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Abstract

Out-of-distribution (OOD) generalization issue is a well-known challenge within
deep learning tasks. In dynamic graphs, the change of temporal environments is
regarded as the main cause of data distribution shift. While numerous OOD stud-
ies focusing on environment factors have achieved remarkable performance, they
still fail to systematically solve the two issue of environment inference and utiliza-
tion. In this work, we propose a novel dynamic graph learning model named EpoD
based on prompt learning and structural causal model to comprehensively enhance
both environment inference and utilization. Inspired by the superior performance
of prompt learning in understanding underlying semantic and causal associations,
we first design a self-prompted learning mechanism to infer unseen environment
factors. We then rethink the role of environment variable within spatio-temporal
causal structure model, and introduce a novel causal pathway where dynamic sub-
graphs serve as mediating variables. The extracted dynamic subgraph can effec-
tively capture the data distribution shift by incorporating the inferred environment
variables into the node-wise dependencies. Theoretical discussions and intuitive
analysis support the generalizability and interpretability of EpoD. Extensive exper-
iments on seven real-world datasets across domains showcase the superiority of
EpoD against baselines, and toy example experiments further verify the powerful
interpretability and rationality of our EpoD.

1 Introduction

Dynamic graph learning aims to capture the evolution patterns of individual feature and global topol-
ogy in spatio-temporal graphs over time. It has extensive applications in real-world scenarios, such
as social relationship analysis [6, 61], traffic flow forecasting [3, 59, 64] and air quality prediction
[16, 23]. The dynamic evolution is a prominent characteristic of spatio-temporal graphs [4, 16, 47],
such as human interest and social development naturally undergo changes over time. This charac-
teristic inevitably gives rise to a issue of data distribution shifts. Given this issue, enabling models
to get temporal out-of-distribution (OOD) generalization ability poses a major challenge in dynamic
graph learning [51, 55, 63].

Actually, recent studies have paid attention to tackling the issue of temporal OOD generalization
[53, 58, 61]. They demonstrate that unseen temporal environments contribute to such distribution
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shift. For example, potential urban-hosted events can lead to out-of-distribution traffic state, and un-
recorded academic communication between individuals in citation networks may hide new patterns
of cooperation. Therefore, the research line relying on environment inference present a promising
solution for addressing the temporal OOD issue. This paradigm focuses on inferring underlying en-
vironment factors, and utilizing the extracted environment information to enhance the robustness of
dynamic graph learning against environment shifts. Although some works have achieved impressive
performance [53, 58], there remain limitations in both environment inference and utilization.

The judgment of existing limitations stems from two crucial observations. Firstly, unseen environ-
ments invariably encompass a wide range of factors, posing challenges in accurately determining
their quantities and scales. However, existing methods often rely on a predefined scale environment
codebook for inferring unseen environments [53, 58], which may infer unrealistic environment re-
sults. Secondly, the shift of environments in dynamic graphs fundamentally reflects in the changes
of structural associations [48, 65]. A real-world example is that the change of weather alters the
future flow of the traffic network by changing human’s trajectory. Nevertheless, existing methods
often prioritize using the inferred environment as additional information to augment raw features,
overlooking capturing the evolving structural associations [53, 58, 61]. Therefore, the existing dy-
namic graph OOD efforts face issues in both environment extraction and utilization, and the com-
prehensive solution to address both problems is currently lacking.

