VNckp7JEHn>.

817

818

819 Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
820 standing chain-of-thought length in llms. In *arXiv*, 2025b. URL <https://arxiv.org/abs/2502.07266>.

821

822 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
823 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
824 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
825 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
826 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
827 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
828 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
829 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
830 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025. URL <https://arxiv.org/abs/2505.09388>.

831

832 Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention net-
833 works can process bounded hierarchical languages. *arXiv preprint arXiv:2105.11115*, 2021.

834

835 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
836 transformers universal approximators of sequence-to-sequence functions? In *International Con-*
837 *ference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=ByxRM0Ntvr>.

838

839 Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
840 Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
841 longer sequences. *Advances in neural information processing systems*, 33:17283–17297, 2020.

842

843 Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. ReST-MCTS*:
844 LLM self-training via process reward guided tree search. In *The Thirty-eighth Annual Con-*
845 *ference on Neural Information Processing Systems*, 2024a. URL <https://openreview.net/forum?id=8rcFOqEud5>.

846

847 Kechi Zhang, Ge Li, Huangzhao Zhang, and Zhi Jin. Hirope: Length extrapolation for code models
848 using hierarchical position. *arXiv preprint arXiv:2403.19115*, 2024b.

849

850 Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin
851 King, Xue Liu, and Chen Ma. What, how, where, and how well? a survey on test-time scaling in
852 large language models. *arXiv preprint arXiv:2503.24235*, 2025.

853

854 Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jaekyeom Kim, Moontae Lee,
855 Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct reasoning.
In *ACL (Findings)*, 2024c. URL <https://aclanthology.org/2024.findings-acl-924/>.

856

857 Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang.
858 o1-coder: an o1 replication for coding. In *arXiv*, 2024d. URL <https://arxiv.org/abs/2412.00154>.

859

860 Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-
861 dicting the masked word? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of*
862 *the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 16513–16542,
863 Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.1029. URL <https://aclanthology.org/2023.emnlp-main.1029/>.

864

A PROOFS

865

866

A.1 PROOF OF THEOREM 3.1

867

868

Proof. Write $\mathcal{O} = \{1, \dots, O\}$ ($O \in \mathbb{Z}_+$) where i is the i -th most likely answer and let n_i denote
869 the number of occurrences of i . Then we have

870
$$\hat{p} = \frac{1}{n}(n_1, \dots, n_O) \sim \frac{1}{n} \text{Multinomial}(n, p),$$
871

872 where $p = (p(1), \dots, p(O))$.
873

874

Upper bound. When $n \geq \frac{2 \log(1/\delta)}{\Delta^2}$ we apply Claim A.5 to obtain that with probability at least
875 $1 - \delta$,

876
$$\|\hat{p} - p\|_1 \leq \sqrt{\frac{2 \ln(1/\delta)}{n}} \leq \Delta.$$
877

878 Under this event, we have that for any $i > 1$

879
$$\begin{aligned} n_1 - n_i &= n \cdot (\hat{p}_1 - \hat{p}_i) \\ &\geq n \cdot (p_1 - p_i - \|\hat{p} - p\|_1) \\ &\geq 0 \end{aligned}$$
880

881 and hence the correct answer 1 is the most consistent answer. It follows that self-consistency can
882 produce the correct answer with probability at least $1 - \delta$.
883

884

Lower bound. When $n \leq \frac{1}{\Delta^2}$, we construct the hard instance where $p_1 = (1 + \Delta)/2$, $p_2 =$
885 $(1 - \Delta)/2$ and $\Delta < 0.00001$. If $n \leq \frac{1}{\Delta}$ then by the proof of Theorem 3.2, with constant probability
886 the correct answer is not generated at all and hence self-consistency fails to produce the correct
887 answer. Otherwise $n \geq \frac{1}{\Delta} \geq 10000$. We may write $X := \frac{n_1 - n_2 - n\Delta}{\sqrt{n}}$ as a sum of i.i.d. random
888 variables divided by \sqrt{n} :

889
$$X = \frac{\sum_{i=1}^n Y_i}{\sqrt{n}},$$
890

891 where $\mathbb{E}(Y_i) = 0$, $\sigma^2 = \mathbb{E}(Y_i^2) \geq 1/2$, $\rho = \mathbb{E}(|Y_i|^3) \leq 1$. By Claim A.6, we have that

892
$$\begin{aligned} \mathbb{P}(n_1 < n_2) &= \mathbb{P}(X < -1) \\ &\geq \Phi(-1) - \frac{8\rho}{\sigma^3 \sqrt{n}} \\ &\geq 0.01. \end{aligned}$$
893

894 Thus in both cases, self-consistency fails to produce the correct answer with constant probability.
895 \square
896

904

A.2 PROOF OF THEOREM 3.2

905

906

Proof. Write $\mathcal{O} = \{1, \dots, O\}$ where i is the i -th most likely answer and let n_i denote the number
907 of occurrences of i . Then we have

908
$$p(1) \geq p(2) + \Delta \geq \Delta.$$
909

910 Note that for best-of- n , correctness is achieved if the correct answer appears at least once among n
911 independent samples.
912

913

Upper bound. When $n \geq \frac{2 \log(1/\delta)}{\Delta}$, we have
914

915
$$\begin{aligned} \mathbb{P}(\text{Best-of-}n \text{ outputs correct answer}) &= 1 - (1 - p(1))^n \\ &\geq 1 - (1 - \Delta)^{\frac{2 \log(1/\delta)}{\Delta}} \\ &\geq 1 - \delta. \end{aligned}$$
916

917 This confirms that best-of- n achieves the correct answer with $1 - \delta$ probability.
918

918 **Lower bound.** When $n \leq \frac{1}{\Delta}$, we construct the hard instance where $p(1) = \Delta + (1 - \Delta)/O, p(2) = \dots = p(O) = (1 - \Delta)/O$ and $\Delta < 0.0000001$. Since the correct answer occurs with probability at least Δ , we have:

$$\begin{aligned} \mathbb{P}(\text{Best-of-}n \text{ outputs correct answer}) &= 1 - (1 - p(1))^n \\ &\leq 1 - (1 - 2\Delta)^{\frac{1}{\Delta}} \\ &\leq 0.99. \end{aligned}$$

925 This confirms that best-of- n fails to produce the correct answer with constant probability. \square

927 A.3 PROOF OF PROPOSITION 4.2

929 We first introduce the following result that extends any Transformer to a larger vocabulary, so that it
930 only attends to tokens in its original vocabulary.

931 **Proposition A.1** (Extended Representation to Multiple Token Spaces). *For any $H, L, N_{\max} \in \mathbb{Z}_+$,
932 $\mathcal{V}_1 \cap \mathcal{V}_0 = \emptyset$, there exists a general-purpose Transformer ϕ of type $(O(1), O(\log N_{\max}))$ such
933 that for any Transformers $f = (\theta, \text{pe}, (\mathbf{K}_h^{(l)}, \mathbf{Q}_h^{(l)}, \mathbf{V}_h^{(l)})_{h \in [H], l \in [L]}, \vartheta, \mathcal{V}_1)$ over vocabulary \mathcal{V}_1 , the
934 Transformer $\tilde{f} = \phi(f_1)$ satisfies the following property: for any token sequence $v = v_1 \dots v_n$ such
935 that $n \leq N_{\max}$, denote $\{i_1 < \dots < i_m\} = \{i : v_i \in \mathcal{V}_1\}$, then we have*

$$p_{\tilde{f}}(\cdot | v) = p_f(\cdot | u),$$

937 where $u = v_{i_1} \dots v_{i_m}$.

940 *Proof.* Set constants B_v, B_{qk}, B_θ such that for any layer l and head h , it holds that
941 $\|(\mathbf{Q}_h^{(l)})^\top \mathbf{K}_h^{(l)}\|_2 \leq B_{qk}$, $\|\mathbf{V}_h^{(l)}\|_2 \leq B_v$, and $\|\theta(v)\|_2 \leq B_\theta$ holds for all $v \in \mathcal{V}$. Let
942 $B = (HB_v)^L B_{qk} B_\theta, C = 4B^2 + \log(1/\epsilon), C_0 = 4C$. By Lemma A.3, there exists
943 $\alpha_1, \dots, \alpha_{N_{\max}}, \beta_0, \beta_1 \in \mathbb{R}^{d_0}$ and $A_0, A_1, A \in \mathbb{R}^{d_0 \times d_0}$ for $d_0 \leq O(\log N_{\max})$ such that
944

945 1. For any $i \geq j_1, j_2, j_3$:

$$\begin{aligned} (\alpha_i + \beta_1)^\top A_0(\alpha_{j_1} + \beta_1) &= (\alpha_i + \beta_1)^\top A_0(\alpha_{j_2} + \beta_1) \geq (\alpha_i + \beta_1)^\top A_0(\alpha_{j_1} + \beta_0) + C_0 \\ (\alpha_i + \beta_0)^\top A_0(\alpha_i + \beta_0) &\geq (\alpha_i + \beta_0)^\top A_0(\alpha_{j_1} + \beta_1) + C_0, \end{aligned} \tag{3}$$

946 2. For any $i > j$

$$\begin{aligned} (\alpha_i + \beta_1)^\top A(\alpha_i + \beta_1) &\geq (\alpha_i + \beta_1)^\top A(\alpha_j + \beta_1) + C_0 \\ &\geq (\alpha_i + \beta_1)^\top A(\alpha_j + \beta_0) + 2C_0, \end{aligned} \tag{4}$$

947 3. For any $i \geq j, j_1$

$$\begin{aligned} (\alpha_i + \beta_1)^\top A_1(\alpha_j + \beta_0) &= (\alpha_i + \beta_1)^\top A_1(\alpha_{j_1} + \beta_1) + C_0 \\ (\alpha_i + \beta_1)^\top A_1(\alpha_i + \beta_1) &\geq \max\{(\alpha_i + \beta_1)^\top A_1(\alpha_{j_1} + \beta_1), (\alpha_i + \beta_1)^\top A_1(\alpha_{j_1} + \beta_0)\} + C_0. \end{aligned} \tag{5}$$

948 We define ϕ as follows: for any Transformers $f = (\theta, \text{pe}, (\mathbf{K}_h^{(l)}, \mathbf{Q}_h^{(l)}, \mathbf{V}_h^{(l)})_{h \in [H], l \in [L]}, \vartheta, \mathcal{V}_1)$, the
949 Transformer $\tilde{f} = \phi(f)$ is given by

$$(\tilde{\theta}, \tilde{\text{pe}}, (\tilde{\mathbf{K}}_h^{(l)}, \tilde{\mathbf{Q}}_h^{(l)}, \tilde{\mathbf{V}}_h^{(l)})_{h \in [H+1], l \in [L]}, \tilde{\vartheta}, \mathcal{V}_1 \cup \mathcal{V}_0),$$

