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ABSTRACT

Test-time scaling paradigms have significantly advanced the capabilities of large
language models (LLMs) on complex tasks. Despite their empirical success, the-
oretical understanding of the sample efficiency of various test-time strategies—
such as self-consistency, best-of-n, and self-correction—remains limited. In this
work, we first establish a separation result between two repeated sampling strate-
gies: self-consistency requires ©(1/A?) samples to produce the correct answer,
while best-of-n only needs ©(1/A), where A < 1 denotes the probability gap
between the correct and second most likely answers. Next, we present an expres-
siveness result for the self-correction approach with verifier feedback: it enables
Transformers to simulate online learning over a pool of experts at test time. There-
fore, a single Transformer architecture can provably solve multiple tasks without
prior knowledge of the specific task associated with a user query, extending the
representation theory of Transformers from single-task to multi-task settings. Fi-
nally, we empirically validate our theoretical results, demonstrating the practical
effectiveness of self-correction methods.

1 INTRODUCTION

Over the past several years, Large Language Models (LL.Ms) have witnessed remarkable advances,
achieving unprecedented performance across a broad spectrum of application (Brown ef-all, D2
Bubeck ef all, 2073; Chowdhery et all, 2022). Driven by the paradigm of chain-of-thought (CoT)
reasoning (Wei ef all, Z027H), the outputs of LLMs have not only grown in length but also in struc-
tural complexity. In particular, recent studies have demonstrated that scaling up computational
resources during test time significantly enhances the problem-solving capabilities LLMs—a phe-
nomenon termed as the test-time scaling law (Brown ef all, 2074; Wi ef all, P074; Guo_efall, 2075;
OpenAl, 2074H). Various methods have been proposed to effectively utilize additional test-time
compute, including self-consistency (Wang et all, 2023; Brown ef all, P024; Nguyen et all, 2024;
Chen_ef all, P024K), best-of-n sampling ([rvine_ef-all, P023; Song et al], P0744; Munkhbaf ef all,
2079; O1u et all, 20724; Sessa_ef all, 2024), Monte Carlo Tree Search (MCTS) (Inan_ef_all, 2024
Zhang et all, 2074d; Gaoef all, 024, Wan et all, D024 Chen et all, P024a; Lin ef all, P2073), and self-
correction (Madaan ef all, P(I73; Welleck ef all, 2023; Chen ef all, P024d; Gou ef all, P(074; Zhang
ef-all, P074d; Kumaref all, P(074). Powered by test-time scaling paradigms, several reasoning mod-
els, such as OpenAl-ol (OpenAl, 20744) and Deepseek-R1 (DeepSeek-Al, 2075), have achieved
remarkable success in many complex tasks (Cobbe_ef all, 2021; Hendrycks et all, 2021; Shi“ef-all,
20074, codeforce, D075, Huang et all, 2074K; [Zhang et all, P(0744).

Despite these empirical advancements, the theoretical foundations of test-time scaling remain under-
developed. While recent progress has been made in understanding the expressiveness and learnabil-
ity of chain-of-thought reasoning (Feng et all, P073; Merrill & Sabharwal, D073; Cief all, P074R;
loshiefall, PO75), two fundamental challenges remain unresolved:

1. Many test-time scaling approaches rely on repeated sampling from the same LLM to select
a final answer (Wang et all, 2023; Brown ef all, 20724); Irvine_ef all, 20023, Song et all, 20244,
Neuyen et all, 2024; Chen et all, 2024h; Wn_ et all, P025h; Kimi, 2025; Munkhbat et all,
2075; Qiu et all, 2074; Sessaef all, P074). Two dominant paradigms are: self-consistency,
which marginalizes reasoning paths and selects the most frequent answer; and best-of-n,



which chooses the answer with the highest reward score. However, a rigorous understand-
ing of their sample complexities is lacking. This raises the first question:

What is the sample complexity of repeated sampling methods,
particularly self-consistency and best-of-n?

2. Theoretical analyses of Transformers’ expressiveness have largely focused on their ability
to represent individual tasks (Ynn'ef-all, PO20; Bhaffamishra ef all, P0704;h; Dehghani et all,
LO1N; Perez et all, PO21; Edelman et all, 20272; Elhage et all, 2O21l; Likhosherstav et all,
2021, AKyirek et all, 20272; Zhao et all, P023; Yao ef all, 2021; Anilef all, 2027; Barak
ef all, P0272; Garg et all, 20272; Non Oswald ef all, 20272; Bai et all, 207273; Olsson ef all, 2027
Lietall, 2023 Garg et all, 20272; Akyurek et all, 20272; Bar et all, P023; Von Oswald ef all,
207273; Cinef all, "}.()')7,"); Wei ef all, }U")."),a; Mei & Wii, P073; Cinef all, 20773), while the ability
of Transformers to express multiple tasks at the same has been under-studied. In contrast,
practical LLMs are expected to perform across diverse tasks at inference time—often using
more tokens and computation than theory accounts for (Chenet-all, P024d). This gap in
theory limits our understanding of test-time scaling approaches that go beyond CoT, such
as self-correction (Madaan ef all, DO3; Welleck ef all, 20273; Chen ef all, D024d; Goun ef all,
2074 [Zhang et all, P024d; Kumar ef all, 2024)) which uses reward information. As a result,
we are motivated to pose the second central question:

How can we characterize the expressiveness under test-time scaling methods,
especially in multi-task settings?

Our Contributions. This work addresses the challenges outlined above through two key con-
tributions. First, we analyze the sample complexity of two prominent decoding strategies: self-
consistency and best-of-n, in terms of the probability gap between the most likely (correct) and the
second most likely model outputs. Our results reveal a fundamental separation in sample efficiency
that highlights the advantage of the best-of-n approach.

Proposition 1.1 (Informal statement of Theorem Bl and Theorem B2). Let A € (0, 1) denote the
difference between the Transformer’s probability of producing the correct answer and the probability
of the second most likely answer. Then, self-consistency requires ©(1/A?) samples to reliably
produce the correct answer, whereas best-of-n achieves the same with only ©(1/A) samples.

Second, we investigate Transformer’s capacity for self-correction. We demonstrate that a Trans-
former equipped with verifier feedback at test time can implement online learning algorithms over
a pool of expert models, enabling it to adaptively identify the most suitable expert and ultimately
generate a response that maximizes the reward. This process is illustrated in Figure [: given the

user query (e.g. solve the PDE ﬁ% — Au =01n Q x (0,7T) with some boundary conditions),

the Transformer f autoregressively generates a sequence of actions (e.g., selecting the sixth expert)
and responses (e.g., constructing and applying a spectral method solver), conditioned on the history
of previous action-response pairs and their corresponding rewards (e.g., solution error). Notably,
this process relies solely on the Transformer f—whose architecture encapsulates the capabilities
of all experts—and the reward function, distinguishing it from traditional routing algorithms that
explicitly query experts. As such, this mechanism allows a single Transformer architecture to solve
multiple tasks without prior knowledge of the specific task associated with a user query.

/\ J6: Spectral method M fg: Finite-Element method

Solve the PDE ...  (6) def spectral_solver(... 0.5 (8)  def FE_solver(... 1

[User Query] [Action 1= 6] [Response 1 ] [Reward 1] [Action i= 8] [Response i] [ Reward i ]

Figure 1: Anillustration of test-time online learning (figure adapted from (LCiefall, Z075)), where the
Transformer progressively learns that finite-element method solves the partial differential equation
with higher accuracy.



Proposition 1.2 (Informal statement of Theorem B71). There exists a generic way to construct a
wider transformer f from any Transformer-based expert models f1, . .., fg such that, when provided
with reward-based feedback, f can generate a sequence of responses where the t-th response has
regret o(1).

Proposition A has two key implications. First, it demonstrates that a Transformer can express
multiple tasks within a single architecture, extending beyond prior theoretical results that focus on
single-task expressiveness. Importantly, the construction is task-agnostic and independent of the
specific expert Transformers used, making both the result and the underlying techniques of inde-
pendent theoretical interest. Second, Proposition 2 reveals a fundamental distinction between
self-correction and repeated-sampling paradigms. While repeated-sampling methods generate iden-
tically distributed responses across attempts, self-correction provably allows the model to update
its attempts based on verifier feedback, thereby increasing the probability of producing the correct
answer as inference progresses. We further validate this results through controlled experiments.

2 PRELIMINARIES

Transformers. In this work, we consider attention-only Transformers defined as follows.
Definition 2.1 (Transformer). We define a Transformer model over vocabulary V as a tuple
! ! l

(vaev (Kgb)a ;L),Vz))he[H],le[L]aﬁaV)
O]

where § : V — R? is the tokenizer, pe : R? x V¥ — R? is a position encoder, K\, Q{", v\ ¢
R?*4 are the key, query, value matrices over L layers and H heads each layer, and 9 is the output
feature. The computation of a Transformer rolls out as follows:

1. Foreachi=1,...,n, Xi(l) =pe(0(vy);v1,...,v;).

2. Foreachl =1,..., L, compute each XY for i = 1,...,nby

K2

i, exp (355)(Xian))

NS
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v x W, (1)

where sg)(~) is the attention score defined by sg)(Xi, X;) = ( S)Xfl))T(Kg)XJ(-l)) and
Z;(Ll) = Zj.:l exp (sg)(Xi, Xj)> is the normalizing constant.