To tackle these limitations, we propose an Environment-prompted Dynamic Graph Learning (EpoD)
architecture. Firstly, we propose a novel self-prompted learning mechanism to infer underlying
environment representation. Given the lacking of environment labels and explicit scaling of envi-
ronments, our aim is to guide the network generalizing environment factors from historical data in
autonomous manner. The practices of language model inference on underlying semantics inspires
us to utilize prompt learning to achieve this goal [14, 31]. We propose a self-prompted learning
mechanism for spatio-temporal data to infer environment variables from historical data. By design-
ing learnable prompt tokens and an interactive prompt-answer squeezing mechanism, we enable the
model to effectively infer the compact and informative environment representations. Secondly, we
propose a novel Structural Causal Model (SCM) with dynamic subgraph as mediating variable to
enhance the adaptability of the network to environment shifts. Different from some approaches that
obtain the causal subgraph by partitioning the original graph [61], we design a node-centered sub-
graph extractor specifically tailored for spatio-temporal data. This design is derived from a profound
understanding of dynamic graph that the shift of environments within dynamic graphs invariably re-
sult in the changes of these asymmetric correlations between nodes. Our node-centered dynamic
subgraphs extractor can capture node-wise asymmetry, where each node has its unique subgraph
based on its environment states. Lastly, we conduct comprehensive experiments to evaluate the
generalizability of EpoD. On the one hand, we perform experiments over multiple cross-domain
datasets and introduce a more intricate long-series prediction task. On the other hand, we design
an environment-shaded toy dataset, named EnvST, to verify the generalization ability of EpoD. The
results show that EpoD can precisely perceive environment factors, and the generated dynamic sub-
graphs are equipped with both generalizability and interpretability. Our contributions are summa-
rized as follows:

• We systematically investigate the environment-based efforts to tackle the temporal OOD issue,
and observe the limitations of existing works in environment inference and utilization.

• To address existing challenges, we propose a novel Environment-prompted Dynamic Graph Learn-
ing (EpoD) architecture. Specifically, we introduce a self-prompted learning mechanism for
spatio-temporal data to infer underlying environment variables without preset scale. For the ex-
ploitation of inferred environment factors, we propose a structural causal model with dynamic
subgraphs for mediating variables to capture the effect of environment variable shifts on the data
distribution. Our work presents a pioneering practice jointly focusing and solving the issue of
environment inference and utilization.

• We conduct experiments over multiple cross-domain datasets, including traffics and social net-
works, to verify the effectiveness of our framework. And a toy dataset is designed to demonstrate
the generalizability and interpretability of EpoD.
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Figure 1: The architecture of EpoD. Left panel: the prediction of future evolution based on historical
observations. Right panel: the extraction process of node-centered dynamic subgraph.

2 Background

Preliminaries. We denote G = {Gt}Tt=1 as a dynamic graph across T steps, where Gt =
(Vt,X t,At) represents a snapshot of the graph at step t. The tensor X t ∈ RN×D indicates observed
features of N = |Vt| nodes at step t, where D denotes the feature dimension. At ∈ {0, 1}N×N is
the adjacency matrix describing the connectivity of graph Gt. Given the historical data X = {Gt}Tt=1,
dynamic graph learning aims to predict the future evolution patterns Y = {Gt}T+K

t=T+1, where K de-
notes the number of predicted future time steps. Historical observations X can be divided into the
accessible environment features XX and observed labels with evolution patterns YX, e.g., volumes
in traffic datasets, or links in social networks.

Problem Definition. There is a consensus that unseen environment factor, E, considered as the
primary reason for temporal OOD issue [58, 53]. In this work, we focus on capturing the invariant
evolution pattern of dynamic graph to tackle the temporal OOD issue.

Spatio-Temporal Graph Forecasting for OOD issue. Our work aims to systematically tackle
the challenges in existing environment-centered OOD approaches. Our specific practice in envi-
ronment inference and utilization is significantly distinct from existing works and has substantial
improvements. On the one hand, the self-prompted environment inference framework aims to guide
the network to adaptively infer environment variables from historical data by using well-designed
prompt tokens. Different from existing efforts relying on predefined environment scale [53, 58], our
methods advantageously eliminates human biases and ensures accurate extraction of the environ-
ment from real historical data. On the other hand, we propose a novel SCM with dynamic subgraph
as mediating variable. Compared to simply attaching environment embeddings to existing represen-
tations, our approach is more consistent with the understanding of dynamic graph data from a causal
perspective. Furthermore, unlike some approaches that rely on partition strategies commonly used
in static graph learning to extract subgraphs [61], we propose a node-centered dynamic subgraph
extraction method that is better suited for spatio-temporal graph scenarios.