950 where the tokenizer is given by

$$\tilde{\theta}(v) = \mathbb{1}(v \in \mathcal{V}_1) \cdot \begin{pmatrix} \theta(v) \\ \beta_1 \end{pmatrix} + \mathbb{1}(v \in \mathcal{V}_0) \cdot \begin{pmatrix} 0 \\ \beta_0 \end{pmatrix},$$

951 the positional encoder is given by

$$\tilde{\text{pe}} \left(\begin{pmatrix} x \\ y \end{pmatrix}; v_1, \dots, v_i \right) = \begin{pmatrix} \text{pe}(x; u) \\ \alpha_i + y \end{pmatrix},$$

972 where $u = v_{i_1} \cdots v_{i_m}$ and $x \in \mathbb{R}^d$; for $l = 1, \dots, L$ the key, query, value matrices are given by
973

$$\begin{aligned} 974 \quad \tilde{\mathbf{K}}_h^{(l)} &= \begin{pmatrix} \mathbf{K}_h^{(l)} & \\ & A_0 \end{pmatrix}, \quad \tilde{\mathbf{Q}}_h^{(l)} = \begin{pmatrix} \mathbf{Q}_h^{(l)} & \\ & I \end{pmatrix}, \\ 975 \quad \tilde{\mathbf{V}}_h^{(l)} &= \begin{pmatrix} \mathbf{V}_h^{(l)} & \\ & 0 \end{pmatrix}, \\ 976 \quad \tilde{\mathbf{K}}_{H+1}^{(l)} &= \begin{pmatrix} 0 & \\ & A \end{pmatrix}, \quad \tilde{\mathbf{Q}}_{H+1}^{(l)} = \begin{pmatrix} 0 & \\ & I \end{pmatrix}, \quad \tilde{\mathbf{V}}_{H+1}^{(l)} = \begin{pmatrix} 0 & \\ & I \end{pmatrix}. \end{aligned}$$

981 The output feature is given by $\tilde{\vartheta}(y) = \begin{pmatrix} \vartheta(y) \\ 0 \end{pmatrix}$. Since i_1, \dots, i_m only depends on whether v_i 's
982 belong to the set \mathcal{V}_1 , the generalized position encoding pe is well-defined. It can be verified that ϕ
983 is indeed a general-purpose Transformer of type $(O(1), O(\log N_{\max}))$.
984

985 We show that for any $l = 1, \dots, L$,

$$986 \quad \tilde{X}_i^{(l)} = \begin{pmatrix} X_i^{(l)} \\ \tilde{\alpha}_i \end{pmatrix}, \quad \forall i = i_1, \dots, i_m \quad (6)$$

989 where $X_i^{(l)}$ is the l -th layer of Transformer f at position i (attending only to positions i_1, \dots, i_m)
990 such that

$$991 \quad \|X_i^{(l)}\|_2 \leq B_\theta(HB_v)^l, \quad (7)$$

992 and

$$993 \quad \tilde{X}_j^{(l)} = \begin{pmatrix} 0 \\ \tilde{\alpha}_j \end{pmatrix}, \quad \forall j \notin \{i_1, \dots, i_m\} \quad (8)$$

995 where $\tilde{\alpha}_i = \alpha_i + \mathbb{1}(v \in \mathcal{V}_0) \cdot \beta_0 + \mathbb{1}(v \in \mathcal{V}_1) \cdot \beta_1$.
996

997 We prove these results by induction. The case $l = 1$ follows directly from the definitions of the
998 tokenizer.

1000
1001 **Prove Eq. (6).** Suppose Eq. (6) and Eq. (8) hold for $1, \dots, l-1$ -th layer, and consider l -th layer.
1002 We have

$$\begin{aligned} 1003 \quad \tilde{X}_i^{(l+1)} &= \underbrace{\sum_{h=1}^H \sum_{j=1}^i \frac{\exp\left((\tilde{\mathbf{Q}}_h^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_h^{(l)} \tilde{X}_j^{(l)})\right)}{\tilde{Z}_h^{(l)}} \cdot \tilde{\mathbf{V}}_h^{(l)} \tilde{X}_j^{(l)}}_{\text{term 1}} \\ 1004 \quad &+ \underbrace{\sum_{j=1}^i \frac{\exp\left((\tilde{\mathbf{Q}}_{H+1}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{H+1}^{(l)} \tilde{X}_j^{(l)})\right)}{\tilde{Z}_{H+1}^{(l)}} \cdot \tilde{\mathbf{V}}_{H+1}^{(l)} \tilde{X}_j^{(l)}}_{\text{term 2}}. \end{aligned}$$

1012 Eq. (3) ensures that for any $i, i' \in \{i_1, \dots, i_m\}, j \notin \{i_1, \dots, i_m\}$:

$$\begin{aligned} 1013 \quad (\tilde{\mathbf{Q}}_h^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_h^{(l)} \tilde{X}_{i'}^{(l)}) &= (\mathbf{Q}_h^{(l)} \tilde{X}_i^{(l)})^\top (\mathbf{K}_h^{(l)} \tilde{X}_{i'}^{(l)}) + (\alpha_i + \beta_1)^\top A_0(\alpha_{i'} + \beta_1) \\ 1014 \quad &\geq (\mathbf{Q}_h^{(l)} \tilde{X}_i^{(l)})^\top (\mathbf{K}_h^{(l)} \tilde{X}_j^{(l)}) + (\alpha_i + \beta_1)^\top A_0(\alpha_j + \beta_0) + C \\ 1015 \quad &= (\tilde{\mathbf{Q}}_h^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_h^{(l)} \tilde{X}_j^{(l)}) + C, \end{aligned}$$

1016 and if $i, j_1, j_2 \in \{i_1, \dots, i_m\}$

$$\begin{aligned} 1017 \quad &(\tilde{\mathbf{Q}}_h^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_h^{(l)} \tilde{X}_{j_1}^{(l)}) - (\tilde{\mathbf{Q}}_h^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_h^{(l)} \tilde{X}_{j_2}^{(l)}) \\ 1018 \quad &= (\mathbf{Q}_h^{(l)} \tilde{X}_i^{(l)})^\top (\mathbf{K}_h^{(l)} \tilde{X}_{j_1}^{(l)}) + (\alpha_i + \beta_1)^\top A_0(\alpha_{j_1} + \beta_1) - (\mathbf{Q}_h^{(l)} \tilde{X}_i^{(l)})^\top (\mathbf{K}_h^{(l)} \tilde{X}_{j_2}^{(l)}) - (\alpha_i + \beta_1)^\top A_0(\alpha_{j_2} + \beta_1) \\ 1019 \quad &= (\mathbf{Q}_h^{(l)} \tilde{X}_i^{(l)})^\top (\mathbf{K}_h^{(l)} \tilde{X}_{j_1}^{(l)}) - (\mathbf{Q}_h^{(l)} \tilde{X}_i^{(l)})^\top (\mathbf{K}_h^{(l)} \tilde{X}_{j_2}^{(l)}), \end{aligned}$$

1020 where we use the fact that $C_0 \geq C + 2 \max_{h,l,i,j} \left| (\mathbf{Q}_h^{(l)} \tilde{X}_i^{(l)})^\top (\mathbf{K}_h^{(l)} \tilde{X}_j^{(l)}) \right|$. Since the transformers
1021 have precision ϵ and $C \geq 2 \max_{h,l,i,j} \left| (\mathbf{Q}_h^{(l)} \tilde{X}_i^{(l)})^\top (\mathbf{K}_h^{(l)} \tilde{X}_j^{(l)}) \right| + \log(1/\epsilon)$, it follows that the
1022

attention weights of head $(k-1)H + h$ is identical to the attention weights of expert k , i.e.

$$\frac{\exp\left((\tilde{\mathbf{Q}}_h^{(l)}\tilde{X}_i^{(l)})^\top(\tilde{\mathbf{K}}_h^{(l)}\tilde{X}_j^{(l)})\right)}{\tilde{Z}_h^{(l)}} = \mathbb{1}(j \in \{i_1, \dots, i_m\}) \cdot \frac{\exp\left((\mathbf{Q}_h^{(l)}X_i^{(l)})^\top(\mathbf{K}_h^{(l)}X_j^{(l)})\right)}{Z_h^{(l)}}.$$

Therefore

$$\text{term 1} = \sum_{h=1}^H \sum_{j=i_1, \dots, i_m} \frac{\exp\left((\mathbf{Q}_h^{(l)}X_i^{(l)})^\top(\mathbf{K}_h^{(l)}X_j^{(l)})\right)}{Z_h^{(l)}} \cdot \begin{pmatrix} \mathbf{V}_h^{(l)}X_j^{(l)} \\ 0 \end{pmatrix} = \begin{pmatrix} X_j^{(l+1)} \\ 0 \end{pmatrix}.$$

Furthermore, by Eq. (4) we have for any $j < i$

$$\begin{aligned} (\tilde{\mathbf{Q}}_{H+1}^{(l)}\tilde{X}_i^{(l)})^\top(\tilde{\mathbf{K}}_{H+1}^{(l)}\tilde{X}_i^{(l)}) &= \tilde{\alpha}_i^\top A \tilde{\alpha}_i \\ &\geq \tilde{\alpha}_i^\top A \tilde{\alpha}_j + C \\ &= (\tilde{\mathbf{Q}}_{H+1}^{(l)}\tilde{X}_i^{(l)})^\top(\tilde{\mathbf{K}}_{H+1}^{(l)}\tilde{X}_j^{(l)}) + C, \end{aligned}$$

and hence the attention weights concentrates on i itself. Thus

$$\text{term 2} = \begin{pmatrix} 0 \\ I \end{pmatrix} \cdot \begin{pmatrix} X_i^{(l)} \\ \tilde{\alpha}_i \end{pmatrix} = \begin{pmatrix} 0 \\ \tilde{\alpha}_i \end{pmatrix}.$$

Combining, we derive Eq.(6) for $(l+1)$ -th layer.

Prove Eq. (7). From above,

$$\begin{aligned} \|X_i^{(l+1)}\|_2 &= \left\| \sum_{h=1}^H \sum_{j=1}^i \frac{\exp\left((\tilde{\mathbf{Q}}_h^{(l)}\tilde{X}_i^{(l)})^\top(\tilde{\mathbf{K}}_h^{(l)}\tilde{X}_j^{(l)})\right)}{\tilde{Z}_h^{(l)}} \cdot \mathbf{V}_h^{(l)}X_j^{(l)} \right\|_2 \\ &\leq HB_v \cdot \max_{j \leq i} \|X_j^{(l)}\|_2 \\ &\leq B_\theta (HB_v)^{l+1}. \end{aligned}$$

This confirms Eq. (24) for $l+1$.

