
Neural Collapse To Multiple Centers For Imbalanced
Data

Hongren Yan, Yuhua Qian∗, Furong Peng, Jiachen Luo, Zheqing Zhu, Feijiang Li

Shanxi University

Abstract

Neural Collapse (NC) was a recently discovered phenomenon that the output fea-
tures and the classifier weights of the neural network converge to optimal geometric
structures at the Terminal Phase of Training (TPT) under various losses. However,
the relationship between these optimal structures at TPT and the classification
performance remains elusive, especially in imbalanced learning. Even though it
is noticed that fixing the classifier to an optimal structure can mitigate the mi-
nority collapse problem, the performance is still not comparable to the classical
imbalanced learning methods with a learnable classifier. In this work, we find that
the optimal structure can be designed to represent a better classification rule, and
thus achieve better performance. In particular, we justify that, to achieve better
classification, the features from the minor classes should align with more directions.
This justification then yields a decision rule called the Generalized Classification
Rule (GCR) and we also term these directions as the centers of the classes. Then
we study the NC under an MSE-type loss via the Unconstrained Features Model
(UFM) framework where (1) the features from a class tend to collapse to the mean
of the corresponding centers of that class (named Neural Collapse to Multiple Cen-
ters (NCMC)) at the global optimum, and (2) the original classifier approximates
a surrogate to GCR when NCMC occurs. Based on the analysis, we develop a
strategy for determining the number of centers and propose a Cosine Loss function
for the fixed classifier that induces NCMC. Our experiments have shown that the
Cosine Loss can induce NCMC and has performance on long-tail classification
comparable to the classical imbalanced learning methods.

1 Introduction

Deep neural networks are popular choices classification tasks[1, 2, 3, 4, 5, 6, 7]. Researchers try to
demystify the deep representations learned from data [8, 9]. A recent paper [10] observed "Neural
Collapse" (NC) phenomenon: all the backbone network output features from each class converge
into their corresponding vertices of an equiangular tight frame (ETF) and the within-class variability
collapses.

The layer-peeled model (LPM) [11] and unconstrained feature model (UFM) [12] are the simplified
model to study NC, in which the backbone output feature and the classifier weights are assumed
free variables to optimize. NC phenomena occur with different loss functions. The optimality of
UFM satisfies NC under the CE loss with constraints [13, 11, 14], regularization [15], or even no
explicit constraint [16]. MSE objectives also induce NC at global optimality [12, 17, 18, 19]. There
is another line of works that extend UFM or LPM on deeper linear layers [19, 20, 21, 22].

Data imbalance has been recently considered in NC literature[11, 23, 20]. In particular, Fang et al.
[11] originally observe the "minority collapse" phenomenon that the classifier weights of the minority
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classes will approach each other when the imbalance level goes high. Thrampoulidis et al. [23]
theoretically study the Unconstrained-features SVM problem, whose global minima take the form of
Simplex-Encoded-Labels Interpolation (SELI), a more general structure compared to the ETF. Dang
et al. [20] inspects the ReLU-activated output features of deep linear network collapse to a general
orthogonal frame for imbalanced data, where the orthonormal vectors of the frame are rescaled.

There is a line of works that connect the NC to the DNN performance [10, 24, 25]. Some researchers
treat NC as a tool to alleviate minority collapse problem in imbalanced learning [26, 27, 28]. We
reproduce these methods with backbone network ResNet50 [29] and datasets cifar10/cifar100, Table
3 shows NC-inspired methods ETF and ARB only outperform the plain model (ResNet50 with CE
loss) slightly (or even worse in a few settings), which indicates that minority collapse is one but not
the only problem that harms the generalization of learning model. One possibly important issue is
that NC on training sample does not necessarily imply the NC on the distribution, as pointed out by
Hui et al. [30]. This inconsistency can lead to severe performance degeneration when the sample is
too scarce to represent certain classes.

Neural Collapse implies "maximal separateness" between classes, which inspires some works to
consider fixed classifiers in the training[31, 32, 33, 34, 35]. However, these methods do not display
advantages over the classical imbalanced learning methods equipped with learnable classifiers.

In this paper, we study the connection between the optimal structure induced by neural collapse
and its corresponding classification rule, and propose a MSE-type loss function that improves the
imbalanced learning with fixed classifier. Specifically,

1. Through the analysis of hard-to-predict feature distribution (the features that are distributed
randomly around the mean of the classifiers), we find that the classification accuracy is improved if
the features from the minor classes align with more directions and those from major classes with less
directions, which corresponds to a decision rule called the Generalized Classification Rule (GCR)
discriminated from the Regular 1-Nearest Neighbor Classification Rule (RCR) induced by general
NC in literature, and we also term these directions as the centers of the classes.

2. We design an MSE-type objective that describes the average distance between the centers and a
given feature. We show in the theoretical framework of Unconstrained Feature Model (UFM) that, for
balanced or imbalanced data and fixed or learnable classifiers, the output features collapse but skew
from the classifiers at terminal phase of training (TPT), which is different from the original Neural
Collapse phenomenon and is termed "Neural Collapse to Multiple Centers" (NCMC) (Theorem 3.3
and 3.4); moreover, we find that RCR (with respect to classifiers) becomes a surrogate of GCR at
NCMC (Remark 3.9 and Proposition C.1).

3. We design a practical loss function for fixed classifiers and a class-aware strategy for determining
the number of centers for each class. The loss induces the NCMC which is justified in theory and
experiments and achieves comparable performance on several datasets with varying imbalance ratios
to the classical imbalanced learning methods such as LDAM [36], KCL [37], ARBLoss [27], which
indicates that NCMC can improve generalization in imbalanced learning.

2 Preliminaries

2.1 Neural Collapse

Consider a classification task with K classes and nk training samples per class, i.e., overall N :=∑K
k=1 nk samples. DNN-based classifiers generally have the form

ψΘ(x) = W0hθ(x) + b (1)

where hθ(·) : RD → Rd is the feature mapping (d ≥ K), W0 = [w1, . . . ,wK ]
⊤ ∈ RK×d

with wk ∈ Rd the weight vector of class k, and b ∈ RK the bias of classifier, respectively.
Θ = {W0,b,θ} is the set of the trainable network parameters, which includes the parameters θ of a
nonlinear compositional feature mapping (e.g., hθ(x) = σ (WL (. . . σ (W2σ (W1x)) . . .) where
σ(·) is an element-wise nonlinear function). Let [A] be the set {1, 2, . . . , A} for positive integer A.
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The network parameters are optimized by minimizing an empirical risk

min
Θ

1

N

K∑
k=1

nk∑
ik=1

L (W0hθ (xk,ik) + b,yk) +R(Θ), (2)

where L(·, ·) is a loss function (e.g., cross-entropy or MSE) and R(·) is a regularization term
(e.g., squared L2-norm). Let us denote the feature vector of the ik-th training sample of the k-th
class by hk,ik (i.e., hk,ik = hθ (xk,ik) ), with ik ∈ [nk]. Denote the centralized mean of feature
from class k by hk := hk − µG where hk := 1

nk

∑nk

ik=1 hk,ik and µG := 1
K

∑K
k=1 hk; let

H := [h1,h2, . . . ,hK ].

Recently noticed NC phenomenon [10] shows the weight vectors align with the class-mean features

W0H ∝ H
⊤
H ∝ W0W

⊤
0 ∝ K

K − 1

(
IK − 1

K
1K1⊤

K

)
(3)

with

hk,1 = hk,2 = . . . = hk,nk
(4)

for all k ∈ [K] at the terminal phase of training. where we use IK to denote the K ×K identity
matrix, 1K to denote the all-ones vector of size K × 1. The alignment may have alternative shapes
for other problem settings such as h is ReLU-activated feature or the data class is imbalanced.

2.2 NC for Unconstrained Features Model with Regularized MSE Loss

To understand the emergence of symmetric structures, recent papers study the "unconstrained features
model" (UFM), where the features {h)} and W0 are treated as free variables. The rationality behind
this simplification is the powerful expressivity of a trained neural network. Some use UFM to study
the NC phenomenon under MSE loss.

Let H = [h1,1, . . . ,h1,n1
,h2,1, . . . ,hK,nK

] ∈ Rd×N . In balanced case where n1 = n2 = . . . = nK ,
H is associated with the one-hot vectors matrix Y = IK ⊗ 1⊤

n ∈ RK×Kn, where ⊗ denotes the
Kronecker product. The optimization of the following problem

min
W0,H,b

1

2N

∥∥W0H+ b1⊤
N −Y

∥∥2
F
+
λW0

2
∥W0∥2F +

λH
2

∥H∥2F +
λb
2
∥b∥22, (5)

gives the NC to ETF, where λW0
, λH , and λb are positive regularization hyper-parameters and ∥ · ∥F

denotes the Frobenius norm. A closely related model is the Bias-Free models

min
W0,H

1

2Kn
∥W0H−Y∥2F +

λW0

2
∥W0∥2F +

λH
2

∥H∥2F , (6)

which proves to converge to an Orthogonal Frame [19]. In the next section, we study a bias-free
variant of (6).