Prompt Learning. Prompt learning was initially introduced to address the challenge of data scarcity
in language models [7, 12, 11]. By utilizing well-designed prompts, the model can effectively cap-
ture a broader space of data distributions and patterns during training, which is better at adapting
to input samples from different distributions. For an extended period, the complexity of prompt
design has been a hindrance preventing prompt learning from achieving broader applications. In
contrast to language data, human beings lack the intuitive cognition of both image and graph data,
making it challenging to design interpretable prompts templates. Recently, learnable prompts have
also been proven to have superior performance [29, 20]. Therefore, prompt learning is thriving in
computer vision research and graph learning [22, 30, 39]. Recently, the efforts of using prompt
learning to enhance spatio-temporal prediction is beginning to emerge, including [62] and [60]. The
former focuses on multi-attribute forecasting; the latter aims to enhance model generalization abil-
ity. However, there is lacking systematical research on prompt learning addressing temporal OOD
problems.

3



3 Methodology

In this section, we introduce a novel Environment-prompted Dynamic Graph Learning architecture
named EpoD. First, we propose a self-prompted learning mechanism to realize the awareness of
unseen environment factors. Second, we revisit the winding causal path from environment to graph
evolution, and a spatio-temporal learning framework utilizing dynamic subgraph as mediating vari-
ables is presented. Last, we provide theoretical analysis of EpoD from causal perspective to interpret
its excellent generalization ability.

3.1 Self-prompted learning for environment awareness

Existing methods typically infer environments by predefining the scale of the environment codebook,
which introduces human bias and has the potential to cause performance degradation. To tackle
this issue, we introduce an environment inference principle that extract underlying environment
representations from historical observations without predefining scales. Inspired by the remarkable
success of prompt learning in inferring underlying semantics and the multimodal generalization of
large language models (LLMs) [49, 35, 39], we propose a self-prompted learning mechanism (SPL)
to realize this environment inference principle.

Spatial-specified prompt design. Our SPL focuses on guiding models to effectively extract envi-
ronment variables from observed data by well-designed prompts. Therefore, the initial challenge we
need to address is the design of prompt tokens. Within spatio-temporal graphs, it is common for dif-
ferent nodes to exhibit diverse evolution patterns. Thus, the design of prompts should be specified on
spatial aspect to reflect node-wise distinctive evolution state. Given a dynamic graph G, we assign a
prompt token pi for each node, which is shared across temporal steps. However, the absence of prior
knowledge about environment information hinders us from adopting the template-based approach
to initialize pi. Fortunately, learnable prompts have revealed satisfactory performances on capturing
hidden mappings [39, 30]. Therefore, we initialize a learnable prompt token pi ∈ Rd for each i ∈ V ,
where d denotes the dimension of latent embedding space. The environment prompt tokens P for G
is then denoted as,

P = {pi}Ni=1 ∈ RN×d. (1)
Since P is specified on the spatial perspective, the node across different temporal snapshots shares
the same environment prompt. In the implementation, P is expanded as a new tensor of RT×N×d by
cloning T times.

Prompt-answer mechanism for environment squeezing. The next challenge to address is how
to effectively utilize the well-designed prompts to guide the model in extracting underlying envi-
ronment representations ZE ∈ RT×N×d. The premise of achieving this goal lies in profoundly
understanding the relationships between the variables in dynamic graph. The ability of Structural
Causal Model (SCM) to describe the relationship between variables offers a valuable framework for
our analysis [26, 27]. The SCM of dynamic graph includes the temporal environment information
E, spatial context C, historical observation X, and future evolving signals Y. Actually, X denotes
historical observations, which is the combination of XX and YX defined in Sec. 2. This causal model
can be formalized as,

