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ABSTRACT

Image restoration aims to recover clean images from degraded versions. While
Transformer-based approaches have achieved significant advancements in this
field, they are limited by high complexity and their inability to capture omni-
range dependencies, hindering their overall performance. In this work, we develop
Modumer for effective and efficient image restoration by revisiting the Trans-
former block and Modulation design, which processes input through a convolu-
tional block and projection layers, and fuses features via element-wise multiplica-
tion. Specifically, within each unit of Modumer, we integrate the cascaded Modu-
lation design with the downsampled Transformer block to build the attention lay-
ers, enabling omni-kernel modulation and mapping inputs into high-dimensional
feature spaces. Moreover, we introduce a bioinspired parameter-sharing mech-
anism to attention layers, which not only enhances efficiency but also improves
performance. Additionally, a dual-domain feed-forward network strengthens the
representational power of the model. Extensive experiments demonstrate that the
proposed Modumer achieves state-of-the-art performance on ten different datasets
for five image restoration tasks: image motion deblurring, image deraining, image
dehazing, image desnowing, and low-light image enhancement. Furthermore, our
model yields promising performance on all-in-one image restoration tasks.

1 INTRODUCTION

As a longstanding task, image restoration aims to recover a high-quality image from its degraded
counterpart. It has been quite a challenging problem as infinite solutions correspond to a single
input. In recent years, convolutional neural networks (CNNs) have produced promising results on
this ill-posed problem by learning direct mappings from the degraded input and restored output (Qin
et al., 2020; Ruan et al., 2022; Lee et al., 2021; Liu et al., 2018). However, the shortcomings of
convolutional operators are obvious. Due to poor receptive field scaling (Cho et al., 2021; Chen et al.,
2024), CNNs are unable to capture long-scale dependencies for powerful image representations.

Recently, Transformers have significantly advanced the state-of-the-art performance of low-level
tasks (Song et al., 2022; Chen et al., 2023a; Zamir et al., 2022a). Despite having the great power
to capture content-aware global perceptive fields, the self-attention (SA) layer features quadratic
complexity to the input, limiting their applications in real-world scenarios. Many attempts have
been made to enhance the efficiency of this expensive mechanism. SwinIR (Liang et al., 2021),
Uformer (Wang et al., 2022), and Stripformer (Tsai et al., 2022) reduce the complexity of Trans-
former models by confining the SA operation to a fixed spatial range. Restormer (Zamir et al.,
2022a) tactfully switches the operation dimension from the spatial domain to channels. Afterward,
a few works explore adopting both channel SA and spatial SA in cascading or parallel manners to
improve representational ability (Chen et al., 2024; Zhang et al., 2024; Chen et al., 2023c). Nonethe-
less, these methods impede the inherent potential of SA, originally proposed for superior global fea-
ture modeling, leading to a deterioration in restoration performance. Moreover, they mostly operate
within a single scale and cannot capture multi-scale receptive fields within a single unit.

Most recently, the Modulation mechanism (Ma et al., 2024b), as illustrated in Figure 1 (b), consid-
ering context modeling using a large-kernel convolutional block and modulating the projected input
via element-wise multiplication, has become popular in high-level vision tasks (Hou et al., 2024;
Guo et al., 2023a; Yang et al., 2022). These approaches are computationally efficient and implement-
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Figure 1: Comparison of Transformer block, modulation design, and our attention block. ⊗ and ⊙
are matrix and element-wise multiplication, respectively. Compared to Transformer and modulation
blocks, our design performs attention calculation in downsampled spaces and employs cascaded
modulation operation to pursue omni-kernel feature refinement and high-dimensional representation
learning. As such, the model achieves a better tradeoff between complexity and accuracy.

friendly, showing competitive performance on par with Transformer counterparts. Inspired by this
modulation technique, we acquire the approximate omni-kernel feature modeling ability by integrat-
ing the Transformer layer (Figure 1 (a)) and modulation design (Figure 1 (b)) within a block. As
illustrated in Figure 1 (c), the context branch (CTX) is implemented through a Transformer block
at a downsampled scale, which retains the ability of SA to model global features while striking a
trade-off between complexity and accuracy. The local and mesoscale receptive fields are comple-
mented by modulating the result of SA in series using depth-wise convolutions of different kernel
sizes. Compared to the canonical modulation design, our block provides real context modeling and
performs cascaded modulation processes, mapping input features into higher-dimensional feature
spaces. Additionally, our context branch is content-aware, which is beneficial for dealing with spa-
tially varying degradations. Moreover, we explore a bioinspired parameter-sharing mechanism that
shares parameters across different attention layers, improving both efficiency and performance.

Additionally, we present a dual-domain feed-forward network (DFFN) to improve dual-domain rep-
resentation learning. Specifically, DFFN first utilizes GEGLU (Shazeer, 2020) to achieve spatial-
domain signal interactions. Subsequently, the resulting features pass through the fast Fourier trans-
form (FFT) to obtain the spectra, which are then modulated by the learnable parameters and trans-
formed back to the spatial domain through the inverse IFFT. Next, the results interact with spatial
features under the guidance of attention weights. By doing these, our DFFN achieves intra- and
inter-domain interactions, improving the representational ability.

The unit of our U-shaped Modumer is built upon the above modulation-based SA block and DFFN.
Unlike other Transformer-based restoration algorithms that utilize a uniform block throughout the
model, we adopt a channel-wise modulation-based SA block at the initial scale to enable more effi-
cient global feature modeling. For lower-resolution features at deeper scales, we apply spatial-wise
blocks, effectively capturing spatial details. Based on these designs, Modumer achieves state-of-the-
art performance on several image restoration tasks with lower complexity and fewer parameters (see
Figure 2). For deraining, Modumer outperforms the previous state-of-the-art method (Zhou et al.,
2024a) by 0.73 dB on AGAN-Data (Qian et al., 2018). For motion blur removal, Modumer sig-
nificantly surpasses other algorithms on the HIDE dataset (Shen et al., 2019), displaying its strong
capability of deblurring. Modumer also exhibits the potential on the CSD (Chen et al., 2021) dataset
for the desnowing task and is superior to the previous best model (Cui et al., 2024a) by 0.74 dB in
terms of PSNR. Also, on the Haze4k (Liu et al., 2021b) dataset for dehazing, it obtains 34.69 dB
PSNR, an improvement of 0.54 dB over the previous state-of-the-art method (Cui et al., 2024a).

To summarize, the main contributions of this study are listed as follows:

• We present a novel attention block that consecutively modulates the self-attention re-
sults from downsampled features, providing efficient omni-kernel modulation and high-
dimensional representational capability. A bioinspired parameter-sharing mechanism is
introduced to improve both efficiency and performance.
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Figure 2: Computation comparisons between the proposed model and state-of-the-art algorithms on
AGAN-Data (Qian et al., 2018), HIDE (Shen et al., 2019), CSD Chen et al. (2021), and Haze4k (Liu
et al., 2021b) for deraining, motion deblurring, desnowing, and dehazing, respectively.

• We develop a dual-domain feed-forward network that achieves spatial-spatial and spectral-
spatial interactions.

• We deploy channel-wise Transformer blocks at the first scale while using spatial-wise
blocks at deeper scales with lower-restoration features, resulting in our effective and ef-
ficient image restoration network, dubbed Modumer.