3. The output probability is given by
pr(ylor,... . va) = Softmax(9(y) T X)), y € V.

In particular, we assume the softmax attention layer has precision e: if two attention scores s1, So
satisfy e®? < € - e°2, then e®! is treated as zero in the attention computation of Eq. ().

While classical positional encoders is solely dependent on the index of the current token (i.e. we
may write pe(6(v;);v1,...,v;) = pe(f(v;); 1)), recent advance (Heefall, 2024}, [Zhang et all, 20248,
Golovneva ef all, 2024) has extended this notion to incorporate set membership information of pre-
ceding tokens. This generalization proves crucial for enhancing the long-context capability required
for effective self-correction. Motivated by this insight, we introduce the following notion of a gen-
eralized position encoder.

Definition 2.2 (Generalized Position Encoder). We say that pe : R x V¥ — R¢ is a generalized
position encoder w.r.t. a partition Vq,..., Vg of V if it maps an input feature in R and a token
sequence (of arbitrary length) vy, --- ,v; to a vector in RY, so that it only depends on the input
feature and the membership of each v; in the sets Vi, ..., Vg, i.e.

pe(8(v;);v1, ..., v;) = pe (0(%); (1(v; € vk))je[i]’kem) .

Test-time scaling. In this work, we study the following three strategies for test-time scaling.



1. Self-consistency samples n i.i.d. responses from the language model and chooses the most
consistent answer, while marginalizing over the reasoning paths.

2. Best-of-n samples n i.i.d. responses from the language model and chooses the answer with
the highest score given by the reward model.

3. In the Self-Correction paradigm, the Transformer autonomously generates a sequence of n
responses, each conditioned on the previous responses and their respective reward scores.

3 SEPARATION BETWEEN SELF-CONSISTENCY AND BEST-OF-N

In this section, we study the sample complexity of self-consistency and best-of-n. Let ¢ denote the
user query (e.g. a math problem) and O denote the answer space; then for each answer 0 € O we
define p(o) as the marginalized probability of generating o over all possible reasoning paths

p(o) = Z py(reasoning path, o|q)

reasoning path

where py denotes the probability distribution of Transformer f.

To understand the sample complexity, we focus on the dependence on the following probability gap:

. *
A=plo) ~  max (o)
where o* denotes the correct answer®. If A < 0, then self-consistency fails to find the correct
answer with high probability and the separation becomes trivial. Therefore, we focus on the setting
where A > 0 (i.e., the most likely answer is correct), which is also considered in prior theoretical
work (Huang et all, P074a). Under this setting, we may assume without loss of generality that
the reward function r is maximized (only) at the correct answer, because p itself is such a reward
function satisfying this condition. Note that since p(o) is marginalized over reasoning paths, A > 0
does not imply that the correct answer can be derived easily from greedy decoding.

Theorem 3.1 (Sample Complexity of Self-Consistency). When n > 21%(21/5), self-consistency with

n i.i.d. samples is able to produce the correct answer with probability at least 1 — §; Whenn < é,
there exists a hard instance where self-consistency with n i.i.d. samples fails to produce the correct
answer with constant probability.

Theorem 3.2 (Sample Complexity of Best-of-n). When n > Qk%(l/‘s), best-of-n with n i.i.d. sam-
ples is able to produce the correct answer with probability at least 1 —6; When n < %, there exists a
hard instance where best-of-n with n i.i.d. samples fails to produce the correct answer with constant
probability.

By providing matching (up to logarithmic factors) upper and lower bounds on the number of samples,
the above results establishes the separation between self-consistency and best-of-n. While self-
consistency requires ©(1/A?) samples to produce the correct answer, best-of-n shows advantage
by only requiring ©(1/A) samples. Therefore, this theory corroborates the empirical findings that
best-of-n generally leads to better problem solving accuracy on reasoning tasks compared with self-
consistency (Sun_efall, 2074; Wuef all, 20754).

4 EXPRESSIVENESS UNDER SELF-CORRECTION

A key distinction between self-correction and the repeated sampling strategies discussed in the pre-
vious section lies in the dependence structure of the generated responses: unlike repeated sampling,
the outputs produced by self-correction are not i.i.d.. Consequently, to analyze the sample efficiency
of self-correction, we must first address a fundamental question: can a large language model (LLM),
through self-correction, increase the likelihood of generating the correct answer? At its core, this
question is one of expressiveness—whether the Transformer architecture’s representation capacity
is sufficient to support such improvement.

'If there are multiple correct answers, we can let o* to denote the set, and our results continue to hold in
this setting.



In this section, we take a first step toward analyzing the expressiveness of Transformers under the
self-correction paradigm. Unlike prior work that focuses on expressiveness in the context of a single
task, we study what we call general-purpose expressiveness: the ability to solve a broad range of
tasks. To this end, we introduce the concept of a General-Purpose Transformer—a construction that
maps any collection of task-specific Transformers (experts) into a single unified Transformer.

Definition 4.1 (General-Purpose Transformer). We say that ¢ is a General-Purpose Transformer of
type (t1,t2) if it maps any set of Transformers with hidden size d and depth L into another ‘unified’
Transformer with hidden size ¢; - d + t2 and depth L + O(1).

A general-purpose Transformer provides a principled framework for constructing more powerful
Transformer architectures by composing simpler, task-specific components. This meta-architecture
enables a single model to solve multiple tasks at inference time, representing a significant advance-
ment in our theoretical understanding of the expressive power of modern machine learning systems.
Our goal is to investigate the general-purpose expressiveness of self-correction paradigms through
the lens of general-purpose Transformers: specifically, how a Transformer can adaptively solve dif-
ferent tasks during inference without prior knowledge of the task identity.

4.1 GENERAL-PURPOSE EXPRESSIVENESS

In this section, we present two auxiliary results that serve as building blocks for constructing general-
purpose Transformers capable of solving multiple tasks. These results may also be of independent
interest beyond expressiveness of self-correction.

f;: arithmetic @ f>: common sense | é Ji: chemistry (1) é o history (2)
25, |

[ The 3 + 5 capital of = France is ]

i f
Paris (Columbus (3) Primary gas in ... (2) discoveved] America

e .
/Nfl ; : i
[ The capital 3 + 5 of France is = )7 » 8 ! [ Primary gas in (4) Columbus ... (1) air is ]7 nitrogen

@ (b)

Figure 2: (a): [llustration of Proposition B7. In the first query, f» is called to solve the common sense
problem by attending to only blue tokens. In the second query, f; is called to solve the arithmetic
problem by attending to only red tokens. (b): Illustration of Proposition B4. In the first query, fo
is called to solve the history problem by attending to only blue tokens. In the second query, f; is
called to solve the chemistry problem by attending to only red tokens. Importantly, these function
calls occur implicitly within the internal computation of the unified Transformer architecture.

The first result addresses the setting in which multiple Transformers operate over distinct vocabular-
ies, with each vocabulary corresponding to a specific task. The objective is to construct a unified
Transformer that uses the final token in the input sequence to infer which task to perform, and sub-
sequently solves the task by attending only to the task-relevant tokens.

Proposition 4.2 (General-purpose Expressiveness over Different Token Spaces). For any
H,L,K,Npax € Zy, ViNV;, = 0 (Vi # j € {0} U [K]), there exists a general-
purpose Transformer ¢ of type (O(K),O(log Nyax)) such that for any Transformers fr, =
(0, pe, (K,(Cl;)h7 ;Cl;)h,V,il;)h)he[H]ﬁle[L],ﬂ,Vk)for k € [K], the Transformer f = ¢(f1,..., fx) sat-
isfies the following property: for any token sequence v = vy - - - vy, such that n < Nyax and there
exists one v;, € Vo, we have

pi(-lv) = py, (-|u)
where k is the task indicated by the last token: i.e., v, € Vi, and u = v;, - --v; , where {i; <
s <} =41 v; € V. }, is the sequence of tokens relevant to task k.

Remark 4.3. The existence of v;, which does not belong to any {V;}ic(k) serves the technical
purpose of inducing attention sink of all irrelevant experts to v;,. It may be achieved by assuming
the user query always ends with the special token <eos>.

The following result considers a more challenging scenario in which multiple Transformers operate
across different tasks but share a common vocabulary space. A set of indicator tokens, denoted by



Q, is used to specify the intended task. The objective is to determine which task to execute based
on the most recent indicator token. It then proceeds to solve the task by attending exclusively to the
task-relevant tokens appearing before the first indicator token and after the last indicator token in the
input sequence.

