
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SAMPLE COMPLEXITY AND REPRESENTATION ABIL-
ITY OF TEST-TIME SCALING PARADIGMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-time scaling paradigms have significantly advanced the capabilities of large
language models (LLMs) on complex tasks. Despite their empirical success, the-
oretical understanding of the sample efficiency of various test-time strategies—
such as self-consistency, best-of-n, and self-correction—remains limited. In this
work, we first establish a separation result between two repeated sampling strate-
gies: self-consistency requires Θ(1/∆2) samples to produce the correct answer,
while best-of-n only needs Θ(1/∆), where ∆ < 1 denotes the probability gap
between the correct and second most likely answers. Next, we present an expres-
siveness result for the self-correction approach with verifier feedback: it enables
Transformers to simulate online learning over a pool of experts at test time. There-
fore, a single Transformer architecture can provably solve multiple tasks without
prior knowledge of the specific task associated with a user query, extending the
representation theory of Transformers from single-task to multi-task settings. Fi-
nally, we empirically validate our theoretical results, demonstrating the practical
effectiveness of self-correction methods.

1 INTRODUCTION

Over the past several years, Large Language Models (LLMs) have witnessed remarkable advances,
achieving unprecedented performance across a broad spectrum of application (Brown et al., 2020;
Bubeck et al., 2023; Chowdhery et al., 2022). Driven by the paradigm of chain-of-thought (CoT)
reasoning (Wei et al., 2022b), the outputs of LLMs have not only grown in length but also in struc-
tural complexity. In particular, recent studies have demonstrated that scaling up computational
resources during test time significantly enhances the problem-solving capabilities LLMs—a phe-
nomenon termed as the test-time scaling law (Brown et al., 2024; Wu et al., 2024; Guo et al., 2025;
OpenAI, 2024b). Various methods have been proposed to effectively utilize additional test-time
compute, including self-consistency (Wang et al., 2023; Brown et al., 2024; Nguyen et al., 2024;
Chen et al., 2024b), best-of-n sampling (Irvine et al., 2023; Song et al., 2024a; Munkhbat et al.,
2025; Qiu et al., 2024; Sessa et al., 2024), Monte Carlo Tree Search (MCTS) (Tian et al., 2024;
Zhang et al., 2024d; Gao et al., 2024; Wan et al., 2024; Chen et al., 2024a; Lin et al., 2025), and self-
correction (Madaan et al., 2023; Welleck et al., 2023; Chen et al., 2024d; Gou et al., 2024; Zhang
et al., 2024c; Kumar et al., 2024). Powered by test-time scaling paradigms, several reasoning mod-
els, such as OpenAI-o1 (OpenAI, 2024a) and Deepseek-R1 (DeepSeek-AI, 2025), have achieved
remarkable success in many complex tasks (Cobbe et al., 2021; Hendrycks et al., 2021; Shi et al.,
2024; codeforce, 2025; Huang et al., 2024b; Zhang et al., 2024a).

Despite these empirical advancements, the theoretical foundations of test-time scaling remain under-
developed. While recent progress has been made in understanding the expressiveness and learnabil-
ity of chain-of-thought reasoning (Feng et al., 2023; Merrill & Sabharwal, 2023; Li et al., 2024b;
Joshi et al., 2025), two fundamental challenges remain unresolved:

1. Many test-time scaling approaches rely on repeated sampling from the same LLM to select
a final answer (Wang et al., 2023; Brown et al., 2024; Irvine et al., 2023; Song et al., 2024a;
Nguyen et al., 2024; Chen et al., 2024b; Wu et al., 2025b; Kimi, 2025; Munkhbat et al.,
2025; Qiu et al., 2024; Sessa et al., 2024). Two dominant paradigms are: self-consistency,
which marginalizes reasoning paths and selects the most frequent answer; and best-of-n,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

which chooses the answer with the highest reward score. However, a rigorous understand-
ing of their sample complexities is lacking. This raises the first question:

What is the sample complexity of repeated sampling methods,
particularly self-consistency and best-of-n?

2. Theoretical analyses of Transformers’ expressiveness have largely focused on their ability
to represent individual tasks (Yun et al., 2020; Bhattamishra et al., 2020a;b; Dehghani et al.,
2018; Pérez et al., 2021; Edelman et al., 2022; Elhage et al., 2021; Likhosherstov et al.,
2021; Akyürek et al., 2022; Zhao et al., 2023; Yao et al., 2021; Anil et al., 2022; Barak
et al., 2022; Garg et al., 2022; Von Oswald et al., 2022; Bai et al., 2023; Olsson et al., 2022;
Li et al., 2023; Garg et al., 2022; Akyürek et al., 2022; Bai et al., 2023; Von Oswald et al.,
2023; Liu et al., 2022; Wei et al., 2022a; Mei & Wu, 2023; Lin et al., 2023), while the ability
of Transformers to express multiple tasks at the same has been under-studied. In contrast,
practical LLMs are expected to perform across diverse tasks at inference time—often using
more tokens and computation than theory accounts for (Chen et al., 2024c). This gap in
theory limits our understanding of test-time scaling approaches that go beyond CoT, such
as self-correction (Madaan et al., 2023; Welleck et al., 2023; Chen et al., 2024d; Gou et al.,
2024; Zhang et al., 2024c; Kumar et al., 2024) which uses reward information. As a result,
we are motivated to pose the second central question:

How can we characterize the expressiveness under test-time scaling methods,
especially in multi-task settings?

Our Contributions. This work addresses the challenges outlined above through two key con-
tributions. First, we analyze the sample complexity of two prominent decoding strategies: self-
consistency and best-of-n, in terms of the probability gap between the most likely (correct) and the
second most likely model outputs. Our results reveal a fundamental separation in sample efficiency
that highlights the advantage of the best-of-n approach.

Proposition 1.1 (Informal statement of Theorem 3.1 and Theorem 3.2). Let ∆ ∈ (0, 1) denote the
difference between the Transformer’s probability of producing the correct answer and the probability
of the second most likely answer. Then, self-consistency requires Θ(1/∆2) samples to reliably
produce the correct answer, whereas best-of-n achieves the same with only Θ(1/∆) samples.

Second, we investigate Transformer’s capacity for self-correction. We demonstrate that a Trans-
former equipped with verifier feedback at test time can implement online learning algorithms over
a pool of expert models, enabling it to adaptively identify the most suitable expert and ultimately
generate a response that maximizes the reward. This process is illustrated in Figure 1: given the
user query (e.g. solve the PDE 1

c(x)2
∂2u
∂t2 −∆u = 0 in Ω× (0, T) with some boundary conditions),

the Transformer f autoregressively generates a sequence of actions (e.g., selecting the sixth expert)
and responses (e.g., constructing and applying a spectral method solver), conditioned on the history
of previous action-response pairs and their corresponding rewards (e.g., solution error). Notably,
this process relies solely on the Transformer f—whose architecture encapsulates the capabilities
of all experts—and the reward function, distinguishing it from traditional routing algorithms that
explicitly query experts. As such, this mechanism allows a single Transformer architecture to solve
multiple tasks without prior knowledge of the specific task associated with a user query.

Figure 1: An illustration of test-time online learning (figure adapted from (Li et al., 2025)), where the
Transformer progressively learns that finite-element method solves the partial differential equation
with higher accuracy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Proposition 1.2 (Informal statement of Theorem 4.7). There exists a generic way to construct a
wider transformer f from any Transformer-based expert models f1, . . . , fE such that, when provided
with reward-based feedback, f can generate a sequence of responses where the t-th response has
regret o(1).

Proposition 1.2 has two key implications. First, it demonstrates that a Transformer can express
multiple tasks within a single architecture, extending beyond prior theoretical results that focus on
single-task expressiveness. Importantly, the construction is task-agnostic and independent of the
specific expert Transformers used, making both the result and the underlying techniques of inde-
pendent theoretical interest. Second, Proposition 1.2 reveals a fundamental distinction between
self-correction and repeated-sampling paradigms. While repeated-sampling methods generate iden-
tically distributed responses across attempts, self-correction provably allows the model to update
its attempts based on verifier feedback, thereby increasing the probability of producing the correct
answer as inference progresses. We further validate this results through controlled experiments.

2 PRELIMINARIES

Transformers. In this work, we consider attention-only Transformers defined as follows.

Definition 2.1 (Transformer). We define a Transformer model over vocabulary V as a tuple

(θ, pe, (K
(l)
h ,Q

(l)
h ,V

(l)
h)h∈[H],l∈[L], ϑ,V)

where θ : V → Rd is the tokenizer, pe : Rd × Vω → Rd is a position encoder, K(l)
h ,Q

(l)
h ,V

(l)
h ∈

Rd×d are the key, query, value matrices over L layers and H heads each layer, and ϑ is the output
feature. The computation of a Transformer rolls out as follows:

1. For each i = 1, . . . , n, X(1)
i = pe(θ(vi); v1, . . . , vi).

2. For each l = 1, . . . , L, compute each X
(l+1)
i for i = 1, . . . , n by

X
(l+1)
i =

H∑
h=1

i∑
j=1

exp
(
s
(l)
h (Xi, Xj)

)
Z

(l)
h

·V(l)
h X

(l)
j , (1)

where s
(l)
h (·) is the attention score defined by s

(l)
h (Xi, Xj) = (Q

(l)
h X

(l)
i)⊤(K

(l)
h X

(l)
j) and

Z
(l)
h =

∑i
j=1 exp

(
s
(l)
h (Xi, Xj)

)
is the normalizing constant.

3. The output probability is given by

pf (y|v1, . . . , vn) = Softmax(ϑ(y)⊤X(L)
n), y ∈ V .

In particular, we assume the softmax attention layer has precision ϵ: if two attention scores s1, s2
satisfy es1 < ϵ · es2 , then es1 is treated as zero in the attention computation of Eq. (1).

While classical positional encoders is solely dependent on the index of the current token (i.e. we
may write pe(θ(vi); v1, . . . , vi) = pe(θ(vi); i)), recent advance (He et al., 2024; Zhang et al., 2024b;
Golovneva et al., 2024) has extended this notion to incorporate set membership information of pre-
ceding tokens. This generalization proves crucial for enhancing the long-context capability required
for effective self-correction. Motivated by this insight, we introduce the following notion of a gen-
eralized position encoder.

Definition 2.2 (Generalized Position Encoder). We say that pe : Rd × Vω → Rd is a generalized
position encoder w.r.t. a partition V1, . . . ,VK of V if it maps an input feature in Rd and a token
sequence (of arbitrary length) v1, · · · , vi to a vector in Rd, so that it only depends on the input
feature and the membership of each vi in the sets V1, . . . ,VK , i.e.

pe(θ(vi); v1, . . . , vi) = pe
(
θ(vi); (1(vj ∈ Vk))j∈[i],k∈[K]

)
.

Test-time scaling. In this work, we study the following three strategies for test-time scaling.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

1. Self-consistency samples n i.i.d. responses from the language model and chooses the most
consistent answer, while marginalizing over the reasoning paths.

2. Best-of-n samples n i.i.d. responses from the language model and chooses the answer with
the highest score given by the reward model.

3. In the Self-Correction paradigm, the Transformer autonomously generates a sequence of n
responses, each conditioned on the previous responses and their respective reward scores.

3 SEPARATION BETWEEN SELF-CONSISTENCY AND BEST-OF-N

In this section, we study the sample complexity of self-consistency and best-of-n. Let q denote the
user query (e.g. a math problem) and O denote the answer space; then for each answer o ∈ O we
define p(o) as the marginalized probability of generating o over all possible reasoning paths

p(o) =
∑

reasoning path

pf (reasoning path, o|q)

where pf denotes the probability distribution of Transformer f .

To understand the sample complexity, we focus on the dependence on the following probability gap:
∆ := p(o∗)− max

o∈O,o ̸=o∗
p(o)

where o∗ denotes the correct answer1. If ∆ ≤ 0, then self-consistency fails to find the correct
answer with high probability and the separation becomes trivial. Therefore, we focus on the setting
where ∆ > 0 (i.e., the most likely answer is correct), which is also considered in prior theoretical
work (Huang et al., 2024a). Under this setting, we may assume without loss of generality that
the reward function r is maximized (only) at the correct answer, because p itself is such a reward
function satisfying this condition. Note that since p(o) is marginalized over reasoning paths, ∆ > 0
does not imply that the correct answer can be derived easily from greedy decoding.