• Extensive experiments show that Modumer achieves state-of-the-art performance on ten
benchmark datasets for five representative image restoration tasks, including image motion
deblurring, image deraining, image dehazing, image desnowing, and low-light image en-
hancement. Moreover, Modumer produces promising performance in all-in-one scenarios.

2 RELATED WORKS

2.1 IMAGE RESTORATION

As a fundamental vision task, image restoration aims to reconstruct a sharp image from a degraded
observation (Cho et al., 2021; Ruan et al., 2022). To resolve this heavily ill-posed problem, many
conventional algorithms have been proposed based on hand-crafted features and assumptions to re-
duce the solution space (He et al., 2010). Recently, deep learning methods have remarkably boosted
the performance of various image restoration tasks by learning generalizable features from large-
scale collected data. These methods can be roughly divided into CNN-based and Transformer-based
categories. CNN-based methods leverage attention mechanisms to attend to informative informa-
tion for different dimensions (Qin et al., 2020; Zamir et al., 2021; Cui et al., 2023a), e.g., pixel,
spatial, and channel. Also, they employ advanced techniques to enlarge the receptive fields and
model multi-scale features (Son et al., 2021; Liu et al., 2020; Nah et al., 2017; Jiang et al., 2020; Cui
et al., 2023c), such as the encoder-decoder architecture, atrous convolution, and multi-stage learning
strategy. Subsequently, Transformer methods scale the receptive field to global features via the SA
layer (Tsai et al., 2022; Guo et al., 2022). To enhance its efficiency on low-level vision tasks, a few
algorithms confine the SA region to fixed windows or strips (Wang et al., 2022; Liang et al., 2021;
Song et al., 2022), which impedes the inherent potential of SA. Moreover, they cannot model multi-
scale features within a single unit, limiting their capability for removing degradations of different
sizes. In this paper, we apply SA to downsampled embedding spaces to capture global dependencies
and use the cascaded modulation operation to complement the missing local information.

2.2 MODULATION DESIGN

The modulation mechanism (Ma et al., 2024b; Guo et al., 2023a) considers context modeling using
a large-kernel convolutional unit and modulates the projected inputs using element-wise multipli-
cation, which has exhibited cutting-edge performance in high-level vision tasks. FocalNet (Yang
et al., 2022) utilizes a stack of depth-wise convolutional layers to implement hierarchical contex-
tualization and uses gated aggregation to selectively gather contexts. Afterward, EfficientMod (Ma
et al., 2024b) adopts a simpler method for context modeling using a series of linear projections and
depth-wise convolution. MambaOut (Yu & Wang, 2024) and Conv2former (Hou et al., 2024) use
7 × 7 depth-wise convolutions to extract contextual features. Recently, StarNet (Ma et al., 2024a)
uncovers that the strong representational capacity of element-wise multiplication originates from
implicitly high-dimensional spaces. However, the receptive fields of the context branch in these
methods are limited. In contrast, our method involves long-range contextual signals by applying SA
to downsampled embedding spaces, striking a balance between complexity and accuracy. Moreover,
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Figure 3: The network architecture of our U-shaped Modumer. We employ channel-wise modula-
tion block (CMB) with shared parameters at the first scale while using spatial-wise modulation block
(SMB) at deeper scales which involve lower-resolution features. This can strike a better balance be-
tween the complexity and the representational ability. The DFFN enhances dual-domain frequency
learning via spatial-spatial and spatial-spectral interactions.

the mesoscale and local information is used to modulate the SA results via cascaded modulation,
achieving omni-kernel refinement and mapping inputs into higher-dimensional spaces.

3 METHODOLOGY

In this section, we first introduce the overall architecture of Modumer. Subsequently, the proposed
components are delineated individually, including two kinds of attention layers (CMB, SMB), the
parameter-sharing mechanism, and the dual-domain feed-forward network (DFFN).

3.1 OVERALL PIPELINE

Modumer follows the encoder-decoder design (see Figure 3). We employ a channel-wise modulation
block (CMB) at the first scale, as the channel-wise SA can implicitly capture the large-range features
efficiently while using a spatial-wise modulation block (SMB) in the other two lower-resolution
scales. As such, the model strikes a better balance between complexity and representational capacity.

Specifically, given an image, we use a 3 × 3 convolution to extract the embedding features of size
RC×H×W , where C denotes the channel count while H×W defines the spatial index. Subsequently,
the features are fed into the three-scale encoder sub-network to produce the in-depth features. Each
scale contains several Transformer blocks, whose calculation process is formulated as

X′
k = CMB/SMB(Xk−1) + Xk−1, (1)

Xk = DFFN(X′
k) + X′

k, (2)

where Xk−1 and Xk are the output of the last and current Transformer block, respectively. In the
encoder stage, the resolution of the features is gradually downsampled using bilinear interpolation
while the channel capability is doubled using a 3 × 3 convolution. Next, the in-depth features
pass through the symmetric decoder network to generate the clean features. In this process, the
resolution of features is progressively restored to the original size using bilinear interpolation and
3× 3 convolution. Meanwhile, the skip connection is adopted to combine the encoder and decoder
features via concatenation. The yielded features after the three-level decoder are finally processed
by a refinement stage involving r Transformer blocks and a 3×3 convolution to generate the residual
image, which is added to the original input image to obtain the model output. Next, we present the
internal components of the Transformer block.

3.2 CHANNEL-WISE MODULATION BLOCK (CMB)

The architectural details of CMB are illustrated in Figure 4 (a). CMB contains a downsampled
channel-wise SA layer for global information modeling and two depth-wise convolutional branches
modulating the SA result to complement local and mesoscale receptive fields and map features into
higher-dimensional spaces. The calculation process of CMB can be formally expressed as

X̂CMB = W2

(
X̂M7×7

(
W1(X̂M3×3 ⊙ X̂D−CSA)

))
, (3)
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Figure 4: Module architectures of channel and spatial modulation blocks (CMB∥SMB).

where X̂CMB, XCMB denote the output and input of CMB, respectively. D-CSA is a downsampled
channel-wise self-attention layer. X̂Mn×n is the modulation branch with the kernel size of n × n,
encoding local information. W1 and W2 are 1× 1 convolutions for refinement.

D-CSA. Compared to the normal channel SA, our version computes attention maps in a downsample
space, resulting in high efficiency. We assume that the number of heads is 1 and consider D-CSA
as a single-head fashion. Given the normalized input XN ∈ RC×H×W , D-CSA first utilizes the
projection layers to produce query, key, and value tensors by Q = WQXN, K = WKXN, and
V = WV XN, where W(·) denotes parameters of 1 × 1 point-wise convolution. Then, the obtained
Q,K,V tensors are reshaped into the size of C × N , N × C, and C × N , respectively, where
N = H × W . The query and key tensors are further normalized and downsampled to prepare for
cross-covariance attention. The transposed attention map is calculated by Q and K with size of
RC×C . The output of D-CSA can be obtained by

X̂D−CSA = Softmax(QK/τ)V, (4)

where τ is a learnable temperature parameter and X̂D−CSA ∈ RC×N is reshaped to the original
input feature size of RH×W×C for further modulation operation.