Proposition 4.4 (Multi-Task Representation over the Same Token Space). For any
H, L, K,Npax € Z,, token spaces Q NV = (0, there exists a general-purpose
Transformer ¢ of type (O(K),O(log Nmax)) such that for any Transformers fi, =

(0, pe, (K{ ) Quhs Vi neqyicin) 0 V). k € [K] over V, the Transformer f = ¢(fy, ..., fx)

satisfies the following property: for any token sequence v = vy - - - v, such that

{§1<"'<§m}:{j:vjeﬂ}a §m<n§Nmax
then we have
py(-lv) = py. (-|u) 2

where uw = v1 - - Vg, —1V¢,, +1 - - - Un, IS the token sequence obtained by omitting tokens from position
&1 1o &, and K is the task indicated by token ve,,.

Remark 4.5. We observe that in both results above, reducing the type parameters is generally not
feasible. The dependence on K arises from the need to compute features for all K experts cor-
responding to the user query. Since the model lacks prior knowledge of the task, it must encode
all task-relevant information to preserve the ability to invoke any expert at inference time. The
log(Nmax) scaling stems from the positional encoding: in order to construct Nyax nearly orthogo-
nal vectors, the positional embedding must have dimension at least 10g( Npyax)-

4.2 GENERAL-PURPOSE EXPRESSIVENESS OF TRANSFORMERS WITH SELF-CORRECTION

In this section we state the main result that establishes general-purpose expressiveness of Transform-
ers with self-correction. We rely on the following notion of regret-minimization Transformer, which
expresses the single task of finding the most rewardable action.

Definition 4.6 (Regret-Minimization Transformer). We say that a Transformer f achieves sim-
ple regret reg(-) over reward function r and action space A, if for any T' € Z,, we have
maxgsca T(a*) — E[r(ar)] < reg(T') where a4, ..., ar are generated in the following way:

ag pr(’|a17/’117'"aatflartfl), vVi=1,...,T,
re =r(ag), Ve=1,...,T.

Essentially, the goal of a regret-minimization Transformer is to learn from a reward oracle and ulti-
mately recommend an action that is near-optimal, which is related to a concept commonly referred to
as simple regret in the bandit literature (Even-Dar ef all, Z006; Carpentier & Valkd, P0TS; Tamieson
ef_all, 20T14). To achieve this, the Transformer may implement strategies such as mirror descent,
upper confidence bounds, or search-based algorithms, depending on the problem structure. As these
procedures rely only on basic arithmetic operations, such Transformers can be constructed by apply-
ing the universal approximation capabilities of Transformers (Yun_ef-all, ZO20; Cnoefall, P0727; Feng
ef-all, P073; [Citef-all, P0074R): For example, Cin“ef-all (Z0273) provide constructions to approximate
upper confidence bounds and Thompson sampling algorithms with regret O(/T). Consequently,
their construction is not the primary focus of this work.

The following theorem establishes the existence of a general-purpose Transformer that can simulate
the behavior of a set of expert Transformers (not necessarily over the same token space) through
self-correction. Specifically, it shows that such a unified Transformer can, at inference time, identify
and invoke the appropriate expert to solve any task that the original experts can solve. The self-
correction protocol is described in Algorithm [, wherein the unified Transformer autoregressively
generates actions and responses, after which the verifier is queried to obtain reward signals. Through
this process of trial and error, the model effectively “learns” at inference time, using the verifier to
minimize regret and adaptively select the correct expert.

Theorem 4.7 (Regret Minimization via Self-Correction). For any H, L, K, Nyyax € Z., token
spaces Vo, V1,..., Vi, A (|A| = K) such that Vo,V = (UK_, V), and A are disjoint, and reward
function r, there exists a general-purpose Transformer ¢ of type (O(K), O(log Nyax)) such that
given any set of Transformers denoted as follows,



Algorithm 1 Self-correction with verifier

1: procedure GENERATION(q) > g = q1 ... Qn, denotes the user query.
2 prompt < q

3 fort=1,...,Tdo

4 a® ~p 7(- | prompt) > a designates which expert to use in ¢-th iteration
5: prompt prompt|a(t> > Update the prompt autoregressively, | represents token concatenation.
6: fori=1,... do

7 ui” ~ p7(- | prompt) > Generate t-th response autoregressively
8: prompt prompt|u§t> > Update the prompt autoregressively
9: if u{") = EOS then
10: Break
11: r® r(q, u(t)), prompt < prompt\r(t) > Query verifier to obtain reward of ¢-th response
12: Return

* K expert Transformers: f;, = (0, pe, (K,(fl;)h, ,(Cl;)h,V,il;)h)he[H],le[L],ﬁ,Vk)for k€ K],

such that one of the expert fi~ achieves A-suboptimal reward:
Eym fon (1 [7(q, )] > nax, r(g,u*) — A

* Regret-Minimization Transformer: fy = (0, pe, Kél;)h, él)h,V(()l)h) helH]1e[z], Vs Vo U A)
that implements a bandit algorithm over the reward function ro and action space A with
simple regret reg(t), where ro(a) = By f,(|q)[7(q,u)] denotes the average reward of
responses generated by the a-th expert,

then the Transformer f = &(fo, f1,-- ., fK) satisfies the following property: for any prompt v =
vy - - - Uy, if the response sequence vV | ... u(T) generated by the protocol in Algorithm @ has total
length < Nyax, then we have

max 7(q,u") — E[r(g,u™)] < A+ reg(T)

wreye
Remark 4.8. While the general-purpose Transformer ¢ can be applied to construct the brutal-force
Transformer f that simply tries every expert, we note that the generality of Definition allows
us to construct more powerful Transformers beyond brutal search. Leveraging the structures in
the problem and the expert pool, it is entirely possible to identify the correct expert using < K
trials (Russo & Van Roy, PUIS; Foster_ef all, PO71).

As a consequence of Theorem BZl, we obtain a Transformer architecture that can provably produce
a final answer that nearly maximizes the reward. This means that the unified transformer can solve
K distinct tasks at inference time, without requiring prior knowledge of which task the user query
pertains to. Notably, the construction of such an architecture is general-purpose, in that it is inde-
pendent of the specific tasks, reward functions, or expert policies. To the best of our knowledge,
this constitutes the first theoretical result of its kind in the study of Transformer architectures. Fur-
thermore, our theory aligns with the empirical finding that LLMs are able to progressively optimize
outcome rewards during test-time (Qu et all, PZ075; Song et all, 2079; Meam, P072Y; Monea ef all,
p074).

5 EXPERIMENTS

In this section, we conduct synthetic experiments to show that Transformers can self-correct with
verifier feedback.

5.1 EXPRESSIVENESS OF SELF-CORRECTION

Data generation. We aim to construct a test problem with complex prompts such that correctly
solving the problem in the single-term generation is challenging. In this case, self-correction can
play a critical role if Transformers have such capacities. Specifically, in our synthetic problem, the
prompt is the concatenation of the following two components:



* Instruction: A 3-SAT problem, e.g.,
(N(E3\/N1171\/N.’L'2)/\(N:L‘1VN£U3\/$2)/\(NZ'4\/{,E2\/NCL‘g)/\"-

» Data: A string composed of characters from the set {a, b}.

The ground truth target is defined as follows: If the 3-SAT problem in the instruction is satisfiable,
the model should copy the string in the data part in the output; otherwise, the model should reverse
the string in the output. In our experiment, we construct datasets using 3-SAT problems with 4
variables and 20 clauses. The lengths of the data strings are set to 5. We generate 10000 instances
for training and 512 instances for evaluation. In the training set, we control the ratio of satisfiable
and unsatisfiable 3-SAT instructions to 9:1, while in the test set, the ratio is set to 1:1. This label
imbalance ensures that models fail to answer the question correctly in the first attempt and thus elicit
the self-correction behavior.

Models and training configuration. We train a class of Transformer models of various sizes:
{GPT-nano, GPT-micro, GPT-mini, Gopher-44M} with the Adam optimizer Kingma & B4 (Z015)

for 5 epochs. More implementation details can be found in Appendix B.

Results. Test set accuracy across different infer-

ence settings is shown in Figure B. We note that Test accuracy comparison
model performance plateaus at 63.19% when there 1004 5T 98,57 99.15
is no self-correction at test time, with no improve-

ment from increased model size. By contrast, s 87

when models are equipped with verifier signals to > 60

enable self-correction, test accuracy improves sub- g

stantially, demonstrating the efficacy of this mech- 2]

anism. Crucially, larger models — such as GPT- 20+ W/o self-correction
mini and Gopher-44M - achieve near-perfect ac- N IEFELE] e W/sscorection)
curacy under self-correction, suggesting that suf- GPT-nano GPT-micro GPT- m-mGopher44M

Figure 3: Accuracy comparisons of differ-
ent models with/without self-correction at test
time.

ficiently expressive Transformers are capable of
implementing effective self-correction strategies.
This empirical result supports our theoretical find-
ings.

5.2 EVALUATION OF SAMPLE COMPLEXITY

Dataset. We conduct experiments on the AIME 2024 & 2025 datasets (Mafhematfical Associafion
of America, Z075), which serve as a real-world benchmark for evaluating mathematical reasoning
tasks. These datasets allow us to measure not only the raw accuracy of different large language
models (LLMSs), but also the impact of verification-based strategies on sample efficiency.