Theorem 3.1 (Sample Complexity of Self-Consistency). When n ≥ 2 log(1/δ)
∆2 , self-consistency with

n i.i.d. samples is able to produce the correct answer with probability at least 1− δ; When n ≤ 1
∆2 ,

there exists a hard instance where self-consistency with n i.i.d. samples fails to produce the correct
answer with constant probability.

Theorem 3.2 (Sample Complexity of Best-of-n). When n ≥ 2 log(1/δ)
∆ , best-of-n with n i.i.d. sam-

ples is able to produce the correct answer with probability at least 1−δ; When n ≤ 1
∆ , there exists a

hard instance where best-of-n with n i.i.d. samples fails to produce the correct answer with constant
probability.

By providing matching (up to logarithmic factors) upper and lower bounds on the number of samples,
the above results establishes the separation between self-consistency and best-of-n. While self-
consistency requires Θ(1/∆2) samples to produce the correct answer, best-of-n shows advantage
by only requiring Θ(1/∆) samples. Therefore, this theory corroborates the empirical findings that
best-of-n generally leads to better problem solving accuracy on reasoning tasks compared with self-
consistency (Sun et al., 2024; Wu et al., 2025a).

4 EXPRESSIVENESS UNDER SELF-CORRECTION

A key distinction between self-correction and the repeated sampling strategies discussed in the pre-
vious section lies in the dependence structure of the generated responses: unlike repeated sampling,
the outputs produced by self-correction are not i.i.d.. Consequently, to analyze the sample efficiency
of self-correction, we must first address a fundamental question: can a large language model (LLM),
through self-correction, increase the likelihood of generating the correct answer? At its core, this
question is one of expressiveness—whether the Transformer architecture’s representation capacity
is sufficient to support such improvement.

1If there are multiple correct answers, we can let o∗ to denote the set, and our results continue to hold in
this setting.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

In this section, we take a first step toward analyzing the expressiveness of Transformers under the
self-correction paradigm. Unlike prior work that focuses on expressiveness in the context of a single
task, we study what we call general-purpose expressiveness: the ability to solve a broad range of
tasks. To this end, we introduce the concept of a General-Purpose Transformer—a construction that
maps any collection of task-specific Transformers (experts) into a single unified Transformer.
Definition 4.1 (General-Purpose Transformer). We say that ϕ is a General-Purpose Transformer of
type (t1, t2) if it maps any set of Transformers with hidden size d and depth L into another ‘unified’
Transformer with hidden size t1 · d+ t2 and depth L+O(1).

A general-purpose Transformer provides a principled framework for constructing more powerful
Transformer architectures by composing simpler, task-specific components. This meta-architecture
enables a single model to solve multiple tasks at inference time, representing a significant advance-
ment in our theoretical understanding of the expressive power of modern machine learning systems.
Our goal is to investigate the general-purpose expressiveness of self-correction paradigms through
the lens of general-purpose Transformers: specifically, how a Transformer can adaptively solve dif-
ferent tasks during inference without prior knowledge of the task identity.

4.1 GENERAL-PURPOSE EXPRESSIVENESS

In this section, we present two auxiliary results that serve as building blocks for constructing general-
purpose Transformers capable of solving multiple tasks. These results may also be of independent
interest beyond expressiveness of self-correction.

Figure 2: (a): Illustration of Proposition 4.2. In the first query, f2 is called to solve the common sense
problem by attending to only blue tokens. In the second query, f1 is called to solve the arithmetic
problem by attending to only red tokens. (b): Illustration of Proposition 4.4. In the first query, f2
is called to solve the history problem by attending to only blue tokens. In the second query, f1 is
called to solve the chemistry problem by attending to only red tokens. Importantly, these function
calls occur implicitly within the internal computation of the unified Transformer architecture.

The first result addresses the setting in which multiple Transformers operate over distinct vocabular-
ies, with each vocabulary corresponding to a specific task. The objective is to construct a unified
Transformer that uses the final token in the input sequence to infer which task to perform, and sub-
sequently solves the task by attending only to the task-relevant tokens.
Proposition 4.2 (General-purpose Expressiveness over Different Token Spaces). For any
H,L,K,Nmax ∈ Z+, Vi ∩ Vj = ∅ (∀i ̸= j ∈ {0} ∪ [K]), there exists a general-
purpose Transformer ϕ of type (O(K), O(logNmax)) such that for any Transformers fk =

(θ, pe, (K
(l)
k;h,Q

(l)
k;h,V

(l)
k;h)h∈[H],l∈[L], ϑ,Vk) for k ∈ [K], the Transformer f̃ = ϕ(f1, . . . , fK) sat-

isfies the following property: for any token sequence v = v1 · · · vn such that n ≤ Nmax and there
exists one vi0 ∈ V0, we have

pf̃ (·|v) = pfκ(·|u)
where κ is the task indicated by the last token: i.e., vn ∈ Vκ, and u = vi1 · · · vim , where {i1 <
· · · < im} = {i : vi ∈ Vκ}, is the sequence of tokens relevant to task κ.
Remark 4.3. The existence of vi0 which does not belong to any {Vi}i∈[K] serves the technical
purpose of inducing attention sink of all irrelevant experts to vi0 . It may be achieved by assuming
the user query always ends with the special token <eos>.

The following result considers a more challenging scenario in which multiple Transformers operate
across different tasks but share a common vocabulary space. A set of indicator tokens, denoted by

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Ω, is used to specify the intended task. The objective is to determine which task to execute based
on the most recent indicator token. It then proceeds to solve the task by attending exclusively to the
task-relevant tokens appearing before the first indicator token and after the last indicator token in the
input sequence.

Proposition 4.4 (Multi-Task Representation over the Same Token Space). For any
H,L,K,Nmax ∈ Z+, token spaces Ω ∩ V = ∅, there exists a general-purpose
Transformer ϕ of type (O(K), O(logNmax)) such that for any Transformers fk =

(θ, pe, (K
(l)
k;h,Q

(l)
k;h,V

(l)
k;h)h∈[H],l∈[L], ϑ,V), k ∈ [K] over V , the Transformer f̃ = ϕ(f1, . . . , fK)

satisfies the following property: for any token sequence v = v1 · · · vn such that
{ξ1 < · · · < ξm} = {j : vj ∈ Ω}, ξm < n ≤ Nmax

then we have
pf̃ (·|v) = pfκ(·|u) (2)

where u = v1 · · · vξ1−1vξm+1 · · · vn is the token sequence obtained by omitting tokens from position
ξ1 to ξm, and κ is the task indicated by token vξm .

Remark 4.5. We observe that in both results above, reducing the type parameters is generally not
feasible. The dependence on K arises from the need to compute features for all K experts cor-
responding to the user query. Since the model lacks prior knowledge of the task, it must encode
all task-relevant information to preserve the ability to invoke any expert at inference time. The
log(Nmax) scaling stems from the positional encoding: in order to construct Nmax nearly orthogo-
nal vectors, the positional embedding must have dimension at least log(Nmax).

4.2 GENERAL-PURPOSE EXPRESSIVENESS OF TRANSFORMERS WITH SELF-CORRECTION

In this section we state the main result that establishes general-purpose expressiveness of Transform-
ers with self-correction. We rely on the following notion of regret-minimization Transformer, which
expresses the single task of finding the most rewardable action.

Definition 4.6 (Regret-Minimization Transformer). We say that a Transformer f achieves sim-
ple regret reg(·) over reward function r and action space A, if for any T ∈ Z+, we have
maxa∗∈A r(a∗)− E[r(aT)] ≤ reg(T) where a1, . . . , aT are generated in the following way:

at ∼ pf (·|a1, r1, . . . , at−1, rt−1), ∀t = 1, . . . , T,

rt = r(at), ∀t = 1, . . . , T.

Essentially, the goal of a regret-minimization Transformer is to learn from a reward oracle and ulti-
mately recommend an action that is near-optimal, which is related to a concept commonly referred to
as simple regret in the bandit literature (Even-Dar et al., 2006; Carpentier & Valko, 2015; Jamieson
et al., 2014). To achieve this, the Transformer may implement strategies such as mirror descent,
upper confidence bounds, or search-based algorithms, depending on the problem structure. As these
procedures rely only on basic arithmetic operations, such Transformers can be constructed by apply-
ing the universal approximation capabilities of Transformers (Yun et al., 2020; Luo et al., 2022; Feng
et al., 2023; Li et al., 2024b): For example, Lin et al. (2023) provide constructions to approximate
upper confidence bounds and Thompson sampling algorithms with regret O(

√
T). Consequently,

their construction is not the primary focus of this work.

The following theorem establishes the existence of a general-purpose Transformer that can simulate
the behavior of a set of expert Transformers (not necessarily over the same token space) through
self-correction. Specifically, it shows that such a unified Transformer can, at inference time, identify
and invoke the appropriate expert to solve any task that the original experts can solve. The self-
correction protocol is described in Algorithm 1, wherein the unified Transformer autoregressively
generates actions and responses, after which the verifier is queried to obtain reward signals. Through
this process of trial and error, the model effectively “learns” at inference time, using the verifier to
minimize regret and adaptively select the correct expert.

Theorem 4.7 (Regret Minimization via Self-Correction). For any H,L,K,Nmax ∈ Z+, token
spaces V0,V1, . . . ,VK ,A (|A| = K) such that V0,V = (∪K

k=1Vk), and A are disjoint, and reward
function r, there exists a general-purpose Transformer ϕ of type (O(K), O(logNmax)) such that
given any set of Transformers denoted as follows,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Algorithm 1 Self-correction with verifier
1: procedure GENERATION(q) ▷ q = q1 . . . qn0 denotes the user query.
2: prompt← q
3: for t = 1, . . . , T do
4: a(t) ∼ pf̃ (· | prompt) ▷ a(t) designates which expert to use in t-th iteration
5: prompt← prompt|a(t) ▷ Update the prompt autoregressively, | represents token concatenation.
6: for i = 1, . . . do
7: u

(t)
i ∼ pf̃ (· | prompt) ▷ Generate t-th response autoregressively

8: prompt← prompt|u(t)
i ▷ Update the prompt autoregressively

9: if u(t)
i = EOS then

10: Break
11: r(t) ← r(q, u(t)), prompt← prompt|r(t) ▷ Query verifier to obtain reward of t-th response
12: Return

• K expert Transformers: fk = (θ, pe, (K
(l)
k;h,Q

(l)
k;h,V

(l)
k;h)h∈[H],l∈[L], ϑ,Vk) for k ∈ [K],

such that one of the expert fk∗ achieves λ-suboptimal reward:
Eu∼fk∗ (·|q)[r(q, u)] ≥ max

u∗∈Vω
r(q, u∗)− λ

• Regret-Minimization Transformer: f0 = (θ, pe,K
(l)
0;h,Q

(l)
0;h,V

(l)
0;h)h∈[H],l∈[L], ϑ,V0 ∪ A)

that implements a bandit algorithm over the reward function r0 and action space A with
simple regret reg(t), where r0(a) = Eu∼fa(·|q)[r(q, u)] denotes the average reward of
responses generated by the a-th expert,

then the Transformer f̃ = ϕ(f0, f1, . . . , fK) satisfies the following property: for any prompt v =
v1 · · · vn, if the response sequence u(1), . . . , u(T) generated by the protocol in Algorithm 1 has total
length ≤ Nmax, then we have

max
u∗∈Vω

r(q, u∗)− E[r(q, u(T))] ≤ λ+ reg(T)

Remark 4.8. While the general-purpose Transformer ϕ can be applied to construct the brutal-force
Transformer f̃ that simply tries every expert, we note that the generality of Definition 4.6 allows
us to construct more powerful Transformers beyond brutal search. Leveraging the structures in
the problem and the expert pool, it is entirely possible to identify the correct expert using ≪ K
trials (Russo & Van Roy, 2018; Foster et al., 2021).

As a consequence of Theorem 4.7, we obtain a Transformer architecture that can provably produce
a final answer that nearly maximizes the reward. This means that the unified transformer can solve
K distinct tasks at inference time, without requiring prior knowledge of which task the user query
pertains to. Notably, the construction of such an architecture is general-purpose, in that it is inde-
pendent of the specific tasks, reward functions, or expert policies. To the best of our knowledge,
this constitutes the first theoretical result of its kind in the study of Transformer architectures. Fur-
thermore, our theory aligns with the empirical finding that LLMs are able to progressively optimize
outcome rewards during test-time (Qu et al., 2025; Song et al., 2025; Team, 2025; Monea et al.,
2024).

5 EXPERIMENTS

In this section, we conduct synthetic experiments to show that Transformers can self-correct with
verifier feedback.