Prove Eq. (8). Notice that Eq. (3) ensures that for any $j, j' \notin \{i : v_i \in \mathcal{V}_1\}$ and $i \in \{i : v_i \in \mathcal{V}_1\}$:

$$\begin{aligned} (\tilde{\mathbf{Q}}_h^{(l)}\tilde{X}_j^{(l)})^\top(\tilde{\mathbf{K}}_h^{(l)}\tilde{X}_{j'}^{(l)}) &= (\mathbf{Q}_h^{(l)}X_j^{(l)})^\top(\mathbf{K}_h^{(l)}X_{j'}^{(l)}) + (\alpha_j + \beta_0)^\top A_0(\alpha_{j'} + \beta_0) \\ &\geq (\mathbf{Q}_h^{(l)}X_j^{(l)})^\top(\mathbf{K}_h^{(l)}X_i^{(l)}) + (\alpha_j + \beta_0)^\top A_0(\alpha_i + \beta_1) + C \\ &= (\tilde{\mathbf{Q}}_h^{(l)}\tilde{X}_j^{(l)})^\top(\tilde{\mathbf{K}}_h^{(l)}\tilde{X}_i^{(l)}) + C. \end{aligned}$$

It follows that the attention weights is concentrated on the compliment of $\{i : v_i \in \mathcal{V}_1\}$ itself, and therefore Eq. (8) follows by a simple induction argument.

Finally, at the output layer

$$\begin{aligned} p_{\tilde{f}}(y|v_1, \dots, v_n) &= \text{Softmax}(\tilde{\vartheta}(y)^\top \tilde{X}_n^{(L)}) \\ &= \text{Softmax}(\vartheta(y)^\top X_m^{(L)}) \\ &= p_{f_\kappa}(y|u). \end{aligned}$$

This establishes the desired statement. \square

Now we return to the proof of Proposition 4.2.

Proof. By Proposition A.1, it suffices to construct general-purpose Transformer ϕ such that

$$p_{\tilde{f}}(\cdot|v) = p_{f_\kappa}(\cdot|u),$$

where $u = v_1 \dots v_{i_0-1} v_{i_0+1} \dots v_n$, because then the $\tilde{\phi}$ given by

$$\tilde{\phi}(f_1, \dots, f_K) = \phi(\phi_e(f_1), \dots, \phi_e(f_K))$$

satisfies the requirement, where ϕ_e is the general-purpose Transformer that extends the K Transformers to the larger vocabulary $\mathcal{V} := \bigcup_{k=1}^K \mathcal{V}_k$ as given by Proposition A.1.

1080 Set constants B_v, B_{qk}, B_θ such that for any layer l and head h , it holds that $\|(\mathbf{Q}_h^{(l)})^\top \mathbf{K}_h^{(l)}\|_2 \leq$
1081 B_{qk} , $\|\mathbf{V}_h^{(l)}\|_2 \leq B_v$, and $\|\theta(v)\|_2 \leq B_\theta$ holds for all $v \in \mathcal{V}$. Let $B = (KHB_v)^L B_{qk} B_\theta, C =$
1082 $4B^2 + \log(1/\epsilon), C_0 = 4C$. By Lemma A.3, there exists $\alpha_1, \dots, \alpha_N, \beta_0, \beta_1, \dots, \beta_K \in \mathbb{R}^{d_0}$ and
1083 $A_1, \dots, A_K \in \mathbb{R}^{d_0 \times d_0}$ for $d_0 \leq O(K + \log N_{\max})$ such that
1084
1085

1086

1087 1. For any $i \geq j_1, j_2, j_3$ and $k, k', k'' \neq 0$:

1088
$$(\alpha_i + \beta_k)^\top A_0(\alpha_{j_1} + \beta_{k'}) = (\alpha_i + \beta_k)^\top A_0(\alpha_{j_2} + \beta_{k''}) \geq (\alpha_i + \beta_k)^\top A_0(\alpha_{j_1} + \beta_0) + C_0$$

1089
$$(\alpha_i + \beta_0)^\top A_0(\alpha_i + \beta_0) \geq (\alpha_i + \beta_0)^\top A_0(\alpha_{j_1} + \beta_k) + C_0, \quad (9)$$

1090

1091 2. For any $i > j$ and $k \neq k' \neq 0$

1092
$$(\alpha_i + \beta_k)^\top A(\alpha_i + \beta_k) \geq (\alpha_i + \beta_k)^\top A(\alpha_j + \beta_{k'}) + C_0$$

1093
$$\geq (\alpha_i + \beta_k)^\top A(\alpha_j + \beta_0) + 2C_0, \quad (10)$$

1094

1095 3. For any $i \geq j, j_1$ and $k \neq k', k''$

1096
$$(\alpha_i + \beta_k)^\top A_{k'}(\alpha_j + \beta_0) = (\alpha_i + \beta_k)^\top A_{k'}(\alpha_{j_1} + \beta_{k''}) + C_0$$

1097
$$(\alpha_i + \beta_k)^\top A_k(\alpha_i + \beta_k) \geq \max\{(\alpha_i + \beta_k)^\top A_k(\alpha_{j_1} + \beta_{k''}), (\alpha_i + \beta_k)^\top A_{k'}(\alpha_{j_1} + \beta_0)\} + C_0, \quad (11)$$

1098

1099

1100

1101

1102 We define ϕ as follows: for any Transformers

1103

1104
$$f_k = (\theta_k, \text{pe}_k, (\mathbf{K}_{k;h}^{(l)}, \mathbf{Q}_{k;h}^{(l)}, \mathbf{V}_{k;h}^{(l)})_{h \in [H], l \in [L]}, \vartheta_k, \mathcal{V}_k),$$

1105 over \mathcal{V}_k , $k \in [K]$, the Transformer $\tilde{f} = \phi(f_1, \dots, f_K)$ is given by

1106

1107
$$(\tilde{\theta}, \tilde{\text{pe}}, (\tilde{\mathbf{K}}_h^{(l)}, \tilde{\mathbf{Q}}_h^{(l)}, \tilde{\mathbf{V}}_h^{(l)})_{h \in [KH+1], l \in [L+1]}, \tilde{\vartheta}, \mathcal{V}),$$

1108 where the tokenizer is given by

1109

1110

1111
$$\tilde{\theta}(v) = \mathbb{1}(v \notin \mathcal{V}_0) \cdot \begin{pmatrix} \theta_1(v) \\ \vdots \\ \theta_K(v) \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \beta_{\mathcal{E}(v)} \end{pmatrix}$$

1112

1113

1114 where $\mathcal{E}(v) = k$ iff $v \in \mathcal{V}_k$. Let the positional encoder be given by

1115

1116

1117
$$\tilde{\text{pe}} \left(\begin{pmatrix} x \\ y \end{pmatrix}; v_1, \dots, v_i \right) = \begin{pmatrix} \text{pe}_1(x; u) \\ \vdots \\ \text{pe}_K(x; u) \\ \alpha_i + y \end{pmatrix},$$

1118

1119 where $x \in \mathbb{R}^d$ and u is the sub-sequence of v that omits v_{i_0} (if any); for $l = 1, \dots, L$ the key, query,
1120 value matrices are given by

1121

1122

1123

1124
$$\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & \mathbf{K}_{k;h}^{(l)} & \\ & & & \ddots \\ & & & & A_0 \end{pmatrix}, \quad \tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & \mathbf{Q}_{k;h}^{(l)} & \\ & & & \ddots \\ & & & & I \end{pmatrix},$$

1125

1126

1127

1128

1129

1130
$$\tilde{\mathbf{V}}_{(k-1)H+h}^{(l)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & \mathbf{V}_{k;h}^{(l)} & \\ & & & \ddots \\ & & & & 0 \end{pmatrix},$$

1131

1132

1133

1134
1135
1136
1137
1138

$$\tilde{\mathbf{K}}_{KH+1}^{(l)} = \begin{pmatrix} 0 & & \\ & \ddots & \\ & & 0 & \\ & & & A \end{pmatrix}, \quad \tilde{\mathbf{Q}}_{KH+1}^{(l)} = \begin{pmatrix} 0 & & \\ & \ddots & \\ & & 0 & \\ & & & I \end{pmatrix}, \quad \tilde{\mathbf{V}}_{KH+1}^{(l)} = \begin{pmatrix} 0 & & \\ & \ddots & \\ & & 0 & \\ & & & I \end{pmatrix},$$

1139 where the submatrices $\mathbf{K}_{k;h}^{(l)}, \mathbf{Q}_{k;h}^{(l)}, \mathbf{V}_{k;h}^{(l)}$ are located in the k -th diagonal block, and for the final
1140 layer

1141
1142
1143
1144
1145
1146

$$\tilde{\mathbf{K}}_k^{(L+1)} = \begin{pmatrix} 0 & & \\ & \ddots & \\ & & 0 & \\ & & & A_k \end{pmatrix}, \quad \tilde{\mathbf{Q}}_k^{(L+1)} = \begin{pmatrix} 0 & & \\ & \ddots & \\ & & 0 & \\ & & & I \end{pmatrix}, \quad \tilde{\mathbf{V}}_k^{(L+1)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & I & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix},$$

1147 where the identity sub-matrix in $\tilde{\mathbf{V}}_k^{(L+1)}$ is located in the k -th block. The output feature is given by
1148

1149
1150
1151
1152

$$\tilde{\vartheta}(y) = \begin{pmatrix} \vartheta_1(y) \\ \vdots \\ \vartheta_K(y) \\ 0 \end{pmatrix}. \quad \text{Since } u^{(k)}\text{'s only depend on set membership information of } v_i\text{'s, the general-}$$

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2779

1188 Eq. (9) ensures that for any $j_1 < j_2 \leq i$ such that $i_0 \notin \{i, j_1, j_2\}$:
1189
1190 $(\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{j_1}^{(l)}) = (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j_1}^{(l)}) + (\alpha_i + \beta_{\mathcal{E}(i)})^\top A_0 (\alpha_{j_1} + \beta_{\mathcal{E}(j_1)})$
1191 $\geq (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j_1}^{(l)}) + (\alpha_i + \beta_{\mathcal{E}(i)})^\top A_0 (\alpha_{i_0} + \beta_{\mathcal{E}(i_0)}) + C$
1192
1193 $= (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{i_0}^{(l)}) + C.$
1194

and

1195 $(\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{j_1}^{(l)}) - (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{j_2}^{(l)})$
1196
1197 $= (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j_1}^{(l)}) + (\alpha_i + \beta_{\mathcal{E}(i)})^\top A_0 (\alpha_{j_1} + \beta_{\mathcal{E}(j_1)})$
1198 $- (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j_2}^{(l)}) - (\alpha_i + \beta_{\mathcal{E}(i)})^\top A_0 (\alpha_{j_2} + \beta_{\mathcal{E}(j_2)})$
1199
1200 $= (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j_1}^{(l)}) - (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j_2}^{(l)}).$
1201

It follows from the precision ϵ of the transformers that the attention weights of head $(k-1)H+h$ is identical to the attention weights of expert k , i.e.