P(X,Y|E,C) = P(Y|X,E,C)P(X|E,C). (2)
Therefore, we aim to squeeze environment variables E from the observable feature XX and the
observed labels with evolution patterns YX, which is similar to solving cloze problems. To accom-
plish this, we design an interactive squeezing mechanism gθ(·) to guide the model to squeeze out
the underlying environment variables through the interaction of learnable prompts P and the ob-
servable features XX. Specifically, we first perform a spatio-temporal network backbone hϕ(·) to
get nodes embedding Z = {zt1, · · · , ztN}Tt=1 ∈ RT×N×d by taking observable features XX as in-
puts. Then, gθ(·) decodes the learnable prompts P and encoded embedding Z to obtain prompt
answers ZE . In implementation, gθ(·) consists of three families of learnable parameters, i.e.,
WQ,WK ,WV ∈ RT×d×d. Three hidden state matrices are calculated by,

PQ = PWQ, ZK = ZWK , ZV = ZWV . (3)

The prompt answer ZE is obtained by,

ZE = softmax(
PQ(ZK)T√

d
)ZV + ϵ, (4)
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where ϵ ∼ N (0, I). Random noise is added to further enhance the robustness of inferred environ-
ment representation. Then, the ground-truth YX serves as the learning goal during this squeezing
process. We design a tractable objective to squeeze unseen environment representation ZE ,

min
ϕ,θ,P
LP = −E[logP(YX|XX,E)] = βE[KL(Pθ(ZE)||Pϕ(Z))]− E[logPϕ,θ(YX|ZE)], (5)

where β ∈ [0, 1] is a preset hyperparameter, and its sensitivity analysis is provided in Appendix G.1.

• The first term captures the similarity between environment states ZE and node embedding Z.
• The second term predicts the evolution rule YX only using inferred unseen environments ZE .

The objective of Eq. 5 implies that our prompt answers not only reflect the evolution of dynamic
graphs but also significantly differ from current available features.

Our design infers unseen environment factors into a continuous space, which remarkably distinctive
from previous methods with predefined and discrete environment scale [53, 58]. Our extracted ZE
can eliminate the bias stemming from inadequate prior knowledge of environment information.

Provable Squeezed Environment Answer. SPL enables the awareness of environment factors via
employing environment prompt framework. However, there is still indistinctness about the feasibil-
ity of our design. From the perspective of information theory [2, 5], the learning objective of SPL
can be restated as,

max
ϕ,θ,P

I(ZE ;YX)− βI(ZE ;XX). (6)

We will replace Eq. 5 with above Eq. 6 for later proof.
Theorem 3.1. If there exists a causal relationship between unseen environment pattern Z∗

E and the
label YX, Z∗

E is the optimal result of SPL objective.

Theorem 3.1 demonstrates the feasibility of SPL and we can always extract additional environment
factor if it exist. Detailed proof is provided in Appendix C.

3.2 Spatial-temporal Learning with Dynamic Subgraph

X

CE

Y X

CE

Y X
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Y
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XS

Figure 2: SCMs of dynamic graph. (a) Tradi-
tional generation understanding of dynamic graph;
(b) Indirect effect of environment factors; (c) Dy-
namic subgraph as mediating variable.

With the well-learned environment answers,
how to exploit such representations to achieve
spatio-temporal prediction becomes a natural
problem. Existing environment-centered ap-
proaches tend to directly treat the perceived en-
vironment embedding ZE as the additional fea-
ture. However, from the perspective of data
generation, the influence of environments on
data distribution shifts is usually reflected in
the changes of node-wise correlations. Current
methods fail to capture the causal effects of en-
vironment variables in dynamic graphs. In this
subsection, we introduce a spatio-temporal invariant learning approach using node-centered dy-
namic subgraph as the mediating variable.

A winding causal path in dynamic graph. We revisit the role of E in the spatio-temporal causal
model, and propose a novel SCM with dynamic subgraph XS as mediating variable as shown in Fig.
2(c). It can be formalized by,

P(Y,X|E,C) = P(Y|XS)P(XS|X,C)P(X|E,C). (7)

In contrast to the symmetric correlations between nodes in static graphs, the dependencies between
nodes in dynamic graphs are often directional and asymmetric. For example, there is a flow direction
between nodes in traffic network and certain node pairs may have different influence or importance
to each other in social network. As a result, the shift of environments within dynamic graphs always
leads to the changes of these asymmetric correlations between nodes. A typical example is that the
change of weather conditions always leads to a shift in the direction of traffic flow instead of bring
any new paths. Different from partition-based subgraph learning strategies investigated in static
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graphs, we design node-centered dynamic subgraph extractor tailored for dynamic graphs, where
each node has its unique subgraph based on its environment states. Such strategy not only captures
the impact of environments on internode dependencies, but also facilitates to mine the invariant
pattern of spatio-temporal evolution more interpretably.