3 Main Results

In this section we show why the regular classification rule is not optimal, and propose the generalized
classification rule and its surrogate losses, then offer a UFM analysis on the NC phenomenon under
these losses. Since our paper focuses on bias-free model, we will simply call W0 the classifier.

3.1 Nearest-Neighbor Classification Rule Revisit: A Toy Example

Let X ⊂ Rd0 (d0 is the input dimension) be the underlying data population, and Z := h(X ) ∈ Rd

represent the feature population of the trained backbone network h; Assume the trained classifier
w1,w2, . . . ,wK align with training samples drawn from X perfectly and thus achieve zero training
error.

Additionally, assume the classifiers are orthonormal and equally normed. Meanwhile, let the classes
of training data C1, C2, . . . CK be arranged such that the class sample sizes follow a descending order,
i.e. n1 > n2 > . . . > nK .
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According to NC, when the neural network arrives at the terminal phase of training, the regular
classification rule (RCR) with respect to W0 is

c = argmaxk∈[K]{w⊤
k z}Kk=1, (7)

i.e., the 1-nearest neighbor decision rule.

Assume Z ∼ α1P1 + α2P2, the mixture of the subpopulation P1 which is correctly classified by the
decision rule and the subpopulation P2 that is classified at random, where α1 and α2 are the positive
weights with α1 + α2 = 1.

In the analysis, let P2 have the form z = µ+ p, with p ∼ N (0, sId) and µ := w where s is a small

positive number and w = 1
K

K∑
k=1

wk, which is termed a Hard-To-Predict feature distribution near

the global mean of the classifier. For convenience we denote events Ek := {z ∈ Ck|z ∼ P2} for all

k ∈ [K], and note that
K∑

k=1

P{Ek} = 1

By virtue of the expressivity of the deep neural network, the population of the major classes will be
more concentrated to the classifier than that of the minor classes, so that populations trained by major
classes have less probability falling in P2, i.e,

P{E1} ≤ P{E2} ≤ . . . P{EK}. (8)
Then by the gaussianity of p and the orthogonality of the classifiers w1,w2, . . . , ...,wK , the proba-
bilities of correctly classifying data from P2 are the same, that is,

P{w⊤
k z > max

k′ ̸=k
w⊤

k′z|z ∈ Ek} = P{w⊤
k p > max

k′ ̸=k
w⊤

k′p|p ∼ N (0, sId)} =
1

K
, (9)

since w⊤
k z > w⊤

k′z ⇐⇒ w⊤
k (µ + p) > w⊤

k′(µ + p) ⇐⇒ w⊤
k p > w⊤

k′p given w⊤
k µ = w⊤

k′µ.
Therefore, by the total probability

PRCR := P{z is correctly classified | z ∼ P2} =
1

K

K∑
k=1

P{Ek} =
1

K
. (10)

This calculation inspires us to come up with a different classification rule that outperforms RCR on
P2. Indeed, we can assign the label y = k to the set {w̃(k)

j }fkj=1 of vectors, for all k ∈ [K]; denote

F =
∑K

k=1 fk and wext =
1
F

K∑
k=1

fk∑
j=1

w̃
(k)
j ; also similar to the RCR, assume all these F vectors are

equally normed and mutually orthogonal. These vectors correspond to a Generalized Classification
Rule (GCR)

c = argmax
k∈[K]

{max
j∈[fk]

⟨w̃(k)
j , z⟩}, (11)

or equivalently, fk-nearest neighbor classification rule, where number of nearest neighbors, fk, of an
example depends on which class it belongs to. Again by the properties of normal distribution and
total probability formula, we obtain

PGCR := P{z is correctly classified |z ∼ P2} =
1

F

K∑
k=1

fkP{Ek}. (12)

Recall the ascending sequence of P{E1} . . . P{EK}, so that any choice of f1 ≤ f2 ≤ . . . ≤
fK gives higher correctly-classified probability for z ∼ P2. If we in addition consider pairwise
comparison instead of the one-vs-all fashion in (9), we have for any pair k ̸= k′

P{⟨w̃k, z⟩ > ⟨w̃k′ , z⟩ | z ∈ Ek ∪ Ek′} =
1

2
, (13)

for RCR, and

P{max
j∈[fk]

⟨w̃(k)
j , z⟩ > max

j′∈[fk′ ]
⟨w̃(k′)

j′ , z⟩ | z ∈ Ek ∪ Ek′} =
fk

fk + fk′
(14)

for GCR. In this case, we require fk < fk′ for k < k′ for all pairs of k, k′ ∈ [K], or equivalantly,
f1 < f2 < · · · < fK . The analysis as a whole has yielded the following proposition.
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Proposition 3.1. assume (1) all the classifiers, {wk} in RCR or {w̃(k)
j } in GCR are orthonormal

frames; (2) Z ∼ α1P1+α2P2, the mixture of the subpopulation P1 which is correctly classified by the
decision rule and the subpopulation P2 where α1 and α2 are the positive weights with α1 + α2 = 1;
(3) P2 has the form z = µ+ p or z = µext + p depending on which classification rules used, with
p ∼ N (0, sId) where s is a small positive number; (4) P{E1} ≤ P{E2} ≤ . . . P{EK}. Then
PGCR ≥ PRCR for f1 ≤ f2 · · · ≤ fK .

The Hard-To-Predict features in the proposition 3.1 are considered to be drawn randomly around
the mean of the classifiers. Thus, we are motivated to use more orthogonal directions to classify the
minor class. However, the GCR in the analysis does not apply to the practical training of the neural
network easily. Indeed, the loss vanishes quickly when training directly with this rule. For this reason,
we consider finding a surrogate loss that a) induces neural collapse to an orthogonal frame, and b) the
classification rule at the neural collapse approximate GCR.

3.2 Center and Multi-Center Frame

We first define the "centers" that resemble w̃
(k)
j ’s in GCR (11) (in definition 3.2). Let

f, f1, f2, . . . , fK ∈ Z+ be preset factors such that fK =
∑K

k=1 fk, N =
∑K

k=1 nk, and
S :=

∑K
k=1 fknk and θ ∈ [0, π2 ] be angle constant. Let the linear classifier W0 satisfies

w⊤
k wk > 0, and w⊤

k wk′ = 0 if k ̸= k′. (15)

and the data features H = [h1,1, . . . ,h1,n1 ,h2,1, . . . ,hK,nK
] ∈ Rd×N .

Definition 3.2 (Center of Class k). Let d > (f + 1)K, V :=
[
v
(1)
1 , . . . ,v

(1)
f1
,v

(2)
1 , . . . ,v

(K)
fK

]⊤
is a

matrix consisting of fk rows of d-dimensional vectors v(k)⊤

j ’s and satisfies equality

[V⊤|W0
⊤][V⊤|W0

⊤]⊤ = (16)

diag(∥w1∥2 If1 , ∥w2∥2 If2 , . . . , ∥wK∥2 IfK , ∥w1∥2 , ∥w2∥2 , . . . , ∥wK∥2) (17)

where[·|·] is the column augmentation of the matrix, and diag(·, . . . , ·) is the diagonalization of the
block matrices. Then a center of class k is defined as

w
(k)
j := v

(k)
j cos θ +wk sin θ, j ∈ [fk]. (18)

A multi-center frame is the matrix consists of fK rows of w(k)⊤

j , i.e.

W =
[
w

(1)
1 , . . . ,w

(1)
f1
,w

(2)
1 , . . . ,w

(K)
fK

]⊤
, (19)

Let C denote the constraint of the tuple (V,W0) such that [V⊤|W0
⊤] satisfies (16) and ∥wk∥2 > 0

are positive for all k ∈ [K].

By the definition 3.2, w(k)
1 = w

(k)
2 = . . . = w

(k)
fk

for all k ∈ [K], verbally, the centers of each class

are equally-normed, and v
(k)⊤

j w′
k = 0 for all tuple (k, k′, j) ∈ [K]× [K]× [fk] with k′ ̸= k. Note

d ≥ (f + 1)K is a necessary condition for the existence of (f + 1)K mutually orthogonal d-dim
vectors in equation (16). Figure 3 illustrates the centers of Class 1 and Class 2.

Let w(k) := 1
fk

∑fk
j=1 w

(k)
j be the mean of the centers of class k. Since all w(k)

j , j ∈ [fk] are equally

normed and equi-angular for each k, we can denote α∗
k = ∠(w(k),w

(k)
j ) and ρ∗k = ∠(w(k),wk) with

no ambiguity. It is easy to check that cosα∗
k :=

√
cos2 θ+fk sin2 θ

fk
and cos ρ∗k := fk sin θ√

fk cos2 θ+f2
k sin2 θ

.