1204 $\frac{\exp \left((\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)}) \right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} = \frac{\exp \left((\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j}^{(l)}) \right)}{Z_{k;h}^{(l)}}.$
1205
1206

Therefore

1207
1208
1209
1210 $\text{term 1} = \sum_{k=1}^K \sum_{h=1}^H \sum_{j=1}^i \frac{\exp \left((\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j}^{(l)}) \right)}{Z_{k;h}^{(l)}} \cdot \begin{pmatrix} 0 \\ \vdots \\ \mathbf{V}_{k;h}^{(l)} X_{k;j}^{(l)} \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} X_{1;i}^{(l)} \\ \vdots \\ X_{K;i}^{(l)} \\ 0 \end{pmatrix}.$
1211
1212
1213
1214

Furthermore, by Eq. (10) we have for any $j < i$

1215
1216 $(\tilde{\mathbf{Q}}_{KH+1}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{KH+1}^{(l)} \tilde{X}_i^{(l)}) = \tilde{\alpha}_i^\top A \tilde{\alpha}_i$
1217 $\geq \tilde{\alpha}_i^\top A \tilde{\alpha}_j + C$
1218
1219 $= (\tilde{\mathbf{Q}}_{KH+1}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{KH+1}^{(l)} \tilde{X}_j^{(l)}) + C$

and hence the attention weights concentrates on i itself. Thus

1220
1221
1222
1223
1224 $\text{term 2} = \begin{pmatrix} 0 & & \\ & \ddots & \\ & & 0 \end{pmatrix} \cdot \begin{pmatrix} X_{1;i}^{(l)} \\ \vdots \\ X_{K;i}^{(l)} \\ \tilde{\alpha}_i \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \tilde{\alpha}_i \end{pmatrix}$
1225

Combining these two terms, we confirm that Eq.(12) holds for $(l+1)$ -th layer.

1226
1227
1228
1229
1230
1231
1232
1233
1234 **Prove Eq. (13).** From above,

1235 $\|X_{k;i}^{(l+1)}\|_2 = \left\| \sum_{k=1}^K \sum_{h=1}^H \sum_{j=1}^i \frac{\exp \left((\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)}) \right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} \cdot \mathbf{V}_{k;h}^{(l)} X_{k;j}^{(l)} \right\|_2$
1236
1237
1238
1239
1240
1241 $\leq KHB_v \cdot \max_{j \leq i} \|X_{k;j}^{(l)}\|_2$
 $\leq B_\theta (KHB_v)^{l+1}.$

This confirms Eq. (13) for $l+1$.

1242 **Prove Eq. (14).** Notice that Eq. (9) ensures that for any $j \leq i_0$:

$$\begin{aligned}
 1243 \quad & (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_{i_0}^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{i_0}^{(l)}) = (\mathbf{Q}_{k;h}^{(l)} X_{k;i_0}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;i_0}^{(l)}) + (\alpha_{i_0} + \beta_{\mathcal{E}(i_0)})^\top A_0 (\alpha_{i_0} + \beta_{\mathcal{E}(i_0)}) \\
 1244 \quad & \geq (\mathbf{Q}_{k;h}^{(l)} X_{k;i_0}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j}^{(l)}) + (\alpha_{i_0} + \beta_{\mathcal{E}(i_0)})^\top A_0 (\alpha_j + \beta_{\mathcal{E}(j)}) + C \\
 1245 \quad & = (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_{i_0}^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)}) + C.
 \end{aligned}$$

1246 It follows that the attention weights of head $(k-1)H+h$ is concentrated on i_0 itself, therefore

$$\begin{aligned}
 1247 \quad \text{term 1} &= \sum_{k=1}^K \sum_{h=1}^H \begin{pmatrix} 0 \\ \vdots \\ \mathbf{V}_{k;h}^{(l)} \cdot 0 \\ \vdots \\ 0 \end{pmatrix} = 0.
 \end{aligned}$$

1248 By the same argument, for $i = i_0$ we have

$$\begin{aligned}
 1249 \quad \text{term 2} &= \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & 0 & \\ & & & I \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \tilde{\alpha}_{i_0} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \tilde{\alpha}_{i_0} \end{pmatrix}.
 \end{aligned}$$

1250 Combining these confirms Eq. (14).

1251 Next, we show that the last layer satisfies

$$\begin{aligned}
 1252 \quad \tilde{X}_n^{(L+1)} &= \begin{pmatrix} 0 \\ \vdots \\ X_{\kappa;n}^{(L+1)} \\ \vdots \\ 0 \end{pmatrix} \tag{15}
 \end{aligned}$$

1253 where $X_{\kappa;n}^{(L+1)}$ is the κ -th block. To see this, we notice that Eq. (11) implies the followings (the proofs are identical to the above):

1254 1. Attention sink to dummy token v_{i_0} for mismatch expert: for any $k' \neq \kappa$ and $j \leq n$ we have

$$\begin{aligned}
 1255 \quad & (\tilde{\mathbf{Q}}_{(k'-1)H+h}^{(L)} \tilde{X}_n^{(L)})^\top (\tilde{\mathbf{K}}_{(k'-1)H+h}^{(L)} \tilde{X}_j^{(L)}) = (\alpha_n + \beta_{\mathcal{E}(n)})^\top A_{k'} (\alpha_j + \beta_{\mathcal{E}(j)}) \\
 1256 \quad & \leq (\alpha_n + \beta_{\mathcal{E}(n)})^\top A_{k'} (\alpha_{i_0} + \beta_{\mathcal{E}(i_0)}) - C \\
 1257 \quad & = (\tilde{\mathbf{Q}}_{(k'-1)H+h}^{(L)} \tilde{X}_n^{(L)})^\top (\tilde{\mathbf{K}}_{(k'-1)H+h}^{(L)} \tilde{X}_{i_0}^{(L)}) - C.
 \end{aligned} \tag{16}$$

1258 2. Attention to oneself for matching expert: for any $j \neq i_0$ we have

$$\begin{aligned}
 1259 \quad & (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(L)} \tilde{X}_n^{(L)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(L)} \tilde{X}_j^{(L)}) = (\alpha_n + \beta_{\mathcal{E}(n)})^\top A_\kappa (\alpha_j + \beta_{\mathcal{E}(j)}) \\
 1260 \quad & \geq (\alpha_n + \beta_{\mathcal{E}(n)})^\top A_\kappa (\alpha_{i_0} + \beta_{\mathcal{E}(i_0)}) + C \\
 1261 \quad & = (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(L)} \tilde{X}_n^{(L)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(L)} \tilde{X}_{i_0}^{(L)}) + C,
 \end{aligned} \tag{17}$$

1262 and

$$\begin{aligned}
 1263 \quad & (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(L)} \tilde{X}_n^{(L)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(L)} \tilde{X}_n^{(L)}) = (\alpha_n + \beta_{\mathcal{E}(n)})^\top A_\kappa (\alpha_n + \beta_{\mathcal{E}(n)}) \\
 1264 \quad & \geq (\alpha_n + \beta_{\mathcal{E}(n)})^\top A_\kappa (\alpha_j + \beta_{\mathcal{E}(j)}) + C \\
 1265 \quad & = (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(L)} \tilde{X}_n^{(L)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(L)} \tilde{X}_j^{(L)}) + C.
 \end{aligned} \tag{18}$$

1296 Combining Eq. (16), Eq. (17), and Eq. (18), we have
1297

$$1298 \frac{\exp\left((\tilde{\mathbf{Q}}_{(k-1)H+h}^{(L)}\tilde{X}_n^{(L)})^\top(\tilde{\mathbf{K}}_{(k-1)H+h}^{(L)}\tilde{X}_j^{(L)})\right)}{Z_k^{(l)}} = \begin{cases} \delta_j^{i_0}, & k \neq \kappa \\ \delta_j^n, & k = \kappa \end{cases}$$

1300 It follows that
1301

$$1302 \tilde{X}_n^{(L+1)} = \tilde{\mathbf{V}}_{(\kappa-1)H+h}^{(L)} \cdot \tilde{X}_n^{(L)} + \sum_{k \neq \kappa} \mathbf{V}_{(\kappa-1)H+h}^{(L)} \cdot \tilde{X}_{i_0}^{(L)} \\ 1303 \\ 1304 = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & I & \\ & & & \ddots \\ & & & 0 \end{pmatrix} \cdot \begin{pmatrix} X_{1;i}^{(L)} \\ \vdots \\ X_{K;i}^{(L)} \\ \tilde{\alpha}_i \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ X_{\kappa;n}^{(L)} \\ \vdots \\ 0 \end{pmatrix}.$$

1305 Therefore we establish Eq. (15).
1306

1307 Finally, at the output layer
1308

$$1309 p_{\tilde{f}}(y|v_1, \dots, v_n) = \text{Softmax}(\tilde{\vartheta}(y)^\top \tilde{X}_n^{(L+1)}) \\ 1310 = \text{Softmax}(\vartheta(y)^\top Y_{n-1}^{(L)}) \\ 1311 = p_{f_\kappa}(y|u).$$

1312 This establishes the desired statement. \square
1313

1314 A.4 PROOF OF PROPOSITION 4.4

1315 *Proof.* Set constants B_v, B_{qk}, B_θ such that for any layer l and head h , it holds that
1316 $\|(\mathbf{Q}_h^{(l)})^\top \mathbf{K}_h^{(l)}\|_2 \leq B_{qk}$, $\|\mathbf{V}_h^{(l)}\|_2 \leq B_v$, and $\|\theta(v)\|_2 \leq B_\theta$ holds for all $v \in \mathcal{V}$. Let
1317 $B = (KHB_v)^L B_{qk} B_\theta$, $C = 2B^2 + \log(1/\epsilon)$, $C_0 = 4C$. Define $\iota(i) = u$ iff $\xi_u \leq i < \xi_{u+1}$
1318 ($\xi_0 = -1, \xi_{m+1} = \infty$ by default). Let $\mathcal{E}(\cdot)$ denote the task id indicated by the special to-
1319 ken. By Lemma A.2, there exists $\alpha_1, \dots, \alpha_N, \beta_1, \dots, \beta_K \in \mathbb{R}^{d_0}$ and $A_1, \dots, A_K \in \mathbb{R}^{d_0 \times d_0}$ for
1320 $d_0 \leq O(K + \log N_{\max})$ such that for any $n \leq N$ we have
1321