5.1 EXPRESSIVENESS OF SELF-CORRECTION

Data generation. We aim to construct a test problem with complex prompts such that correctly
solving the problem in the single-term generation is challenging. In this case, self-correction can
play a critical role if Transformers have such capacities. Specifically, in our synthetic problem, the
prompt is the concatenation of the following two components:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

• Instruction: A 3-SAT problem, e.g.,
(∼ x3∨ ∼ x1∨ ∼ x2) ∧ (∼ x1∨ ∼ x3 ∨ x2) ∧ (∼ x4 ∨ x2∨ ∼ x3) ∧ · · ·

• Data: A string composed of characters from the set {a, b}.

The ground truth target is defined as follows: If the 3-SAT problem in the instruction is satisfiable,
the model should copy the string in the data part in the output; otherwise, the model should reverse
the string in the output. In our experiment, we construct datasets using 3-SAT problems with 4
variables and 20 clauses. The lengths of the data strings are set to 5. We generate 10000 instances
for training and 512 instances for evaluation. In the training set, we control the ratio of satisfiable
and unsatisfiable 3-SAT instructions to 9:1, while in the test set, the ratio is set to 1:1. This label
imbalance ensures that models fail to answer the question correctly in the first attempt and thus elicit
the self-correction behavior.

Models and training configuration. We train a class of Transformer models of various sizes:
{GPT-nano, GPT-micro, GPT-mini, Gopher-44M} with the Adam optimizer Kingma & Ba (2015)
for 5 epochs. More implementation details can be found in Appendix B.

GPT-nano GPT-micro GPT-mini Gopher-44M
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

1.23

63.19 63.19 63.19

2.56

93.09
98.57 99.15

Test accuracy comparison

W/o self-correction
W/ self-correction

Figure 3: Accuracy comparisons of differ-
ent models with/without self-correction at test
time.

Results. Test set accuracy across different infer-
ence settings is shown in Figure 3. We note that
model performance plateaus at 63.19% when there
is no self-correction at test time, with no improve-
ment from increased model size. By contrast,
when models are equipped with verifier signals to
enable self-correction, test accuracy improves sub-
stantially, demonstrating the efficacy of this mech-
anism. Crucially, larger models – such as GPT-
mini and Gopher-44M – achieve near-perfect ac-
curacy under self-correction, suggesting that suf-
ficiently expressive Transformers are capable of
implementing effective self-correction strategies.
This empirical result supports our theoretical find-
ings.

5.2 EVALUATION OF SAMPLE COMPLEXITY

Dataset. We conduct experiments on the AIME 2024 & 2025 datasets (Mathematical Association
of America, 2025), which serve as a real-world benchmark for evaluating mathematical reasoning
tasks. These datasets allow us to measure not only the raw accuracy of different large language
models (LLMs), but also the impact of verification-based strategies on sample efficiency.

Model configuration. We consider recent LLMs, including Qwen3-1.7B, Qwen3-4B (Yang
et al., 2025), and Llama-3.2-3B-Instruct (Dubey et al., 2024), as candidate models. In
addition, Qwen3-32B is employed as an LLM verifier. This setup enables us to compare standard
decoding strategies (self-consistency) with verification-based methods (best-of and self-correction).

Model \Method
Self-consistency

(64 samples)
Best-of-n

(4 samples)
Self-correction

(4 samples)

Qwen3-1.7B 58.33% 59.68% 79.29%
Qwen3-4B 78.33% 80.58% 81.19%
Llama-3.2-3B-Instruct 1.67% 4.84% 24.52%

Table 1: Accuracy comparison of self-consistency, best-of-n, and self-correction methods on AIME
24 & 25 datasets.

Results. We compare the accuracy of self-consistency, best-of-n, and self-correction under dif-
ferent sample sizes. Notably, as summarized in Table 1, best-of with only 4 samples consistently

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

outperforms self-consistency with 64 samples, confirming the predicted gap in sample complexity.
Furthermore, self-correction with verifiers achieves strong performance, highlighting the ability of
LLMs to leverage verifier feedback effectively. These results show a notable sample complexity
gap between Self-consistency and Best-of-n and confirm that modern Transformer models are suf-
ficiently expressive to implement self-correction mechanisms when combined with verifiers, thus
validating our theoretical results in Section 3 and 4.

6 RELATED WORKS

Theories of Transformers and Large Language Models. The success of Transformers and
LLMs has motivated the study on their expressiveness. Existing research has shown that Transform-
ers can implement simple functions such as sparse linear functions, two-layer neural networks, and
decision trees (Garg et al., 2022), gradient descent (Akyürek et al., 2022; Bai et al., 2023; Von Os-
wald et al., 2023), automata (Liu et al., 2022; Zhao et al., 2023), Dyck languages (Bhattamishra et al.,
2020a; Yao et al., 2021), Turing machines (Dehghani et al., 2018; Bhattamishra et al., 2020b; Za-
heer et al., 2020; Pérez et al., 2021; Wei et al., 2022a), variational inference (Mei & Wu, 2023), and
bandit algorithms (Lin et al., 2023). Yun et al. (2020); Luo et al. (2022); Alberti et al. (2023); Petrov
et al. (2024) establish universal approximation results under various settings. Edelman et al. (2022);
Elhage et al. (2021); Li et al. (2021); Likhosherstov et al. (2021) study representational capabilities
and properties of self-attention, the core component in Transformers. Feng et al. (2023); Li et al.
(2024b) study the expressiveness of auto-regressive Transformers with chain-of-thought. Edelman
et al. (2022); Li et al. (2024a); Botta et al. (2025) studies the sample complexity of Transformers. Re-
cently, a growing body of work has begun to explore the theoretical foundations of self-improvement
in large language models (LLMs). Song et al. (2024b) introduces the generation-verification gap as
a key quantity governing scaling behavior. Huang et al. (2024a) proposes a progressive sharpening
framework in which the policy gradually shifts toward more confident responses. Setlur et al. (2025)
draws on reinforcement learning theory to formally establish the advantages of verifier-based meth-
ods. In contrast to these works, our results provide explicit sample complexity rates and tangible
representation architectures, enabling a more concrete understanding of the fundamental capabilities
and limitations of test-time scaling paradigms.

Test-time scaling. Recent research has established the test-time scaling law of LLMs, illuminating
a new scaling axis beyond training-time scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022).
Existing approaches of scaling up test-time compute of LLMs can be broadly classified into two
categories: (1) applying test-time algorithms (aka inference-time algorithms) during LLM decoding
(Brown et al., 2024; Wu et al., 2025a; Snell et al., 2025); and (2) explicitly training LLMs to output
long chain-of-thought traces (Guo et al., 2025; Kimi, 2025; OpenAI, 2024b; Yang et al., 2025).
Many recent works focus on understanding and improving the effectiveness of test-time scaling
empirically: Chen et al. (2024c); Aggarwal & Welleck (2025); Cuadron et al. (2025); Wang et al.
(2025) study under-thinking, over-thinking, and length control in LLM reasoning. Chen et al. (2025)
proposes to integrate self-verification and self-correction into sampling. Qu et al. (2025) analyze
optimizing test-time compute by introducing a meta reinforcement learning formulation. Setlur
et al. (2025) demonstrate that verification/RL is important for optimal test-time scaling. Zhang et al.
(2025) provide an extensive review of the test-time scaling landscape. In contrast, our work focuses
on theoretical analyses of test-time scaling. In addition, our work provides theoretical explanation
of In-Context Reinforcement Learning (Song et al., 2025; Team, 2025; Monea et al., 2024).

7 DISCUSSIONS

Our investigation reveals a fundamental separation in sample complexity between self-consistency
and best-of-n, providing theoretical support for the empirically observed superiority of the latter
method. Furthermore, by introducing the framework of general-purpose expressiveness, we con-
struct generic Transformer architectures capable of emulating online learning algorithms at test time.
This capability enables a single model to provably solve multiple tasks without task-specific adap-
tation, thus extending our understanding of expressiveness to multi-task settings. Our experiments
validate the theoretical separation and confirms that it requires additional model capacities for Trans-
former to implement self-correction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. In arXiv, 2025. URL https://arxiv.org/abs/2503.04697.

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-
case regret bounds. Advances in neural information processing systems, 30, 2017.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Silas Alberti, Niclas Dern, Laura Thesing, and Gitta Kutyniok. Sumformer: Universal approx-
imation for efficient transformers. In Timothy Doster, Tegan Emerson, Henry Kvinge, Nina
Miolane, Mathilde Papillon, Bastian Rieck, and Sophia Sanborn (eds.), Proceedings of 2nd An-
nual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML), volume
221 of Proceedings of Machine Learning Research, pp. 72–86. PMLR, 28 Jul 2023. URL
https://proceedings.mlr.press/v221/alberti23a.html.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. arXiv preprint arXiv:2207.04901, 2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
able in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-
den progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems, 35:21750–21764, 2022.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 7096–7116, 2020a.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers
and its implications in sequence modeling. In Proceedings of the 24th Conference on Computa-
tional Natural Language Learning, pp. 455–475, 2020b.

Edoardo Botta, Yuchen Li, Aashay Mehta, Jordan T Ash, Cyril Zhang, and Andrej Risteski. On
the query complexity of verifier-assisted language generation. arXiv preprint arXiv:2502.12123,
2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Alexandra Carpentier and Michal Valko. Simple regret for infinitely many armed bandits. In Inter-
national Conference on Machine Learning, pp. 1133–1141. PMLR, 2015.

10

https://arxiv.org/abs/2503.04697
https://proceedings.mlr.press/v221/alberti23a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: Process supervi-
sion without process. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a. URL https://openreview.net/forum?id=VaXnxQ3UKo.

Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, and Sercan Ö Arık. Sets:
Leveraging self-verification and self-correction for improved test-time scaling. arXiv preprint
arXiv:2501.19306, 2025.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
James Zou. Are more LLM calls all you need? towards the scaling properties of com-
pound AI systems. In Conference on Neural Information Processing Systems, 2024b. URL
https://openreview.net/forum?id=m5106RRLgx.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187, 2024c.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In International Conference on Learning Representations, 2024d. URL https:
//openreview.net/forum?id=KuPixIqPiq.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

codeforce. Codeforces, 2025. URL https://codeforces.com/.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
In arXiv, 2025. URL https://arxiv.org/abs/2501.12948.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pp.
5793–5831. PMLR, 2022.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1:1, 2021.

Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal of
machine learning research, 7(6), 2006.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36:70757–70798, 2023.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

11

https://openreview.net/forum?id=VaXnxQ3UKo
https://openreview.net/forum?id=m5106RRLgx
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://codeforces.com/
https://arxiv.org/abs/2501.12948

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and
Lijie Wen. Interpretable contrastive monte carlo tree search reasoning. In arXiv, 2024. URL
https://arxiv.org/abs/2410.01707.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. Contextual position en-
coding: Learning to count what’s important. arXiv preprint arXiv:2405.18719, 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=Sx038qxjek.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhenyu He, Guhao Feng, Shengjie Luo, Kai Yang, Liwei Wang, Jingjing Xu, Zhi Zhang, Hongxia
Yang, and Di He. Two stones hit one bird: Bilevel positional encoding for better length extrapola-
tion. arXiv preprint arXiv:2401.16421, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2021.
URL https://openreview.net/forum?id=7Bywt2mQsCe.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and
Laurent Sifre. An empirical analysis of compute-optimal large language model training. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
iBBcRUlOAPR.

Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
dan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. arXiv preprint arXiv:2412.01951, 2024a.

Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan,
Lyumanshan Ye, Ethan Chern, Yixin Ye, Yikai Zhang, Yuqing Yang, Ting Wu, Binjie Wang,
Shichao Sun, Yang Xiao, Yiyuan Li, Fan Zhou, Steffi Chern, Yiwei Qin, Yan Ma, Jiadi Su,
Yixiu Liu, Yuxiang Zheng, Shaoting Zhang, Dahua Lin, Yu Qiao, and Pengfei Liu. Olympi-
carena: Benchmarking multi-discipline cognitive reasoning for superintelligent AI. In Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track, 2024b. URL
https://openreview.net/forum?id=ayF8bEKYQy.

Robert Irvine, Douglas Boubert, Vyas Raina, Adian Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei
Korshuk, Zongyi Liu, Fritz Cremer, Valentin Assassi, Christie-Carol Beauchamp, Xiaoding Lu,
Thomas Rialan, and William Beauchamp. Rewarding chatbots for real-world engagement with
millions of users. In arXiv, 2023. URL https://arxiv.org/abs/2303.06135.

Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lilucb: An optimal ex-
ploration algorithm for multi-armed bandits. In Conference on Learning Theory, pp. 423–439.
PMLR, 2014.

Nirmit Joshi, Gal Vardi, Adam Block, Surbhi Goel, Zhiyuan Li, Theodor Misiakiewicz, and
Nathan Srebro. A theory of learning with autoregressive chain of thought. arXiv preprint
arXiv:2503.07932, 2025.

12

https://arxiv.org/abs/2410.01707
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=ayF8bEKYQy
https://arxiv.org/abs/2303.06135

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Kimi. Kimi k1.5: Scaling reinforcement learning with llms. In arXiv, 2025. URL https://
arxiv.org/abs/2501.12599.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Shanda Li, Xiangning Chen, Di He, and Cho-Jui Hsieh. Can vision transformers perform convolu-
tion? arXiv preprint arXiv:2111.01353, 2021.

Shanda Li, Tanya Marwah, Junhong Shen, Weiwei Sun, Andrej Risteski, Yiming Yang, and Ameet
Talwalkar. Codepde: An inference framework for llm-driven pde solver generation. arXiv preprint
arXiv:2505.08783, 2025.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023.

Yuchen Li, Alexandre Kirchmeyer, Aashay Mehta, Yilong Qin, Boris Dadachev, Kishore Papineni,
Sanjiv Kumar, and Andrej Risteski. Promises and pitfalls of generative masked language model-
ing: theoretical framework and practical guidelines. arXiv preprint arXiv:2407.21046, 2024a.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth International Conference on Learning Represen-
tations, 2024b. URL https://openreview.net/forum?id=3EWTEy9MTM.

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of
self-attention matrices. arXiv preprint arXiv:2106.03764, 2021.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Qingwen Lin, Boyan Xu, Zijian Li, Zhifeng Hao, Keli Zhang, and Ruichu Cai. Leveraging con-
strained monte carlo tree search to generate reliable long chain-of-thought for mathematical rea-
soning. In arXiv, 2025. URL https://arxiv.org/abs/2502.11169.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Shengjie Luo, Shanda Li, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. Your transformer
may not be as powerful as you expect. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=NQFFNdsOGD.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

Mathematical Association of America. American invitational mathematics examination. https:
//maa.org/maa-invitational-competitions, 2025.

Song Mei and Yuchen Wu. Deep networks as denoising algorithms: Sample-efficient learning of
diffusion models in high-dimensional graphical models. arXiv preprint arXiv:2309.11420, 2023.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

13

https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://openreview.net/forum?id=3EWTEy9MTM
https://arxiv.org/abs/2502.11169
https://openreview.net/forum?id=NQFFNdsOGD
https://openreview.net/forum?id=NQFFNdsOGD
https://openreview.net/forum?id=S37hOerQLB
https://maa.org/maa-invitational-competitions
https://maa.org/maa-invitational-competitions

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context bandit
reinforcement learners. arXiv preprint arXiv:2410.05362, 2024.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. In arXiv, 2025. URL https://
arxiv.org/abs/2502.20122.

Alex Nguyen, Dheeraj Mekala, Chengyu Dong, and Jingbo Shang. When is the consistent prediction
likely to be a correct prediction? In arXiv, 2024. URL https://arxiv.org/abs/2407.
05778.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Openai o1 system card. In arXiv, 2024a. URL https://arxiv.org/abs/2412.
16720.

OpenAI. Openai o3-mini, 2024b. URL https://openai.com/index/
openai-o3-mini/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026–8037, 2019.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal of Ma-
chine Learning Research, 22(75):1–35, 2021.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. Prompting a pretrained transformer can be a uni-
versal approximator. In Proceedings of the 41st International Conference on Machine Learning,
pp. 40523–40550, 2024.

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang, Yue
Wu, and Mengdi Wang. Treebon: Enhancing inference-time alignment with speculative tree-
search and best-of-n sampling. arXiv preprint arXiv:2410.16033, 2024.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025.

Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
Operations Research, 66(1):230–252, 2018.

Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexan-
dre Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, Sertan Girgin, Piotr
Stanczyk, Andrea Michi, Danila Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn,
Matt Hoffman, Nikola Momchev, and Olivier Bachem. Bond: Aligning llms with best-of-n distil-
lation. In arXiv, 2024. URL https://arxiv.org/abs/2407.14622.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal. arXiv preprint arXiv:2502.12118, 2025.

Ben Shi, Michael Tang, Karthik R Narasimhan, and Shunyu Yao. Can language models solve
olympiad programming? In Conference on Language Modeling, 2024. URL https://
openreview.net/forum?id=kGa4fMtP9l.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=4FWAwZtd2n.

14

https://arxiv.org/abs/2502.20122
https://arxiv.org/abs/2502.20122
https://arxiv.org/abs/2407.05778
https://arxiv.org/abs/2407.05778
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://arxiv.org/abs/2407.14622
https://openreview.net/forum?id=kGa4fMtP9l
https://openreview.net/forum?id=kGa4fMtP9l
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Kefan Song, Amir Moeini, Peng Wang, Lei Gong, Rohan Chandra, Yanjun Qi, and Shang-
tong Zhang. Reward is enough: Llms are in-context reinforcement learners. arXiv preprint
arXiv:2506.06303, 2025.

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
Evaluation of llms should not ignore non-determinism. In arXiv, 2024a. URL https://arxiv.
org/abs/2407.10457.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models. arXiv preprint
arXiv:2412.02674, 2024b.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=qwgfh2fTtN.

Tooliense Team. Crux: Autonomous mathematical research through hierarchical multi-agent orches-
tration, 2025. URL https://github.com/tooliense/crux. IC-RL Implementation
with Self-Evolve Mechanism.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, and Dong Yu. To-
ward self-improvement of LLMs via imagination, searching, and criticizing. In Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=tPdJ2qHkOB.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. arXiv preprint arXiv:2212.07677, 2022.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang,
and Jun Wang. Alphazero-like tree-search can guide large language model decoding and
training. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=C4OpREezgj.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
o1-like llms. arXiv preprint arXiv:2501.18585, 2025.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. Advances in Neural Information Processing
Systems, 35:12071–12083, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large lan-
guage models. Advances in neural information processing systems, 35:24824–24837,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
hH36JeQZDaO.

15

https://arxiv.org/abs/2407.10457
https://arxiv.org/abs/2407.10457
https://openreview.net/forum?id=qwgfh2fTtN
https://openreview.net/forum?id=qwgfh2fTtN
https://github.com/tooliense/crux
https://openreview.net/forum?id=tPdJ2qHkOB
https://openreview.net/forum?id=tPdJ2qHkOB
https://openreview.net/forum?id=C4OpREezgj
https://openreview.net/forum?id=C4OpREezgj
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Scaling inference compu-
tation: Compute-optimal inference for problem-solving with language models. In Workshop on
Mathematical Reasoning and AI at NeurIPS’24, 2024. URL https://openreview.net/
forum?id=j7DZWSc8qu.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for LLM problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025a. URL https://openreview.
net/forum?id=VNckp7JEHn.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. In arXiv, 2025b. URL https://arxiv.org/abs/
2502.07266.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025. URL https://arxiv.
org/abs/2505.09388.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention net-
works can process bounded hierarchical languages. arXiv preprint arXiv:2105.11115, 2021.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?
id=ByxRM0Ntvr.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. ReST-MCTS*:
LLM self-training via process reward guided tree search. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024a. URL https://openreview.net/
forum?id=8rcFOqEud5.

Kechi Zhang, Ge Li, Huangzhao Zhang, and Zhi Jin. Hirope: Length extrapolation for code models
using hierarchical position. arXiv preprint arXiv:2403.19115, 2024b.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin
King, Xue Liu, and Chen Ma. What, how, where, and how well? a survey on test-time scaling in
large language models. arXiv preprint arXiv:2503.24235, 2025.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jaekyeom Kim, Moontae Lee,
Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct reasoning.
In ACL (Findings), 2024c. URL https://aclanthology.org/2024.findings-acl.
924/.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang.
o1-coder: an o1 replication for coding. In arXiv, 2024d. URL https://arxiv.org/abs/
2412.00154.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-
dicting the masked word? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 16513–16542,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.1029. URL https://aclanthology.org/2023.emnlp-main.1029/.

16

https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://aclanthology.org/2024.findings-acl.924/
https://aclanthology.org/2024.findings-acl.924/
https://arxiv.org/abs/2412.00154
https://arxiv.org/abs/2412.00154
https://aclanthology.org/2023.emnlp-main.1029/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A PROOFS

A.1 PROOF OF THEOREM 3.1

Proof. Write O = {1, . . . , O} (O ∈ Z+) where i is the i-th most likely answer and let ni denote
the number of occurrences of i. Then we have

p̂ =
1

n
(n1, . . . , nO) ∼

1

n
Multinomial(n, p),

where p = (p(1), . . . , p(O)).

Upper bound. When n ≥ 2 log(1/δ)
∆2 we apply Claim A.5 to obtain that with probability at least

1− δ,

∥p̂− p∥1 ≤
√

2 ln(1/δ)

n
≤ ∆.

Under this event, we have that for any i > 1

n1 − ni = n · (p̂1 − p̂i)

≥ n · (p1 − pi − ∥p̂− p∥1)
≥ 0

and hence the correct answer 1 is the most consistent answer. It follows that self-consistency can
produce the correct answer with probability at least 1− δ.

Lower bound. When n ≤ 1
∆2 , we construct the hard instance where p1 = (1 + ∆)/2, p2 =

(1−∆)/2 and ∆ < 0.00001. If n ≤ 1
∆ then by the proof of Theorem 3.2, with constant probability

the correct answer is not generated at all and hence self-consistency fails to produce the correct
answer. Otherwise n ≥ 1

∆ ≥ 10000. We may write X := n1−n2−n∆√
n

as a sum of i.i.d. random
variables divided by

√
n:

X =

∑n
i=1 Yi√
n

,

where E(Yi) = 0, σ2 = E(Y 2
i) ≥ 1/2, ρ = E(|Yi|3) ≤ 1. By Claim A.6, we have that

P(n1 < n2) = P(X < −1)

≥ Φ(−1)− 8ρ

σ3
√
n

≥ 0.01.

Thus in both cases, self-consistency fails to produce the correct answer with constant probability.

A.2 PROOF OF THEOREM 3.2

Proof. Write O = {1, . . . , O} where i is the i-th most likely answer and let ni denote the number
of occurrences of i. Then we have

p(1) ≥ p(2) + ∆ ≥ ∆.

Note that for best-of-n, correctness is achieved if the correct answer appears at least once among n
independent samples.

Upper bound. When n ≥ 2 log(1/δ)
∆ , we have

P(Best-of-n outputs correct answer) = 1− (1− p(1))n

≥ 1− (1−∆)
2 log(1/δ)

∆

≥ 1− δ.

This confirms that best-of-n achieves the correct answer with 1− δ probability.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Lower bound. When n ≤ 1
∆ , we construct the hard instance where p(1) = ∆+(1−∆)/O, p(2) =

· · · = p(O) = (1−∆)/O and ∆ < 0.0000001. Since the correct answer occurs with probability at
least ∆, we have:

P(Best-of-n outputs correct answer) = 1− (1− p(1))n

≤ 1− (1− 2∆)
1
∆

≤ 0.99.

This confirms that best-of-n fails to produce the correct answer with constant probability.

A.3 PROOF OF PROPOSITION 4.2

We first introduce the following result that extends any Transformer to a larger vocabulary, so that it
only attends to tokens in its original vocabulary.

Proposition A.1 (Extended Representation to Multiple Token Spaces). For any H,L,Nmax ∈ Z+,
V1 ∩ V0 = ∅, there exists a general-purpose Transformer ϕ of type (O(1), O(logNmax)) such
that for any Transformers f = (θ, pe, (K

(l)
h ,Q

(l)
h ,V

(l)
h)h∈[H],l∈[L], ϑ,V1) over vocabulary V1, the

Transformer f̃ = ϕ(f1) satisfies the following property: for any token sequence v = v1 · · · vn such
that n ≤ Nmax, denote {i1 < · · · < im} = {i : vi ∈ V1}, then we have

pf̃ (·|v) = pf (·|u),
where u = vi1 · · · vim .