Model configuration. We consider recent LLMs, including Qwen3-1.7B, Qwen3-4B ([Yang
ef-all, P07Y), and Llama-3.2-3B-Instruct (Dubey et all, P074), as candidate models. In
addition, Qwen3-32B is employed as an LLM verifier. This setup enables us to compare standard
decoding strategies (self-consistency) with verification-based methods (best-of and self-correction).

Self-consistency Best-of-n Self-correction
Model \ Method (64 samples) (4 samples) (4 samples)
Qwen3-1.7B 58.33% 59.68% 79.29%
Qwen3-4B 78.33% 80.58% 81.19%
Llama-3.2-3B-Instruct 1.67% 4.84% 24.52%

Table 1: Accuracy comparison of self-consistency, best-of-n, and self-correction methods on AIME
24 & 25 datasets.

Results. We compare the accuracy of self-consistency, best-of-n, and self-correction under dif-
ferent sample sizes. Notably, as summarized in Table [, best-of with only 4 samples consistently



outperforms self-consistency with 64 samples, confirming the predicted gap in sample complexity.
Furthermore, self-correction with verifiers achieves strong performance, highlighting the ability of
LLMs to leverage verifier feedback effectively. These results show a notable sample complexity
gap between Self-consistency and Best-of-n and confirm that modern Transformer models are suf-
ficiently expressive to implement self-correction mechanisms when combined with verifiers, thus
validating our theoretical results in Section 3 and B.

6 RELATED WORKS

Theories of Transformers and Large Language Models. The success of Transformers and
LLMs has motivated the study on their expressiveness. Existing research has shown that Transform-
ers can implement simple functions such as sparse linear functions, two-layer neural networks, and
decision trees (Garg et all, PZ077), gradient descent (AKyiirek et all, 077; Baief-all, P0773; Non (s
wald efall, P023), automata (Cinefall, 2077; Zhaa efall, P073), Dyck languages (Bhaffamishraefall,
20720a; Yao_ef-all, P021]), Turing machines (Dehghani et all, 20T8; Bhaffamishra_ef all, PO20HR; Za
heer ef all, 2020; Pérez_ef all, PO0721l; Wer ef all, D0I274), variational inference (Me1 & Wi, 2(073), and
bandit algorithms (Cinefall, 2023). Nun_ef all (2020); Cnoefall (2022); ATherfief all (2023); Pefroy
efall (2024)) establish universal approximation results under various settings. Edelman ef all (2027);
Elhage et al] (Z02T); Cief-all (2021)); Cikhoshersfov ef all (2021) study representational capabilities
and properties of self-attention, the core component in Transformers. Feng et all (2023); Cief al
(P074n) study the expressiveness of auto-regressive Transformers with chain-of-thought. Edelman
efall (D027); Ciefall (20244); Boffa ef all (Z079) studies the sample complexity of Transformers. Re-
cently, a growing body of work has begun to explore the theoretical foundations of self-improvement
in large language models (LLMs). Song et al] (?074h) introduces the generation-verification gap as
a key quantity governing scaling behavior. Huang et al] (?(1244) proposes a progressive sharpening
framework in which the policy gradually shifts toward more confident responses. Seflurefall (Z025)
draws on reinforcement learning theory to formally establish the advantages of verifier-based meth-
ods. In contrast to these works, our results provide explicit sample complexity rates and tangible
representation architectures, enabling a more concrete understanding of the fundamental capabilities
and limitations of test-time scaling paradigms.

Test-time scaling. Recent research has established the test-time scaling law of LLMs, illuminating
a new scaling axis beyond training-time scaling laws (Kaplan et all, P020; Hoffmann_ef all, P027).
Existing approaches of scaling up test-time compute of LLMs can be broadly classified into two
categories: (1) applying test-time algorithms (aka inference-time algorithms) during LLM decoding
(Brown ef-all, P0724; Wi_ef all, P(0254; Snell’ef-all, P0725); and (2) explicitly training LLMs to output

Many recent works focus on understanding and improving the effectiveness of test-time scaling
empirically: Chenefall (2074d); Aggarwal & WellecK (20125); Cnadron_ef all (2025); Wang_et all
(2075) study under-thinking, over-thinking, and length control in LLM reasoning. Chenef all (P025)
proposes to integrate self-verification and self-correction into sampling. Qu et all (Z025) analyze
optimizing test-time compute by introducing a meta reinforcement learning formulation. Seflus
ef-all (Z025) demonstrate that verification/RL is important for optimal test-time scaling. Zhang et all
(2025) provide an extensive review of the test-time scaling landscape. In contrast, our work focuses
on theoretical analyses of test-time scaling. In addition, our work provides theoretical explanation
of In-Context Reinforcement Learning (Song et all, P075; Meam, PO7Y; Moneaef all, 2074).

7 DISCUSSIONS

Our investigation reveals a fundamental separation in sample complexity between self-consistency
and best-of-n, providing theoretical support for the empirically observed superiority of the latter
method. Furthermore, by introducing the framework of general-purpose expressiveness, we con-
struct generic Transformer architectures capable of emulating online learning algorithms at test time.
This capability enables a single model to provably solve multiple tasks without task-specific adap-
tation, thus extending our understanding of expressiveness to multi-task settings. Our experiments
validate the theoretical separation and confirms that it requires additional model capacities for Trans-
former to implement self-correction.
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A  PROOFS

A.1 PROOF OF THEOREM B

Proof. Write O = {1,...,0} (O € Z,) where i is the i-th most likely answer and let n; denote

the number of occurrences of 7. Then we have

1 1
p=—(n1,...,n0) ~ —Multinomial(n, p),
n n

where p = (p(1),...,p(0)).

Upper bound. When n > 21%(;/5) we apply Claim AT to obtain that with probability at least
1-9,

P —pli < < A.

21n(1/96)
n
Under this event, we have that for any ¢ > 1
n1—n; =n-(p1 — pi)
>n-(p1—pi — [P —plh)
>0

and hence the correct answer 1 is the most consistent answer. It follows that self-consistency can
produce the correct answer with probability at least 1 — §.

Lower bound. When n < =, we construct the hard instance where p; = (1 + A)/2,py =

(1—A)/2and A < 0.00001. If n < % then by the proof of Theorem B2, with constant probability
the correct answer is not generated at all and hence self-consistency fails to produce the correct
answer. Otherwise n > % > 10000. We may write X := % as a sum of i.i.d. random

variables divided by /n:
D ¢
N
where E(Y;) = 0,02 = E(Y}?) > 1/2,p = E(|Y;|?) < 1. By Claim &8, we have that
P(n; <n2) =P(X < —1)
8p
a3y/n

> ®(—1) —

> 0.01.

Thus in both cases, self-consistency fails to produce the correct answer with constant probability.
O

A.2 PROOF OF THEOREM B2

Proof. Write O = {1,...,0} where i is the i-th most likely answer and let n; denote the number
of occurrences of ¢. Then we have

p(1) >p(2)+A > A.

Note that for best-of-n, correctness is achieved if the correct answer appears at least once among n
independent samples.

Upper bound. When n > 21%(1/6), we have
P(Best-of-n outputs correct answer) = 1 — (1 — p(1))"
210g(1/6)
>1-(1-A)" =&
>1-9.
This confirms that best-of-n achieves the correct answer with 1 — ¢ probability.
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Lower bound. Whenn < £, we construct the hard instance where p(1) = A+(1-A)/0,p(2) =
-+ =p(0)=(1—=A)/O and A < 0.0000001. Since the correct answer occurs with probability at
least A, we have:

P(Best-of-n outputs correct answer) = 1 — (1 — p(1))"
<1-—(1-2A)%
< 0.99.
This confirms that best-of-n fails to produce the correct answer with constant probability. O

A.3 PROOF OF PROPOSITION B2

We first introduce the following result that extends any Transformer to a larger vocabulary, so that it
only attends to tokens in its original vocabulary.

Proposition A.1 (Extended Representation to Multiple Token Spaces). For any H, L, Npax € Z.,
Vi NV = 0, there exists a general-purpose Transformer ¢ of type (O(1), O(log Nyax)) such
that for any Transformers [ = (0, pe, (KEP, Ell), Vg))he[H]Je[L]vﬂv V1) over vocabulary V), the
Transformer f = ¢(f1) satisfies the following property: for any token sequence v = vy - - - v,, such
that v < Npax, denote {i; < -+ < iy} ={i:v; € V1}, then we have

p7(1v) = ps(fu),
where u = v;, -+ - v;, .