1322 1. For any $k \neq k'$:

$$1323 \alpha_n^\top A_k (\alpha_n + \beta_{k'}) \geq C_0 + \begin{cases} \alpha_n^\top A_k \alpha_n \\ \alpha_n^\top A_k \alpha_j \\ \alpha_n^\top A_k (\alpha_j + \beta_{k''}) \end{cases}, \forall 0 \leq j \leq n, 1 \leq k'' \leq K. \quad (19)$$

1324 2. For any $k \in [K]$:

$$1325 \alpha_n^\top A_k \alpha_n = \alpha_n^\top A_k \alpha_0 \geq C_0 + \begin{cases} \alpha_n^\top A_k (\alpha_n + \beta_k) \\ \alpha_n^\top A_k \alpha_j \\ \alpha_n^\top A_k (\alpha_j + \beta_{k'}) \end{cases}, \forall 0 < j < n, k' \neq k. \quad (20)$$

1326 3. For any $k, k', k'' \in [K]$:

$$1327 (\alpha_n + \beta_{k'})^\top A_k (\alpha_n + \beta_{k'}) \geq C_0 + (\alpha_n + \beta_{k'})^\top A_k \alpha_j, \forall 0 \leq j \leq n. \quad (21)$$

1328 4. For any $0 < j < n$:

$$1329 \alpha_n^\top A \alpha_n \geq \alpha_n^\top A (\alpha_n + \beta_k) + C_0 \\ 1330 \geq C_0 + \max\{\alpha_n^\top A \alpha_j, \alpha_n^\top A (\alpha_j + \beta_{k'})\}, \forall k, k'' \in [K]. \quad (22)$$

1331 We define ϕ as follows: for any Transformers
1332

$$1333 f_k = (\theta_k, \text{pe}_k, (\mathbf{K}_{k;h}^{(l)}, \mathbf{Q}_{k;h}^{(l)}, \mathbf{V}_{k;h}^{(l)})_{h \in [H], l \in [L]}, \vartheta_k, \mathcal{V}), k \in [K]$$

1350 over \mathcal{V} , the Transformer $\tilde{f} = \phi(f_1, \dots, f_K)$ is given by
1351

$$1352 \quad (\tilde{\theta}, \tilde{\text{pe}}, (\tilde{\mathbf{K}}_h^{(l)}, \tilde{\mathbf{Q}}_h^{(l)}, \tilde{\mathbf{V}}_h^{(l)})_{h \in [KH+1], l \in [L]}, \tilde{\vartheta}, \mathcal{V} \cup \Omega),$$

1353 where the tokenizer is given by
1354

$$1355 \quad \tilde{\theta}(v) = \begin{pmatrix} \theta_1(v) \\ \vdots \\ \theta_K(v) \\ 0 \end{pmatrix}, \quad v \in \mathcal{V}, \quad \tilde{\theta}(\omega) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \beta_{\mathcal{E}(\omega)} \end{pmatrix}, \quad \omega \in \Omega,$$

1356 the positional encoder is given by
1357

$$1358 \quad \tilde{\text{pe}} \left(\begin{pmatrix} x \\ y \end{pmatrix}; v_1, \dots, v_i \right) = \begin{pmatrix} \text{pe}_1(x; v_1, \dots, v_{\xi_1-1}, v_{\xi_m+1}, \dots, v_n) \\ \vdots \\ \text{pe}_K(x; v_1, \dots, v_{\xi_1-1}, v_{\xi_m+1}, \dots, v_n) \\ \alpha_{\iota(i)} + y \end{pmatrix},$$

1359 where $x \in \mathbb{R}^d$; for $l = 1, \dots, L$ the key, query, value matrices are given by
1360

$$1361 \quad \tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & \mathbf{K}_{k;h}^{(l)} & \\ & & & \ddots \\ & & & & A_k \end{pmatrix}, \quad \tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & \mathbf{Q}_{k;h}^{(l)} & \\ & & & \ddots \\ & & & & I \end{pmatrix},$$

$$1362 \quad \tilde{\mathbf{V}}_{(k-1)H+h}^{(l)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & \mathbf{V}_{k;h}^{(l)} & \\ & & & \ddots \\ & & & & 0 \end{pmatrix},$$

$$1363 \quad \tilde{\mathbf{K}}_{KH+1}^{(l)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & 0 & \\ & & & A \end{pmatrix}, \quad \tilde{\mathbf{Q}}_{KH+1}^{(l)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & 0 & \\ & & & I \end{pmatrix}, \quad \tilde{\mathbf{V}}_{KH+1}^{(l)} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & 0 & \\ & & & I \end{pmatrix},$$

1364 where the submatrices $\mathbf{K}_{k;h}^{(l)}, \mathbf{Q}_{k;h}^{(l)}, \mathbf{V}_{k;h}^{(l)}$ are located in the k -th diagonal block. The output feature
1365

1366 is given by $\tilde{\vartheta}(y) = \begin{pmatrix} \vartheta_1(y) \\ \vdots \\ \vartheta_K(y) \\ 0 \end{pmatrix}$. Since ξ_1, ξ_m only depends on whether v_i 's belong to the set Ω , the
1367
1368 generalized position encoding pe is well-defined. We can easily verify that ϕ is indeed a general-
1369 purpose Transformer of type $(O(K), O(\log N_{\max}))$.
1370

1371 Let $\tilde{X}_1^{(l)}, \dots, \tilde{X}_n^{(l)}$ represent the l -th hidden layer. Our goal is to show that for any $l = 1, \dots, L$,
1372 $\tilde{X}_i^{(l)}$ can be written as:
1373

$$1374 \quad \tilde{X}_i^{(l)} = \begin{pmatrix} X_{1;i}^{(l)} \\ \vdots \\ X_{K;i}^{(l)} \\ \tilde{\alpha}_i \end{pmatrix}, \quad i = 1, \dots, n, \quad (23)$$

1375 where $\tilde{\alpha}_i = \alpha_{\iota(i)} + \mathbb{1}(\iota(i) = i) \cdot \beta_{\mathcal{E}(v_i)}$ and $X_{k;i}^{(l)} \in \mathbb{R}^d$ such that
1376

$$1377 \quad \|X_{k;i}^{(l)}\|_2 \leq B_\theta (KH B_v)^l. \quad (24)$$

1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

In particular, for $i = 1, \dots, m$ we have

$$X_{k;\xi_i}^{(l)} = 0, \quad \forall k = 1, \dots, K, \quad (25)$$

and for $j = 1, \dots, \xi_1$ we have

$$X_{k;j}^{(l)} = Y_{k;j}^{(l)}, \quad \forall k = 1, \dots, K, \quad (26)$$

and for $j = 1, \dots, \xi_1 - 1, \xi_m + 1, \dots, n$ we have

$$X_{\kappa;j}^{(l)} = Y_{\kappa,j-\xi_m-1+\xi_1}^{(l)}, \quad X_{k';j}^{(l)} = 0, \quad \forall k' \neq \kappa, \quad (27)$$

where $Y_{k;j}^{(l)}$ is the l -th hidden layer of f_k (attending only to positions $1, \dots, \xi_1 - 1, \xi_m + 1, \dots, n$).

Thus we apply induction on l . The case $l = 1$ holds trivially from the definition of $\tilde{\theta}$ and \tilde{p}_e . Suppose the above relationship holds for all layers $1, \dots, l$, consider layer $l + 1$. We have

$$\widetilde{X}_i^{(l+1)} = \underbrace{\sum_{k=1}^K \sum_{h=1}^H \sum_{j=1}^i \frac{\exp \left((\widetilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \widetilde{X}_i^{(l)})^\top (\widetilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \widetilde{X}_j^{(l)}) \right)}{\widetilde{Z}_{(k-1)H+h}^{(l)}}}_{\text{term 1}} \cdot \widetilde{\mathbf{V}}_{(k-1)H+h}^{(l)} \widetilde{X}_j^{(l)} \\ + \underbrace{\sum_{j=1}^i \frac{\exp \left((\widetilde{\mathbf{Q}}_{KH+1}^{(l)} \widetilde{X}_i^{(l)})^\top (\widetilde{\mathbf{K}}_{KH+1}^{(l)} \widetilde{X}_j^{(l)}) \right)}{\widetilde{Z}_{KH+1}^{(l)}}}_{\text{term 2}} \cdot \widetilde{\mathbf{V}}_{KH+1}^{(l)} \widetilde{X}_j^{(l)},$$

where

$$\widetilde{Z}_{(k-1)H+h}^{(l)} = \sum_{i=1}^i \exp \left((\widetilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \widetilde{X}_i^{(l)})^\top (\widetilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \widetilde{X}_j^{(l)}) \right).$$

By induction hypothesis,

$$\tilde{X}_i^{(l)} = \begin{pmatrix} X_{1;i}^{(l)} \\ \vdots \\ X_{K;i}^{(l)} \\ \tilde{\alpha}_i \end{pmatrix},$$

and $X_{k;i}^{(l)} = Y_{\zeta(i)}^{(l)}$ for $i = 1, \dots, \xi_1 - 1, \xi_m + 1, \dots, n$, where $\zeta(i) := \begin{cases} i, & i < \xi_1 \\ i - \xi_m - 1 + \xi_1, & i > \xi_m \end{cases}$.