Proof. Set constants Bv, Bqk, Bθ such that for any layer l and head h, it holds that∥∥∥(Q(l)
h)⊤K

(l)
h

∥∥∥
2

≤ Bqk,
∥∥∥V(l)

h

∥∥∥
2

≤ Bv , and ∥θ(v)∥2 ≤ Bθ holds for all v ∈ V . Let

B = (HBv)
LBqkBθ, C = 4B2 + log(1/ϵ), C0 = 4C. By Lemma A.3, there exists

α1, . . . , αNmax
, β0, β1 ∈ Rd0 and A0, A1, A ∈ Rd0×d0 for d0 ≤ O(logNmax) such that

1. For any i ≥ j1, j2, j3:

(αi + β1)
⊤A0(αj1 + β1) = (αi + β1)

⊤A0(αj2 + β1) ≥ (αi + β1)
⊤A0(αj1 + β0) + C0

(αi + β0)
⊤A0(αi + β0) ≥ (αi + β0)

⊤A0(αj1 + β1) + C0, (3)

2. For any i > j

(αi + β1)
⊤A(αi + β1) ≥ (αi + β1)

⊤A(αj + β1) + C0

≥ (αi + β1)
⊤A(αj + β0) + 2C0, (4)

3. For any i ≥ j, j1

(αi + β1)
⊤A1(αj + β0) = (αi + β1)

⊤A1(αj1 + β1) + C0

(αi + β1)
⊤A1(αi + β1) ≥ max{(αi + β1)

⊤A1(αj1 + β1), (αi + β1)
⊤A1(αj1 + β0)}+ C0.

(5)

We define ϕ as follows: for any Transformers f = (θ, pe, (K
(l)
h ,Q

(l)
h ,V

(l)
h)h∈[H],l∈[L], ϑ,V1), the

Transformer f̃ = ϕ(f) is given by

(θ̃, p̃e, (K̃
(l)
h , Q̃

(l)
h , Ṽ

(l)
h)h∈[H+1],l∈[L], ϑ̃,V1 ∪ V0),

where the tokenizer is given by

θ̃(v) = 1(v ∈ V1) ·
(
θ(v)
β1

)
+ 1(v ∈ V0) ·

(
0
β0

)
,

the positional encoder is given by

p̃e

((
x
y

)
; v1, . . . , vi

)
=

(
pe (x;u)
αi + y

)
,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

where u = vi1 · · · vim and x ∈ Rd; for l = 1, . . . , L the key, query, value matrices are given by

K̃
(l)
h =

(
K

(l)
h

A0

)
, Q̃

(l)
h =

(
Q

(l)
h

I

)
,

Ṽ
(l)
h =

(
V

(l)
h

0

)
,

K̃
(l)
H+1 =

(
0

A

)
, Q̃

(l)
H+1 =

(
0

I

)
, Ṽ

(l)
H+1 =

(
0

I

)
.

The output feature is given by ϑ̃(y) =

(
ϑ(y)
0

)
. Since i1, . . . , im only depends on whether vi’s

belong to the set V1, the generalized position encoding pe is well-defined. It can be verified that ϕ
is indeed a general-purpose Transformer of type (O(1), O(logNmax)).

We show that for any l = 1, . . . , L,

X̃
(l)
i =

(
X

(l)
i
α̃i

)
, ∀i = i1, . . . , im (6)

where X
(l)
i is the l-th layer of Transformer f at position i (attending only to positions i1, . . . , im)

such that
∥X(l)

i ∥2 ≤ Bθ(HBv)
l, (7)

and

X̃
(l)
j =

(
0
α̃j

)
, ∀j /∈ {i1, . . . , im} (8)

where α̃i = αi + 1(v ∈ V0) · β0 + 1(v ∈ V1) · β1.

We prove these results by induction. The case l = 1 folows directly from the definitions of the
tokenizer.

Prove Eq. (6). Suppose Eq. (6) and Eq. (8) hold for 1, . . . , l − 1-th layer, and consider l-the layer.
We have

X̃
(l+1)
i =

H∑
h=1

i∑
j=1

exp
(
(Q̃

(l)
h X̃

(l)
i)⊤(K̃

(l)
h X̃

(l)
j)
)

Z̃
(l)
h

· Ṽ(l)
h X̃

(l)
j︸ ︷︷ ︸

term 1

+

i∑
j=1

exp
(
(Q̃

(l)
H+1X̃

(l)
i)⊤(K̃

(l)
H+1X̃

(l)
j)
)

Z̃
(l)
H+1

· Ṽ(l)
H+1X̃

(l)
j︸ ︷︷ ︸

term 2

.

Eq. (3) ensures that for any i, i′ ∈ {i1, . . . , im}, j /∈ {i1, . . . , im}:

(Q̃
(l)
h X̃

(l)
i)⊤(K̃

(l)
h X̃

(l)
i′) = (Q

(l)
h X̃

(l)
i)⊤(K

(l)
h X̃

(l)
i′) + (αi + β1)

⊤A0(αi′ + β1)

≥ (Q
(l)
h X

(l)
i)⊤(K

(l)
h X

(l)
j) + (αi + β1)

⊤A0(αj + β0) + C

= (Q̃
(l)
h X̃

(l)
i)⊤(K̃

(l)
h X̃

(l)
j) + C,

and if i, j1, j2 ∈ {i1, . . . , im}

(Q̃
(l)
h X̃

(l)
i)⊤(K̃

(l)
h X̃

(l)
j1

)− (Q̃
(l)
h X̃

(l)
i)⊤(K̃

(l)
h X̃

(l)
j2

)

= (Q
(l)
h X

(l)
i)⊤(K

(l)
h X

(l)
j1

) + (αi + β1)
⊤A0(αj1 + β1))− (Q

(l)
h X

(l)
i)⊤(K

(l)
h X

(l)
j2

)− (αi + β1)
⊤A0(αj2 + β1)

= (Q
(l)
h X

(l)
i)⊤(K

(l)
h X̃

(l)
j1

)− (Q
(l)
h X̃

(l)
i)⊤(K

(l)
h X

(l)
j2

),

where we use the fact that C0 ≥ C + 2maxh,l,i,j

∣∣∣(Q(l)
h X

(l)
i)⊤(K

(l)
h X

(l)
j)
∣∣∣. Since the transformers

have precision ϵ and C ≥ 2maxh,l,i,j

∣∣∣(Q(l)
h X

(l)
i)⊤(K

(l)
h X

(l)
j)
∣∣∣ + log(1/ϵ), it follows that the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

attention weights of head (k − 1)H + h is identical to the attention weights of expert k, i.e.

exp
(
(Q̃

(l)
h X̃

(l)
i)⊤(K̃

(l)
h X̃

(l)
j)
)

Z̃
(l)
h

= 1(j ∈ {i1, . . . , im}) ·
exp

(
(Q

(l)
h X

(l)
i)⊤(K

(l)
h X

(l)
j)
)

Z
(l)
h

.

Therefore

term 1 =

H∑
h=1

∑
j=i1,...,im

exp
(
(Q

(l)
h X

(l)
i)⊤(K

(l)
h X

(l)
j)
)

Z
(l)
h

·
(
V

(l)
h X

(l)
j

0

)
=

(
X

(l+1)
j

0

)
.

Furthermore, by Eq. (4) we have for any j < i

(Q̃
(l)
H+1X̃

(l)
i)⊤(K̃

(l)
H+1X̃

(l)
i) = α̃⊤

i Aα̃i

≥ α̃⊤
i Aα̃j + C

= (Q̃
(l)
H+1X̃

(l)
i)⊤(K̃

(l)
H+1X̃

(l)
j) + C,

and hence the attention weighs concentrates on i itself. Thus

term 2 =

(
0

I

)
·
(
X

(l)
i
α̃i

)
=

(
0
α̃i

)
.

Combining, we derive Eq.(6) for (l + 1)-th layer.

Prove Eq. (7). From above,

∥X(l+1)
i ∥2 =

∥∥∥∥∥∥
H∑

h=1

i∑
j=1

exp
(
(Q̃

(l)
h X̃

(l)
i)⊤(K̃

(l)
h X̃

(l)
j)
)

Z̃
(l)
h

·V(l)
h X

(l)
j

∥∥∥∥∥∥
2

≤ HBv ·max
j≤i

∥X(l)
j ∥2

≤ Bθ(HBv)
l+1.

This confirms Eq. (24) for l + 1.

Prove Eq. (8). Notice that Eq. (3) ensures that for any j, j′ /∈ {i : vi ∈ V1} and i ∈ {i : vi ∈ V1}:

(Q̃
(l)
h X̃

(l)
j)⊤(K̃

(l)
h X̃

(l)
j′) = (Q

(l)
h X

(l)
j)⊤(K

(l)
h X

(l)
j′) + (αj + β0)

⊤A0(αj′ + β0)

≥ (Q
(l)
h X

(l)
j)⊤(K

(l)
h X

(l)
i) + (αj + β0)

⊤A0(αi + β1) + C

= (Q̃
(l)
h X̃

(l)
j)⊤(K̃

(l)
h X̃

(l)
i) + C.

It follows that the attention weights is concentrated on the compliment of {i : vi ∈ V1} itself, and
therefore Eq. (8) follows by a simple induction argument.

Finally, at the output layer

pf̃ (y|v1, . . . , vn) = Softmax(ϑ̃(y)⊤X̃(L)
n)

= Softmax(ϑ(y)⊤X(L)
m)

= pfκ(y|u).
This establishes the desired statement.

Now we return to the proof of Proposition 4.2.

Proof. By Proposition A.1, it suffices to construct general-purpose Transformer ϕ such that
pf̃ (·|v) = pfκ(·|u),

where u = v1 · · · vi0−1vi0+1 · · · vn, because then the ϕ̃ given by

ϕ̃(f1, . . . , fK) = ϕ(ϕe(f1), . . . , ϕe(fK))

satisfies the requirement, where ϕe is the general-purpose Transformer that extends the K Trans-
formers to the larger vocabulary V := ∪K

k=1Vk as given by Proposition A.1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Set constants Bv, Bqk, Bθ such that for any layer l and head h, it holds that
∥∥∥(Q(l)

h)⊤K
(l)
h

∥∥∥
2
≤

Bqk,
∥∥∥V(l)

h

∥∥∥
2
≤ Bv , and ∥θ(v)∥2 ≤ Bθ holds for all v ∈ V . Let B = (KHBv)

LBqkBθ, C =

4B2 + log(1/ϵ), C0 = 4C. By Lemma A.3, there exists α1, . . . , αN , β0, β1, . . . , βK ∈ Rd0 and
A1, . . . , AK ∈ Rd0×d0 for d0 ≤ O(K + logNmax) such that

1. For any i ≥ j1, j2, j3 and k, k′, k′′ ̸= 0:

(αi + βk)
⊤A0(αj1 + βk′) = (αi + βk)

⊤A0(αj2 + βk′′) ≥ (αi + βk)
⊤A0(αj1 + β0) + C0

(αi + β0)
⊤A0(αi + β0) ≥ (αi + β0)

⊤A0(αj1 + βk) + C0, (9)

2. For any i > j and k ̸= k′ ̸= 0

(αi + βk)
⊤A(αi + βk) ≥ (αi + βk)

⊤A(αj + βk′) + C0

≥ (αi + βk)
⊤A(αj + β0) + 2C0, (10)

3. For any i ≥ j, j1 and k ̸= k′, k′′

(αi + βk)
⊤Ak′(αj + β0) = (αi + βk)

⊤Ak′(αj1 + βk′′) + C0

(αi + βk)
⊤Ak(αi + βk) ≥ max{(αi + βk)

⊤Ak(αj1 + βk′′), (αi + βk)
⊤Ak′(αj1 + β0)}+ C0,

(11)

We define ϕ as follows: for any Transformers

fk = (θk, pek, (K
(l)
k;h,Q

(l)
k;h,V

(l)
k;h)h∈[H],l∈[L], ϑk,Vk),

over Vk, k ∈ [K], the Transformer f̃ = ϕ(f1, . . . , fK) is given by

(θ̃, p̃e, (K̃
(l)
h , Q̃

(l)
h , Ṽ

(l)
h)h∈[KH+1],l∈[L+1], ϑ̃,V),

where the tokenizer is given by

θ̃(v) = 1(v /∈ V0) ·


θ1(v)

...
θK(v)

0

+


0
...
0

βE(v)


where E(v) = k iff v ∈ Vk. Let the positional encoder be given by

p̃e

((
x
y

)
; v1, . . . , vi

)
=


pe1 (x;u)

...
peK (x;u)
αi + y

 ,

where x ∈ Rd and u is the sub-sequence of v that omits vi0 (if any); for l = 1, . . . , L the key, query,
value matrices are given by

K̃
(l)
(k−1)H+h =



0
. . .