Proof. Set constants B,, By, Bs such that for any layer [ and head h, it holds that
g))TK;”HQ < By, ‘V,S”’L < B,, and |0(v)|l2 < Bp holds for all v € V. Let

|
B = (HB,)!'ByBs,C = 4B? + log(1/¢),Co = 4C. By Lemma A3, there exists
ai,...,an, Bo,f1 € R% and Ag, A, A € R%*9 for dy < O(log Npax) such that

1. For any i > j1, j2, J3:
(ai + B1) T Ao(aj, + Br) = (i + B1) T Aoy, + B1) = (o + Br) T Ao(ay, + Bo) + Co
(i + Bo) T Ao(cii + Bo) > (ai + Bo) T Ao(aij, + Br) + Co, (3)
2. Foranyi > j
(e + B1) T A(aj + B1) + Co
(ai + B1) T A(aj + Bo) + 2Co, “

(i + B1) T Al + B1) >
>
3. Forany i > j, j1

(a; 4+ B1) T Ar(aj + Bo) = (a; + B1) T A1 (g, + B1) + Co

(i + 1) T Ar(ai + B1) > max{(a; + 1) " Ar(ay, + Br), (o + B1) T Ar(ay, + ﬂo>}(;; v

We define ¢ as follows: for any Transformers f = (6, pe, (K;ll), ;ll), Vg))he[m,lem, 9, V1), the
Transformer f = ¢(f) is given by

(ga/p\é7 (INCS), ~§zl)7\~[§zl))h€[H+1],le[L]757 V1 UW),
where the tokenizer is given by

(o) = 1(v € W) - (%?) F1(wEVy) - (500) ,

the positional encoder is given by
—~((x\ . N\ _ (pe(z;u)
pe((y> 77)11"'7“2) - ( al_*_y >7
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where u = v;, ---v;, and x € R% forl = 1,..., L the key, query, value matrices are given by

~ 1) ~ )
K;Ll) — (K}L AO) 7 Qg) — ( h [> ,
- )
V](_Ll) = (Vh 0> ,
1 0 0 (1 0
K;}H_( ) QH_H_( I),vgﬂz( 1)'

I(y)

The output feature is given by ﬁ(y) = ( 0 > Since i1, ...,%, only depends on whether v;’s

belong to the set V;, the generalized position encoding pe is well-defined. It can be verified that ¢
is indeed a general-purpose Transformer of type (O(1), O(log Niax))-

We show that forany [ =1,..., L,

~ O]
x}“:(& ),Vi:il,...,im ©)
a;
where XZ-(Z) is the [-th layer of Transformer f at position ¢ (attending only to positions i1, ..., %)
such that
1X1" 12 < Bo(HB,)", @)

and

s (0 . . .

X0 _ (a),vm{“,...,@m} ®

where a; = a; + 1(v € V) - Bo + 1(v € V1) - b1

We prove these results by induction. The case [ = 1 folows directly from the definitions of the
tokenizer.

Prove Eq. (B). Suppose Eq. (B) and Eq. (B) hold for 1,...,! — 1-th layer, and consider [-the layer.
We have

. ~ () v (1 (1) v
L e (Q) X)) T(RPXY))

v (+1) _ v (0
X; ZZ 70 Vi X
h=1j=1 h
term 1
; 1) ONT e (O
d eXP(QH+1X )" (KHJrlXj )) ~ ~
() ()
+Z 70 'VH+1Xj :
H+1
term 2

Eq. B) ensures that for any 4,7’ € {i1,...,4m},J & {i1,. -, im}:
QXN TEKYXD) = QX TKYXD) + (0 + 1) T Ao + 1)
> (QVXM KL XYY + (o + B1)T Ao(ay + o) + C
= QXXX +C,
and if i, 51,72 € {i1,- -+, im}
QYXNTEYXY) - QX)) T (KXY
= QXN TP XYY + (s + 1) Aoy, + B1y) — QP X TED XD — (@i + 81) T Aol + B1)
=@QVx") XD - (VX)X ),

where we use the fact that Cyp > C 4 2maxp, 1,5 ; ‘( S)Xfl))T(K(l)X(Z)) ‘ Since the transformers

have precision € and C' > 2maxp 1, ; ‘(QS)XZ.(l))T(Kg)X;l))’ + log(1/e), it follows that the
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attention weights of head (k — 1) H + h is identical to the attention weights of expert k, i.e.
exp ((QP X TR X)) exp (@ x") (KX ("))

1(5 € {i1,--yim}) -

=~ l
Z0 zY
Therefore
— Z Z exp (@) x(") T () x (")) VXY (x0+
erm 1 = . v = .
h= 1] Zl ..... Z}(Il) O 0

Furthermore, by Eq. (&) we have for any j < i
) DNT () 50 AT A~
Qi X)) T (KY,, X[) = al Ad
> aTA&J +C
= QY XNTKY, X"+ C
H+1 )T ( H+1 ) +C,

J
and hence the attention weighs concentrates on ¢ itself. Thus

@
term 2 = (O I) . (XJ ) = <9>
(07 Qg
Combining, we derive Eq.(B) for (I + 1)-th layer.

Prove Eq. (I). From above,
i exp ((Qﬁf))?§l))T(I~<§f))~(§l)))

H
X = 1303
h=1j=1

@
< ) .
< HB, I;lngHXj Il2

. fo)XJ(»l)

2

Z0

< By(HB,)"".
This confirms Eq. (24) for [ + 1.

Prove Eq. (R). Notice that Eq. (B) ensures that for any j,7' ¢ {i : v; € V1 }andi € {i : v; € V1 }:
SO FONT (D) (1 1) 1)
QX)) (KX = (X)L X) + (0 + o) T Aoy + o)
> QX)) T X) + (0 + o) T Ao + 1) + C
= QX&) X+
J i :

It follows that the attention weights is concentrated on the compliment of {i : v; € V) } itself, and
therefore Eq. (8) follows by a simple induction argument.

Finally, at the output layer
prylvr, ... vn) = Softmax(d(y) T X))
= Softmax(d(y) " X (1)
= s, (ylu).

This establishes the desired statement. ]

Now we return to the proof of Proposition E7.

Proof. By Proposition BT, it suffices to construct general-purpose Transformer ¢ such that
pi(-lv) = py. (u),
where u = vy -+ - Vj,—1Vi,+1 - - - Up, because then the ngiven by

O(f1,- s i) = 0(de(f1), -, be(fxc))

satisfies the requirement, where ¢, is the general-purpose Transformer that extends the K Trans-
formers to the larger vocabulary V := UkKZIVk as given by Proposition Bl
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Set constants B, By, By such that for any layer [ and head h, it holds that H(Qg))TKS )
2

B V,(PH < B,, and [|0(v)]l2 < Bp holds for all v € V. Let B = (KHB,)" BBy, C =
2

4B? + log(1/€),Cy = 4C. By Lemma B3, there exists ay, ..., an, Bo, B1,---,B8x € R% and
Ay, ... A € Rdoxdo for dy < O(K + log Npax) such that

IN

1. Forany i > ji, 2,73 and k, k', k" £ 0:

(a; + Br) T Ao(ajy + Brr) = (i + Br) T Aoy, + Brr) > (i + Bi) " Aoy, + Bo) + Co

(v + Bo) " Ao + Bo) > (i + Bo) T Ao(atj, + Br) + Co, )
2. Foranyi > jand k # k" #0
(e + Br) T A + Br) > (i + Br) " A(ej + Bir) + Co

> (o + Br) " A(aj + Bo) + 2Co, (10)
3. Forany i > j,j; and k # k' k"

(ci + Br) T A (aj + Bo) = (i + Bi) T Awr (), + Brr) + Coy

(a; + Br) T Ag(a; + Br) > max{(c; + Br) " A (aj, + B, (o + Br) T A (e, + Bo)} + Co,

(1D
We define ¢ as follows: for any Transformers
1 l 1
fr = (Ok, Dey, (K;(c;)h’ ;(g;)mV;(C;)h)he[ﬂ],ze[L]yﬁka),
over Vi, k € [K], the Transformer f= &(f1,-.., fx) is given by
5~ o) /0 U 5
(eapea (Kg)v 2)7V}(L))hE[KH+1],l€[L+1}7197]})7
where the tokenizer is given by
91 (U) 0
O(v) = 1(v Vo) - +
(v) = 1(v ¢ Vo) 0xc(0) 0
0 Be ()
where £(v) = k iff v € V. Let the positional encoder be given by
pe; (75 u)
() ) = ey
s ULy e U ) — y )
Yy peg (z3u)
a; +y
where x € R? and u is the sub-sequence of v that omits v;, (if any); for [ = 1, ..., L the key, query,
value matrices are given by
0 0
() _ O 50 _ N0
K(k71)H+h = Kih ) Q(k*l)H#’h - ksh )
Ao 1
0
a0 _ "
V-1 = Vi, :
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0 0 0

=~ " ~( . (1 .
Kg()H+1 = ' ) Q%)H—o—l = ' ) V;()H+1 = ' )
A 1 I

where the submatrices K,(fl_)h, ;cl,)h, V,(cl;)h are located in the k-th diagonal block, and for the final

layer

0
0 0

R;L—O—l) _ ’ ~§CL+1) _ ’ ‘N/-](CL+1) _ I

Ay 1

where the identity sub-matrix in \7,2””

J1(y)

(y) = 9 ( ) . Since u(*)’s only depend on set membership information of v;’s, the general-
K\Y
0
ized position encoding pe is well-defined. We can easily verify that ¢ is indeed a general-purpose
Transformer of type (O(K), O(log Nmax))-

We show that forany [ =1,...,L,

is located in the k-th block. The output feature is given by

Xio
xPW =1 |, vi#i (12)
Xic
@i
where X ,gl) is the [-th layer of Transformer k at position ¢ (attending to all positions but 7() such that

%

IXll2 < Bo(KHB, )" (13)
and
0
XP=1: (14)
0
Qi

where a; = a; + Bg(y,)-

We prove these results by induction. The case [ = 1 folows directly from the definitions of the
tokenizer.