Then we define the bias-free regression loss for the UFM w.r.t the feature hk,ik and the multi-center
frame by

1

2S
∥Whk,ik − yk,ik∥22 :=

1

2S

f∑
j=1

(w
(k)⊤

j hk,ik − 1)2︸ ︷︷ ︸
align with the centers of the class

+
1

2S

f∑
j′=1

K∑
k′ ̸=k

(w
(k′)⊤

j′ hk,ik)
2

︸ ︷︷ ︸
seperate with the centers of other classes

(20)
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to measure the average extent to which a feature hk,ik collapses to its class centers w(k)
j ’s while stays

away from centers of other classes, where yk,ik is the "fk-hot coding":

yk,1 = yk,2 . . . = yk,fk = [0, . . . , 0,︸ ︷︷ ︸
k−1∑
m=1

fm 0’s

1, . . . , 1,︸ ︷︷ ︸
fk 1’s

0, . . . , 0]⊤.

Let Y := [y1,1,y1,2, ...,y1,n1 ,y2,1, . . . ,yK,nK
] ∈ RF×N , the minimization of the regression loss

over all features subject to C turns into our prototype optimization problem in this paper

P : min
H,V,W0

1

2S
∥WH−Y∥2F +

λW0

2
∥W0∥2F +

λH
2

∥H∥2F s.t. (V,W0) ∈ C. (21)

3.3 Neural Collapse to Multiple Centers (NCMC)

The following theorem (proved in appendix D) characterizes the global solutions of the optimization
when the data is balanced.

Theorem 3.3. Given n1 = n2 = . . . = nK and d ≥ (f + 1)K. If K
√
nλHλW0 ≤ cosα∗, then

any global minimizer (V,W∗
0,H

∗) of P satisfies

h∗
k,1 = . . . = h∗

k,nk
= h∗

k ∝ w(k) , ∀k ∈ [K]. (22)

⟨h∗
k′ ,h∗

k⟩ = 0, w
(k)∗⊤

j h∗
k = w

(k′)∗⊤

j′ h∗
k′ , ∀j, j′ ∈ [fk] , and k, k′ ∈ [K] (23)

w∗⊤
1 h

∗
1 = . . . = w⊤

Kh∗
K , and ∥w∗

1∥
2
= . . . = ∥w∗

K∥2 =
−KλW0

+
√

λW0

nλH
cosα∗

λW0

nλH
cos2 α∗

, (24)

λW0
∥wk∥22 = nλH ∥hk∥22 , and ∥h∗

1∥2 = . . . = ∥h∗
K∥2 , (25)

or otherwise, the objective P is minimized by (V,W∗
0,H

∗) = (0,0,0).

For imbalanced data and non-identical expansion factors fk, the following theorem shows the
relationship between the optimal conditions and the parameters fk, θ, and nk (proved in appendix D).

Theorem 3.4. If cosα∗
k >

S
fk

√
λW0

λH

nk
, for all k ∈ [K], then the global optimizer (V,W∗

0,H
∗) of

P satisfies

h∗
k,1 = . . . = h∗

k,nk
= h∗

k ∝ w(k) , ∀k ∈ [K]. (26)

w
(k)∗⊤

j h∗
k = w

(k)∗⊤

j′ h∗
k , ∀j, j′ ∈ [fk], , and k ∈ [K] (27)

⟨h∗
k′ ,h∗

k⟩ = 0,∀ k ̸= k′ (28)

∥w∗
k∥

2
=

−SλW0

fknk
+
√

λW0

nkλH
cosα∗

k

λW0

nkλH
cos2 α∗

k

and ∥h∗
k∥

2
=

λW0

nkλH
∥w∗

k∥
2
, (29)

or otherwise the objective P is minimized by (V,W∗
0,H

∗) = (0,0,0).

Compared to the Theorem 3.3, Theorem 3.4 indicates that ∥hk∥, ∥wk∥, and the ratio between them
depends on all the expansion factors fj’s and the size of the class nj . Both theorems show the features
of class k converge in the direction of w(k), the mean of the centers of class k. We term this type of
collapse "Neural Collapse to Multiple Centers (NCMC)".
Remark 3.5. The optimality of V is controlled by the centers.
Remark 3.6. NCMC differs from UFM analyses in existing literature since h∗

k and w∗
k are not aligned

at optimum, and the norm of the optimal classifier depends on the expansion factors of the classes fk.
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Corollary 3.7 (Corollary of Theorem 3.4). The optimality condition of P as V and W0 are both
fixed satisfies

h∗
k,1 = . . . = h∗

k,nk
= h∗

k ∝ w(k) , ∀k ∈ [K]. (30)

⟨w(k)
j′ ,h

∗
k⟩ = ⟨h∗

k′ ,h∗
k⟩ = 0 ∀k′ ̸= k ∈ [K], j′ ∈ [fk′ ] (31)

w
(k)⊤

1 hk = . . . = w
(k)⊤

fk
hk,∀k ∈ [K] (32)

∥h∗
k∥2 =

fk cosα
∗

fk cos2 α∗ + λHS
(33)

Remark 3.8. According to the proof of the corollary, the fixed classifier case does not require the
condition w.r.t the lower bound of cosα∗. Moreover, it is also clear that although h∗

k aligns with
w(k), the length of it relies on the value of fk nonlinearly. Indeed, from the Corollary,

∥h∗
k∥2 =

fk cosα
∗

fk cos2 α∗ + λHS
=

1

cosα∗
k + λHS

fk cosα∗
k

has the global maximum cosα∗
k =

√
λHS
fk

if λHS < fk.

Remark 3.9. NCMC induces an approximate rule to GCR in the following two aspects:

(1) the centers are "almost orthogonal" to each other: two centers from different classes are

orthogonal to each other. The angle between two enters from the same class is arccos(
⟨w(k)

j ,w
(k)

j′ ⟩
∥wk∥2 ) =

arccos sin2 θ for j ̸= j′. as θ is small, the angle is close to π
2 .

(2) Under NCMC of our problem setting, the RCR w.r.t. the W0 (see (7)) can be considered a
surrogate of GCR to some extent: if a hard-to-predict feature can be classified by RCR with a margin
correctly, then it can be classified correctly by GCR with probability larger than 1

2 . We will discuss
this more formally in the proposition C.1.

3.4 NCMC for Fixed Classifier

In the Theorem 3.3 and Theorem 3.4, we present the NC conditions for P. However, solving P requires
optimization of a scaled orthonormal frame on a non-euclidean manifold, which is computationally
expensive for overparameterized models. We hope the classifier can be fixed while not losing its
performance severely. We first analyze the fixed classifier via UFM (proof in the appendix D), and
later in the next section we propose a practical loss function for the fixed classifier.

3.5 Class-Aware Strategy for Determining the Number of Centers

The proposition3.1 indicates the extra dimensions help improve the classification of "hard-to-predict"
samples in the distribution, and basically the expansion factors should satisfy f1 < f2 < . . . < fK
when the class size decreases, i.e., n1 ≥ n2 ≥ . . . ≥ nK . The principle of generating these fk’s is
twofold: (1): f1 ≥ 1; (2): the ratio of ascending {fk}) shall approximates the ratio of descending of
{nk}, i.e., fk

fk+1
≈ nK−k

nK−k−1
for all k ∈ [K].

Concretely, we use the Class-Aware Strategy to generate the expansion factors fk when f ≥ 2:

Step 1: Given the descending list [n1, n2, . . . , nK ] and scale [n1, n2, . . . , nK ] to[
n1

N , n2

N , . . . , nK

N

]
;

Step 2: Calculate [a1, a2, . . . , aK ] where ak = ⌊ (f−1)Knk

N ⌋+1, to ensure each element is positive;

Step 3: Reverse the order of the list to [aK , aK−1, . . . , a1] then add 1 from the left until the sum
of the elements in the list equals fK.

For example, when (n1, n2, n3) = (1, 3, 3) and f = 3 then Step 1 outputs ( 17 ,
3
7 ,

3
7 ); Step 2 outputs

(1, 3, 3); Step 3 outputs (f1, f2, f3) = (4, 4, 1).
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4 Experiments

In this section, we (1) propose a cosine loss function for fixed classifier; (2) verify NCMC induced by
the cosine loss through experiments; (3) show how f and θ influence the learning performance; (4)
Compare long-tail classification performance to SETF method with fixed classifier and other classical
methods with learnable classifier.

4.1 Datasets and Training Schedule

We set long-tailed classification tasks on five datasets, CIFAR-10 [38], CIFAR-100 [38], SVHN [39],
STL-10 [40], and large dataset ImageNet [41]with two architectures ResNet-50 and densnet-150
(details in appendix F). Let τ := nmax

nmin
represent the imbalance ratio of the long-tailed sampling from

the dataset, where nmax and nmin are the size of the largest class and the smallest class, resp. The
accuracy results are the average of three repeated experiments with different seeds. The best and
second-best results are boldfaced and underlined.