K
(l)
k;h

. . .
A0

 , Q̃
(l)
(k−1)H+h =



0
. . .

Q
(l)
k;h

. . .
I

 ,

Ṽ
(l)
(k−1)H+h =



0
. . .

V
(l)
k;h

. . .
0

 ,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

K̃
(l)
KH+1 =


0

. . .
0

A

 , Q̃
(l)
KH+1 =


0

. . .
0

I

 , Ṽ
(l)
KH+1 =


0

. . .
0

I

 ,

where the submatrices K
(l)
k;h,Q

(l)
k;h,V

(l)
k;h are located in the k-th diagonal block, and for the final

layer

K̃
(L+1)
k =


0

. . .
0

Ak

 , Q̃
(L+1)
k =


0

. . .
0

I

 , Ṽ
(L+1)
k =


0

. . .
I

. . .
0

 ,

where the identity sub-matrix in Ṽ
(L+1)
k is located in the k-th block. The output feature is given by

ϑ̃(y) =


ϑ1(y)

...
ϑK(y)

0

. Since u(k)’s only depend on set membership information of vi’s, the general-

ized position encoding pe is well-defined. We can easily verify that ϕ is indeed a general-purpose
Transformer of type (O(K), O(logNmax)).

We show that for any l = 1, . . . , L,

X̃
(l)
i =


X

(l)
1;i
...

X
(l)
K;i

α̃i

 , ∀i ̸= i0 (12)

where X(l)
k;i is the l-th layer of Transformer k at position i (attending to all positions but i0) such that

∥X(l)
k;i∥2 ≤ Bθ(KHBv)

l. (13)

and

X̃
(l)
i0

=


0
...
0
α̃i0

 (14)

where α̃i = αi + βE(vi).

We prove these results by induction. The case l = 1 folows directly from the definitions of the
tokenizer.

Prove Eq. (12). Suppose Eq. (12) and Eq. (14) hold for 1, . . . , l − 1=th layer, and consider l-the
layer. We have

X̃
(l+1)
i =

K∑
k=1

H∑
h=1

i∑
j=1

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)

Z̃
(l)
(k−1)H+h

· Ṽ(l)
(k−1)H+hX̃

(l)
j︸ ︷︷ ︸

term 1

+

i∑
j=1

exp
(
(Q̃

(l)
KH+1X̃

(l)
i)⊤(K̃

(l)
KH+1X̃

(l)
j)
)

Z̃
(l)
KH+1

· Ṽ(l)
KH+1X̃

(l)
j︸ ︷︷ ︸

term 2

.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Eq. (9) ensures that for any j1 < j2 ≤ i such that i0 /∈ {i, j1, j2}:

(Q̃
(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j1

) = (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j1

) + (αi + βE(i))
⊤A0(αj1 + βE(j1))

≥ (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j1

) + (αi + βE(i))
⊤A0(αi0 + βE(i0)) + C

= (Q̃
(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
i0

) + C.

and
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j1

)− (Q̃
(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j2

)

= (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j1

) + (αi + βE(i))
⊤A0(αj1 + βE(j1))

− (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j2

)− (αi + βE(i))
⊤A0(αj2 + βE(j2))

= (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j1

)− (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j2

).

It follows from the precision ϵ of the transformers that the attention weights of head (k − 1)H + h
is identical to the attention weights of expert k, i.e.

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)

Z̃
(l)
(k−1)H+h

=
exp

(
(Q

(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j)
)

Z
(l)
k;h

.

Therefore

term 1 =

K∑
k=1

H∑
h=1

i∑
j=1

exp
(
(Q

(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j)
)

Z
(l)
k;h

·



0
...

V
(l)
k;hX

(l)
k;j

...
0

 =


X

(l)
1;i
...

X
(l)
K;i

0

 .

Furthermore, by Eq. (10) we have for any j < i

(Q̃
(l)
KH+1X̃

(l)
i)⊤(K̃

(l)
KH+1X̃

(l)
i) = α̃⊤

i Aα̃i

≥ α̃⊤
i Aα̃j + C

= (Q̃
(l)
KH+1X̃

(l)
i)⊤(K̃

(l)
KH+1X̃

(l)
j) + C

and hence the attention weighs concentrates on i itself. Thus

term 2 =


0

. . .
0

I

 ·


X

(l)
1;i
...

X
(l)
K;i

α̃i

 =


0
...
0
α̃i


Combining these two terms, we confirm that Eq.(12) holds for (l + 1)-th layer.

Prove Eq. (13). From above,

∥X(l+1)
k;i ∥2 =

∥∥∥∥∥∥
K∑

k=1

H∑
h=1

i∑
j=1

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)

Z̃
(l)
(k−1)H+h

·V(l)
k;hX

(l)
k;j

∥∥∥∥∥∥
2

≤ KHBv ·max
j≤i

∥X(l)
k;j∥2

≤ Bθ(KHBv)
l+1.

This confirms Eq. (13) for l + 1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Prove Eq. (14). Notice that Eq. (9) ensures that for any j ≤ i0:

(Q̃
(l)
(k−1)H+hX̃

(l)
i0

)⊤(K̃
(l)
(k−1)H+hX̃

(l)
i0

) = (Q
(l)
k;hX

(l)
k;i0

)⊤(K
(l)
k;hX

(l)
k;i0

) + (αi0 + βE(i0))
⊤A0(αi0 + βE(i0))

≥ (Q
(l)
k;hX

(l)
k;i0

)⊤(K
(l)
k;hX

(l)
k;j) + (αi0 + βE(i0))

⊤A0(αj + βE(j)) + C

= (Q̃
(l)
(k−1)H+hX̃

(l)
i0

)⊤(K̃
(l)
(k−1)H+hX̃

(l)
j) + C.

It follows that the attention weights of head (k − 1)H + h is concentrated on i0 itself, therefore

term 1 =

K∑
k=1

H∑
h=1



0
...

V
(l)
k;h · 0

...
0

 = 0.

By the same argument, for i = i0 we have

term 2 =


0

. . .
0

I

 ·


0
...
0
α̃i0

 =


0
...
0
α̃i0

 .

Combining these confirms Eq. (14).

Next, we show that the last layer satisfies

X̃(L+1)
n =



0
...

X
(L+1)
κ;n

...
0

 (15)

where X
(L+1)
κ;n is the κ-th block. To see this, we notice that Eq. (11) implies the followings (the

proofs are identical to the above):

1. Attention sink to dummny token vi0 for mismatch expert: for any k′ ̸= κ and j ≤ n we
have
(Q̃

(L)
(k′−1)H+hX̃

(L)
n)⊤(K̃

(L)
(k′−1)H+hX̃

(L)
j) = (αn + βE(n))

⊤Ak′(αj + βE(j))

≤ (αn + βE(n))
⊤Ak′(αi0 + βE(i0))− C

= (Q̃
(L)
(k′−1)H+hX̃

(L)
n)⊤(K̃

(L)
(k′−1)H+hX̃

(L)
i0

)− C.

(16)

2. Attention to oneself for matching expert: for any j ̸= i0 we have

(Q̃
(L)
(κ−1)H+hX̃

(L)
n)⊤(K̃

(L)
(κ−1)H+hX̃

(L)
j) = (αn + βE(n))

⊤Aκ(αj + βE(j))

≥ (αn + βE(n))
⊤Aκ(αi0 + βE(i0)) + C

= (Q̃
(L)
(κ−1)H+hX̃

(L)
n)⊤(K̃

(L)
(κ−1)H+hX̃

(L)
i0

) + C,

(17)
and
(Q̃

(L)
(κ−1)H+hX̃

(L)
n)⊤(K̃

(L)
(κ−1)H+hX̃

(L)
n) = (αn + βE(n))

⊤Aκ(αn + βE(n))

≥ (αn + βE(n))
⊤Aκ(αj + βE(j)) + C

= (Q̃
(L)
(κ−1)H+hX̃

(L)
n)⊤(K̃

(L)
(κ−1)H+hX̃

(L)
j) + C.

(18)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Combining Eq. (16), Eq. (17), and Eq. (18), we have

exp
(
(Q̃

(L)
(k−1)H+hX̃

(L)
n)⊤(K̃

(L)
(k−1)H+hX̃

(L)
j)

)
Z

(l)
k

=

{
δi0j , k ̸= κ

δnj , k = κ

It follows that
X̃(L+1)

n = Ṽ
(L)
(κ−1)H+h · X̃(L)

n +
∑
k ̸=κ

V
(L)
(κ−1)H+h · X̃(L)

i0

=


0

. . .
I

. . .
0

 ·


X

(L)
1;i
...

X
(L)
K;i

α̃i

 =



0
...

X
(L)
κ;n

...
0

 .

Therefore we establish Eq. (15).

Finally, at the output layer

pf̃ (y|v1, . . . , vn) = Softmax(ϑ̃(y)⊤X̃(L+1)
n)

= Softmax(ϑ(y)⊤Y
(L)
n−1)

= pfκ(y|u).
This establishes the desired statement.

A.4 PROOF OF PROPOSITION 4.4

Proof. Set constants Bv, Bqk, Bθ such that for any layer l and head h, it holds that∥∥∥(Q(l)
h)⊤K

(l)
h

∥∥∥
2

≤ Bqk,
∥∥∥V(l)

h

∥∥∥
2

≤ Bv , and ∥θ(v)∥2 ≤ Bθ holds for all v ∈ V . Let

B = (KHBv)
LBqkBθ, C = 2B2 + log(1/ϵ), C0 = 4C. Define ι(i) = u iff ξu ≤ i < ξu+1

(ξ0 = −1, ξm+1 = ∞ by default). Let E(·) denote the task id indicated by the special to-
ken. By Lemma A.2, there exists α1, . . . , αN , β1, . . . , βK ∈ Rd0 and A1, . . . , AK ∈ Rd0×d0 for
d0 ≤ O(K + logNmax) such that for any n ≤ N we have

1. For any k ̸= k′:

α⊤
nAk(αn + βk′) ≥ C0 +


α⊤
nAkαn

α⊤
nAkαj

α⊤
nAk(αj + βk′′)

, ∀0 ≤ j ≤ n, 1 ≤ k′′ ≤ K. (19)

2. For any k ∈ [K]:

α⊤
nAkαn = α⊤

nAkα0 ≥ C0 +


α⊤
nAk(αn + βk)

α⊤
nAkαj

α⊤
nAk(αj + βk′)

, ∀0 < j < n, k′ ̸= k. (20)

3. For any k, k′, k′′ ∈ [K]:

(αn + βk′)⊤Ak(αn + βk′) ≥ C0 + (αn + βk′)⊤Akαj , ∀0 ≤ j ≤ n. (21)

4. For any 0 < j < n:

α⊤
nAαn ≥ α⊤

nA(αn + βk) + C0

≥ C0 +max{α⊤
nAαj , α

⊤
nA(αj + βk′)}, ∀k, k′′ ∈ [K]. (22)

We define ϕ as follows: for any Transformers

fk = (θk, pek, (K
(l)
k;h,Q

(l)
k;h,V

(l)
k;h)h∈[H],l∈[L], ϑk,V), k ∈ [K]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

over V , the Transformer f̃ = ϕ(f1, . . . , fK) is given by

(θ̃, p̃e, (K̃
(l)
h , Q̃

(l)
h , Ṽ

(l)
h)h∈[KH+1],l∈[L], ϑ̃,V ∪ Ω),

where the tokenizer is given by

θ̃(v) =


θ1(v)

...
θK(v)

0

 , v ∈ V , θ̃(ω) =


0
...
0

βE(ω)

 , ω ∈ Ω,

the positional encoder is given by

p̃e

((
x
y

)
; v1, . . . , vi

)
=


pe1 (x; v1, · · · , vξ1−1, vξm+1, · · · , vn)

...
peK (x; v1, · · · , vξ1−1, vξm+1, · · · , vn)

αι(i) + y

 ,

where x ∈ Rd; for l = 1, . . . , L the key, query, value matrices are given by

K̃
(l)
(k−1)H+h =



0
. . .

K
(l)
k;h

. . .
Ak

 , Q̃
(l)
(k−1)H+h =



0
. . .

Q
(l)
k;h

. . .
I

 ,

Ṽ
(l)
(k−1)H+h =



0
. . .