Prove Eq. (IZ). Suppose Eq. (IZ) and Eq. (I4) hold for 1,...,l — 1=th layer, and consider [-the
layer. We have

K H i exp (@(l) XOTERY )~(<_z>))
S+ (k—1)H+h“* i (k—=1)H+h“*j () 10)
& B Z Z Z 70 Vi-naenX;
k=1h=1j=1 (k—1)H+h
term 1
; A (1 (1 ()
o (@0 T R 50)
+Z Z(l) .VKH+1Xj .
j=1 KH+1
term 2
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Eq. (8) ensures that for any j; < jo < 4 such thatig ¢ {4, j1, j2}:
QU1 Xi )T KGin X5) = QU X0 T KD, X) + (i + Beiy) T Aoy, + Bern)
> (QU,XINT KD XU ) + (i + Bey) T Aol + Begig)) + C
(Q(k 1)H+hX(l)) (ng) 1)H+hX(l )+ C.
and
QU1 XD TG X5 = QG X T’ s X))
= QXN TEY, XD ) + (i + Bey) T Ao, + Beiny)
—(QUXIDTED, XD ) — (0 + Bew) T Aolay, + Bein))
= (QL XD T (KX — (QUU XN T (K, X[,

It follows from the precision € of the transformers that the attention weights of head (k — 1)H + h
is identical to the attention weights of expert k, i.e.

1 1 S ! 1 1 1
exp ((Q(k 1)H+hX( )) (ng)—l)HJth;(' ))) B exp ((Qz(c;)th(c;i)T(Ké;)thi;;D

() 0)
Z(k 1)H+h Zk;h
Therefore
0
) v O T e 3 (0 : Xg
=S50y exp (U X ®GXD) | o) ;
erm | = . = .
1 kih Yk
k=1h=1j=1 Zlg)h . ’ X%)z
: 0
0

Furthermore, by Eq. () we have for any j < ¢
) 1 T g~
Qi X" T (K X)) = 6/ Ad
> &TA&j +C

l S
= (QKH+1 )) (Kg()HHX;(' )) +C
and hence the attention weighs concentrates on ¢ itself. Thus

0 X 0

term 2 = ’ il) -
0 XK;i 9

I ai (673

Combining these two terms, we confirm that Eq.(I2) holds for (I + 1)-th layer.

Prove Eq. (I3). From above,

; (z) v ONT (1 (D) v (D
exp ((Q TR X))
(+1) (k—1)H+h (k—1)H+h (1) +()
||Xk,z ||2 - Z Z Z(l) : Vk;th;j
k=1h=1j=1 (k—1)H+h )

<KHB, - max ||X H2

SBMKHBﬁ”ﬁ
This confirms Eq. (I3) for [ + 1.
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Prove Eq. (Id). Notice that Eq. (8) ensures that for any j < i¢:

l l l l l l
XNV prn X0 = QU X0 T (KL, X0 ) + (0 + Begio)) T Aolaig + Be(io))

) (1 )
> (Q X1, T (K, XL0) (0 + Be) T Aol + Bey) +C
O] TONT @ v
= (Q(k—l)H+hXio )’ (K(k X, )+ C.
It follows that the attention weights of head (kK — 1) H + h is concentrated on i itself, therefore
0

terml—zz Vy) ol =o.

k=1h=1

(Q(k 1)H+h

By the same argument, for 7 = iy we have
0 0 0
term 2 = =
I Qi Qi
Combining these confirms Eq. (I[4).

Next, we show that the last layer satisfies

F(Ea0 = | (G 1s)

0
where X ,E;Lnﬂ) is the k-th block. To see this, we notice that Eq. () implies the followings (the
proofs are identical to the above):

1. Attention sink to dummny token v;, for mismatch expert: for any k' # k and j < n we
have

~ (L ayd =(L (L
Q1) a1 X8 T RG ) 11 0 X5") = (a4 Bey) T A (0 + Bes)
< (o + Be(ny) T Ar (g + Be(ig)) — C
(L) e (L) v (L)
(Q(k/ 1)H+hX( )) (K(k/ 1)H+hXio ) -C.
(16)

2. Attention to oneself for matching expert: for any j # iy we have
L (L
QUL 1y n X TR 1y X)) = (@ + Ben) T Anla + Begy)
> (an + Be(n)) T A (o + Be(i)) + C

_ @ v (L) ¥ (L)
- (Q(n—l)H+hX7(lL)) (K(n 1)H+hX )+ G
(17)
and
L v (L e
(Qén) 1)H+hX(L))T(Kgnll)H+hXT(LL)) = (Oln + ﬂé‘(n))TAH(an + Bf(n))
> (om + Ben)) " Al + Begy) + C

XMt
(18)

~(L) v (L)
(Q(R—I)H+hX7(lL)) (K('~C ) H+h
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Combining Eq. (I8), Eq. (1), and Eq. (IX), we have
O (L) Y (INT (7 (L) v (L) X
exp ((Q(kfl)HJth” )T<K(k71)H+hXj )) 0, k#k
70 _
k

It follows that

R 2T R VI D
k#k
“ xey [
= T g 0 ] = X’i{;rz
Xic) :
0 i 0

Therefore we establish Eq. (I3).
Finally, at the output layer

piylvr, .., vn) = Softmax(d(y) " XY)
= Softmax(d(y) TV, )

= ps. (ylu).
This establishes the desired statement. O

A.4 PROOF OF PROPOSITION E4

Proof. Set constants B,, B, Bg such that for any layer [ and head £, it holds that
H(QﬁP)TK;j)‘ < By, ‘V,S”H < B,, and |[0(v)|l < By holds for all v € V. Let
2 2

B = (KHB,)'B, By, C = 2B? + log(1/¢),Co = 4C. Define 1(i) = wiff &, < i < &up1
(& = —1,&m41 = oo by default). Let £(-) denote the task id indicated by the special to-
ken. By Lemma B2, there exists ay,...,any,B1,...,08x € R% and A;,..., A € R%*do for
do < O(K + log Npax) such that for any n < N we have

1. Forany k # k'
a;'l—A;gan
o) A (an + Br) > Co+ { o) Apa VO<j<nm1<Kk' <K (19
ap, Ag(a; + Brr)
2. Forany k € [K]:
a;Ak(O‘n + ﬂk)
aIAkan = ozIAkao > Co+ aZAkaj V0 <j<nk #Ek. (20)
3. Forany k, k', k" € [K]:
(@n + Br) " Ar(an + Br) 2 Co + (an + B) " Apay, VO < j <mo (2D)
4. Forany 0 < j < n:
o) Aay, > o) Aay, + Br) + Co
> Co + max{a, Aaj,a) Ala; + B}, Yk, k" € [K]. (22)

We define ¢ as follows: for any Transformers

! ! !
fr = (0k, pey, (K;(g;)m Eg;)havl(g;)h)he[H],le[LpﬁkaV)vk € [K]
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over V, the Transformer f: o(f1,..., fx) is given by

7~ ) /0O U 3
(ovpea (Kgl)vle)vvg))he[KH—i-l],le[L]a19;VUQ)v
where the tokenizer is given by

01 (v) 0
(v) = L veV, Ow) = , w €,
QK (1}) 0
0 Be (w)
the positional encoder is given by
pe; (xﬂ)la Ve -1,V 41 7Un)
() ) |
pe UL, -0, 0 ) = : )
Y Per (T;01, Vg —1, Ve 1,7 5 Un)
Qy(3) +y
where x € R?; forl = 1,..., L the key, query, value matrices are given by
0 0
) _ R 50 _ oW
K(k—l)H-{-h, = Kl(c)h J Q(k-—l)H+h - Qpn J
Ag 1
0
S0 _ R
V(kfl)H+h - Vk;h ’
0
0 0 0
KY _ - ’ Q(l) _ 7 v _ . ,
KH+1 0 KH+1 0 KH+1 0
A 1 1
where the submatrices K,(Cl;)h, ,(Cl;)h, V,(Cl;)h are located in the k-th diagonal block. The output feature
V1 (y)
is given by 5(y) = 9 : . Since &7, &, only depends on whether v;’s belong to the set €2, the
K\Y
0

generalized position encoding pe is well-defined. We can easily verify that ¢ is indeed a general-
purpose Transformer of type (O(K), O(log Nmax))-
Let X {l), e ,)Z'T(Ll) represent the [-th hidden layer. Our goal is to show that forany [ = 1,..., L,
X i(l) can be written as:

X0

x® =

K3

S S T (23)
x{

~ ;/L
Qy

where a; = a,(;) + 1(e(i) = ) - Be(v,) and X,glz € R such that
IX0ll2 < Bo(KHB,)" 24)
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In particular, forz = 1, ..., m we have

X\ =0, Vk=1,...,K, 25)
and for j = 1,...,&; we have
X0 =yl vE=1,.. K, (26)
andforj=1,...,& —1,&, +1,...,n we have
xW = Y(fj 6 rre X =0,k £k, 27)
where Y(l) is the [-th hidden layer of fj, (attending only to positions 1,...,& — 1,&, +1,...,n).