4.2 The Cosine Regression Loss

The Cosine Regression Loss. Motivated by the toy example 3.1 and the theoretical justification
of NCMC, we propose the regularized loss for the fixed unit-norm multi-center frame that satisfies
definition 3.2:

L(W,hk,ik) = β

fk∑
j=1

Cos(w
(k)
j ,hk,ik) + λ (∥hk,ik∥ − 1)

2
. (34)

where Cos(w,h) = ∥⟨w, h
∥h∥ ⟩ − 1∥22 is termed Cosine Loss, λ and β are regularization coefficients

(we relegate the selection of the coefficients to appendix F ). This is called a Cosine loss discard all
w

(k′)
j terms of loss (20) for features from class k, where k′ ̸= k, since in practice hk aligns with w(k)

only if ⟨w(k′)
j ,hk⟩ = 0. The derivative of the loss with respect to some feature h then is given by

dCos(w,h)

dh
= − 2

∥h∥2
· (1− ⟨w,h⟩

∥h∥
) · (w − ⟨w,h⟩h

∥h∥
), (35)

(the derivation is postponed to the Appendix E). It shows the gradient changes both the magnitude
and the direction of the features with a scale ∥h∥−2 of the feature, compared to the dot-regression
loss in [26]. The regularizer guarantees the gradient does not vanish for the features with large norm
and explode for the features with small norm since Cos(w,h) is scaled by ∥h∥−2.

Note that, the loss uses the Multi-Center Frame W in the training while, due to Remark 3.9, we
still use W0 as the classifier. In the context, we term the objective (34) as f1 = f2 = . . . = fK
the "Average Loss" (AL), and that with fk selected by class-aware strategy the "Class-Aware Loss"
(CAL).

4.3 Neural Collapse

We design experiments to verify loss P, AL and CAL induce NCMC. The collapse is measured

by NC :=
∥∥∥hk,ik/ ∥hk,ik∥ −w(k)/

∥∥∥w(k)
∥∥∥∥∥∥2

2
. For simplicity, we calculate the mean and standard

deviations of the vector hk,ik/ ∥hk,ik∥ −w(k)/
∥∥∥w(k)

∥∥∥ when the mean and standard deviation tends
to zero, we can show that NC occurs. We fix f = 20 and θ = 0.2; we pick the tuple [f1, f2, . . . , fK ]
by the Class-Aware Strategy. Figure 1 shows that both AL and CAL induce NC. The change of
mean is rapid and the standard deviation first increases and then converges to zero slower. Variability
is defined as the average of the sum of σ = 1 − hk,ik

∥hk,ik∥
wk

∥wk∥ over all k and ik, and measures the

alignment of H and W, and we observe the in all three objectives the variabilities stay away from
zero. Figure 4 plots the NCMC of loss P with or without regularization on the norm of features. The
regularization results in heavier NC.
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We also provide plots of NCMC on VGG and LeNet for CAL that demonstrate the universality of the
phenomenon (refer to Table 5). We also draw heatmaps of the neural collapse for better visualization.
Fig.6 is the heatmap of H̃⊤H̃ where H̃ = [h̃1, h̃2, . . . h̃K ] and h̃k := hk

∥hk∥ is the normalized
class-mean features. Fig.7 is the heatmap for the normalized features in class 9 of CIFAR-10; it is
noted that all features in this class stay close to each other from the initialization to the end of training.

Figure 1: An illustration of the Neural Collapse curves of AL (a and b, on CIFAR100 with τ = 0.01
and CIFAR 10 with τ = 0.01 respectively), CAL (c and d, on CIFAR100 with τ = 0.01 and CIFAR
10 with τ = 0.01 respectively). The AL is equipped with f=20 and CAL uses Class-Aware Strategy.

4.4 Long-Tailed Classification

We conduct an ablation study with ResNet50 on CIFAR-100. Table 1 presents the performance of
ResNet50 on both balanced CIFAR-100 and its imbalanced sample with or without Mixup training
under CAL at imbalance ratio τ = {0.005, 0.01, 0.02, 1(balanced case)}. We do not use objective
P since it is inferior to the Cosine Regression Loss (see Table F.1). P is incompatible with mixup
training and it may be degenerated by the myriad of distraction terms in the objective.

As shown in Table 1, the performances get improved for almost all imbalanced ratios when the CE
is replaced with our designs, especially CAL. And our method is compatible with Mixup training.
However, the SETF and our method have lower accuracy than the CE in the balanced case. The
analysis in the Proposition 3.1 tells us that in the balanced case where fk’s are identical, our theory
will not have a significant positive effect on the classification. Our method has a similar form to SETF

Table 1: An ablation study of Mixup method for training ResNet50 on CIFAR-100 using different
classifiers and loss functions. The numbers in the second row are imbalance ratios. The parameters
are fixed with f = 20, and θ = 0.2

.
Methods without Mixup with Mixup

0.005 0.01 0.02 balanced 0.005 0.01 0.02 balanced

ResNet50

CE 35.6±0.3 37.5±0.4 43.3±0.2 79.5±0.3 42.4±0.5 46.7±0.3 52.7±0.3 81.8±0.1
SETF 38.1±0.4 42.6±0.2 48.4±0.3 78.7±0.2 43.0±0.1 48.3±0.5 52.5±0.3 79.7±0.2
CAL 40.6±0.3 44.7±0.2 50.2±0.5 78.5±0.4 46.5±0.5 50.1± 0.3 54.3±0.4 79.4±0.4

who fixes the ETF classifier and emphasizes the gradient norm balance among the classes. On the
contrary, CAL concentrates on the fitting to the multiple centers. We compare our method CAL to
CE and SETF on four small datasets CIFAR-10, CIFAR-100, SVHN, STL-10 (Table 2, and Table
5). It shows the stability of our Class-Aware Strategy and displays a significant improvement to the
original networks.

The hyper-parameters have influences on the performance: if θ is small, the centers of a class are
very close to each other, else if θ gets larger, the margin of the classifier will be smaller; parameter f
encodes partial imbalance information of the classes, when f is small all fk are close to each other
and cannot offer useful supervision for the "hart-to-predict" samples. Refer to appendix F for more
information about hyperparameter selection.

We summarize in Table 6 the performance of CAL as f and θ vary. The result empirically demon-
strates: (1) fixing f , the accuracy roughly peaks at some θ bounded away from 0 and π/2. (2) at
θ = π/2, The frame collapses to the classifier, resulting in an accuracy rate similar to SETF [26]
where the norm of the gradient is weighted by the class imbalance ratio; (3) Frame that is orthogonal
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Table 2: Long-tailed classification accuracy (%) with ResNet and DenseNet on CIFAR-10 and
CIFAR-100.

Methods CIFAR-10 CIFAR-100
0.005 0.01 0.02 0.005 0.01 0.02

ResNet
CE 72.3±0.1 78.6±0.2 84.0±0.1 42.4±0.5 46.7±0.3 52.7±0.3
SETF 74.2±0.5 79.7±0.4 83.8±0.3 43.0±0.1 48.3±0.5 52.5±0.3
CAL 80.0±0.5 84.1±0.4 85.9±0.2 46.5±0.5 50.1± 0.3 54.3±0.4
DenseNet
CE 71.1±0.5 77.7±0.3 84.1±0.1 42.9±0.2 47.4±0.2 53.3±0.2
SETF 72.9±0.4 78.5±0.3 83.4±0.3 42.3±0.2 46.3±0.3 52.6±0.2
CAL 78.1±0.2 81.1±0.2 84.5±0.2 46.3±0.3 50.1±0.2 54.0±0.2

to the classifier does not learn anything in the training since the representation is irrelevant to the
classifier, thus providing no useful discrimination information. We compare our method to several

Table 3: A comparison of several recent methods of long-tail classification trained on ResNet50.
f = 20 and θ = 0.2 are fixed. The values without ± are that we did not reproduce.

Methods Cifar-10 Cifar-100 ImageNet
0.005 0.01 0.02 0.1 0.005 0.01 0.02 0.1

CE (Mixup) 72.3±0.1 78.6±0.2 84.0±0.1 91.9±0.1 42.4±0.5 46.7±0.3 52.7±0.3 67.9±0.1 44.2±0.3
LDAM-DRW 74.6±0.3 80.1±0.3 84.1±0.2 90.0±0.2 39.5±0.3 44.2±0.2 50.0±0.2 62.5±0.2 47.7
KCL 75.0±0.3 80.9±0.2 84.5±0.3 90.7±0.4 40.3±0.4 44.8±0.3 50.2±0.2 63.0±0.2 51.5
SETF 74.2±0.5 79.7±0.4 83.8±0.3 91.3±0.4 43.0±0.1 48.3±0.5 52.5±0.3 66.1±0.3 44.7
ARBloss 79.5±0.7 83.8±0.4 86.1±0.3 91.5±0.3 42.7±0.8 47.1±0.5 49.7±0.2 64.4±0.4 52.8
CAL 80.0±0.5 84.1±0.4 85.9 ±0.2 92.0±0.3 46.5±0.5 50.1±0.3 54.3±0.4 65.9±0.3 49.7±0.2

classical methods including NC-inspired methods ARB loss and SETF, margin-based LDAM-DRW,
contrastive learning method KCL and original CE. The Table 3 shows the methods in comparison. We
observe that our method is comparable to or even better than the others. The comparison indicates: (1)
Our method has some advantages for heavily imbalanced cases. One of the underlying mechanisms
is when the minor classes are underestimated due to the lack of sample, they are likely to display
the gaussianity such that the proposition 3.1 and class-aware strategy work fine; as the imbalance
ratio τ rise, the minor classes lose their randomness during training, where our method fails. (2) Our
method does not compete with the KCL and ARBLoss on ImageNet, reflecting the limitations of
our method in the flexibility of the direction and magnitude of the classifier weights when learning
large datasets. We also compare our method to a recent work RBL [42] in the Appendix H that
demonstrates the potential limitation of the fixed classifier and the advantage of CAL. (3) two classical
methods LDAM-DRW and KCL do not compete with other NC-inspired methods trained with Mixup
training, demonstrating the effectiveness Mixup training strategy. (4) Our method with the parameter
chosen in the experiment outperforms CE negligibly or performs worse than CE when the imbalance
ratio approaches 1. However, we find picking f = 10, θ = 0.5 gives an accuracy rate 92.5 ± 0.2 on
Cifar-10 with τ = 0.1, which shows the significance of hyperparameter selection for our method.