V
(l)
k;h

. . .
0

 ,

K̃
(l)
KH+1 =


0

. . .
0

A

 , Q̃
(l)
KH+1 =


0

. . .
0

I

 , Ṽ
(l)
KH+1 =


0

. . .
0

I

 ,

where the submatrices K(l)
k;h,Q

(l)
k;h,V

(l)
k;h are located in the k-th diagonal block. The output feature

is given by ϑ̃(y) =


ϑ1(y)

...
ϑK(y)

0

. Since ξ1, ξm only depends on whether vi’s belong to the set Ω, the

generalized position encoding pe is well-defined. We can easily verify that ϕ is indeed a general-
purpose Transformer of type (O(K), O(logNmax)).

Let X̃(l)
1 , . . . , X̃

(l)
n represent the l-th hidden layer. Our goal is to show that for any l = 1, . . . , L,

X̃
(l)
i can be written as:

X̃
(l)
i =


X

(l)
1;i
...

X
(l)
K;i

α̃i

 , i = 1, . . . , n, (23)

where α̃i = αι(i) + 1(ι(i) = i) · βE(vi) and X
(l)
k;i ∈ Rd such that

∥X(l)
k;i∥2 ≤ Bθ(KHBv)

l. (24)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

In particular, for i = 1, . . . ,m we have

X
(l)
k;ξi

= 0, ∀k = 1, . . . ,K, (25)

and for j = 1, . . . , ξ1 we have

X
(l)
k;j = Y

(l)
k;j , ∀k = 1, . . . ,K, (26)

and for j = 1, . . . , ξ1 − 1, ξm + 1, . . . , n we have

X
(l)
κ;j = Y

(l)
κ,j−ξm−1+ξ1

, X
(l)
k′;j = 0, ∀k′ ̸= κ, (27)

where Y
(l)
k;j is the l-th hidden layer of fk (attending only to positions 1, . . . , ξ1 − 1, ξm + 1, . . . , n) .

Thus we apply induction on l. The case l = 1 holds trivially from the definition of θ̃ and p̃e. Suppose
the above relationship holds for all layers 1, . . . , l, consider layer l + 1. We have

X̃
(l+1)
i =

K∑
k=1

H∑
h=1

i∑
j=1

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)

Z̃
(l)
(k−1)H+h

· Ṽ(l)
(k−1)H+hX̃

(l)
j︸ ︷︷ ︸

term 1

+

i∑
j=1

exp
(
(Q̃

(l)
KH+1X̃

(l)
i)⊤(K̃

(l)
KH+1X̃

(l)
j)
)

Z̃
(l)
KH+1

· Ṽ(l)
KH+1X̃

(l)
j︸ ︷︷ ︸

term 2

,

where

Z̃
(l)
(k−1)H+h =

i∑
j=1

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)
.

By induction hypothesis,

X̃
(l)
i =


X

(l)
1;i
...

X
(l)
K;i

α̃i

 ,

and X
(l)
k;i = Y

(l)
ζ(i) for i = 1, . . . , ξ1 − 1, ξm +1, . . . , n, where ζ(i) :=

{
i, i < ξ1
i− ξm − 1 + ξ1, i > ξm

.

Notice that for j ≤ i:

(Q̃
(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j) = (X

(l)
k;i)

⊤(Q
(l)
k;h)

⊤K
(l)
k;hX

(l)
k;j + α̃⊤

i Akα̃j ,

(Q̃
(l)
KH+1X̃

(l)
i)⊤(K̃

(l)
KH+1X̃

(l)
j) = α̃⊤

i Aα̃j .

Prove Eq (23). By properties of α, β,A, for any j2 < ξu < j1 < i < ξu+1 notice that:

(Q̃
(l)
KH+1X̃

(l)
i)⊤(K̃

(l)
KH+1X̃

(l)
j1

) ≥ (Q̃
(l)
KH+1X̃

(l)
i)⊤(K̃

(l)
KH+1X̃

(l)
ξu

) + C

≥ (Q̃
(l)
KH+1X̃

(l)
i)⊤(K̃

(l)
KH+1X̃

(l)
j2

) + 2C.

Due to ϵ-precision of transformers, this implies that

exp
(
(Q̃

(l)
KH+1X̃

(l)
i)⊤(K̃

(l)
KH+1X̃

(l)
j)
)

Z
(l)
KH+1

=

{
1(j>ξu)
i−ξu

, ξu < i < ξu+1

δjξl , i = ξu
,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

and hence for ξu < i < ξu+1

X̃
(l+1)
i =

K∑
k=1

H∑
h=1

i∑
j=1

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)

Z̃
(l)
(k−1)H+h

· Ṽ(l)
(k−1)H+h


...

X
(l)
k;j
...
0



+

i∑
j=ξu+1

· 1

i− ξu
·


0
...
0

αι(i)



=


X

(l+1)
1;i
...

X
(l+1)
K;i

α̃i

 ,

and for i = ξu

X̃
(l+1)
i =

K∑
k=1

H∑
h=1

i∑
j=1

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)

Z̃
(l)
(k−1)H+h

· Ṽ(l)
(k−1)H+h


...

X
(l)
k;j
...
0

+


0
...
0

αι(i) + βE(vi)



=


X

(l+1)
1;i
...

X
(l+1)
K;i

α̃i

 ,

where

X
(l+1)
k;i =

K∑
k=1

H∑
h=1

i∑
j=1

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)

Z̃
(l)
(k−1)H+h

·V(l)
k;hX

(l)
k;j . (28)

This confirms Eq. (23) for l + 1.

Prove Eq. (24). From above,

∥X(l+1)
k;i ∥2 =

∥∥∥∥∥∥
K∑

k=1

H∑
h=1

i∑
j=1

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)

Z̃
(l)
(k−1)H+h

·V(l)
k;hX

(l)
k;j

∥∥∥∥∥∥
2

≤ KHBv ·max
j≤i

∥X(l)
k;j∥2

≤ Bθ(KHBv)
l+1.

This confirms Eq. (24) for l + 1.

Prove Eq. (25). We first show X
(l)
k;ξ1

= 0. Indeed, by the properties of αt, βk, for any j ≤ ξ1

(Q̃
(l)
(k−1)H+hX̃

(l)
ξ1

)⊤(K̃
(l)
(k−1)H+hX̃

(l)
ξ1

)

= (X
(l)
k;ξ1

)⊤(Q
(l)
k;h)

⊤K
(l)
k;hX

(l)
k;ξ1

+ (α0 + βE(vξ1
))

⊤Ak(α0 + βE(vξ1))

≥ (X
(l)
k;ξ1

)⊤(Q
(l)
k;h)

⊤K
(l)
k;hX

(l)
k;ξ1

+ (α0 + βE(vξ1))
⊤Akα0 + C

= (Q̃
(l)
(k−1)H+hX̃

(l)
ξ1

)⊤(K̃
(l)
(k−1)H+hX̃

(l)
j) + C

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

It follows from Eq. (28) that

X
(l+1)
k;ξ1

=

K∑
k=1

H∑
h=1

V
(l)
k;hX

(l)
k;ξ1

= 0.

For ξi (i > 1), we apply the same argument again to obtain that for any j ≤ ξi such that j /∈ {ξ1 <
· · · < ξι(n)} and any i′ < i,

(Q̃
(l)
(k−1)H+hX̃

(l)
ξi

)⊤(K̃
(l)
(k−1)H+hX̃

(l)
ξk′)

≥ (Q̃
(l)
(k−1)H+hX̃

(l)
ξ1

)⊤(K̃
(l)
(k−1)H+hX̃

(l)
j) + C

This implies that the attention weights are supported on {ξ1 < · · · < ξi}, and therefore

X
(l+1)
k;ξi

=

K∑
k=1

H∑
h=1

i∑
j=1

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
ξi

)⊤(K̃
(l)
(k−1)H+hX̃

(l)
ξj

)
)

Z̃
(l)
(k−1)H+h

·V(l)
k;hX

(l)
k;ξj

= 0

where we apply the induction hypothesis k;X(l)
ξj

= 0 for all j = 1, . . . , i − 1. This thus completes
the proof of Eq. (25).

Prove Eq. (26). When j1 < j2 ≤ i < ξ1, we have

(Q̃
(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j1

)− (Q̃
(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX

(l)
j2

)

= (X
(l)
k;i)

⊤(Q
(l)
k;h)

⊤K
(l)
k;hX

(l)
k;j1

+ α⊤
0 Akα

⊤
0

− (X
(l)
k;i)

⊤(Q
(l)
k;h)

⊤K
(l)
k;hX

(l)
k;j2

− α⊤
0 Akα

⊤
0

= (Q
(l)
k;hY

(l)
k;i)

⊤(K
(l)
k;hY

(l)
k;ji

)− (Q
(l)
k;hY

(l)
k;i)

⊤(K
(l)
k;hY

(l)
k;j2

).

It follows that

Z̃
(l)
(k−1)H+h =

i∑
j=1

exp
(
(Q

(l)
k;hY

(l)
k;i)

⊤(K
(l)
k;hY

(l)
k;j)
)
,

and

X
(l+1)
k;i =

K∑
k=1

H∑
h=1

i∑
j=1

exp
(
(Q

(l)
k;hY

(l)
k;i)

⊤(K
(l)
k;hY

(l)
k;j)
)

Z̃
(l)
(k−1)H+h

·V(l)
k;hY

(l)
k;j

= Y
(l+1)
k;i .

This confirms Eq. (26).

Prove Eq. (27). When i > ξm, we rely on the following properties:

1. Attention sink to vξm for mismatch expert: for any k′ ̸= κ and j ≤ i we have

(Q̃
(l)
(k′−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k′−1)H+hX̃

(l)
j) ≤ (Q̃

(l)
(k′−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k′−1)H+hX̃

(l)
ξm

)− C.

(29)

2. Attention to task-relevant tokens for matching expert: for j ∈ {1, . . . , ξ1−1, ξm+1, . . . , n},
and ξ1 ≤ j′ ≤ ξm we have

(Q̃
(l)
(κ−1)H+hX̃

(l)
i)⊤(K̃

(l)
(κ−1)H+hX̃

(l)
j) ≥ (Q̃

(l)
(κ−1)H+hX̃

(l)
i)⊤(K̃

(l)
(κ−1)H+hX̃

(l)
j′) + C.

(30)
and for j1 < j2 ∈ {1, . . . , ξ − 1− 1, ξm + 1, . . . , n}

(Q̃
(l)
(κ−1)H+hX̃

(l)
i)⊤(K̃

(l)
(κ−1)H+hX̃

(l)
j1

)− (Q̃
(l)
(κ−1)H+hX̃

(l)
i)⊤(K̃

(l)
(κ−1)H+hX̃

(l)
j2

)

= (Q
(l)
κ;hY

(l)
κ;i−ξm−1+ξ1

)⊤(K
(l)
κ;hY

(l)
ζ(j1)

)− (Q
(l)
κ;hY

(l)
i−ξm−1+ξ1

)⊤K
(l)
κ;hY

(l)
κ;ζ(j2)

), (31)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

To see Eq. (29), we notice that

(Q̃
(l)
(k′−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k′−1)H+hX̃

(l)
j)

= (X
(l)
k′;i)

⊤(Q
(l)
k′;h)

⊤K
(l)
k′;hX

(l)
k′,j + α⊤

mAk′(αι(j) + βE(vj) · 1(ι(j) = j))

≤ (X
(l)
k′;i)

⊤(Q
(l)
k′;h)

⊤K
(l)
k′;hX

(l)
k′;ξm

+ α⊤
mAk′(αm + βE(vξm))− C

= (Q̃
(l)
(k′−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k′−1)H+hX̃

(l)
ξm

)− C,

where we use Eq. (19) with k′ ̸= κ.

To see Eq. (30), we notice that

(Q̃
(l)
(κ−1)H+hX̃

(l)
i)⊤(K̃

(l)
(κ−1)H+hX̃

(l)
j) = (Q

(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j) + α⊤

mAκα0

≥ (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j′) + α⊤

mAκ(αι(j′) + βE(vj′)) + C

= (Q̃
(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j′) + C,

and
(Q̃

(l)
(κ−1)H+hX̃

(l)
i)⊤(K̃

(l)
(κ−1)H+hX̃

(l)
j) = (Q

(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j) + α⊤

mAκα0

≥ (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j′) + α⊤

mAkαι(j′) + C

= (Q̃
(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j′) + C,

where we use Eq. (20) and Eq. (22).