Thus we apply induction on /. The case [ = 1 holds trivially from the definition of 6 and pe. Suppose
the above relationship holds for all layers 1, .. ., [, consider layer [ + 1. We have

i QW TONT (ge®) )
"KP( (k— 1H+nXi) CK@ VH+h )) <) ~

X = Z Z > Xy

F10)
k=1 h=1j=1 Z (k=1 H+h

term 1

. ! 1 =3
! exp ( QKHJrlX( )) (K(I()H+1X; )))

S (1
+Z >0 Vi X},
ZKH41
term 2
where
i
AU _ oW vONT g @) v
20 yen = Y exp <(Q(k—1)H+hXi ) (KX ))'
j=1
By induction hypothesis,
Xy
go_| i
Xic
a;

and X(l) = Yg((l)) fori=1,...,6—1,&,+1,...,n, where ((4)

{z, i< &
i—&m—1+&, 1>&n
Notice that for j < 4:
(Q(k 1 H+hX(l)) (ng) 1)H+hX(l)) = (Xélz)T( g;)h)TKl(f;)hX() + aTAkaJ,
Qi1 X)) (Kidy 1 X)) = & Aa.

Prove Eq (I3). By properties of «, 3, A, for any jo < &, < j1 < i < &,41 notice that:
) l S( (1 S( = (1 )
Qi1 X)) T (K X)) 2 Qg X T (K X) + €
(1 1 l )
> (Q )H+ X )> (K%)HJrlXj('Q ) +2C.
Due to e-precision of transformers, this implies that

l S ,
exp ((QKH+1 ) (K( ) X](' ))) _ {W Eu <1< &yt

i—8u
l ‘] . bl
ZE()H+1 5&» =6y
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and hence for £, < i < &,41

; ~(l) FONT (re ) 0]
v eXP( 1)H th' ) (K k— X; )) ~ (l)
SU+1) + (k=1)H+h""j (1) X
X Z Z Z 70 “Vi—1)m4n {w
k=1h=1 j=1 (k—1)H+h :
0
_ 0
! 1
+ Y — :
it L6 0
o(3)
X
- 141
X%;i )
a;
and fori = &,
P =~ (1) TOT (Kgk® x® 2 0
F041) _ exp <(Q(k—1)H+h i) (KX )) 0) X,(el_) :
i —ZZ 0 NVie—nmen | H [+ 0
k=1h=1j=1 (k—1)H+h :
0 (i) + 65(’01‘)
X
b g
@

where

; (l) TONT (@) v
leXP( (k—1)HAh X ) (K u nX; ))
(1+1) JH+ (k—1)H+ ) ()
X E E E 50 Vi X (28)
k=1h=1j=1 (k—1)H+h
This confirms Eq. (23) for [ + 1.

Prove Eq. (Z4). From above,
i oW v () 0 yald
exp( Q(k-_l)H+hXi )T(K(k 1)H+hX ))

XD, = ZZZ Vi Xl

(1)
k=1 h=1j=1 Z -1y H+h )

< KHB, - max | X",
j<i i

< By(KHB,)"*.
This confirms Eq. (24) for [ + 1.

Prove Eq. (I3). We first show X ,El)g = 0. Indeed, by the properties of a4, B, for any j < &
(l) vONT g ) v ()
Q (k-1 H+hXg ) (K(k DHhKE )
1 l l
= (X,) T (QU) KX, + (0 + Begwe,) T Ar(ao + Begoe,))
> (0@ TR, XL, + (a0 + et ) Avan + €
= (

A0 YONT (g (@) v
Qk 1H+hX ) (K(k 1)H+hX )+C
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It follows from Eq. (£8) that

0D _ <0
Xpee, szkh ki, = 0-

k=1h=1

For &; (i > 1), we apply the same argument again to obtain that for any j < &; such that j ¢ {&; <
- < &)} and any i’ <,

) Y UNT (g (D) yall
(Q(k 1)H+hX ) (K(k 1)H+hX€k/)

TONT (i@ l)
(Q(k 1)H+hX£1 )" (K(k 1)H+h )+C
This implies that the attention weights are supported on {&; < - -+ < &;}, and therefore

: Qv TV T (RO 0
i exp( XK X ))
x D _ (k—1)H+h (k—1)H+h""¢; o v
Xhie: ZZZ 50 Vi X, =0
k=1h=1j=1 (k 1)H+h

where we apply the induction hypothesis k; X éj) =0forall j =1,...,¢2 — 1. This thus completes
the proof of Eq. (I39).

Prove Eq. (Z8). When j; < jo < i < &1, we have
YO\ (kKW v () oW vONT g @) O]
(Q(k VHA+hXi )" (K b5 ) = (Qu_ 1y nXi )" (K(k DH+hXjs )

l l l
(X( )" (Qk h)TKEc)hXIE 31 +ag Arag
l l l l
— (x0T < UKD XD —af Akao

l Y, l l Y, l l Y, l I: l jy l
It IO]]OWS that

1) l l l
26y = Zexp( QYT KDYD)

and
. 1) l l
e ((QUYIDTEDYD)

(z+1) Z Z Z sz;)hyk(z)

=10) 03
k=1h=1j=1 Z(o—1)H+n
_ Yk‘(.li—&-l).

This confirms Eq. (28).

Prove Eq. (). When ¢ > &,,, we rely on the following properties:

1. Attention sink to ve,, for mismatch expert' for any k' # k and j < i we have
vONT (e O] vONT (i@ v ()
(Q(k’ D H+hNi )" (K(k’ VH+RX ) (Q(k/—l)H+hXi )’ (K(k’ 1)H+hX§m) C.
(29)

2. Attention to task-relevant tokens for matching expert: for j € {1,...,&—1,&,,+1,...,n},
and & < j' <&, we have

O] (l) ) ¥ () ) v(ONT (e (D)
<Q(n V) H+hX )’ (K( X ) 2 (Q —DH+r i )’ (K(R 1)H+h ) +C.
(30
andforj; < joe{l,....£—-1-1,&,+1,...,n}

( NT re® v () 0} XV g® v ()
(Q(n 1)H+h ) (K(K 1)H+hX ) (Q(m 1)H+h i ) (K(n 1)H+hX]2 )
ORY OR%O) ORY (ORVAO)
(Qn h r@ z Em —1+£1) (K.‘s h~¢(j1) ) (Qn h*i— fm—1+§1) K.‘i;hYn;C(jQ))7 (31)
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To see Eq. (Z9), we notice that
Qe X ®E g 0 X
= (X0 T (Q) TR X, + am A () + Begw) - 107) = 7))
<(XP)TQY)TKD, XD+ ol Ay (am + Beue,)) — C
= (QEQ/ 1)H+hX(l)) (ng)/—l)HJFth(fZ) -G
where we use Eq. () with k&’ # &.
To see Eq. (Bd), we notice that
Q1) X TR X)) = QG XDT (K, X)) + 0 Avao
Qi Xk T (KL XG0 + o Al + B, ) +C

) T ONT (e v (1)
(Q(k V4R )" (K(k X ) +C,

IV

and
! l l l l l l l
Q4 X TR X370) = QU XD T (K, X)) + o Aag
> (QU,XeN T (KD, X)) + g, Avay gy + C

32

1 1 S
= QU n X)) G X)) + €,
where we use Eq. (20) and Eq. (22).

When &, < j1 < j2, Eq. (B1) follows directly from
Q1K) TGy X)) = QL KT 0 X))
= (@ XD T (KX, + ]
- Q) Xéii)T(KﬁLX,Ei;g +ay Arar,
(Qn ht kji— gm—1+5 ) (Kg;)hyj(ll)fgmflﬁ ) (Qn shi— §m—1+51) Kg;)hyn(;ly)‘rimflﬁl)'
The other cases follow similarly due to Eq. (22).
We have hence confirmed Eq. (Z9), Eq. (Bd), Eq. (B1), and therefore

5£m k 7é K
1) ) ) (1)
A1) (1) ) () exp((Q th i gm_1+51) (KK,;th )) . .
exp ((Q(k_l)HJthA )T(K(k 1)H+hX )) B Z((,? e , k=kr, <&
ZD o, k=#, & <j<ém
(k—1)H+h exp((Q(l), (1) e 1re)) (K“) Y(l)g e ))
mZ(l) : EE— ) k= Ky, ] > gm
(k—1)H+h
and
~() _ Oy ORI
Z(k—l)H+h = Z exp ((Qn R ki £m—1+5 ) (KH;th )) .