5 Conclusion

In this paper, we rethink the regular 1-Nearest Neighbor Classification Rule (RCR) in imbalanced
learning; an analysis of the Hard-To-Predict feature indicates under certain circumstances the general-
ized classification rule (GCR) is superior to RCR, which implies that minor classes should compare to
more "neighbors" in the classification. Then we introduce neural collapse to multiple centers (NCMC)
under an MSE-type loss, where the centers play a role similar to the neighbors in GCR. According to
the framework of the Unconstrained Features Model, the features of each class collapse to the class
mean of the centers in balanced or imbalanced settings for learnable or fixed classifiers. We notice
that at NCMC, RCR resembles GCR in terms of the hard-to-predict feature distribution. We then
propose the cosine loss, a surrogate regression objective of the MSE-type loss called Cosine Loss,
that applies to the fixed classifier; and develop the class-aware strategy for determining the number
of centers of each class, inspired by the analysis of the Hard-To-Predict Feature. The cosine loss
practically induces the NCMC at the terminal phase of training; the combo of the class-aware strategy
and the loss with the fixed classifier demonstrates its effectiveness in long-tailed classification. Our
work shows the possibility of obtaining a task-specific classification rule by designing the optimal
structure at neural collapse under customized losses; it provides a connection among the optimal
structure of the feature-classifier alignment, the classification rule, and the generalization in the
learning problem.
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APPENDIX

A Related Work

A.1 Neural Collapse

Since the original paper [10], neural collapse has been intensively studied, with [12, 11] introducing
the now widely accepted unconstrained features model (UFM), and layer peeled model. The literature
of NC can be loosely categorized into: (a) the study of the geometry of NC [43, 44, 45, 11, 46,
47, 12, 17, 33, 48, 49, 50], (b) finding connection between NC phenomena and NN performance
[27, 25, 51, 52, 26, 53, 54, 35, 55] and (c) empirical observations concerning NC [56, 57].

A.2 Long-Tailed Learning

Long-tail learning refers to the training from data with long tailed-class distributions [58]. We list
several categories of methods that are related to our work. Re-sampling. Early works [59, 60, 61, 62]
re-sampling is a sampling strategy that balances the sample used for learning by over-sampling
the samples from minor classes or under-sampling the samples from major classes. Over-sampling
may make the model overfit these classes and harm the generality. Under-sampling removes some
samples of major classes, which might remove the key data for representation learning and bring the
performance drop.

Re-weighting. Another idea is to assign different weights for different classes, even instances.
[63, 64, 65, 66] re-weight the loss according to the sample size of the class. [67] introduce the prior
probabilities from a Bayesian view and balance the exponential logits via the class sample size.
Focal loss [68, 69] re-weight each instance according to their hard-to-learn level, i.e., making the
model take more care of the wrong-recognized samples. Wang et al. [70] provide a data-dependent
generalization bound that explains the success of re-weighting and logit adjustment strategy.

Two-stage Learning. The representations learned from instance-balancing sampling are believed
to be general. Many researchers attempt to separate learning process to two stages. [36] trains
the model in a normal approach in stage 1 and then uses deferred resampling strategy to fine-
tune with class-balanced resampling or uses deferred re-weighting to re-weight different classes in
stage 2. [71] disentangles the basic feature learning and re-balancing learning via two separated
branches.[72, 73] decouple the representation learning and classification. They claim that instance-
balanced sampling gives more general representation and originally use instance-balanced sampling
to learn the representations at first stage, then fix the feature and retrained the classifier (cRT) by
techniques such as label-aware smoothing (LAS) and learnable weight scaling (LWS) in the second.

Contrastive Learning. Contrastive learning is a learning paradigm that learns representation
that maximizes the similarity between positive and negative samples [74]. Khosla et al. [75]
initiated Supervised Contrastive Learning (SCL) paradigm by leveraging class labels. For imbalanced
classification tasks, Contrastive learning usually faces imbalanced positive/negative pairs of samples.
To balance the feature space, KCL [37] balances feature space by using the same number of positive
pairs for all the classes; class complement methods [76, 77] are proposed to construct positive and
negative pairs for the rebalance of the class. Recent advances in multi-modal foundation models such
as CLIP [78] and VLLTR [79] have displayed remarkable performance on the downstream long-tail
classification tasks.

Learning to Mitigate Minority Collapse. Yang et al. [26] propose the method (we name it "SETF")
that learns the representation from imbalanced data with last-layer classifiers fixed as a simplex
ETF during training and prove the optimal last-layer features converge to ETF structure; Gao et
al. [42] propose the method that optimize the ETF structure under rotation and the uses post-hoc
logit-adjustment for prediction. Liu et al. [28] use NC Regularization to minimize the within-class
variability and maximize the between-class separateness of the output features; Inspired by neural
collapse phenomenon in balanced case, Xie et al. [27] design class-balanced CE loss (termed "ARB
loss") that aims to balance the gradient among classes. Zhong et al.[54] discover the minority collapse
phenomenon in semantic segmentation and use neural collapse as a regularization to improve the
discriminate ability of the network. Learning Test Agonistic Label distribution. In [80], the authors
consider an imbalanced learning task where the training data is long-tailed while the distribution
shift between training data and test data is unknown. They deal with the problem by applying diverse

16



expert networks in training to handle different class distributions and aggregate the experts in the test
time. Yang et al. [81] propose another expert-mixing strategy that tackles the mild changes in the
label distributions.

Learning with fixed classifiers. Apart from SETF, other symmetric structures, such as regular
polytopes [31, 32, 33], Hadamard matrix [34], and hierarchy-aware frame [35] have the classifier
fixed in the network training process. Additionally, fixing the classifier is also a computationally
friendly strategy since the classifier does not need backpropagation.

B Illustrations

B.1 A Toy Example of Hard-to-Predict Sample

Fig 2 is an illustration of a Hard-To-Predict sample (the purple dots). The points are simulated from
the 3-dim multivariate normal distributions, where colors indicate different covariances and means.
The red, green, and blue represent the unseen sample from the distribution (Call it P1) that can be
well-classified by the trained model. The purple points are drawn from the distribution (P2 in the
proposition) randomly classified by the trained model. The whole feature space of the underlying
data distribution is assumed to be P = α1P1 + α2P2.

Figure 2: An illustration of the toy example
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Figure 3: The 3D illustration of multiple centers for class 1 and class 2. The dashed blue vectors
are the two centers of class 1, and the dashed green are the two centers of class 2. And wij =
cos θ ∗ vij + sin θ ∗ wi, where i, j ∈ {1, 2}.

B.2 Multiple Centers of Two Classes

C Regular Classification Rule v.s. Generalized Classification Rule at NCMC

In the following proposition C.1, let z be the hard-to-predict feature sampled from P2 at NCMC,
i.e. z = µ′ + p where p ∼ N (0, s Id), and µ′ = 1

K

∑K
k=1 w

(k). Denote γ := maxj∈[fk]⟨v
(k)
j , z⟩ −

maxj′∈[fk′ ]⟨v
(k′)
j′ , z⟩. The difference here to proposition 3.1 is the mean µ′ induced by NCMC,

instead of original NC without the centers under the regular MSE loss. Then we prove that in
one-vs-one setting, the original RCR

c = argmax
k∈[K]

{w⊤
k z}. (36)

with a small margin implies correct classification with probability over 1
2 by GCR.

Proposition C.1. Let W be defined as in definition 3.2 with unit-norm centers and classifiers; assume
fk > fk′ . Then there exists an ϵ0 > cos2 θ

fkK
− cos2 θ

fk′K
such that

(1) for any ϵ < ϵ0, ⟨wk, z⟩ − ⟨wk′ , z⟩ > cos2 θ
K sin θ (

1
fk′

− 1
fk
)− ϵ

sin θ implies

P{max
j∈[fk]

⟨w(k)
j , z⟩ > max

j′∈[fk′ ]
⟨w(k′)

j′ , z⟩} > 1

2
;

(2) for any ϵ′ > ϵ0, ⟨wk, z⟩ − ⟨wk′ , z⟩ < cos2 θ
K sin θ (

1
fk′

− 1
fk
)− ϵ′

sin θ implies

P{max
j∈[fk]

⟨w(k)
j , z⟩ < max

j′∈[fk′ ]
⟨w(k′)

j′ , z⟩} > 1

2
.