Modulation design. D-CSA encodes downsampled global information while ignoring the fine-
grained local details when downsampling features. To complement local information, we first filter
the initially generated V tensor using a 3 × 3 depth-wise convolution, as V has been refined by the
convolutional layer. This process is expressed as

X̂M3×3 = Sigmoid(Dw3×3(V))⊙ V, (5)

where Dw3×3 is a depth-wise convolution of kernel size 3 × 3. Next, we modulate the output of
D-CSA with the locally filtered result via element-wise multiplication. By doing this, the model can
capture downsampled global and local dependencies and map inputs into high-dimensional spaces
to improve the representational capability. To simplify the analyses, assuming the scenario involves
a single-pixel input x ∈ Rd×1 and a single-element output, x̂ ∈ R1×1, where d is the channel count,
we define w1, w2 ∈ R1×d as convolution parameters. The modulation process involving a single
convolution within each branch can be written as

w⊤
1 x⊙ w⊤

2 x =

(
d∑

i=1

wi
1x

i

)
⊙

 d∑
j=1

wj
2x

j

 (6)

=

d∑
i=1

d∑
j=1

wi
1w

j
2x

ixj (7)

=
α1,1x

1x1 + · · ·+ α2,3x
2x3 + · · ·+ αd,dx

dxd︸ ︷︷ ︸
d(d+ 1)/2

, αi,j =

{
wi

1w
j
2, i = j,

wi
1w

j
2 + wj

1w
i
2 i ̸= j.

(8)

where i, j index the channel. We can observe that each item in Eq. 8 presents a non-linear associ-
ation with x and is an individual dimension, indicating that this case achieves a representation in a
d(d + 1)/2 implicit dimensional feature space. Note that besides convolutions, the branches in our
modulation design experience complicated SA, further improving the representational capability.
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Additionally, we apply a 7× 7 kernel branch to further modulate the preceding outcome and supply
mesoscale receptive fields.

Parameter sharing. Inspired by the relationship between the hippocampus and cortex in the
brain (Whittington et al., 2020; 2021), where different regions and layers of the cortex, despite
performing different tasks, all receive and send information from a single shared memory in the
hippocampus, we consider the attention layer as the hippocampus while the feed-forward layer as
the cortex, forming our parameter-sharing mechanism illustrated in the left part of Figure 3. Inter-
estingly, this design not only saves parameters but also improves the performance. More discussions
are provided in the Appendix.

3.3 SPATIAL-WISE MODULATION BLOCK (SMB)

Figure 4 (b) presents the details of SMB, which mainly has three branches: a downsampled spatial-
wise attention unit (D-SSA), and two modulation operators. The output of SMB is obtained by

X̂SMB = W4

(
X̂M7×7

(
W3(X̂M3×3 ⊙ X̂D−SSA)

))
, (9)

where X̂D−SSA is the outcome of D-SSA.

D-SSA. D-SSA is used in low-resolution scales to model spatial global features. Similarly, we
also assume the number of heads is 1 to transfer D-SSA to single-head mode. Given any input
X ∈ RH×W×C , it is first processed by the layer normalization to yield XN. Then, query (Q), key
(K), and value (V) tensors are produced by Q = WQXN, K = WKXN ↓, and V = WV XN ↓, where
K and V are generated from the downsampled input (XN ↓) for high efficiency. After reshaping Q,
K, and V to new tensors of size N × C, C × N ′, N ′ × C, respectively, where N = H × W and
N ′ = H/8×W/8, the calculation process of D-SSA is formulated as

X̂D−SSA = Softmax(
QK√
C
)V. (10)

Modulation design. Similar to CMB, we utilize a cascaded modulation design with kernel sizes of
3 × 3 and 7 × 7 to complement local and mesoscale information. As such, the model is equipped
with an approximate omni-kernel modulation ability, i.e., local-mesoscale-global.

3.4 DUAL-DOMAIN FEED-FORWARD NETWORK (DFFN)
DFFN facilitates the spatial-spatial and spatial-spectral interactions for high-fidelity reconstruction.
Figure 3 illustrates the architecture. To be specific, given input features X ∈ RH×W×C , after the
layer normalization, DFFN first performs GEGLU (Shazeer, 2020) as

X̂S−S = W7

(
GELU

(
Dw1

3W5(XN)
)
⊙Dw2

3W6(XN)
)

(11)

where W5, W6 and W7 denote 1×1 convolutions. Dw1
3 and Dw2

3 are 3×3 depth-wise convolutions.
XN is the normalized input and X̂S−S is the spatial-spatial interaction output.

Furthermore, DFFN conducts spatial-spectral interactions by adding the Fourier-domain refined re-
sult and spatial features together under the guidance of learnable attention weights. The calculation
process can be formulated as

X̂DFFN = αXSpectral + (1− α)X̂S−S (12)

XSpectral = P−1
(
F−1

(
W ⊙

(
F(P(X̂S−S))

)))
(13)

where F and F−1 denote the fast Fourier transform and the inverse transform, respectively. P
and P−1 are windows partition operation and the inverse transformation, respectively. W is the
learnable parameter to filter the frequency signals. α is the learnable parameter to control dual-
domain information aggregation.

4 EXPERIMENTS

To validate the efficacy of the proposed Modumer, we evaluate the model on two kinds of tasks,
general image restoration and all-in-one image restoration. The former trains different model copies
for different datasets while the latter uses a single model for different degradation types and levels.
In this section, we first present the implementation details, experimental results, and ablation studies
for general image restoration. Subsequently, we apply our model to the all-in-one settings.
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Input Reference RaindropAttn MAXIM-2S AST-B Ours

Figure 5: Visual comparisons on the raindrop AGAN-Data (Qian et al., 2018) dataset.

Table 1: The dataset summary for five tasks under general image restoration.

Task Deraining Motion deblurring Dehazing Desnowing Low-light image enhancement
Dataset SPAD∥AGAN-Data GoPro∥HIDE Haze4k∥GTA5 CSD∥SRRS∥Snow100K LOL-v2

Table 2: Quantitative comparisons on AGAN-
Data (Qian et al., 2018) for raindrop removal.

Methods PSNR SSIM

Uformer (Wang et al., 2022) 29.42 0.906
TransWeather (Valanarasu et al., 2022) 30.17 0.916
Quan et al. (Quan et al., 2019) 31.37 0.918
AttenGAN (Qian et al., 2018) 31.59 0.917
IDT (Xiao et al., 2022) 31.87 0.931
MAXIM-2S (Tu et al., 2022) 31.87 0.935
AWRCP (Ye et al., 2023) 31.93 0.931
FPro (Zhou et al., 2024b) 31.96 0.937
AST-B (Zhou et al., 2024a) 32.32 0.935

Ours-S 33.05 0.946

Table 3: Quantitative results on SPAD (Wang
et al., 2019) for rain streak removal.

Methods PSNR SSIM

SEIDNet (Lin et al., 2022) 44.96 0.9911
Fu et al. (Fu et al., 2023) 45.03 0.9907
Restormer (Zamir et al., 2022a) 46.25 0.9911
SCD-Former (Guo et al., 2023b) 46.89 0.9941
IDT (Xiao et al., 2022) 47.34 0.9929
Uformer Wang et al. (2022) 47.84 0.9925
DRSformer (Chen et al., 2023b) 48.53 0.9924
FPro (Zhou et al., 2024b) 48.99 0.9936
AST-B (Zhou et al., 2024a) 49.51 0.9942

Ours-S 49.57 0.9942

4.1 GENERAL IMAGE RESTORATION

4.1.1 IMPLEMENTATION DETAILS

We evaluate our model on five representative tasks with ten benchmark datasets. The used datasets
are summarized in Table 1. We adopt the dual-domain loss functions (Cho et al., 2021; Kong et al.,
2023; Cui et al., 2023a) to train the network for 300,000 iterations with the Adam optimizer. The
deblurring task needs another 300,000 iterations following (Kong et al., 2023). The initial learning
is set to 1e−3, which is gradually reduced to 1e−7 with the cosine annealing strategy. The patch size
is set to 128×128 and the batch size is 32. We adopt the same data augmentation strategy as (Zamir
et al., 2022a). The window size in DFFN and the downsampling ratio in SA are set to 8. According
to the complexity of different datasets, we present two model versions, Modumer-S (small) and
Modumer-B (base). For Modumer-S, we set the channel count to 42, and [L1,L2,L3,Lr] as [2,2,4,4],
while for the base model, we set the channel number to 48, and [6,6,13,4] for [L1,L2,L3,Lr]. FLOPs
are measured on 3×256×256 patches. Due to the space limit, image enhancement results and more
visualizations are presented in the Appendix. In tables, the best results are highlighted.