Dynamic subgraph extraction for environment enhancement. We argue that the asymmetry of
environment factor between nodes often leads to clustering effects, such as the asymmetrical impor-
tance between the prominent individuals and their followers brings stable connectivity. We leverage
the relative entropy (Kullback-Leibler Divergence) to measure such asymmetry. Relative entropy is
a metric employed to quantify the disparity between two probability distributions, which exhibits
a notable feature of asymmetry, i.e., KL(P||Q) ̸= KL(Q||P). KL(P||Q) quantifies the degree of
match when using P as the reference distribution and approximating it with Q, while KL(Q||P)
quantifies the degree of match when using Q as the reference distribution and approximating it with
P. Such property of relative entropy offers significant advantages in quantifying asymmetric envi-
ronment distributions. This is because the asymmetric dependencies of environment distributions
also considers the influence of one environment factor on another as the reference basis. However,
computing the KL divergence between every pair of nodes KL(ZtE(i,:)||Z

t
E(j,:)) is computationally

intensive. To this end, we propose linear complexity quantification method using the mean distribu-
tion of node-level environment distributions as a proxy. St(i,j) represents the dependence from i on
j at time t,

St(i,j)= KL(Z̄tE ||ZtE(i,:))×KL(ZtE(j,:)||Z̄
t
E), (8)

where Z̄tE = MEAN(ZtE) denotes the mean distribution of node-level environment embedding.
This method utilizes Z̄tE as an intermediary to measure the environment dependency from node i
to j. The larger of St(i,j) indicates a greater gap of environment difference from node i to j, which
reflects the strong dependence. The asymmetric correlation matrix St ∈ RN×N at time t can be
calculated as,

St = (M t)T ·N t. (9)
M t ∈ R1×N and N t ∈ R1×N are respectively calculated from the two terms in Eq. 8,

M t = [KL(Z̄tE ||ZtE(1,:)),KL(Z̄tE ||ZtE(2,:)),...,KL(Z̄tE ||ZtE(N,:))], (10)

N t = [KL(ZtE(1,:)||Z̄
t
E),KL(ZtE(2,:)||Z̄

t
E),...,KL(ZtE(N,:)||Z̄

t
E)]. (11)

St(:,i) denotes potential nodes centered on node i and KL(·||·) indicates the Kullback-Leibler di-
vergence. We can extract node-centered L-hop subgraph Ât ∈ RN×N based on this environment-
enhanced correlation matrix St,

Ât = St ⊙ I((At)L), (12)
where⊙ denotes element-wise multiplication of matrices and L is a hyperparameter. L is set to 5 and
its sensitivity is discussed in Appendix G.1. I(·) is an indicator function that assigns a value of 1 to
elements in the matrix that are greater than 0, and assigns a value of 0 to the rest. We can get a series
of dynamic subgraphs that evolves over time Â ∈ RT×N×N . Meanwhile, we combine the features
of each node by concatenating environment answer ZtE to obtain enhanced X̂ t ∈ RN×(D+d),

X̂ t = CONCAT([X t,ZtE ]). (13)

The historical data enhanced by dynamic subgraph with environment representation is denoted as,

XS = {Ĝt}Tt=1 = {Vt, X̂ t, Ât}Tt=1. (14)

Dynamic graph prediction with generalizability. Finally, fψ encodes the dynamic subgraphs XS
via a spatio-temporal network backbone to predict future dynamic evolution. We obtain the learning
objective of EpoD,

min
ϕ,θ,P,ψ

L = −E[log Pψ(Y|XS)− log Pϕ,θ(YX|XX,P)]− βE[KL(Pθ(ZE)||Pϕ(Z|XX))]. (15)