When ξm < j1 < j2, Eq. (31) follows directly from

(Q̃
(l)
(κ−1)H+hX̃

(l)
i)⊤(K̃

(l)
(κ−1)H+hX̃

(l)
j1

)− (Q̃
(l)
(κ−1)H+hX̃

(l)
i)⊤(K̃

(l)
(κ−1)H+hX̃

(l)
j2

)

= (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j1

) + α⊤
mAkα

⊤
m

− (Q
(l)
k;hX

(l)
k;i)

⊤(K
(l)
k;hX

(l)
k;j2

) + α⊤
mAkα

⊤
m

= (Q
(l)
κ;hY

(l)
κ;i−ξm−1+ξ1

)⊤(K
(l)
κ;hY

(l)
j1−ξm−1+ξ1

)− (Q
(l)
κ;hY

(l)
i−ξm−1+ξ1

)⊤K
(l)
κ;hY

(l)
κ;j2−ξm−1+ξ1

).

The other cases follow similarly due to Eq. (22).

We have hence confirmed Eq. (29), Eq. (30), Eq. (31), and therefore

exp
(
(Q̃

(l)
(k−1)H+hX̃

(l)
i)⊤(K̃

(l)
(k−1)H+hX̃

(l)
j)
)

Z̃
(l)
(k−1)H+h

=



δξmj , k ̸= κ
exp

(
(Q

(l)
κ;hY

(l)
κ;i−ξm−1+ξ1

)⊤(K
(l)
κ;hY

(l)
j)

)
Z̃

(l)

(k−1)H+h

, k = κ, j < ξ1

0, k = κ, ξ1 ≤ j ≤ ξm
exp

(
(Q

(l)
κ;hY

(l)
κ;i−ξm−1+ξ1

)⊤(K
(l)
κ;hY

(l)
j−ξm−1+ξ1

)
)

Z̃
(l)

(k−1)H+h

, k = κ, j > ξm

and

Z̃
(l)
(k−1)H+h =

∑
j=1,...,ξ1−1,ξm+1,...,n

exp
(
(Q

(l)
κ;hY

(l)
κ;i−ξm−1+ξ1

)⊤(K
(l)
κ;hY

(l)
j)
)
.

It follows that

X
(l+1)
κ;i =

ξ1−1∑
j=1

exp
(
(Q

(l)
κ;hY

(l)
κ;i−ξm−1+ξ1

)⊤(K
(l)
κ;hY

(l)
j)
)

Z̃
(l)
(k−1)H+h

V
(l)
k;hY

(l)
j

+

i∑
j=ξm+1

exp
(
(Q

(l)
κ;hY

(l)
κ;i−ξm−1+ξ1

)⊤(K
(l)
κ;hY

(l)
j−ξm−1+ξ1

)
)

Z̃
(l)
(k−1)H+h

V
(l)
k;hY

(l)
j−ξm−1+ξ1

,

= Y
(l+1)
κ;i−ξm−1+ξ1

X
(l+1)
k′;i = X

(l)
k′;ξm

= 0, ∀k′ ̸= κ.

Therefore we establish Eq. (27). This completes the induction.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

At the output layer, we have

pf̃ (y|v1, . . . , vn) = Softmax(ϑ̃(y)⊤X̃(L)
n)

= Softmax(ϑ(y)⊤Y
(L)
n−ξm−1+ξ1

)

= pfκ(y|u1, . . . , un−ξm−1+ξ1).

This establishes the desired Eq. (2).

A.5 PROOF OF THEOREM 4.7

Proof. Let ϕs, ϕm, ϕe denote the general-purpose Transformers in Proposition 4.4 (with K experts),
4.2 (with K = 3 token spaces), and A.1 (extending to V) respectively. We construct a dummy
Transformer fd that outputs BOS immediately after a token in A. Then we claim that the general-
purpose Transformer ϕ̃ defined by

ϕ̃(f0, f1, . . . , fK) = ϕm(ϕs(ϕe(f1), . . . , ϕe(fK)), fd, f0)

achieves the desired property.

Indeed, let g1 = ϕs(ϕe(f1), . . . , ϕe(fK)), by Proposition 4.4, we have

1. Expert following: At t-th iteration,

pg1

(
·
∣∣∣prompt

)
∼ pf

a(t)

(
·
∣∣∣q|u(t)

1:i−1

)
,

where q|u(t)
1:i−1 is the token sequence obtained by concatenating the user query q and prior

generated part in response t: u(t)
1:i−1.

2. Regret minimization:

max
a∗∈A

r0(a
∗)− E[r0(a(T))] ≤ reg(T).

Therefore by Proposition 4.2, we have

u
(t)
i ∼ pf

a(t)

(
·
∣∣∣q|u(t)

1:i−1

)
.

It follows that

max
u∗∈Vω

r(q, u∗)− E[r(q, u(T))] ≤ λ+ Eu∼fk∗ (·|p)[r(q, u)]− Ea(T)

[
Eu(T)∼f

a(t) (·|q)[r(q, u
(T))]

]
≤ λ+ max

a∗∈A
r0(a

∗)− E[r0(a(T))]

≤ λ+ reg(T).

Finally, ϕ̃ has type ϕ of type (O(K), O(log(Nmax))) because ϕs has type (O(K), O(log(Nmax)))
and ϕm, ϕe has type (O(1), O(log(Nmax))). This completes the proof.

A.6 ATTENTION SINK POSITIONAL ENCODING

In this section, we introduce positional encoding mechanisms that induce attention sink behaviors
used by Theorem 4.7.

Lemma A.2 (Attention Sink Positional Encoding, Type 1). For any C ∈ R+, K,N ∈ Z+, there
exist vectors α1, . . . , αN , β1, . . . , βK ∈ Rd and matrices A,A1, . . . , AK ∈ Rd×d for d ≤ O(K +
logN) such that for any n ∈ [N] the followings hold

1. For any k ̸= k′:

α⊤
nAk(αn + βk′) ≥ C +


α⊤
nAkαn

α⊤
nAkαj

α⊤
nAk(αj + βk′′)

, ∀0 ≤ j ≤ n, 1 ≤ k′′ ≤ K.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

2. For any k ∈ [K]:

α⊤
nAkαn = α⊤

nAkα0 ≥ C +


α⊤
nAk(αn + βk)

α⊤
nAkαj

α⊤
nAk(αj + βk′)

, ∀0 < j < n, k′ ̸= k.

3. For any k, k′, k′′ ∈ [K]:

(αn + βk′)⊤Ak(αn + βk′) ≥ C + (αn + βk′)⊤Akαj , ∀0 ≤ j ≤ n.

4. For any 0 < j < n:

α⊤
nAαn ≥ α⊤

nA(αn + βk) + C

≥ C +max{α⊤
nAαj , α

⊤
nA(αj + βk′)}, ∀k, k′′ ∈ [K].

Proof. Notice that the following relations are sufficient to guarantee the desired properties

α⊤
nAkαn = α⊤

nAkα0,

α⊤
nAkβk′ = C,

α⊤
nAkαn ≥ α⊤

nAkαj + α⊤
nAkβk′ + C,

α⊤
nAkβk = − C,

α⊤
nAβk = − C,

β⊤
k′Akβk′ = 9C.

By Lemma A.4, we can find γ1, . . . , γN ∈ Rd̄ such that d̄ = O(logN), γ⊤
i γj ≤ 1/2 for any

i ̸= j ∈ [N], and γ⊤
i γi ≥ 1 for any i ∈ [N]. Define

Bk = eke
⊤
k , ηk = −ek.

where e1, . . . , eK form the standard basis of RK .

We thus let

αi =


aγi
b1E

c1
c1
0

 , βk =


0

fηk
e
−e
h

 , α0 =


0
0
g1
−g1
0



Ak =


I

Bk

1
−1

1

 , A =


I

I/K
0

0
0

 ,

where b = c = f =
√
C, e =

√
C/2, a =

√
3C, g = 2

√
C, h = 3

√
C. The dimension can be

bounded by d = d̄+K + 3 = O(K + logN).

Lemma A.3 (Attention Sink Positional Encoding, Type 2). For any C ∈ R+, K,N ∈ Z+, there
exist vectors α1, . . . , αN , β0, . . . , βK ∈ Rd and matrices A,A1, . . . , AK ∈ Rd×d for d ≤ O(K +
logN) such that for any n ∈ [N] the followings hold

1. For any i ≥ j1, j2, j3 and k, k′, k′′ ̸= 0:

(αi + βk)
⊤A0(αj1 + βk′) = (αi + βk)

⊤A0(αj2 + βk′′) ≥ (αi + βk)
⊤A0(αj1 + β0) + C

(αi + β0)
⊤A0(αi + β0) ≥ (αi + β0)

⊤A0(αj1 + βk) + C.

2. For any i > j and k ̸= k′ ̸= 0

(αi + βk)
⊤A(αi + βk) ≥ (αi + βk)

⊤A(αj + βk′) + C

≥ (αi + βk)
⊤A(αj + β0) + 2C.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

3. For any i ≥ j, j1 and k ̸= k′, k′′

(αi + βk)
⊤Ak′(αj + β0) ≥ (αi + βk)

⊤Ak′(αj1 + βk′′) + C

(αi + βk)
⊤Ak(αi + βk) ≥ max{(αi + βk)

⊤Ak(αj1 + βk′′), (αi + βk)
⊤Ak′(αj1 + β0)}+ C.

Proof. Following the notations in Lemma A.2, let

αi =

γi
0
0
0

 , βk =

 0
γ
ek
1

 , β0 =

0
γ
1
f

 ,

and

A =

0
a · I

0
0

 , Ak =

b · I
0

c · eke⊤k
1

 , A =

e · I
0

0
0

 ,

where a = c = e = C, f = 3.5C, d = 4C. The dimension can be bounded by d = d̄ +K + 3 =
O(K + logN).

A.7 TECHNICAL CLAIMS

Claim A.4 (Johnson-Lindenstrauss Lemma). Given 0 < ε < 1, a set X of N points in Rn, and an
integer k > 8(lnN)

ε2 , there is a linear map f : Rn → Rk such that

(1− ε)∥u− v∥2 ≤ ∥f(u)− f(v)∥2 ≤ (1 + ε)∥u− v∥2

holds for all u, v ∈ X .
Claim A.5 (Concentration of Multinomial Distributions, adapted from Agrawal & Jia (2017)). Let
p ∈ ∆S and p̂ ∼ 1

nMultinomial(n, p). Then, for any δ ∈ [0, 1]:

P

(
∥p̂− p∥1 ≥

√
2 ln(1/δ)

n

)
≤ δ.

Claim A.6 (Berry-Esseen theorem). If X1, X2, . . . are i.i.d. random variables with E(X1) = 0,
E(X2

1) = σ2 > 0, and E(|X1|3) = ρ < ∞, we define

Yn =
X1 +X2 + · · ·+Xn

n

as the sample mean, with Fn the cumulative distribution function of Yn
√
n

σ and Φ the cumulative
distribution function of the standard normal distribution, then for all x and n,

|Fn(x)− Φ(x)| ≤ 8ρ

σ3
√
n
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS OF SELF-CORRECTION EXPERIMENTS

Model Depth Heads Width
GPT-nano 3 3 48
GPT-micro 4 4 128
GPT-mini 6 6 192
Gopher-44M 8 16 512

Table 2: Model configuration hyperparameters.

The model configurations are detailed in Table
2. Our code is implemented based on PyTorch
Paszke et al. (2019) and minGPT2. All the models
are trained on one NVIDIA GeForce RTX 2080 Ti
GPU with 11GB memory.

Following common practice, the learning rate
goes through the warm-up stage in the first 5% of
training iterations, and then decays linearly to 0
until training finishes. We set the peak learning rate to 10−4 and find that all the models are stably
trained under this learning rate schedule. We do not apply drop out or weight decay during training.
We repeat the experiments for 3 times under different random seeds and report the average accuracy
with error bars.

B.2 PROMPTS FOR SELF-CORRECTION

Initial Problem Solving Prompt

Solve the following math problem efficiently and clearly. The last line of your response
should be of the following format: ‘Therefore, the final answer is: \boxed{ANSWER}.
I hope it is correct’ (without quotes) where ANSWER is just the final number or expression
that solves the problem. Think step by step before answering.
{Question}

Correction Prompt

Your answer is incorrect. Please analyze your solution and identify where you made
an error. Then provide a corrected solution that leads to the right answer. The last
line of your response should be of the following format: ‘Therefore, the final answer is:
\boxed{ANSWER}.’

C LIMITATIONS

Despite these contributions, our work comes with limitations: our construction in Theorem 4.7 only
applies to attention-only Transformers and relies on a slightly generalized position encoding method.
Relaxing these constraints constitutes interesting problems for future research.

LARGE LANGUAGE MODELS USAGE DISCLORE

LLMs were used only to polish writing.

2https://github.com/karpathy/minGPT (MIT license).

34

https://github.com/karpathy/minGPT