4.1.2 RESULTS

Image deraining. The numerical results on the raindrop dataset AGAN-Data (Qian et al., 2018)
are presented in Table 2. Our method significantly outperforms the recent Transformer-based AST-
B (Zhou et al., 2024a) and FPro (Zhou et al., 2024b) by 0.73 dB and 1.09 dB, respectively, while
consuming lower complexity, as illustrated in Figure 2 (a). Figure 5 shows that our method is more
effective in raindrop removal than competitors. Moreover, the comparison results on the rain streak
dataset SPAD (Wang et al., 2019) are reported in Table 3. As seen, our method achieves the best
performance in terms of PSNR, outperforming the previous state-of-the-art algorithm (Zhou et al.,
2024a) by 0.06 dB PSNR.

Image motion deblurring. We conduct experiments for motion deblurring on the GoPro (Nah et al.,
2017) dataset and compare our results with state-of-the-art works in Table 4. Our method signifi-
cantly surpasses the recent frequency-based Transformer model (Mao et al., 2024) by 0.18 dB PSNR
while using 65% fewer parameters. Compared to the recent convolutional network ConvIR-L (Cui
et al., 2024a), our method achieves a notable gain of 0.99 dB PSNR with comparable parameters
and FLOPs. The visual results in Figure 6 show that our model recovers more structural details from
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Table 4: Image motion deblurring results. Our model is trained only on the GoPro Nah et al. (2017)
dataset and directly applied to the GoPro (Nah et al., 2017) and HIDE Shen et al. (2019) datasets.

GoPro HIDE Params FLOPs
Methods PSNR SSIM PSNR SSIM (M) (G)

DMPHN (Zhang et al., 2019a) 31.20 0.940 29.09 0.924 - -
DBGAN (Zhang et al., 2020) 31.10 0.942 28.94 0.915 11.6 760
Restormer (Zamir et al., 2022a) 32.92 0.961 31.22 0.942 26.1 135
Stripformer (Tsai et al., 2022) 33.08 0.962 31.03 0.940 20.0 170
GRL (Li et al., 2023) 33.93 0.968 31.65 0.947 20.2 1289
UFPNet (Fang et al., 2023) 34.06 0.968 31.74 0.947 80.3 243
FSNet (Cui et al., 2023b) 33.29 0.963 31.05 0.941 13.28 111
FFTformer (Kong et al., 2023) 34.21 0.969 31.62 0.946 16.6 131
ConvIR-L (Cui et al., 2024a) 33.28 0.963 - - 14.83 129
MLWNet-B (Gao et al., 2024) 33.83 0.968 - - - 108
MISC Filter (Liu et al., 2024) 34.10 0.969 31.66 0.946 16.0 -
LoFormer-L (Mao et al., 2024) 34.09 0.969 31.86 0.949 49.0 126

Ours-B 34.27 0.969 32.01 0.949 17.35 139

Blurry Image Input Reference DMPHN DBGAN

FSNet ConvIR-L FFTformer LoFormer-L Ours

Figure 6: Deblurred results on the GoPro (Nah et al., 2017) dataset. Compared to other algorithms,
the proposed method restores more details and clearer structures from the input.
Table 5: Image dehazing comparisons on the
Haze4k (Liu et al., 2021b) dataset.

Methods PSNR SSIM

MSBDN (Dong et al., 2020a) 22.99 0.85
FFA-Net (Qin et al., 2020) 26.96 0.95
DMT-Net (Liu et al., 2021c) 28.53 0.96
PMNet (Ye et al., 2022) 33.49 0.98
FSNet (Cui et al., 2023b) 34.12 0.99
ConvIR-S (Cui et al., 2024a) 33.36 0.99
ConvIR-B (Cui et al., 2024a) 34.15 0.99

Ours-S 34.69 0.99

Table 6: Quantitative results on GTA5 (Yan et al.,
2020) for night haze removal.

Methods PSNR SSIM

MRP (Zhang et al., 2017) 20.92 0.646
Ancuti et al. Ancuti et al. (2016) 20.59 0.623
CycleGAN (Engin et al., 2018) 21.75 0.696
Yan et al. (Yan et al., 2020) 27.00 0.850
Jin et al. Jin et al. (2023) 30.38 0.904
ConvIR-S Cui et al. (2024a) 31.68 0.917
ConvIR-B Cui et al. (2024a) 31.83 0.921

Ours-S 32.04 0.928

the hard example. We further apply our model pre-trained on GoPro to the HIDE (Shen et al., 2019)
dataset. The quantitative results presented in Table 4 show that our method obtains the best result
in PSNR with a prominent gain of 0.15 dB over the second-best LoFormer-L (Mao et al., 2024),
demonstrating the better generalization ability of our model.

Image dehazing. We perform dehazing experiments on the Haze4k (Liu et al., 2021b) dataset. The
numerical results are presented in Table 5. Our model attains a significant performance gain of 0.54
dB PSNR over the recent algorighm (Cui et al., 2024a) with lower FLOPs, as illustrated in Figure 2
(d). Compared to the CNN-based method FSNet (Cui et al., 2023b), our advantage is more obvious
with much lower complexity. Figure 7 shows that our model can better deal with haze degradations
than other algorithms. Additionally, we provide comparison results on a nighttime dehazing dataset
GTA5 (Yan et al., 2020) in Table 6. Our Modumer-S is still superior to the strong competitors.
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Input Reference FSNet ConvIR-S ConvIR-B Ours

Figure 7: Image dehazing comparisons on the Haze4k (Liu et al., 2021b) dataset.

Input Reference JSTASR HDCW-Net ConvIR-S Ours

Figure 8: Image desnowing comparisons on the CSD Chen et al. (2021) dataset.

Table 7: Image desnowing comparisons on three widely-used datasets: CSD (Chen et al., 2021),
SRRS (Chen et al., 2020), and Snow100K (Liu et al., 2018).