We provide the training process of EpoD in Alg. 1. It is worth noting that our EpoD systematically re-
solves the limitations of environment inference and environment utilization faced by spatio-temporal
invariant learning methods. The two aspects of the design are not independent, but rather tightly cou-
pled. Moreover, our EpoD is pluggable that can be flexibly integrated with various backbones. In
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Table 1: The performance of traffic prediction tasks (12 → 24) on four real-world datasets. The
best results are shown in bold and the second best results are underlined.

Model PEMS08 PEMS04 SD(2019-2020) GBA(2019-2020)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GWNET 19.04±0.9 29.02±1.1 23.12±0.8 38.75±1.3 30.22±2.1 43.65±2.9 31.27±2.6 45.29±2.3
AGCRN 17.30±0.2 27.44±0.6 21.19±0.3 34.65±0.2 26.19±1.2 40.51±1.3 28.74±1.6 43.75±2.0
Z-GCNETs 19.24±0.3 28.40±0.2 22.55±0.5 36.27±0.7 28.21±1.7 41.32±1.8 29.87±1.2 43.11±2.2
DSTAGNN 17.56±0.3 26.29±0.2 21.22±0.7 36.65±0.2 26.34±1.4 41.31±1.6 30.11±2.0 42.99±2.7
STGNCDE 18.41±0.6 27.38±0.3 22.04±0.6 35.39±0.4 27.34±0.9 40.73±1.3 29.21±1.5 43.03±2.4
CaST 17.28±0.3 26.56±0.4 20.79±0.4 34.95±0.3 25.38±1.1 39.92±1.6 28.67±1.8 42.23±1.9
EopD(ours) 16.92±0.2 25.66±0.6 21.12±0.4 34.02±0.3 23.58±1.2 38.25±1.4 27.26±1.5 40.14±1.8

the experiments of traffic flow and social relationship prediction, we select Adaptive Graph Convo-
lutional Recurrent Network (AGCRN) [3] and Disentangled Dynamic Graph Attention Networks
(DDGAN) [61] as our STGNN backbone respectively.

Our approach does not require predictions of future unseen environments. Actually, we argue that
the underlying unseen environment factors within historical observations harbors valuable informa-
tion to guide evolution. Therefore, our focus lies in perceiving historical environment factors and
exploiting them appropriately to capture evolution-invariant pattern for prediction. The subsequent
experimental discussion can further validate such intuition.

3.3 Causal Interpretation of Dynamic Subgraphs

In this subsection, we provide a deeper understanding of EpoD in the causal theory perspective [28].

The mediating effect in the dynamic graph. The efforts on how temporal environment factors and
spatial contexts influence the evolution of dynamics graph has been extensively made. However,
even though some studies claim disentanglement of spatial-temporal dependencies, it is acknowl-
edged that true separation may not be fully achieved. Most of them inherently concentrated on
exploring the interplay between spatial and temporal dynamics. In fact, some pioneering researches
have revealed the temporal evolution mostly stem from the changes over spatial dependencies. To
this end, we summarize such indirect influence as mediating effect within dynamic graph, as shown
in Fig. 2(b). But according to the complete mediation effect theorem, this SCM eliminates the direct
effect of temporal variable E on future spatio-temporal evolution Y. This requires us to contemplate
whether C can serve as a mediation variable. Given the time-varying property of dynamic graph,
the only spatial context cannot sufficiently interpret the graphs evolution. Therefore, a mediating
variable simultaneously encapsulating spatial dependencies and temporal dynamics is required.