Proof. Due to the orthogonality of V and W0, ⟨v(k)
j , z⟩ or ⟨v(k′)

j′ , z⟩ are still independent isotropic
Gaussian, conditioning on the value of

⟨wk, z⟩ − ⟨wk′ , z⟩ = ⟨wk, p⟩ − ⟨wk′ , p⟩ (37)
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since

wkµ
′ = wk′µ′. (38)

Moreover, the maximum of i.i.d gaussians has continuous (differentiable) density, so ℓ(x) := P{γ >
x} is a continuous decreasing function, where ℓ(−∞) = 1, ℓ(∞) = 0, and

ℓ(
cos2 θ

fkK
− cos2 θ

fk′K
) = P{max

j∈[fk]
⟨v(k)

j , p⟩ > max
j′∈[fk′ ]

⟨v(k′)
j′ , p⟩} =

fk
fk + fk′

,

Therefore there exists only one ϵ0 > cos2 θ
fkK

− cos2 θ
fk′K

, such that,

ℓ(
ϵ0

cos θ
) =

1

2
.

and

ℓ(
ϵ

cos θ
) >

1

2
for ϵ < ϵ0. (39)

ℓ(
ϵ′

cos θ
) <

1

2
for ϵ′ > ϵ0. (40)

Then with probability over 1
2 ,

(1) the last few conditions implies

max
j∈[fk]

⟨w(k)
j , z⟩ − max

j′∈[fk′ ]
⟨w(k′)

j′ , z⟩ (41)

= max
j∈[fk]

⟨v(k)
j cos θ, z⟩+ ⟨wk sin θ, z⟩ − max

j∈[fk]
⟨v(k′)

j′ cos θ, z⟩ − ⟨wk′ sin θ, z⟩ (42)

=γ cos θ + sin θ(⟨wk, p⟩ − ⟨wk′ , p⟩) + cos2 θ

fkK
− cos2 θ

fk′K
(43)

≥0 (44)

for ϵ < ϵ0.

(2) Similar to (1), using formula (40) and (38), we deduce that with probability over 1
2 :

max
j∈[fk]

⟨w(k)
j , z⟩ − max

j′∈[fk′ ]
⟨w(k′)

j′ , z⟩ (45)

=γ cos θ + sin θ(⟨wk, p⟩ − ⟨wk′ , p⟩) + cos2 θ

fkK
− cos2 θ

fk′K
(46)

≤0 (47)

for ϵ′ > ϵ0.

D Proof of the Theorems and Their Corollaries

Proof of Theorem 3.3. In this proof we consider the balanced case where n1 = n2 = . . . = nK , and
S = fN , Y = IK ⊗ 1f ⊗ 1⊤n . The proof is to lower bound the

f(W,H) :=
1

2fN
∥WH−Y∥2F +

λW0

2
∥W0∥2F +

λH
2

∥H∥2F
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by a column of inequalities. First, observe that

1

2fN
∥WH−Y∥2F +

λW0

2
∥W0∥2F +

λH
2

∥H∥2F (48)

=
1

2Kfn

K∑
k=1

n∑
i=1

∥Whk,i − yk∥22 +
λW0

2

K∑
k=1

∥wk∥22 +
λH
2

K∑
k=1

n∑
i=1

∥hk,i∥22 (49)

=
1

2Kfn

K∑
k=1

f∑
j=1

n∑
i=1

(
w

(k)⊤

j hk,i − 1
)2

+
1

2Kfn

K∑
k=1

f∑
j=1

n∑
i=1

K∑
k′ ̸=k

(
w

(k′)⊤

j hk,i

)2
(50)

+
λW0

2

K∑
k=1

∥wk∥22 +
λH
2

K∑
k=1

n∑
i=1

∥hk,i∥22 (51)

(a)

≥ 1

2Kfn

K∑
k=1

f∑
i=j

n
1

n

n∑
i=1

(
w

(k)⊤

j hk,i − 1
)2

+
λW0

2

K∑
k=1

∥wk∥22 +
λH
2

K∑
k=1

n
1

n

n∑
i=1

∥hk,i∥22

(52)

(b)

≥ 1

2Kfn

K∑
k=1

f∑
j=1

n

(
w

(k)⊤

j

1

n

n∑
i=1

hk,i − 1

)2

+
λW0

2

K∑
k=1

∥∥∥w(k)
j

∥∥∥2
2
+
λH
2

K∑
k=1

n

∥∥∥∥∥ 1n
n∑

i=1

hk,i

∥∥∥∥∥
2

2

(53)

The inequality (a) follows from setting

w(k′)⊤hk,i = 0 (54)

for all k′ ̸= k and i ∈ [n]. In (b) we used Jensen’s inequality, which (due to the strict convexity of
(· − 1)2 and ∥ · ∥2 ) holds with equality iff

hk,1 = . . . = hk,n (55)

for all k ∈ [K].

Since all features in each class are identical, hk = hk,ik for all ik ∈ [nk]. Continuing from the last
inequality, we have

RHS
(c)

≥ 1

2Kfn

K∑
k=1

nf

 1

f

f∑
j=1

x
(k)
j − 1

2

+
λW0

2
K

(
1

K

K∑
k=1

∥wk∥2

)2

+
nλH
2

K

(
1

K

K∑
k=1

∥hk∥2

)2

(56)

We get (c) by Jensen’s inequality, which holds with equality iff

w(k)⊤hk = w
(k)⊤

1 hk = w
(k)⊤

2 hk = . . . = w
(k)⊤

f hk,∀j ∈ [f ] (57)

∥w1∥2 = . . . = ∥wK∥2 , (58)
∥h1∥2 = . . . = ∥hK∥2 , (59)

then continuing from the RHS of the last inequality

RHS
(d)

≥ 1

2

(
1

K

K∑
k=1

x(k) − 1

)2

+K
√
nλHλW0

∥wk∥2 ∥hk∥2 (60)

In (d) we use Jensen inequality for the first term, the equality holds when

w(1)⊤h1 = w(2)⊤h2 . . . = w(K)⊤hK ; (61)
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and young’s inequality a
2 + b

2 ≥
√
ab for second and third term, with a = λW0

(
1
K

∑K
k=1 ∥wk∥2

)2
and b = nλH

(
1
K

∑K
k=1 ∥hk∥2

)2
. It holds with equality iff

λW0 ∥wk∥22 = nλH ∥hk∥22 . (62)

Note the sequel of equality conditions are satisfied by null solution (V,W∗
0,H

∗) = (0,0,0), so it
remains to show when the solution is not trivial.

According to the equality conditions and the symmetry w.r.t. k ∈ [k] and j ∈ [f ], the RHS of the last
inequality turns into the expression

1

2

(
w

(k)
j hk − 1

)2
+K

√
nλHλW0 ∥wk∥2 ∥hk∥2 (63)

=
1

2

(∥∥∥w(k)
j

∥∥∥
2
∥hk∥2 cosα− 1

)2
+K

√
nλHλW0

∥wk∥2 ∥hk∥2 , (64)

=
1

2

(√
λW0

nλH
∥wk∥22 cosα− 1

)2

+KλW0
∥wk∥22 (65)

=
1

2

λW0

nλH
cos2 α

∥wk∥22 +
KλW0

−
√

λW0

nλH
cosα

λW0

nλH
cos2 α

2

+
1

2
− 1

2

(
KλW0

−
√

λW0

nλH
cosα

)2

λW0

nλH
cos2 α

(66)

which obtains minimum at ∥wk∥2 = 0 if KλW0 −
√

λW0

nλH
cosα ≥ 0 and ∥wk∥2 =

−KλW0
+

√
λW0
nλH

cosα

λW0
nλH

cos2 α
if KλW0 −

√
λW0

nλH
cosα < 0, where α = ∠(w(k)

j ,hk), and for simplicity we

denote

f(α) :=
1

2
− 1

2

(
KλW0 −

√
λW0

nλH
cosα

)2

λW0

nλH
cos2 α

. (67)

In the first case, the minimum is 1
2 ; in the second case, we have to find the smallest value of f(α),

which is equivalent to find the lower bound (or upper bound) of α (or cosα) since f(α) is increasing

in α if KλW0 −
√

λW0

nλH
cosα < 0.