Notice that for $j < i$:

$$(\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)}) = (X_{k;i}^{(l)})^\top (\mathbf{Q}_{k;h}^{(l)})^\top \mathbf{K}_{k;h}^{(l)} X_{k;j}^{(l)} + \tilde{\alpha}_i^\top A_k \tilde{\alpha}_j,$$

$$(\tilde{\mathbf{Q}}_{KH+1}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{KH+1}^{(l)} \tilde{X}_j^{(l)}) = \tilde{\alpha}_i^\top A \tilde{\alpha}_j.$$

Prove Eq (23). By properties of α, β, A , for any $j_2 \leq \xi_u \leq j_1 \leq i \leq \xi_{u+1}$ notice that:

$$\begin{aligned}
(\tilde{\mathbf{Q}}_{KH+1}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{KH+1}^{(l)} \tilde{X}_{j_1}^{(l)}) &\geq (\tilde{\mathbf{Q}}_{KH+1}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{KH+1}^{(l)} \tilde{X}_{\xi_u}^{(l)}) + C \\
&\geq (\tilde{\mathbf{Q}}_{KH+1}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{KH+1}^{(l)} \tilde{X}_{j_2}^{(l)}) + 2C.
\end{aligned}$$

Due to ϵ -precision of transformers, this implies that

$$\frac{\exp\left((\tilde{\mathbf{Q}}_{KH+1}^{(l)}\tilde{X}_i^{(l)})^\top(\tilde{\mathbf{K}}_{KH+1}^{(l)}\tilde{X}_j^{(l)})\right)}{Z_{KH+1}^{(l)}} = \begin{cases} \frac{1}{\delta_{\xi_u}^{j-\xi_u}}, & \xi_u < i < \xi_{u+1}, \\ \delta_{\xi_l}^j, & i = \xi_u \end{cases},$$

1458 and hence for $\xi_u < i < \xi_{u+1}$

$$\begin{aligned}
1460 \quad & \tilde{X}_i^{(l+1)} = \sum_{k=1}^K \sum_{h=1}^H \sum_{j=1}^i \frac{\exp \left((\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)}) \right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} \cdot \tilde{\mathbf{V}}_{(k-1)H+h}^{(l)} \begin{pmatrix} \vdots \\ X_{k;j}^{(l)} \\ \vdots \\ 0 \end{pmatrix} \\
1465 \quad & + \sum_{j=\xi_u+1}^i \cdot \frac{1}{i - \xi_u} \cdot \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \alpha_{\iota(i)} \end{pmatrix} \\
1470 \quad & = \begin{pmatrix} X_{1;i}^{(l+1)} \\ \vdots \\ X_{K;i}^{(l+1)} \\ \tilde{\alpha}_i \end{pmatrix},
\end{aligned}$$

1475 and for $i = \xi_u$

$$\begin{aligned}
1476 \quad & \tilde{X}_i^{(l+1)} = \sum_{k=1}^K \sum_{h=1}^H \sum_{j=1}^i \frac{\exp \left((\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)}) \right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} \cdot \tilde{\mathbf{V}}_{(k-1)H+h}^{(l)} \begin{pmatrix} \vdots \\ X_{k;j}^{(l)} \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \alpha_{\iota(i)} + \beta_{\mathcal{E}(v_i)} \end{pmatrix} \\
1481 \quad & = \begin{pmatrix} X_{1;i}^{(l+1)} \\ \vdots \\ X_{K;i}^{(l+1)} \\ \tilde{\alpha}_i \end{pmatrix},
\end{aligned}$$

1487 where

$$1488 \quad X_{k;i}^{(l+1)} = \sum_{k=1}^K \sum_{h=1}^H \sum_{j=1}^i \frac{\exp \left((\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)}) \right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} \cdot \mathbf{V}_{k;h}^{(l)} X_{k;j}^{(l)}. \quad (28)$$

1491 This confirms Eq. (23) for $l + 1$.

1494 **Prove Eq. (24).** From above,

$$\begin{aligned}
1495 \quad & \|X_{k;i}^{(l+1)}\|_2 = \left\| \sum_{k=1}^K \sum_{h=1}^H \sum_{j=1}^i \frac{\exp \left((\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)}) \right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} \cdot \mathbf{V}_{k;h}^{(l)} X_{k;j}^{(l)} \right\|_2 \\
1496 \quad & \leq KHB_v \cdot \max_{j \leq i} \|X_{k;j}^{(l)}\|_2 \\
1497 \quad & \leq B_\theta (KHB_v)^{l+1}.
\end{aligned}$$

1502 This confirms Eq. (24) for $l + 1$.

1504 **Prove Eq. (25).** We first show $X_{k;\xi_1}^{(l)} = 0$. Indeed, by the properties of α_t, β_k , for any $j \leq \xi_1$

$$\begin{aligned}
1505 \quad & (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_{\xi_1}^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{\xi_1}^{(l)}) \\
1506 \quad & = (X_{k;\xi_1}^{(l)})^\top (\mathbf{Q}_{k;h}^{(l)})^\top \mathbf{K}_{k;h}^{(l)} X_{k;\xi_1}^{(l)} + (\alpha_0 + \beta_{\mathcal{E}(v_{\xi_1})})^\top A_k (\alpha_0 + \beta_{\mathcal{E}(v_{\xi_1})}) \\
1507 \quad & \geq (X_{k;\xi_1}^{(l)})^\top (\mathbf{Q}_{k;h}^{(l)})^\top \mathbf{K}_{k;h}^{(l)} X_{k;\xi_1}^{(l)} + (\alpha_0 + \beta_{\mathcal{E}(v_{\xi_1})})^\top A_k \alpha_0 + C \\
1508 \quad & = (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_{\xi_1}^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{\xi_1}^{(l)}) + C
\end{aligned}$$

1512 It follows from Eq. (28) that
1513

$$1514 X_{k;\xi_1}^{(l+1)} = \sum_{k=1}^K \sum_{h=1}^H \mathbf{V}_{k;h}^{(l)} X_{k;\xi_1}^{(l)} = 0.$$

1516 For ξ_i ($i > 1$), we apply the same argument again to obtain that for any $j \leq \xi_i$ such that $j \notin \{\xi_1 < \dots < \xi_{\iota(n)}\}$ and any $i' < i$,
1517

$$1519 (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_{\xi_i}^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{\xi_{i'}}^{(l)}) \\ 1520 \geq (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_{\xi_1}^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)}) + C$$

1522 This implies that the attention weights are supported on $\{\xi_1 < \dots < \xi_i\}$, and therefore
1523

$$1524 X_{k;\xi_i}^{(l+1)} = \sum_{k=1}^K \sum_{h=1}^H \sum_{j=1}^i \frac{\exp\left((\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_{\xi_i}^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{\xi_j}^{(l)})\right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} \cdot \mathbf{V}_{k;h}^{(l)} X_{k;\xi_j}^{(l)} = 0$$

1526 where we apply the induction hypothesis $k; X_{\xi_j}^{(l)} = 0$ for all $j = 1, \dots, i-1$. This thus completes
1527 the proof of Eq. (25).
1528

1530 **Prove Eq. (26).** When $j_1 < j_2 \leq i < \xi_1$, we have
1531

$$1532 (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{j_1}^{(l)}) - (\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_{j_2}^{(l)}) \\ 1533 = (X_{k;i}^{(l)})^\top (\mathbf{Q}_{k;h}^{(l)})^\top \mathbf{K}_{k;h}^{(l)} X_{k;j_1}^{(l)} + \alpha_0^\top A_k \alpha_0^\top \\ 1534 - (X_{k;i}^{(l)})^\top (\mathbf{Q}_{k;h}^{(l)})^\top \mathbf{K}_{k;h}^{(l)} X_{k;j_2}^{(l)} - \alpha_0^\top A_k \alpha_0^\top \\ 1535 = (\mathbf{Q}_{k;h}^{(l)} Y_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} Y_{k;j_1}^{(l)}) - (\mathbf{Q}_{k;h}^{(l)} Y_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} Y_{k;j_2}^{(l)}).$$

1538 It follows that

$$1539 \tilde{Z}_{(k-1)H+h}^{(l)} = \sum_{j=1}^i \exp\left((\mathbf{Q}_{k;h}^{(l)} Y_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} Y_{k;j}^{(l)})\right),$$

1542 and

$$1543 X_{k;i}^{(l+1)} = \sum_{k=1}^K \sum_{h=1}^H \sum_{j=1}^i \frac{\exp\left((\mathbf{Q}_{k;h}^{(l)} Y_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} Y_{k;j}^{(l)})\right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} \cdot \mathbf{V}_{k;h}^{(l)} Y_{k;j}^{(l)} \\ 1544 = Y_{k;i}^{(l+1)}.$$

1548 This confirms Eq. (26).
1549

1550 **Prove Eq. (27).** When $i > \xi_m$, we rely on the following properties:
1551

1553 1. Attention sink to v_{ξ_m} for mismatch expert: for any $k' \neq \kappa$ and $j \leq i$ we have
1554

$$1555 (\tilde{\mathbf{Q}}_{(k'-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k'-1)H+h}^{(l)} \tilde{X}_j^{(l)}) \leq (\tilde{\mathbf{Q}}_{(k'-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k'-1)H+h}^{(l)} \tilde{X}_{\xi_m}^{(l)}) - C. \quad (29)$$

1557 2. Attention to task-relevant tokens for matching expert: for $j \in \{1, \dots, \xi_1-1, \xi_m+1, \dots, n\}$,
1558 and $\xi_1 \leq j' \leq \xi_m$ we have
1559

$$1560 (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_j^{(l)}) \geq (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_{j'}^{(l)}) + C. \quad (30)$$

1562 and for $j_1 < j_2 \in \{1, \dots, \xi-1-1, \xi_m+1, \dots, n\}$
1563

$$1564 (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_{j_1}^{(l)}) - (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_{j_2}^{(l)}) \\ 1565 = (\mathbf{Q}_{\kappa;h}^{(l)} Y_{\kappa;i-\xi_m-1+\xi_1}^{(l)})^\top (\mathbf{K}_{\kappa;h}^{(l)} Y_{\zeta(j_1)}^{(l)}) - (\mathbf{Q}_{\kappa;h}^{(l)} Y_{i-\xi_m-1+\xi_1}^{(l)})^\top \mathbf{K}_{\kappa;h}^{(l)} Y_{\kappa;\zeta(j_2)}^{(l)}, \quad (31)$$

1566 To see Eq. (29), we notice that

$$\begin{aligned}
& (\tilde{\mathbf{Q}}_{(k'-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k'-1)H+h}^{(l)} \tilde{X}_j^{(l)}) \\
&= (X_{k';i}^{(l)})^\top (\mathbf{Q}_{k';h}^{(l)})^\top \mathbf{K}_{k';h}^{(l)} X_{k';j}^{(l)} + \alpha_m^\top A_{k'} (\alpha_{\iota(j)} + \beta_{\mathcal{E}(v_j)} \cdot \mathbb{1}(\iota(j) = j)) \\
&\leq (X_{k';i}^{(l)})^\top (\mathbf{Q}_{k';h}^{(l)})^\top \mathbf{K}_{k';h}^{(l)} X_{k';\xi_m}^{(l)} + \alpha_m^\top A_{k'} (\alpha_m + \beta_{\mathcal{E}(v_{\xi_m})}) - C \\
&= (\tilde{\mathbf{Q}}_{(k'-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k'-1)H+h}^{(l)} \tilde{X}_{\xi_m}^{(l)}) - C,
\end{aligned}$$

1574 where we use Eq. (19) with $k' \neq \kappa$.