CSD SRRS Snow100K Params FLOPs
Methods PSNR SSIM PSNR SSIM PSNR SSIM (M) (G)

DesnowNet (Liu et al., 2018) 20.13 0.81 20.38 0.84 30.50 0.94 15.6 1.7K
JSTASR (Chen et al., 2020) 27.96 0.88 25.82 0.89 23.12 0.86 65 -
HDCW-Net (Chen et al., 2021) 29.06 0.91 27.78 0.92 31.54 0.95 6.99 9.78
SMGARN (Cheng et al., 2022) 31.93 0.95 29.14 0.94 31.92 0.93 6.86 450.3
TransWeather (Valanarasu et al., 2022) 31.76 0.93 28.29 0.92 31.82 0.93 21.9 5.64
MSP-Former (Chen et al., 2023a) 33.75 0.96 30.76 0.95 33.43 0.96 2.83 4.42
OKNet (Cui et al., 2024b) 37.99 0.99 31.70 0.98 33.75 0.95 4.72 39.67
IRNeXt (Cui et al., 2023c) 37.29 0.99 31.91 0.98 33.61 0.95 5.46 42.09
ConvIR-S (Cui et al., 2024a) 38.43 0.99 32.25 0.98 33.79 0.95 5.53 42.1

Ours-S 39.17 0.99 32.48 0.98 34.58 0.96 4.74 50.39

Image desnowing. Furthermore, we verify the effectiveness of our model in snow removal using
three datasets: CSD (Chen et al., 2021), SRRS Chen et al. (2020), and Snow100K Liu et al. (2018).
The quantitative results are presented in Table 7. With similar computation overhead, our method
achieves 39.17 dB PSNR on the CSD dataset, 0.74 dB higher than the second-best algorithm (Cui
et al., 2024a). The superiority of our model can also be found on the other two datasets, demonstrat-
ing the effectiveness of our model in snow removal. Figure 8 shows that our model yields a more
favorable image by removing more snow degradations.

4.1.3 ABLATION STUDIES Table 8: Ablation studies for each component.

Mod. 3× 3 Mod. 7× 7 Sharing DFFN PSNR Params.

! ! ! 31.70 4.72M
! ! ! 31.69 4.64M
! ! ! 31.78 4.79M
! ! ! 31.69 4.74M
! ! ! ! 31.82 4.74M

We perform ablation studies by training
our small model for 70,000 iterations on
GoPro (Nah et al., 2017). More ablation
results can be found in the Appendix.

Table 8 shows the results of individu-
ally removing the proposed component
from the complete model. Removing
our modulation branch leads to degraded performance compared to the full model. Our parameter-
sharing mechanism achieves 0.04 dB PSNR performance improvement while consuming fewer pa-
rameters. Employing only the spatial-spatial interactions, i.e., GEGLU, in the feed-forward network
achieves 31.69 dB PSNR, which is 0.13 dB lower than our full model. These results demonstrate
the effectiveness of our proposed modules and mechanism.
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Input Reference AirNet PromptIR AdaIR Ours

Figure 9: Visual comparisons on the Rain100 (Yang et al., 2017) dataset under the all-in-one setting.
The image produced by our model is closer to the reference image, such as the background regions.

Table 9: Dataset summary for all-in-one image restoration. Motion deblurring and low-light en-
hancement are only used for the five-task setting.

Task Desnoiwing Dehazing Deraining Motion deblurring Low-light enhancement
Train BSD400∥WED RESIDE Rain100L GoPro LOL-v1
Test BSD68 SOTS-Outdoor Rain100L GoPro LOL-v1

Table 10: Quantitative comparisons on three image restoration tasks under the all-in-one setting.

Denoising on BSD68 Deraining on Dehazing on
σ = 15 σ = 25 σ = 50 Rain100L SOTS Average

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BRDNet (Tian et al., 2020) 32.26 0.898 29.76 0.836 26.34 0.693 27.42 0.895 23.23 0.895 27.80 0.843
LPNet (Gao et al., 2019) 26.47 0.778 24.77 0.748 21.26 0.552 24.88 0.784 20.84 0.828 23.64 0.738
FDGAN (Dong et al., 2020b) 30.25 0.910 28.81 0.868 26.43 0.776 29.89 0.933 24.71 0.929 28.02 0.883
MPRNet (Zamir et al., 2021) 33.54 0.927 30.89 0.880 27.56 0.779 33.57 0.954 25.28 0.955 30.17 0.899
DL (Fan et al., 2019) 33.05 0.914 30.41 0.861 26.90 0.740 32.62 0.931 26.92 0.931 29.98 0.876
AirNet (Li et al., 2022) 33.92 0.933 31.26 0.888 28.00 0.797 34.90 0.968 27.94 0.962 31.20 0.910
PromptIR (Potlapalli et al., 2023) 33.98 0.933 31.31 0.888 28.06 0.799 36.37 0.972 30.58 0.974 32.06 0.913
AdaIR (Cui et al., 2024c) 34.12 0.935 31.45 0.892 28.19 0.802 38.64 0.983 31.06 0.980 32.69 0.918

Ours 34.15 0.936 31.50 0.893 28.25 0.805 38.78 0.984 31.17 0.979 32.77 0.919

4.2 ALL-IN-ONE IMAGE RESTORATION

4.2.1 IMPLEMENTATION DETAILS

Following the recent algorithm (Potlapalli et al., 2023; Cui et al., 2024c), we perform all-in-one
experiments under three-task and five-task settings with Modumer-B. The dataset summary is pre-
sented in Table 9. The model is trained on 32 samples of size 128 × 128 in an iteration with a
learning rate of 2e−4 using Adam. The models are trained for 150 epochs with L1 loss function.

4.2.2 RESULUTS

For the three-task setting, the model is trained on the mixed datasets obtained from denoising, de-
hazing, and deraining. Table 10 shows that our model achieves an average score of 32.77 dB PSNR,
0.08 dB higher than the recent frequency-based AdaIR (Cui et al., 2024c). Moreover, our method
attains the best performance on most metrics. Particularly on the deraining problem, a 0.14 dB per-
formance gain is produced by our model over AdaIR. Figure 9 demonstrates that our model is more
effective in removing rain streaks, resulting in a noticeably cleaner image. We provide the result for
the five-task scenario in the Appendix.

5 CONCLUSION

This study presents an effective and efficient Transformer model for image restoration, termed Mod-
umer. The model incorporates the different downsampled self-attention layers with cascaded mod-
ulation designs, which can model omni-receptive field features, obtain a better balance between
complexity and accuracy, and map features into high-dimensional spaces. Moreover, we investi-
gate a bioinspired parameter-sharing mechanism in attention layers, improving efficiency and per-
formance. In addition, we introduce a feed-forward network to facilitate intra- and inter-domain
interactions. Extensive experimental results on ten datasets for general image restoration and two
all-in-one settings demonstrate the effectiveness of our model.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Cosmin Ancuti, Codruta O Ancuti, Christophe De Vleeschouwer, and Alan C Bovik. Night-time
dehazing by fusion. In IEEE International Conference on Image Processing, pp. 2256–2260,
2016.

Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Timofte, and Yulun Zhang. Retinexformer:
One-stage retinex-based transformer for low-light image enhancement. In Proceedings of the
IEEE International Conference on Computer Vision, 2023.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
In Proceedings of the European Conference on Computer Vision, 2022.

Sixiang Chen, Tian Ye, Yun Liu, Taodong Liao, Jingxia Jiang, Erkang Chen, and Peng Chen. Msp-
former: Multi-scale projection transformer for single image desnowing. In IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 1–5, 2023a.

Wei-Ting Chen, Hao-Yu Fang, Jian-Jiun Ding, Cheng-Che Tsai, and Sy-Yen Kuo. Jstasr: Joint
size and transparency-aware snow removal algorithm based on modified partial convolution and
veiling effect removal. In Proceedings of the European Conference on Computer Vision, pp.
754–770, 2020.