We observe that α is non-zero, or otherwise by the equality conditions from above, hk has to align
with all w(k)

j which is impossible.

since
∥∥∥w(k)

j

∥∥∥ are equiangular and equally normed, for any norm-fixed vector q ∈ Rd satisfying

⟨w(k)
1 ,v⟩ = . . . = ⟨w(k)

f ,v⟩, we have

minα⇔ max
α

cosα⇔ min
α

f∑
j=1

∥∥∥w(k)
j − q

∥∥∥2 (68)

which has its optimum when q aligns with w(k) according to the convexity of the last mini-

mization problem, and thus cosα∗ =
√

cos2 θ+f sin2 θ
f , the optimal direction also form an angle

ρ = arccos f sin θ√
cos2 θ+f sin2 θ

with wk.
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We have bound α ∈ [K
√
nλHλW0 ,

√
cos2 θ+f sin2 θ

f ]. the minimum of the objective is achieved

at the boundaries. It is easy to see that the value of the objective function is lower than 1
2 , which

is the value at the right boundary. Therefore, at the optimum, cosα∗ =
√

cos2 θ+f sin2 θ
f and

cos ρ = f sin θ√
cos2 θ+f sin2 θ

For the orthogonality of hk’s and wk’s, since let hk = γ1w
(k) and hk′ = γ2w

(k′), since w(k′)⊤hk =

0, ⟨hk,hk′⟩ = γ2
1
f

∑f
j=1⟨w(k′)⊤ ,hk⟩ = 0. Then we use definition of w(k)

j to extend the 0 =

⟨hk,hk′⟩ = 1
f2 ⟨wk,wk′⟩ sin2 θ which implies ⟨wk,wk′⟩ = 0. We also have learnt that

∥hk∥22 =
λW0

nλH
∥wk∥22 =

−KλW0
+
√

λW0

nλH
cosα∗

cos2 α∗ . (69)

The imbalanced case is proved with a slightly different strategy.

Proof of Theorem 3.4. In the imbalanced case

1

2S
∥WH−Y∥2F +

λH
2

∥H∥2F +
λW0

2
∥W0∥2F (70)

(a)

≥ 1

2S

K∑
k=1

fk∑
i=j

nk
1

nk

nk∑
i=1

(
w

(k)⊤

j hk,i − 1
)2

+
λH
2

K∑
k=1

nk
1

nk

nk∑
i=1

∥hk,i∥22 +
λW0

2

K∑
k=1

∥wk∥22

(71)

(b)

≥ 1

2S

K∑
k=1

fk∑
j=1

nk

(
w

(k)⊤

j

1

nk

nk∑
i=1

hk,i − 1

)2

+
λH
2

K∑
k=1

nk

∥∥∥∥∥ 1

nk

nk∑
i=1

hk,i

∥∥∥∥∥
2

2

+
λW0

2

K∑
k=1

∥wk∥22

(72)

(c)

≥ 1

2S

K∑
k=1

nkfk

(
w(k)⊤hk − 1

)2
+
λH
2

K∑
k=1

nk ∥hk∥22 +
λW0

2

K∑
k=1

∥wk∥22 (73)

≥ 1

2S
min
H,W

K∑
k=1

nk

[
fk

(
w(k)⊤hk − 1

)2
+ λHS ∥hk∥22 +

λW0
S

nk
∥wk∥22

]
(74)

(d)
=

1

2S

K∑
k=1

nk min
hk,wk

[
fk

(
w(k)⊤hk − 1

)2
+ λHS ∥hk∥22 +

λW0
S

nk
∥wk∥22

]
(75)

(e)

≥ 1

2S

K∑
k=1

nk min
hk,wk

[
fk

(
w(k)⊤hk − 1

)2
+ 2S

√
λHλW0

nk
∥hk∥ ∥wk∥

]
(76)

where (a), (b), and (c) are the same as the last proof. The equality of (e) holds only when

λW0
||wk||2 = nkλH||hk||2

by Young’s Inequality. We decompose the objective in (e) different from that in the proof of theorem
3.3 because the existence of non-identical fk fails optimal condition (61). Now we minimize[

fk

(
w(k)⊤hk − 1

)2
+ 2S

√
λHλW0

nk
∥hk∥ ∥wk∥

]
for each k, where the method in the last proof is applicable, which result in

∥wk∥2 =

−SλW0

fknk
+
√

λW0

nkλH
cosα∗

k

λW0

nkλH
cos2 α∗

k

(77)

when cosα∗
k >

S
fk

√
λW0

λH

nk
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The reader can check that the result of the imbalanced setting contains the balanced one as a special
case.

When W and W0 are fixed, the optimal conditions become simpler.

Proof of Corollary 3.7. Similar to the proof of Theorem 3.4,

1

2S
∥WH−Y∥2F +

λH
2

∥H∥2F (78)

(a)

≥ 1

2S

K∑
k=1

fk∑
i=j

nk
1

nk

nk∑
i=1

(
w

(k)⊤

j hk,i − 1
)2

+
λH
2

K∑
k=1

nk
1

nk

nk∑
i=1
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where w(k)⊤hk = w
(k)⊤

j hk = ∥hk∥2 cosαk for all j ∈ [fk] and αk is the angle between hk and

w
(k)
j for every j ∈ [fk]. from (a) to (c), the equality holds iff

h∗
k = h∗

k,1 = . . . = h∗
k,nk

,∀k ∈ [K] (83)

⟨w∗
k′ ,h∗

k⟩ = 0,∀k′ ̸= k ∈ [K] (84)

⟨h∗
k′ ,h∗

k⟩ = 0,∀k′ ̸= k (85)

w
(k)⊤

1 h∗
k = . . . = w

(k)⊤

fk
h8
k,∀K ∈ [K] (86)

Since each summand is the minimum of a convex function of ∥hk∥2, P attains its minimum when all
of the summands are minimized separately in (d), that is, by the analogous analysis to Theorem 3.3,
∥h∗

k∥2 =
fk cosα∗

k

fk cos2 α∗
k+λHS .

Since we only use the information of θ at the end of the proof, this generalized NC can hold also
true given θk’s have different values for each k ∈ [K] in the construction of Multi-Center Frame,
demonstrating the generality of our method. However, in this paper we are limited to the case of
identical θ for all classes.

E Derivative of the Cosine Loss

In this section we calculate the derivative of the cosine loss Cos(w,h). For Cos(w,h) =
∥⟨w, h

∥h∥ ⟩ − 1∥2,

dCos(w,h)

dh
= −2 · (1− a)Jw,

where J is the Jacobian of h
∥h∥ w.r.t. h and a = ⟨w,h⟩

∥h∥ It is straightforward to calculate J =
1

∥h∥3 (∥h∥ I− hh⊤). ∥h∥ I− hh⊤ has eigenvalue ∥h∥ − ∥h∥2 on the direction h
∥h∥ and ∥h∥ on all

23



other directions orthogonal to h
∥h∥ , so that

Jw (87)

=J(w − a
h

∥h∥
+ a

h

∥h∥
) (88)

=
1

∥h∥2
(w − a

h

∥h∥
) + a(

1

∥h∥2
− 1

∥h∥
)

h

∥h∥
(89)

=
1

∥h∥2
(w − ah). (90)

F Implementation Details and Results

F.1 Long-Tail Classification on Four Datasets

We run experiments with backbone ResNet50 and DenseNet150 on the four datasets (CIFAR-10,
CIFAR-100, SVHN and STL-10) by 1 A100 GPU, and run ResNet50 on ImageNet by 2 A100 GPU
with an extra linear layer that expand the dimension of the backbone feature to be larger than fK. We
use DenseNet150 with a reduction 0.5; the growth rate is set 12 on CIFAR-10 and CIFAR-100 and
32 on SVHN and STL-10. The reason we adjust growth rate to make the dimension of output feature
higher than fK) which is necessary for our method. To display the neural collapse phenomenon, an
extra linear layer is added between the backbone and the classifier.

We use the code released by [73] to produce the imbalanced datasets. We train the model on the four
dataset for 200 epochs, with a step learning rate initialized to 0.1 decaying to 0.01 and 0.001 at epoch
160 and epoch 180, batch size of 128, a momentum of 0.9, and a weight decay of 2e− 4. We train on
ImageNet for 200 epochs, with a CosineAnnealing learning rate initialized to 0.1, batch size of 512, a
momentum of 0.9, and a weight decay of 5e− 4.

Given imbalance ratio τ = nmin

nmax
, where nmin and nmax are the minimal and maximal numbers of

training samples in all classes, the numbers of training samples are decayed exponentially from
nmax to nmaxamong classes. We take the canonical data normalization and augmentation for the five
datasets. We use both the regular method and Mixup method [82] to demonstrate the effectiveness of
our proposed structure. The hyper-parameter a = 1 by default controls the shape of the symmetric β
distribution when Mixup is used. We fix the classifiers as orthonormal vectors for every setting.

We train the network by weighted cosine loss with a norm regularization which has the form

L(hk,ik ,W) =
1

B

√
cos2 θ + fk sin

2 θ

fk

 fk∑
j=1

Cos(w
(k)
j ,hk,ik)

+ λ (∥hk,ik∥ − 1)
2
, (91)

where hk,ik is an example in class k, and λ = 6e− 4.