Dynamic subgraphs as mediation variable. The dynamic spatial variations induced by environ-
ment factors are essentially rooted in the changes of local dependencies. Thus, a novel SCM is
introduced, which employ dynamic subgraph XS as the mediation variable as illustrated in Fig. 2(c).
Dynamic subgraphs exhibit both temporal and spatial characteristics, also serve as the mediation
variable from X to Y. This design offers us a chance to address distribution shift issue along the
practices of causal adjustment [28]. We can observe a back-door path between causal path X and
Y, i.e., X ← C → XS → Y. The backdoor adjustment pattern leveraging do-calculus on dynamic
subgraph XS is,

P (Y = y|do(X = x)) =
∑
xS

P (Y = y|X = x,XS = xS)P (XS = xS). (16)

In essence, our EpoD can be viewed as employing backdoor adjustments to estimate P (Y|do(X))
by discovering dynamic subgraphs, where the prompted environment representations support the
subgraph discovery process. More discussion is provided in Appendix D.

4 Experiments

4.1 Experiment Setup

We introduce datasets, baselines and experiment settings, and details are leaved in Appendix E.
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Datasets. We employ seven cross-domain real-world dynamic graph datasets to evaluate our EpoD.
PEMS08 and PEMS04 [34] are classic medium-scale traffic network datasets from California with
5-minute intervals; SD and GBA [24] are newly proposed large-scale traffic network datasets. COL-
LAB [40] is an academic collaboration dataset comprising papers published in 16 years; Yelp [33]
is a business review dataset; ACT [18] shows students’ actions on a MOOC platform over 30 days.

Baselines. We compare EpoD with two families of baselines, i.e., six traffic flow prediction models
and six social link forecasting methods. Traffic flow prediction models: GWNET [52], AGCRN
[3], Z-GCNETs[8], DSTAGNN [19], STGNCDE [9], CaST [53]. Social link forecasting models:
DySAT[33], IRM[1], VREx[17], GroupDRO[32], DIDA[58], EAGLE [58].

Experiment settings. In the experiments of traffic flow prediction, our task is to predict the next
24 steps based on historical 12 steps observations (12 → 24). Moreover, we choose traffic data
from the SD and GBA datasets spanning from 2019 to 2020 in order to add the distribution shift
scenarios arising from COVID-19, where the training set is composed of data from 2019, while the
data from 2020 is divided into a validation set and a test set. The task of social relationship analysis
is to exploit past graphs to make link prediction in the next time step. In the training stage, we
selectively mask a shifted attribute link from COLLAB, Yelp and ACT to simulate the distribution
shift scenario encountered in the real world [61].

4.2 Performance Analysis on Real-world Datasets

Table 2: AUC score (% ) of future link prediction
task on real-world social relationship datasets. The
best results are shown in bold and the second best
results are underlined.

Model Collab Yelp ACT

DySAT 76.59±0.20 66.09±1.42 66.55±1.21
IRM 75.42±0.87 56.02±16.08 69.19±1.35
VREx 76.24±0.77 66.41±1.87 70.15±1.09
GroupDRO 76.33±0.29 66.97±0.61 74.35±1.62
DIDA 81.87±0.40 75.92±0.90 78.64±0.97
EAGLE 84.41±0.87 77.26±0.74 82.70±0.72
EopD(ours) 83.21±0.35 80.85±0.81 83.85±0.52

Traffic flow prediction. We evaluate our
EpoD with baselines based on Mean Abso-
lute Error (MAE) and Root Mean Square Er-
ror (RMSE), where lower values of them rep-
resent better performance. Tab. 1 shows the
results of EpoD on traffic flow data. We have
two observations: 1) our EpoD outperforms
all baselines on three datasets. The power-
ful long-sequence prediction ability of EpoD
demonstrates that our design is robust to en-
vironment perturbations and excels in captur-
ing the evolution patterns of dynamic graph.
We also note that CaST [53] obtains subop-
timal results on most datasets and even opti-
mal results on PEMS04. This indicates that
it is effective to tackle the temporal distribu-
tion shift issue by studying environment factors under the guidance of causal theory. 2) EpoD ex-
hibits a more pronounced capability for prediction improvement on two large-scale traffic datasets.
It indicates that EpoD is better suited for addressing the distribution shift issue caused by extremely
intricate environment perturbations, which is the main challenge posed by large-scale traffic data.
We also discuss the interpretability of dynamic subgraphs in Appendix G.3.