Wei-Ting Chen, Hao-Yu Fang, Cheng-Lin Hsieh, Cheng-Che Tsai, I Chen, Jian-Jiun Ding, Sy-
Yen Kuo, et al. All snow removed: Single image desnowing algorithm using hierarchical dual-
tree complex wavelet representation and contradict channel loss. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 4196–4205, 2021.

Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. Learning a sparse transformer network for
effective image deraining. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2023b.

Xiangyu Chen, Zheyuan Li, Yuandong Pu, Yihao Liu, Jiantao Zhou, Yu Qiao, and Chao Dong.
A comparative study of image restoration networks for general backbone network design. In
European Conference on Computer Vision, 2024.

Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xiaokang Yang, and Fisher Yu. Dual aggre-
gation transformer for image super-resolution. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 12312–12321, 2023c.

Bodong Cheng, Juncheng Li, Ying Chen, Shuyi Zhang, and Tieyong Zeng. Snow mask guided
adaptive residual network for image snow removal. arXiv preprint arXiv:2207.04754, 2022.

Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, and Sung-Jea Ko. Rethinking coarse-
to-fine approach in single image deblurring. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 4641–4650, 2021.

Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Focal network for image restoration. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 13001–13011, 2023a.

Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Image restoration via frequency selection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023b.

Yuning Cui, Wenqi Ren, Sining Yang, Xiaochun Cao, and Alois Knoll. Irnext: Rethinking convo-
lutional network design for image restoration. In Proceedings of the International Conference on
Machine Learning, 2023c.

Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Revitalizing convolutional network for
image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024a.

Yuning Cui, Wenqi Ren, and Alois Knoll. Omni-kernel network for image restoration. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 1426–1434, 2024b.

Yuning Cui, Syed Waqas Zamir, Salman Khan, Alois Knoll, Mubarak Shah, and Fahad Shahbaz
Khan. Adair: Adaptive all-in-one image restoration via frequency mining and modulation. arXiv
preprint arXiv:2403.14614, 2024c.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang, Fei Wang, and Ming-Hsuan Yang.
Multi-scale boosted dehazing network with dense feature fusion. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2020a.

Yu Dong, Yihao Liu, He Zhang, Shifeng Chen, and Yu Qiao. Fd-gan: Generative adversarial net-
works with fusion-discriminator for single image dehazing. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2020b.

Deniz Engin, Anil Genc, and Hazim Kemal Ekenel. Cycle-dehaze: Enhanced cyclegan for sin-
gle image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018.

Qingnan Fan, Dongdong Chen, Lu Yuan, Gang Hua, Nenghai Yu, and Baoquan Chen. A general
decoupled learning framework for parameterized image operators. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019.

Zhenxuan Fang, Fangfang Wu, Weisheng Dong, Xin Li, Jinjian Wu, and Guangming Shi. Self-
supervised non-uniform kernel estimation with flow-based motion prior for blind image deblur-
ring. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 18105–18114, 2023.

Xueyang Fu, Jie Xiao, Yurui Zhu, Aiping Liu, Feng Wu, and Zheng-Jun Zha. Continual image
deraining with hypergraph convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(8):9534–9551, 2023.

Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dynamic scene deblurring with param-
eter selective sharing and nested skip connections. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

Xin Gao, Tianheng Qiu, Xinyu Zhang, Hanlin Bai, Kang Liu, Xuan Huang, Hu Wei, Guoying
Zhang, and Huaping Liu. Efficient multi-scale network with learnable discrete wavelet transform
for blind motion deblurring. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2733–2742, 2024.

Chun-Le Guo, Qixin Yan, Saeed Anwar, Runmin Cong, Wenqi Ren, and Chongyi Li. Image de-
hazing transformer with transmission-aware 3d position embedding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5812–5820, 2022.

Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, and Shi-Min Hu. Visual atten-
tion network. Computational Visual Media, 9(4):733–752, 2023a.

Yun Guo, Xueyao Xiao, Yi Chang, Shumin Deng, and Luxin Yan. From sky to the ground: A large-
scale benchmark and simple baseline towards real rain removal. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023b.

Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal using dark channel prior. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(12):2341–2353, 2010.

Qibin Hou, Cheng-Ze Lu, Ming-Ming Cheng, and Jiashi Feng. Conv2former: A simple transformer-
style convnet for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2024.

Kui Jiang, Zhongyuan Wang, Peng Yi, Chen Chen, Baojin Huang, Yimin Luo, Jiayi Ma, and Junjun
Jiang. Multi-scale progressive fusion network for single image deraining. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2020.

Yeying Jin, Beibei Lin, Wending Yan, Yuan Yuan, Wei Ye, and Robby T Tan. Enhancing visibility
in nighttime haze images using guided apsf and gradient adaptive convolution. In Proceedings of
the ACM International Conference on Multimedia, pp. 2446–2457, 2023.

Lingshun Kong, Jiangxin Dong, Jianjun Ge, Mingqiang Li, and Jinshan Pan. Efficient frequency
domain-based transformers for high-quality image deblurring. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5886–5895, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Junyong Lee, Hyeongseok Son, Jaesung Rim, Sunghyun Cho, and Seungyong Lee. Iterative filter
adaptive network for single image defocus deblurring. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2034–2042, 2021.

Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
Benchmarking single-image dehazing and beyond. IEEE Transactions on Image Processing, 28
(1):492–505, 2018.

Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, and Xi Peng. All-in-one image restora-
tion for unknown corruption. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2022.

Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx, Rakesh Ranjan, Radu Timofte, and Luc
Van Gool. Efficient and explicit modelling of image hierarchies for image restoration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
18278–18289, June 2023.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 1833–1844, 2021.

Di Lin, Xin Wang, Jia Shen, Renjie Zhang, Ruonan Liu, Miaohui Wang, Wuyuan Xie, Qing Guo,
and Ping Li. Generative status estimation and information decoupling for image rain removal.
Advances in Neural Information Processing Systems, 35:4612–4625, 2022.

Chengxu Liu, Xuan Wang, Xiangyu Xu, Ruhao Tian, Shuai Li, Xueming Qian, and Ming-Hsuan
Yang. Motion-adaptive separable collaborative filters for blind motion deblurring. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 25595–25605,
2024.

Keng-Hao Liu, Chia-Hung Yeh, Juh-Wei Chung, and Chuan-Yu Chang. A motion deblur method
based on multi-scale high frequency residual image learning. IEEE Access, 8:66025–66036, 2020.

Lin Liu, Lingxi Xie, Xiaopeng Zhang, Shanxin Yuan, Xiangyu Chen, Wengang Zhou, Houqiang Li,
and Qi Tian. Tape: Task-agnostic prior embedding for image restoration. In European Conference
on Computer Vision, 2022.

Risheng Liu, Long Ma, Jiaao Zhang, Xin Fan, and Zhongxuan Luo. Retinex-inspired unrolling with
cooperative prior architecture search for low-light image enhancement. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2021a.

Ye Liu, Lei Zhu, Shunda Pei, Huazhu Fu, Jing Qin, Qing Zhang, Liang Wan, and Wei Feng. From
synthetic to real: Image dehazing collaborating with unlabeled real data. In Proceedings of the
ACM International Conference on Multimedia, pp. 50–58, 2021b.

Ye Liu, Lei Zhu, Shunda Pei, Huazhu Fu, Jing Qin, Qing Zhang, Liang Wan, and Wei Feng. From
synthetic to real: Image dehazing collaborating with unlabeled real data. In Proceedings of the
29th ACM international conference on multimedia, pp. 50–58, 2021c.