1575 To see Eq. (30), we notice that

$$\begin{aligned}
& (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_j^{(l)}) = (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j}^{(l)}) + \alpha_m^\top A_\kappa \alpha_0 \\
&\geq (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j'}^{(l)}) + \alpha_m^\top A_\kappa (\alpha_{\iota(j')} + \beta_{\mathcal{E}(v_{j'})}) + C \\
&= (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_{j'}^{(l)}) + C,
\end{aligned}$$

1581 and

$$\begin{aligned}
& (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_j^{(l)}) = (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j}^{(l)}) + \alpha_m^\top A_\kappa \alpha_0 \\
&\geq (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j'}) + \alpha_m^\top A_k \alpha_{\iota(j')} + C \\
&= (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_{j'}^{(l)}) + C,
\end{aligned}$$

1587 where we use Eq. (20) and Eq. (22).

1588 When $\xi_m < j_1 < j_2$, Eq. (31) follows directly from

$$\begin{aligned}
& (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_{j_1}^{(l)}) - (\tilde{\mathbf{Q}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(\kappa-1)H+h}^{(l)} \tilde{X}_{j_2}^{(l)}) \\
&= (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j_1}^{(l)}) + \alpha_m^\top A_k \alpha_m^\top \\
&\quad - (\mathbf{Q}_{k;h}^{(l)} X_{k;i}^{(l)})^\top (\mathbf{K}_{k;h}^{(l)} X_{k;j_2}^{(l)}) + \alpha_m^\top A_k \alpha_m^\top \\
&= (\mathbf{Q}_{\kappa;h}^{(l)} Y_{\kappa;i-\xi_m-1+\xi_1}^{(l)})^\top (\mathbf{K}_{\kappa;h}^{(l)} Y_{j_1-\xi_m-1+\xi_1}^{(l)}) - (\mathbf{Q}_{\kappa;h}^{(l)} Y_{\kappa;i-\xi_m-1+\xi_1}^{(l)})^\top \mathbf{K}_{\kappa;h}^{(l)} Y_{\kappa;j_2-\xi_m-1+\xi_1}^{(l)}.
\end{aligned}$$

1596 The other cases follow similarly due to Eq. (22).

1597 We have hence confirmed Eq. (29), Eq. (30), Eq. (31), and therefore

$$\frac{\exp\left((\tilde{\mathbf{Q}}_{(k-1)H+h}^{(l)} \tilde{X}_i^{(l)})^\top (\tilde{\mathbf{K}}_{(k-1)H+h}^{(l)} \tilde{X}_j^{(l)})\right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} = \begin{cases} \delta_j^{\xi_m}, & k \neq \kappa \\ \frac{\exp\left((\mathbf{Q}_{\kappa;h}^{(l)} Y_{\kappa;i-\xi_m-1+\xi_1}^{(l)})^\top (\mathbf{K}_{\kappa;h}^{(l)} Y_j^{(l)})\right)}{\tilde{Z}_{(k-1)H+h}^{(l)}}, & k = \kappa, j < \xi_1 \\ 0, & k = \kappa, \xi_1 \leq j \leq \xi_m \\ \frac{\exp\left((\mathbf{Q}_{\kappa;h}^{(l)} Y_{\kappa;i-\xi_m-1+\xi_1}^{(l)})^\top (\mathbf{K}_{\kappa;h}^{(l)} Y_{j-\xi_m-1+\xi_1}^{(l)})\right)}{\tilde{Z}_{(k-1)H+h}^{(l)}}, & k = \kappa, j > \xi_m \end{cases}$$

1605 and

$$\tilde{Z}_{(k-1)H+h}^{(l)} = \sum_{j=1, \dots, \xi_1-1, \xi_m+1, \dots, n} \exp\left((\mathbf{Q}_{\kappa;h}^{(l)} Y_{\kappa;i-\xi_m-1+\xi_1}^{(l)})^\top (\mathbf{K}_{\kappa;h}^{(l)} Y_j^{(l)})\right).$$

1609 It follows that

$$\begin{aligned}
X_{\kappa;i}^{(l+1)} &= \sum_{j=1}^{\xi_1-1} \frac{\exp\left((\mathbf{Q}_{\kappa;h}^{(l)} Y_{\kappa;i-\xi_m-1+\xi_1}^{(l)})^\top (\mathbf{K}_{\kappa;h}^{(l)} Y_j^{(l)})\right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} \mathbf{V}_{k;h}^{(l)} Y_j^{(l)} \\
&\quad + \sum_{j=\xi_m+1}^i \frac{\exp\left((\mathbf{Q}_{\kappa;h}^{(l)} Y_{\kappa;i-\xi_m-1+\xi_1}^{(l)})^\top (\mathbf{K}_{\kappa;h}^{(l)} Y_{j-\xi_m-1+\xi_1}^{(l)})\right)}{\tilde{Z}_{(k-1)H+h}^{(l)}} \mathbf{V}_{k;h}^{(l)} Y_{j-\xi_m-1+\xi_1}^{(l)}, \\
&= Y_{\kappa;i-\xi_m-1+\xi_1}^{(l+1)} \\
X_{k';i}^{(l+1)} &= X_{k';\xi_m}^{(l)} = 0, \forall k' \neq \kappa.
\end{aligned}$$

1619 Therefore we establish Eq. (27). This completes the induction.

1620 At the output layer, we have

$$\begin{aligned}
p_{\tilde{f}}(y|v_1, \dots, v_n) &= \text{Softmax}(\tilde{\vartheta}(y)^\top \tilde{X}_n^{(L)}) \\
&= \text{Softmax}(\vartheta(y)^\top Y_{n-\xi_m-1+\xi_1}^{(L)}) \\
&= p_{f_\kappa}(y|u_1, \dots, u_{n-\xi_m-1+\xi_1}).
\end{aligned}$$

1626 This establishes the desired Eq. (2). \square

1628 A.5 PROOF OF THEOREM 4.7

1630 *Proof.* Let ϕ_s, ϕ_m, ϕ_e denote the general-purpose Transformers in Proposition 4.4 (with K experts),
1631 4.2 (with $K = 3$ token spaces), and A.1 (extending to \mathcal{V}) respectively. We construct a dummy
1632 Transformer f_d that outputs BOS immediately after a token in \mathcal{A} . Then we claim that the general-
1633 purpose Transformer $\tilde{\phi}$ defined by

$$\tilde{\phi}(f_0, f_1, \dots, f_K) = \phi_m(\phi_s(\phi_e(f_1), \dots, \phi_e(f_K)), f_d, f_0)$$

1635 achieves the desired property.

1636 Indeed, let $g_1 = \phi_s(\phi_e(f_1), \dots, \phi_e(f_K))$, by Proposition 4.4, we have

1639 1. **Expert following:** At t -th iteration,

$$p_{g_1}(\cdot | \text{prompt}) \sim p_{f_{a(t)}}(\cdot | q|u_{1:i-1}^{(t)}),$$

1640 where $q|u_{1:i-1}^{(t)}$ is the token sequence obtained by concatenating the user query q and prior
1641 generated part in response t : $u_{1:i-1}^{(t)}$.

1642 2. **Regret minimization:**

$$\max_{a^* \in \mathcal{A}} r_0(a^*) - \mathbb{E}[r_0(a^{(T)})] \leq \text{reg}(T).$$

1649 Therefore by Proposition 4.2, we have

$$u_i^{(t)} \sim p_{f_{a(t)}}(\cdot | q|u_{1:i-1}^{(t)}).$$

1650 It follows that

$$\begin{aligned}
\max_{u^* \in \mathcal{V}^\omega} r(q, u^*) - \mathbb{E}[r(q, u^{(T)})] &\leq \lambda + \mathbb{E}_{u \sim f_{k^*}(\cdot | p)}[r(q, u)] - \mathbb{E}_{a^{(T)}} \left[\mathbb{E}_{u^{(T)} \sim f_{a(t)}(\cdot | q)}[r(q, u^{(T)})] \right] \\
&\leq \lambda + \max_{a^* \in \mathcal{A}} r_0(a^*) - \mathbb{E}[r_0(a^{(T)})] \\
&\leq \lambda + \text{reg}(T).
\end{aligned}$$

1659 Finally, $\tilde{\phi}$ has type ϕ of type $(O(K), O(\log(N_{\max})))$ because ϕ_s has type $(O(K), O(\log(N_{\max})))$
1660 and ϕ_m, ϕ_e has type $(O(1), O(\log(N_{\max})))$. This completes the proof. \square

1662 A.6 ATTENTION SINK POSITIONAL ENCODING

1664 In this section, we introduce positional encoding mechanisms that induce attention sink behaviors
1665 used by Theorem 4.7.