The classification rule of our method, as suggested by remark 3.9 is c =

argmaxk∈[K]

〈
BN(h)

∥BN(h)∥ ,wk

〉
where BN(h) is the batch normalization of h; we use BN

since the data may have non-zero mean; For SVHN and STL-10 datasets, we first normalize the
backbone outputs h, then train and predict by the same loss and decision rule. For Densenet, we
use the BN( h

∥h∥ ) as the backbone output, apply the original loss to train, and predict by the same
decision rule for ResNet50. The code is modified from [26], and can be found in the supplementary
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material. Then the upper bound of the gradient norm of a class k becomes∥∥∥∥∥∥
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Compared with the upper bound of the gradient norm of the unweighted cosine loss∥∥∥∥∥∥
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fk cos2 θ + f2k sin2 θ. (97)

Our weighted loss gives the linearity between the upper bound fk and the gradient norm.

Figure 4 presents the NC phenomenon under objective P with or without regularization on the feature
norm.

Figure 5 shows NCMC for different architectures, including DenseNet, ResNet, VGG, and LeNet.

Table 4: Loss P vs Cosine Regression Loss on CIFAR-100

τ 0.005 0.01 0.02
P w/o mixup 41.9± 0.2 43.4 ± 0.3 43.5±0.2
P w mixup 36.5±0.6 40.1±0.4 49.0±0.1

CAL 46.3±0.3 50.1±0.2 54.0±0.2

Table 5 presents long-tail classification results on SVHN and STL-10, complementary to Table 2.

Table 6 shows how the accuracy of imbalanced learning is changed by the parameters f , and θ on
CIFAR-100.

F.2 Selection of Hyperparameters

When picking fk according to the class-aware strategy, we hope fmnm ≈ flnl for l,m ∈ [K]. This
condition, combined with the equality fK =

∑k
k=1 fknk refuses small f when there is a heavy

class imbalance. For example, when the K classes are balanced, the strategy requires fm ≈ fl for
l,m ∈ [K], and thus fk ≈ f by the equality; on the other hand, for extreme imbalance, say if the
ratio τ ≤ 1

bK with b a large constant, we have fK > fK ≥ bK, thus f > b. As f increases from 10
to 20, imbalanced ratio τ = 0.005 (the heaviest ratio in the imbalanced settings), and θ = 0.2, we
achieve 80.6± 0.5 on cifar10, and 46.6± 0.4, both better than the reported in Table 2.

Moreover, we suggest small θ ∈ (0, π/4) in practice (e.g., cos θ ≥
√
2
2 ), since large θ generates

concentrated centers of the classes, which is more likely to overweight and overfit the minor classes
(consider the case of cos θ = 1 where all the centers collapse to one direction, then the gradient
directions will be severely skewed).
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Figure 4: NCMC phenomenon under Loss P at different epochs. We draw the mean and standard
deviation of the neural collapse metric used in the paper on CIFAR-10 for different imbalanced ratios
w/ or w/o regularization. The horizontal axis is log10-scaled NC metric value. The regularization
coefficient is 5e-4.

Figure 5: NCMC phenomenon in Different Backbones at different epochs. We draw the mean and
standard deviation of the neural collapse metric used in the paper for four different backbones that
trained on Cifar10-LT with τ = 0.005: DenseNet150, ResNet50, LeNet, and, VGG11. The horizontal
axis is log10-scaled NC metric value.
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Table 5: Long-tailed classification accuracy (%) with ResNet and DenseNet on SVHN and STL-10.

Methods SVHN STL-10
0.005 0.01 0.02 0.005 0.01 0.02

ResNet
CE 39.4±0.2 40.6±0.2 46.4±0.2 33.6 ±0.1 35.0±0.3 36.3±0.3
SETF 41.3±0.2 45.4±0.1 49.6±0.2 37.4±0.4 38.2±0.7 42.0 ±0.3
CAL 43.5±0.1 47.4±0.2 49.1±0.1 40.5±0.2 42.8±0.4 45.4±0.3
DenseNet
CE 38.9±0.4 40.8±0.4 47.2±0.3 38.5±0.6 41.2 ±0.3 44.9±0.2
SETF 40.5±0.1 44.8±0.2 48.4±0.2 39.5±0.3 42.9±0.3 46.3±0.2
CAL 45.4±0.1 46.6±0.1 48.8±0.2 42±0.3 43.3±0.4 47.4±0.1

Table 6: ResNet50’s accuracy changes with the parameter tuple (f, θ) on CIFAR100,τ = 0.005

(f, θ) 0 0.2 0.4 0.6 0.8 1 π/2
4 1.8 41.8 42.2 43.1 41.8 41.6 44.0
7 1.1 45.2 45 44.4 41.6 43.2 43.7
10 1.3 45.7 46.1 44.4 43.5 42.6 43.0
13 2.3 46.0 46.2 44.5 42.7 41.8 41.5
16 0.9 46 44.9 42.7 41.1 39.6 38.6
20 1.6 47.0 44.7 41.3 39.1 38.2 37.9

G Heatmaps of the Neural Collapse

Figure 6 shows the inner product of normalized class-mean features during training. We observe that
(a) records the contracted mean features at initialization; then the training separates the class means
gradually to be orthogonal.

We also capture the feature collapse of the most minor class (class size=25) for CIFAR-10 dataset in
Fig 7. It is interesting to note that the collapse occurs almost at the beginning.

H Impact and Limitations

Impact of our work. 1. Our topic is Imbalanced Classification which is a general concern in machine
learing.

2. We consider a classification rule that work better than regular classification rule under certain
theoretical assumptions in the imbalanced setting. The analysis of "hard-to-predict feature" is novel
and can be further developed in general machine learning theory.

3. We have studied imbalanced learning through the lens of Neural Collapse, which provides insight
into the connection among the optimal feature-classifier alignment, the classification rule, and the
performance of DNN.

4. We proposed a loss and the strategy for fixed classifier that has comparable performance to methods
with learnable classifier; the loss and strategy can apply to general machine learning models.

Limitations.

1. The theoretical analysis of our motivation only considers Gaussian case;

2. Due to the computationally expensive optimization on the Stiefel manifold for large dimension
fK, the UFM analysis on learnable classifier in Theorem 3.3 and 3.4 are not justified in practical
networks;

3. Although the proposed loss is applicable to general classification models, we only conduct
experiments on two architectures, ResNet and DenseNet;

4. The proposed method for imbalanced learning does not have impressive performance on high-
dimensional datasets (large number of classes, large number of features), one of the possible reasons
is the use of global expansion factor to expand the backbone feature dimension imposes negative
effect on the representation of an deep architecture;

27



Figure 6: The heatmap of Mean-feature Separateness.

Figure 7: The Within-Class Feature Collapse.

5. Although the class-aware strategy is a novel idea, the implementation is far from optimal. The
example given in section 3.5 shows f1n1 = 4, f2n2 = 12, and f3n3 = 3 which will result in
an emphasis on the middle class instead of the minor class. How to create a strategy that is more
"class-aware" will be our future work.

6. We compare our work with RBL [42] in Table 7. It is remarkable that the post-hoc logit
adjustment significantly improves RBL. Our method outperforms RBL in two settings for cifar100.
We conjecture that in a setting of a small imbalanced ratio and a large number of classes, the hard-
to-predict distribution may dominate the performance. The reason that our method CAL has lower
accuracy compared to RBL in other settings, is three-fold: 1. Imbalanced learning with MSE loss
is less effective than CE loss in general; 2. Our experiment setting is chosen as close as possible to
that where the theoretical analysis (proposition B.1 and C.1) is conducted, for example, to match
the isotropy of the Gaussian, we normalize/batch normalize the feature to ensure it is unit norm
and centered before the classification, and the weight are unit vectors through training. This setting
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possibly harms the learnability and flexibility of our model. 3. Under the class-aware MSE loss,
we use the original classifier to be the surrogate classification rule of our general classification rule.
However, the rule is designed especially for “hard-to-predict” unseen data and thus is not necessarily
optimal for the classification of other unseen data. When the hard-to-predict unseen data takes a very
small portion of the population, our design may lose its effectiveness. The success of RBL and PLA
inspires us to find an optimal classifier for the loss P and CAL.

Table 7: CAL vs RBL in long-tail classification trained on ResNet50. f = 20 and θ = 0.2 are fixed.
The values without ± are that we did not reproduce. "–" represents a missing value.

Methods Cifar-10 Cifar-100
0.005 0.01 0.02 0.1 0.005 0.01 0.02 0.1

RBL w/o PLA 73.6 78.5±0.3 84.3 90.7 – – – –
RBL 81.8±0.5 84.9±0.3 87.6±0.2 92.5±0.3 41.7±0.4 51.7±0.2 52.4±0.2 68.4±0.1
CAL 80.0±0.5 84.1±0.3 85.9 ±0.2 92.0±0.3 46.5±0.5 50.1±0.3 54.3±0.4 65.9±0.3
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Refer to section3, section4.4, and the appendix

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in appendix H

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Refer to Theorem 3.3 and Theorem 3.4 and appendix D
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: see appendix F and supplementary material
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See F and the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to section 4.4,appendix F
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to Table2 and Table1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to appendix F
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conform with the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss impact in appendix H
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the datasets and refer the papers, see section 4.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We have describe the experiment details in section 4.4, appendix F, and the
supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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