Yun-Fu Liu, Da-Wei Jaw, Shih-Chia Huang, and Jenq-Neng Hwang. Desnownet: Context-aware
deep network for snow removal. IEEE Transactions on Image Processing, 27(6):3064–3073,
2018.

Xu Ma, Xiyang Dai, Yue Bai, Yizhou Wang, and Yun Fu. Rewrite the stars. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5694–5703, 2024a.

Xu Ma, Xiyang Dai, Jianwei Yang, Bin Xiao, Yinpeng Chen, Yun Fu, and Lu Yuan. Efficient modu-
lation for vision networks. In The Twelfth International Conference on Learning Representations,
2024b.

Xintian Mao, Jiansheng Wang, Xingran Xie, Qingli Li, and Yan Wang. Loformer: Local frequency
transformer for image deblurring. In ACM Multimedia 2024, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings of the IEEE International Conference on Computer Vision, 2001.

Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
for dynamic scene deblurring. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

Vaishnav Potlapalli, Syed Waqas Zamir, Salman H Khan, and Fahad Shahbaz Khan. Promptir:
Prompting for all-in-one image restoration. Advances in Neural Information Processing Systems,
2023.

Rui Qian, Robby T Tan, Wenhan Yang, Jiajun Su, and Jiaying Liu. Attentive generative adversarial
network for raindrop removal from a single image. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2482–2491, 2018.

Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. Ffa-net: Feature fusion at-
tention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 11908–11915, 2020.

Yuhui Quan, Shijie Deng, Yixin Chen, and Hui Ji. Deep learning for seeing through window with
raindrops. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2463–2471, 2019.

Lingyan Ruan, Bin Chen, Jizhou Li, and Miuling Lam. Learning to deblur using light field generated
and real defocus images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 16304–16313, 2022.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Ziyi Shen, Wenguan Wang, Xiankai Lu, Jianbing Shen, Haibin Ling, Tingfa Xu, and Ling Shao.
Human-aware motion deblurring. In Proceedings of the IEEE International Conference on Com-
puter Vision, 2019.

Hyeongseok Son, Junyong Lee, Sunghyun Cho, and Seungyong Lee. Single image defocus deblur-
ring using kernel-sharing parallel atrous convolutions. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2642–2650, 2021.

Yuda Song, Zhuqing He, Hui Qian, and Xin Du. Vision transformers for single image dehazing.
arXiv preprint arXiv:2204.03883, 2022.

Chunwei Tian, Yong Xu, and Wangmeng Zuo. Image denoising using deep cnn with batch renor-
malization. Neural Networks, 2020.

Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, and Chia-Wen Lin. Stripformer: Strip
transformer for fast image deblurring. In Proceedings of the European Conference on Computer
Vision, 2022.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxim: Multi-axis mlp for image processing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5769–5780, 2022.

Jeya Maria Jose Valanarasu, Rajeev Yasarla, and Vishal M. Patel. Transweather: Transformer-
based restoration of images degraded by adverse weather conditions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2353–2363, 2022.

Tianyu Wang, Xin Yang, Ke Xu, Shaozhe Chen, Qiang Zhang, and Rynson W.H. Lau. Spatial atten-
tive single-image deraining with a high quality real rain dataset. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
Uformer: A general u-shaped transformer for image restoration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 17683–17693, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
enhancement. arXiv preprint arXiv:1808.04560, 2018.

James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil Burgess,
and Timothy EJ Behrens. The tolman-eichenbaum machine: unifying space and relational mem-
ory through generalization in the hippocampal formation. Cell, 183(5):1249–1263, 2020.

James CR Whittington, Joseph Warren, and Timothy EJ Behrens. Relating transformers to models
and neural representations of the hippocampal formation. arXiv preprint arXiv:2112.04035, 2021.

Jie Xiao, Xueyang Fu, Aiping Liu, Feng Wu, and Zheng-Jun Zha. Image de-raining transformer.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Ke Xu, Xin Yang, Baocai Yin, and Rynson W.H. Lau. Learning to restore low-light images via
decomposition-and-enhancement. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

Xiaogang Xu, Ruixing Wang, Chi-Wing Fu, and Jiaya Jia. Snr-aware low-light image enhancement.
In Proceedings of the IEEE conference on computer vision and pattern recognition, 2022.

Wending Yan, Robby T Tan, and Dengxin Dai. Nighttime defogging using high-low frequency
decomposition and grayscale-color networks. In Proceedings of the European Conference on
Computer Vision, pp. 473–488, 2020.

Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao. Focal modulation networks. Advances
in Neural Information Processing Systems, 35:4203–4217, 2022.

Wenhan Yang, Robby T. Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Deep
joint rain detection and removal from a single image. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang, and Jiaying Liu. Band representation-based
semi-supervised low-light image enhancement: Bridging the gap between signal fidelity and per-
ceptual quality. IEEE Transactions on Image Processing, 2021a.

Wenhan Yang, Wenjing Wang, Haofeng Huang, Shiqi Wang, and Jiaying Liu. Sparse gradient
regularized deep retinex network for robust low-light image enhancement. IEEE Transactions on
Image Processing, 2021b.

Tian Ye, Yunchen Zhang, Mingchao Jiang, Liang Chen, Yun Liu, Sixiang Chen, and Erkang Chen.
Perceiving and modeling density for image dehazing. In Proceedings of the European Conference
on Computer Vision, pp. 130–145, 2022.

Tian Ye, Sixiang Chen, Jinbin Bai, Jun Shi, Chenghao Xue, Jingxia Jiang, Junjie Yin, Erkang Chen,
and Yun Liu. Adverse weather removal with codebook priors. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 12653–12664, 2023.

Weihao Yu and Xinchao Wang. Mambaout: Do we really need mamba for vision? arXiv preprint
arXiv:2405.07992, 2024.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-
Hsuan Yang, and Ling Shao. Multi-stage progressive image restoration. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 14821–14831, 2021.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5728–5739,
2022a.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-
Hsuan Yang, and Ling Shao. Learning enriched features for fast image restoration and enhance-
ment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022b.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Koniusz. Deep stacked hierarchical multi-
patch network for image deblurring. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019a.

Jiale Zhang, Yulun Zhang, Jinjin Gu, Jiahua Dong, Linghe Kong, and Xiaokang Yang. Xformer:
Hybrid x-shaped transformer for image denoising. In The Twelfth International Conference on
Learning Representations, 2024.

Jing Zhang, Yang Cao, Shuai Fang, Yu Kang, and Chang Wen Chen. Fast haze removal for nighttime
image using maximum reflectance prior. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

Jinghao Zhang, Jie Huang, Mingde Yao, Zizheng Yang, Hu Yu, Man Zhou, and Feng Zhao.
Ingredient-oriented multi-degradation learning for image restoration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2023.

Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn Stenger, Wei Liu, and Hongdong Li.
Deblurring by realistic blurring. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2020.

Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling the darkness: A practical low-light
image enhancer. In Proceedings of the 27th ACM international conference on multimedia, 2019b.

Shihao Zhou, Duosheng Chen, Jinshan Pan, Jinglei Shi, and Jufeng Yang. Adapt or perish: Adaptive
sparse transformer with attentive feature refinement for image restoration. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2024a.