J=1esé1 =1 Em 41,
It follows that

e (QUYE e, 1) KDY))
41 Kih T K=& =141 wih ™ J (ORI
X = 3 VinY;

K3i ~()

j=1 Z(kfl)HJrh
_ 1) (0
e (@Y e, ve) TEDY )

+ Z 50 VinYj—e, —14¢0

J=Em+1 (k=1)H+h

(1+1)

T U Ri—Em— 1461

XotV =X =0, VK # 5.
Therefore we establish Eq. (I4). This completes the induction.
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At the output layer, we have
p7(ylvr, ..., vn) = Softmax(d(y) " X (1)

L
= Softmax(ﬂ(y)TY;_)fm_H_&)
=ps.Ylur, . Un—g,, 16, )-
This establishes the desired Eq. (O). O

A.5 PROOF OF THEOREM E1

Proof. Let ¢, ¢m, @ denote the general-purpose Transformers in Proposition B4 (with K experts),
B2 (with K = 3 token spaces), and ATl (extending to V) respectively. We construct a dummy
Transformer f; that outputs BOS immediately after a token in A. Then we claim that the general-

purpose Transformer ¢ defined by
O(for frv- -+, fK) = bm(s(@e(f), -, De(f50)), fa, fo)

achieves the desired property.

Indeed, let g1 = ¢s(de(f1),- .-, Pe(fK)), by Proposition B4, we have

1. Expert following: At ¢-th iteration,

Pg, (

where q|u§271 is the token sequence obtained by concatenating the user query ¢ and prior

generated part in response ¢: uth_l

t
prompt) ~ P (-‘QIuﬁzﬂfl),

2. Regret minimization:

max ro(a”) - Efro(a™)] < reg(T).

Therefore by Proposition B2, we have

t t
UE ) pra(t) (‘q‘ungl) .
It follows that

nax r(q,u*) = Elr(q, u™)] <X+ By (1) [7(0: 1)) — Eqer [Eu(T)Nfa(t) Clo (g u)]

< *) (T)
_/\+£13‘g§7"o(a ) — E[ro(a'"’)]

< A+ reg(T).

Finally, ¢ has type ¢ of type (O(K), O(log(Nmax))) because ¢, has type (O(K), O(10g(Nmax)))
and ¢, ¢, has type (O(1), O(log(Nmax)))- This completes the proof. O

A.6 ATTENTION SINK POSITIONAL ENCODING
In this section, we introduce positional encoding mechanisms that induce attention sink behaviors
used by Theorem B2

Lemma A.2 (Attention Sink Positional Encoding, Type 1). For any C € Ry, K, N € Z., there
exist vectors ..., an, P, - - ., B € R and matrices A, Ay, ..., Ax € R ford < O(K +
log N) such that for any n € [N] the followings hold

1. Forany k # k':
a) Agan,
o) Ag(an + Br) > C + 4 o) Apay V0<j<n 1<k <K.
ay, A(aj + Bir)
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2. Foranyk € [K]:

o Ar(o + Br)
Oé;LrAkOtn = OLIAkOZO >C+ Oé;LrAkOlj , VO < 5 < n, K #+ k.

o Aw(ej + Bir)

3. Forany k, k' k" € [K]:

(a4 Brr) T Apan + Brr) > C + (an + Brr) T Agarj, Y0 < j < .
4. Forany 0 < j <n:
o Aay, > o) A(an + Br) + C
> C +max{a, Aaj, o) A(a; + B}, Yk, k" € [K].

Proof. Notice that the following relations are sufficient to guarantee the desired properties

T T
o, Aoy, = a,, Ao,

a, AxB = C,
a;Akan > Oé;ll—Ak;aj + Oé;l;Akﬁkz’ +C,
ap ApBr = —C,
ap Ay = —C,
B ArBr = 9C.

By Lemma &4, we can find ~1,...,7n € R? such that d = O(log N), v v; < 1/2 for any
i # j € [N],and v, v; > 1 foranyi € [N]. Define

Bk = ekeg, Nk = —€k.
where e1, . .., ex form the standard basis of R¥.
We thus let
a”y; 0 0
blg I 0
aj=|cl [, B=| e |,a=]| gl
cl —e —g1
0 h 0
I I
By, I/K
A = 1 , A= 0 ,
-1 0
1 0
where b = c = f = VC,e = \C/2,a =3C,g = 2/C,h = 3v/C. The dimension can be
bounded by d =d+ K +3 = O(K + log N). O

Lemma A.3 (Attention Sink Positional Encoding, Type 2). For any C € Ry, K, N € Z., there
exist vectors . .., an, Po, - - ., B € R and matrices A, Ay, ..., Ax € R ford < O(K +
log N) such that for any n € [N] the followings hold
1. Foranyi > j1,j2,j3 and k, k' k" # 0:
(i + Br) T Ao(aj, + Brr) = (i + Br) T Ao(ctjy + Brr) > (i + Br) " Aooy, + Bo) + C
(i + Bo) " Ao(ci + Bo) = (o + Bo) " Aoleyj, + Br) + C.
2. Foranyi > jandk #k #0
(a; + Br) T Al + Br) > (i + Br) " Aaj + Br) + C
> (a; + Br) T Aaj + Bo) + 20.
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3. Foranyi > j,jyand k # k' K"
(i + Br) " A (a + Bo) > (o + Br) T Awr (g, + Br) + C
(a; + Br) T Ax(a; + Br) > max{ (e + Br) " Ar(aj, + Brr), (i + Br) T A (ajy + Bo)} + C.

Proof. Following the notations in Lemma A7, let

Vi 0 0
_ |0 _| _ |
o = 0  Br = ek ,Bo = 1>
0 1 I
and
0 b- I e-I
- a-I - 0 B 0
A= 0 Ak = c-epefl A= 0 ’
0 1 0
where a = ¢ = ¢ = C, f = 3.5C,d = 4C. The dimension can be bounded by d = d + K + 3 =
O(K +1og N). O

A.7 TECHNICAL CLAIMS

Claim A.4 (Johnson-Lindenstrauss Lemma). Given 0 < ¢ < 1, a set X of N points in R, and an
integer k > M , there is a linear map f : R — R such that

(1= o)lu—vl* < [[f(u) = f)]* < (1 +¢)llu—o|
holds for all u,v € X.

Claim A.5 (Concentration of Multinomial Distributions, adapted from Agrawal & Jigd (2017)). Let
p € A% and p ~ -Multinomial(n, p). Then, for any ¢ € [0, 1]:

P<WMh2 ”%ﬂ“)sa

Claim A.6 (Berry-Esseen theorem). If X7, X5, ... are i.i.d. random variables with E(X;) = 0,
E(X?) =0%>0,and E(] X1 [?) = p < oo, we define

Xi+ Xo 4+ Xy
n

Y, =

as the sample mean, with £, the cumulative distribution function of —”

distribution function of the standard normal distribution, then for all = and n,

Fula) = 0@)] < ==

and ® the cumulative
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B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS OF SELF-CORRECTION EXPERIMENTS

The model configurations are detailed in Table

2. Our code is implemented based on PyTorch  Model Depth Heads Width
Eas_zmﬂ (2019) and minGPT?. All the models' GPT-nano 3 3 48
are trau}ed on one NVIDIA GeForce RTX 2080 Ti GPT-micro 4 4 128
GPU with 11GB memory. GPT-mini 6 6 192
Following common practice, the learning rate Gopher-44M 8 16 512

goes through the warm-up stage in the first 5% of
training iterations, and then decays linearly to 0 Table 2: Model configuration hyperparameters.
until training finishes. We set the peak learning rate to 10~ and find that all the models are stably
trained under this learning rate schedule. We do not apply drop out or weight decay during training.
We repeat the experiments for 3 times under different random seeds and report the average accuracy
with error bars.

B.2 PROMPTS FOR SELF-CORRECTION
Initial Problem Solving Prompt

Solve the following math problem efficiently and clearly. The last line of your response
should be of the following format: ‘Therefore, the final answer is: $\boxed {ANSWER}S.
I hope it is correct’ (without quotes) where ANSWER is just the final number or expression
that solves the problem. Think step by step before answering.

{Question}

Correction Prompt

Your answer is incorrect. Please analyze your solution and identify where you made
an error. Then provide a corrected solution that leads to the right answer. The last
line of your response should be of the following format: ‘Therefore, the final answer is:
S\boxed {ANSWER} S.

C LIMITATIONS

Despite these contributions, our work comes with limitations: our construction in Theorem E"2 only
applies to attention-only Transformers and relies on a slightly generalized position encoding method.
Relaxing these constraints constitutes interesting problems for future research.

LARGE LANGUAGE MODELS USAGE DISCLORE

LLMs were used only to polish writing.

2https ://github.com/karpathy/minGPT (MIT license).
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