1666 **Lemma A.2** (Attention Sink Positional Encoding, Type 1). *For any $C \in \mathbb{R}_+, K, N \in \mathbb{Z}_+$, there
1667 exist vectors $\alpha_1, \dots, \alpha_N, \beta_1, \dots, \beta_K \in \mathbb{R}^d$ and matrices $A, A_1, \dots, A_K \in \mathbb{R}^{d \times d}$ for $d \leq O(K +$
1668 $\log N)$ such that for any $n \in [N]$ the followings hold*

1669 1. For any $k \neq k'$:

$$\alpha_n^\top A_k(\alpha_n + \beta_{k'}) \geq C + \begin{cases} \alpha_n^\top A_k \alpha_n \\ \alpha_n^\top A_k \alpha_j \\ \alpha_n^\top A_k (\alpha_j + \beta_{k''}) \end{cases}, \quad \forall 0 \leq j \leq n, 1 \leq k'' \leq K.$$

1674 2. For any $k \in [K]$:

$$1676 \quad \alpha_n^\top A_k \alpha_n = \alpha_n^\top A_k \alpha_0 \geq C + \begin{cases} \alpha_n^\top A_k (\alpha_n + \beta_k) \\ \alpha_n^\top A_k \alpha_j \\ \alpha_n^\top A_k (\alpha_j + \beta_{k'}) \end{cases}, \quad \forall 0 < j < n, k' \neq k.$$

1679 3. For any $k, k', k'' \in [K]$:

$$1681 \quad (\alpha_n + \beta_{k'})^\top A_k (\alpha_n + \beta_{k'}) \geq C + (\alpha_n + \beta_{k'})^\top A_k \alpha_j, \quad \forall 0 \leq j \leq n.$$

1682 4. For any $0 < j < n$:

$$1684 \quad \alpha_n^\top A \alpha_n \geq \alpha_n^\top A (\alpha_n + \beta_k) + C \\ 1685 \quad \geq C + \max\{\alpha_n^\top A \alpha_j, \alpha_n^\top A (\alpha_j + \beta_{k'})\}, \quad \forall k, k'' \in [K].$$

1688 *Proof.* Notice that the following relations are sufficient to guarantee the desired properties

$$1689 \quad \alpha_n^\top A_k \alpha_n = \alpha_n^\top A_k \alpha_0, \\ 1690 \quad \alpha_n^\top A_k \beta_{k'} = C, \\ 1691 \quad \alpha_n^\top A_k \alpha_n \geq \alpha_n^\top A_k \alpha_j + \alpha_n^\top A_k \beta_{k'} + C, \\ 1692 \quad \alpha_n^\top A_k \beta_k = -C, \\ 1693 \quad \alpha_n^\top A \beta_k = -C, \\ 1694 \quad \beta_k^\top A_k \beta_{k'} = 9C.$$

1697 By Lemma A.4, we can find $\gamma_1, \dots, \gamma_N \in \mathbb{R}^{\bar{d}}$ such that $\bar{d} = O(\log N)$, $\gamma_i^\top \gamma_j \leq 1/2$ for any
1698 $i \neq j \in [N]$, and $\gamma_i^\top \gamma_i \geq 1$ for any $i \in [N]$. Define
1699

$$1700 \quad B_k = e_k e_k^\top, \quad \eta_k = -e_k.$$

1701 where e_1, \dots, e_K form the standard basis of \mathbb{R}^K .

1702 We thus let

$$1703 \quad \alpha_i = \begin{pmatrix} a\gamma_i \\ b\mathbf{1}_E \\ c\mathbf{1} \\ c\mathbf{1} \\ 0 \end{pmatrix}, \quad \beta_k = \begin{pmatrix} 0 \\ f\eta_k \\ e \\ -e \\ h \end{pmatrix}, \quad \alpha_0 = \begin{pmatrix} 0 \\ 0 \\ g\mathbf{1} \\ -g\mathbf{1} \\ 0 \end{pmatrix} \\ 1704 \quad A_k = \begin{pmatrix} I & & & & \\ & B_k & & & \\ & & 1 & & \\ & & & -1 & \\ & & & & 1 \end{pmatrix}, \quad A = \begin{pmatrix} I & & & & \\ & I/K & & & \\ & & 0 & & \\ & & & 0 & \\ & & & & 0 \end{pmatrix},$$

1714 where $b = c = f = \sqrt{C}$, $e = \sqrt{C}/2$, $a = \sqrt{3C}$, $g = 2\sqrt{C}$, $h = 3\sqrt{C}$. The dimension can be
1715 bounded by $d = \bar{d} + K + 3 = O(K + \log N)$. \square

1716 **Lemma A.3** (Attention Sink Positional Encoding, Type 2). *For any $C \in \mathbb{R}_+$, $K, N \in \mathbb{Z}_+$, there
1717 exist vectors $\alpha_1, \dots, \alpha_N, \beta_0, \dots, \beta_K \in \mathbb{R}^d$ and matrices $A, A_1, \dots, A_K \in \mathbb{R}^{d \times d}$ for $d \leq O(K +
1718 \log N)$ such that for any $n \in [N]$ the following hold*

1720 1. For any $i \geq j_1, j_2, j_3$ and $k, k', k'' \neq 0$:

$$1721 \quad (\alpha_i + \beta_k)^\top A_0 (\alpha_{j_1} + \beta_{k'}) = (\alpha_i + \beta_k)^\top A_0 (\alpha_{j_2} + \beta_{k''}) \geq (\alpha_i + \beta_k)^\top A_0 (\alpha_{j_1} + \beta_0) + C \\ 1723 \quad (\alpha_i + \beta_0)^\top A_0 (\alpha_i + \beta_0) \geq (\alpha_i + \beta_0)^\top A_0 (\alpha_{j_1} + \beta_k) + C.$$

1725 2. For any $i > j$ and $k \neq k' \neq 0$

$$1726 \quad (\alpha_i + \beta_k)^\top A (\alpha_i + \beta_k) \geq (\alpha_i + \beta_k)^\top A (\alpha_j + \beta_{k'}) + C \\ 1727 \quad \geq (\alpha_i + \beta_k)^\top A (\alpha_j + \beta_0) + 2C.$$

1728 3. For any $i \geq j, j_1$ and $k \neq k', k''$

$$1729 \quad (\alpha_i + \beta_k)^\top A_{k'}(\alpha_j + \beta_0) \geq (\alpha_i + \beta_k)^\top A_{k'}(\alpha_{j_1} + \beta_{k''}) + C$$

$$1730 \quad (\alpha_i + \beta_k)^\top A_k(\alpha_i + \beta_k) \geq \max\{(\alpha_i + \beta_k)^\top A_k(\alpha_{j_1} + \beta_{k''}), (\alpha_i + \beta_k)^\top A_{k'}(\alpha_{j_1} + \beta_0)\} + C.$$

1733 *Proof.* Following the notations in Lemma A.2, let

$$1734 \quad \alpha_i = \begin{pmatrix} \gamma_i \\ 0 \\ 0 \\ 0 \end{pmatrix}, \beta_k = \begin{pmatrix} 0 \\ \gamma \\ e_k \\ 1 \end{pmatrix}, \beta_0 = \begin{pmatrix} 0 \\ \gamma \\ 1 \\ f \end{pmatrix},$$

1738 and

$$1739 \quad A = \begin{pmatrix} 0 & a \cdot I & 0 & 0 \end{pmatrix}, A_k = \begin{pmatrix} b \cdot I & 0 & c \cdot e_k e_k^\top & 1 \end{pmatrix}, A = \begin{pmatrix} e \cdot I & 0 & 0 & 0 \end{pmatrix},$$

1743 where $a = c = e = C, f = 3.5C, d = 4C$. The dimension can be bounded by $d = \bar{d} + K + 3 = O(K + \log N)$. \square

1746 A.7 TECHNICAL CLAIMS

1748 **Claim A.4** (Johnson-Lindenstrauss Lemma). Given $0 < \varepsilon < 1$, a set X of N points in \mathbb{R}^n , and an 1749 integer $k > \frac{8(\ln N)}{\varepsilon^2}$, there is a linear map $f : \mathbb{R}^n \rightarrow \mathbb{R}^k$ such that

$$1751 \quad (1 - \varepsilon)\|u - v\|^2 \leq \|f(u) - f(v)\|^2 \leq (1 + \varepsilon)\|u - v\|^2$$

1753 holds for all $u, v \in X$.

1754 **Claim A.5** (Concentration of Multinomial Distributions, adapted from Agrawal & Jia (2017)). Let 1755 $p \in \Delta^S$ and $\hat{p} \sim \frac{1}{n} \text{Multinomial}(n, p)$. Then, for any $\delta \in [0, 1]$:

$$1757 \quad \mathbb{P}\left(\|\hat{p} - p\|_1 \geq \sqrt{\frac{2 \ln(1/\delta)}{n}}\right) \leq \delta.$$

1760 **Claim A.6** (Berry-Esseen theorem). If X_1, X_2, \dots are i.i.d. random variables with $\mathbb{E}(X_1) = 0$, 1761 $\mathbb{E}(X_1^2) = \sigma^2 > 0$, and $\mathbb{E}(|X_1|^3) = \rho < \infty$, we define

$$1763 \quad Y_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

1764 as the sample mean, with F_n the cumulative distribution function of $\frac{Y_n \sqrt{n}}{\sigma}$ and Φ the cumulative 1765 distribution function of the standard normal distribution, then for all x and n ,

$$1767 \quad |F_n(x) - \Phi(x)| \leq \frac{8\rho}{\sigma^3 \sqrt{n}}.$$

1782 **B EXPERIMENT DETAILS**
1783

1784 **B.1 IMPLEMENTATION DETAILS OF SELF-CORRECTION EXPERIMENTS**
1785

1786 The model configurations are detailed in Table
1787 2. Our code is implemented based on PyTorch
1788 Paszke et al. (2019) and minGPT². All the models
1789 are trained on one NVIDIA GeForce RTX 2080 Ti
1790 GPU with 11GB memory.

1791 Following common practice, the learning rate
1792 goes through the warm-up stage in the first 5% of
1793 training iterations, and then decays linearly to 0
1794 until training finishes. We set the peak learning rate to 10^{-4} and find that all the models are stably
1795 trained under this learning rate schedule. We do not apply drop out or weight decay during training.
1796 We repeat the experiments for 3 times under different random seeds and report the average accuracy
1797 with error bars.

1798 **B.2 PROMPTS FOR SELF-CORRECTION**
1799

1800 **Initial Problem Solving Prompt**
1801

1802 Solve the following math problem efficiently and clearly. The last line of your response
1803 should be of the following format: ‘Therefore, the final answer is: \$\\boxed{\\text{ANSWER}}\$.’
1804 I hope it is correct’ (without quotes) where ANSWER is just the final number or expression
1805 that solves the problem. Think step by step before answering.
1806 {Question}

1807 **Correction Prompt**
1808

1809 Your answer is incorrect. Please analyze your solution and identify where you made
1810 an error. Then provide a corrected solution that leads to the right answer. The last
1811 line of your response should be of the following format: ‘Therefore, the final answer is:
1812 \$\\boxed{\\text{ANSWER}}\$.’
1813

1814 **C LIMITATIONS**
1815

1816 Despite these contributions, our work comes with limitations: our construction in Theorem 4.7 only
1817 applies to attention-only Transformers and relies on a slightly generalized position encoding method.
1818 Relaxing these constraints constitutes interesting problems for future research.
1819

1820 **LARGE LANGUAGE MODELS USAGE DISCLORE**
1821

1822 LLMs were used only to polish writing.
1823

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

²<https://github.com/karpathy/minGPT> (MIT license).

Model	Depth	Heads	Width
GPT-nano	3	3	48
GPT-micro	4	4	128
GPT-mini	6	6	192
Gopher-44M	8	16	512

Table 2: Model configuration hyperparameters.
until training finishes. We set the peak learning rate to 10^{-4} and find that all the models are stably
trained under this learning rate schedule. We do not apply drop out or weight decay during training.
We repeat the experiments for 3 times under different random seeds and report the average accuracy
with error bars.