Shihao Zhou, Jinshan Pan, Jinglei Shi, Duosheng Chen, Lishen Qu, and Jufeng Yang. Seeing the
unseen: A frequency prompt guided transformer for image restoration. In European Conference
on Computer Vision, 2024b.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX

This appendix provides more experimental results, ablation studies, and visual comparisons.

A MORE EXPERIMENTAL RESULTS

In this section, we first provide experimental results on LOL-V2 (Yang et al., 2021b) for low-light
image enhancement. The numerical results are presented in Table 11. Our method significantly
outperforms the Transformer-based algorithm Retinexformer (Cai et al., 2023) by 0.43 dB PSNR.
The visual results are illustrated in Figure 10. Our model recovers more edges from the input image.
These results suggest the strong potential of our method for low-light image enhancement.

Table 11: Numerical comparisons on the LOL-V2-synthetic dataset (Yang et al., 2021b) for low-
light image enhancement.

Methods PSNR SSIM

RUAS (Liu et al., 2021a) 16.55 0.652
FIDE (Xu et al., 2020) 15.20 0.612
DRBN (Yang et al., 2021a) 23.22 0.927
KinD (Zhang et al., 2019b) 13.29 0.578
Restormer (Zamir et al., 2022a) 21.41 0.830
MIRNet (Zamir et al., 2022b) 21.94 0.876
SNR-Net (Xu et al., 2022) 24.14 0.928
Retinexformer (Cai et al., 2023) 25.67 0.930

Ours 26.10 0.944

Input Reference SNR Retinexformer Ours

Figure 10: Visual results on LOL-V2-Synthetic (Yang et al., 2021b).

Table 12: The numerical comparisons on five image restoration tasks under the all-in-one setting: de-
hazing (SOTS (Li et al., 2018)), deraining (Rain100L (Yang et al., 2017)), denoising (BSD68 (Mar-
tin et al., 2001)), deblurring (GoPro (Nah et al., 2017)), and low-light image enhancement (LOL-
V1 (Wei et al., 2018)). The results are reported in the form of PSNR/SSIM.

Method Dehazing Deraining Denoising Deblurring Low-Light Average

NAFNet (Chen et al., 2022) 25.23/0.939 35.56/0.967 31.02/0.883 26.53/0.808 20.49/0.809 27.76/0.881
MPRNet (Zamir et al., 2021) 24.27/0.937 38.16/0.981 31.35/0.889 26.87/0.823 20.84/0.824 28.27/0.890
MIRNetV2 (Zamir et al., 2022b) 24.03/0.927 33.89/0.954 30.97/0.881 26.30/0.799 21.52/0.815 27.34/0.875
SwinIR (Liang et al., 2021) 21.50/0.891 30.78/0.923 30.59/0.868 24.52/0.773 17.81/0.723 25.04/0.835
Restormer (Zamir et al., 2022a) 24.09/0.927 34.81/0.962 31.49/0.884 27.22/0.829 20.41/0.806 27.60/0.881

DL (Fan et al., 2019) 20.54/0.826 21.96/0.762 23.09/0.745 19.86/0.672 19.83/0.712 21.05/0.743
Transweather (Valanarasu et al., 2022) 21.32/0.885 29.43/0.905 29.00/0.841 25.12/0.757 21.21/0.792 25.22/0.836
TAPE (Liu et al., 2022) 22.16/0.861 29.67/0.904 30.18/0.855 24.47/0.763 18.97/0.621 25.09/0.801
AirNet (Li et al., 2022) 21.04/0.884 32.98/0.951 30.91/0.882 24.35/0.781 18.18/0.735 25.49/0.846
IDR (Zhang et al., 2023) 25.24/0.943 35.63/0.965 31.60/0.887 27.87/0.846 21.34/0.826 28.34/0.893

Ours 30.29/0.978 38.08/0.982 31.37/0.891 28.31/0.860 22.89/0.855 30.19/0.913

Moreover, we report experimental results under all-in-one image restoration, i.e., five-task setting.
The quantitative results are presented in Table 12. As seen, our method achieves a PSNR score of
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30.19 when averaging across all tasks, which is 1.85 dB higher than that of IDR (Zhang et al., 2023).
In particular, for the dehazing problem, our model significantly outperforms the second-best algo-
rithm (Zhang et al., 2023) by 5.05 dB PSNR. Despite not incorporating a complex dynamic mecha-
nism for identifying degradation types, aside from SA, our method consistently delivers promising
results across various all-in-one tasks, thanks to its robust representational capability.

Table 13: Ablation studies of the deployment strategy for different kinds of attention.

Scale 0 Scale 1 Scale 2 PSNR

Spatial Spatial Spatial 31.76
Channel Spatial Spatial 31.82
Channel Channel Spatial 31.62
Channel Channel Channel 31.55

Normal Attention (Zamir et al., 2022a) 31.50

Table 14: More ablation studies for DFFN.

Methods PSNR

Ours 31.82
only frequency branch in spatial-spectral interactions 31.76
w/o attention weight for spatial-spectral fusion 31.73

B MORE ABLATION STUDIES

Deployment strategy for attention. We apply channel-wise modulation block in the first scale
while using spatial-wise block in other scales, as spatial-wise SA is more expensive than channel ver-
sion when modeling large-scale features. In our case, the first scale includes the highest-resolution
features. Table 13 shows that our strategy achieves the best performance. Moreover, we experiment
by using only regular channel attention Zamir et al. (2022a) in all scales, achieving a 0.32 dB lower
performance than our full model. These results validate the efficacy of our design.

DFFN. We conduct more ablation studies for DFFN by removing or substituting certain operators.
Table 14 shows that removing the spatial branch in inter-domain fusion achieves 31.76 dB PSNR,
suggesting the significance of dual-domain feature fusion. Removing the attention weights leads to
31.73 dB PSNR, which is even lower than the result of using a single branch, e.g., frequency branch
(31.76 dB), demonstrating the importance of coordinating the fusion process.

Modulation design. In this part, we perform ablation studies for the modulation design. We use the
plain depth-wise convolutions with the same kernel size to supplant the filter operation, achieving
31.69 dB PSNR, which is 0.13 dB lower than our design.

Parameter-sharing mechanism. In our model, we share the parameters across CMB. We carry out
experiments to apply the parameter-sharing strategy in deeper scales, achieving lower performance
than our design (see Table 15). We also attempt to further share the parameters among DFFN in the
first scale, obtaining only 30.53 dB PSNR. Therefore, we only apply the mechanism in CMB for
better performance.

Position of downsampling. In CMB, we apply downsampling after the convolutions, which can
fully learn the spatial connectivity, as the channel-wise SA layer cannot model the real spatial pixel
interactions. We experiment by moving downsampling before convolutions, saving 1.89 GFLOPs
while achieving 0.11 dB lower PSNR. Finally, we choose to place downsampling after convolutions
in the CMB of our model.
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Table 15: Abltion studies for the parameter-sharing mechanism. Scale 0,1,2 means sharing parame-
ters within each scale of all scales.

Method PSNR

Scale 0 31.82
Scale 0,1 31.82
Scale 0,1,2 31.82

C MORE VISUAL RESULTS

Visual comparisons on more datasets are illustrated in Figure 11 and Figure 12.

Input Reference DualGCN SPDNet AST-B Ours

Figure 11: Image deraining comparisons on the SPAD (Wang et al., 2019) dataset.

Input Reference Restormer Stripformer LoFormer-L Ours

Figure 12: Motion deblurring comparisons on the HIDE (Shen et al., 2019) dataset.
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