Social link forecasting. Tab. 2 presents the performance of EpoD on social link prediction tasks.
Our model outperforms all baselines on two datasets under distribution shifts. We also observe that
EAGLE [58] achieves one best performance and other sub-optimal results, which is comparable to
our method. It proves that the approaches of perceiving environments can tackle the distribution
shifts issue in dynamic graph. Besides, our extracted continuous environment representations are
more expressive than the environment factors with pre-defined scales.

4.3 Toy Dataset

We manually design a toy dataset EnvST with temporal distribution shift to explore the general-
izability of EpoD. The feature of each node in EnvST encompasses three components, i.e., [xA,
xB , xC], where xA and xB represent evolution-causal features but xB is masked after the data
is generated, xC indicates available evolution-spurious feature. To simulate the temporal distri-
bution shift in the dynamic graph, the training and test dataset of xA, xB and xC are sampled
from distributions with significant differences separately. The label of each node on the EnvST
at t step is activated by updated feature yti ∼ Bern(σ(zti)), where σ(·) is the sigmoid func-
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tion. We conduct experiments from the following two aspects: 1) we investigate whether EpoD
has the capability to perceive masked environment feature xB , 2) we study whether EpoD can
identify and remove the spurious correlation xC . More analysis can be found in Appendix E.4.
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Figure 3: Analysis on the toy dataset.

Powerful perception for unseen environment.
Fig. 3(a) and 3(b) show the distribution differ-
ence between masked feature xB and prompted
environment feature ZE , where experiments
are conducted on EnvST under the scenario of
distribution shift. Fig. 3(a) shows our prompted
environment feature ZE can cover more than
half of the shifted features in the future steps.
As shown in Fig. 3(b), we observe that our
prompted environment variables can effectively
cover slight early signal and utilize it to tackle
OOD issue.

Robust spurious information identification
ability. We then explore whether our EpoD can filter out the disturbance of xC . Specifically, we
have the following experiment design. Consider xC is sampled from N (µ, I), we set µ ∈ [0, 10]
and record the performance of EpoD under the influence of different spurious information as shown
in Fig. 7. We can observe that the fluctuations in prediction performance consistently fall within the
acceptable error bounds. Therefore, we can conclude that EpoD have the ability to identify spurious
information xC .

4.4 Ablation Study
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Figure 4: A comparison of learn-
able prompts design approaches.

We conduct ablation studies from the following two aspects.

Temporal shared learnable prompts. In spatio-temporal
graphs, we can observe different nodes always reveal hetero-
geneous evolution patterns. Thus, we design temporal shared
node-wise learnable prompts. In essence, this design is driven
by both resource consumption and real-world scenarios. There
are still two potentially effective design approaches: a single
learnable prompt shared globally (SingleP) and node-private
learnable prompts (PrivateP). The former only initializes a
globally shared prompt for the dynamic graph P ∈ Rd; the
latter assigns learnable prompts to each node of each snapshot
P ∈ RT×N×d. To this end, we compare three design methods
in terms of accuracy and efficiency. Fig. 4 shows the results of
ablation, where the bars represent the time consuming and the
lines depict accuracy. We have the following two observations.
1) From the aspects of accuracy, the design of EpoD and PrivateP have similar performance, and
SingleP is significantly inferior to them. 2) From the aspects of efficiency, it is understandable that
SingleP has the highest training efficiency and PrivateP is the least efficient. The efficiency of EpoD
falls between them, yet it remains competitive with SingleP. Therefore, we can conclude that our
design stands out as the optimal choice considering both efficiency and accuracy.

Table 3: Ablation results on dynamic subgraph
in EpoD. MAE performance on PEMS08 and
PEMS04, AUC(%) score on Yelp.

Model PEMS08 PEMS04 Yelp

EpoD-NoSub 17.45 21.93 76.34
EpoD-PartitionSub 18.09 22.04 77.35
EopD(ours) 16.92 21.12 80.85

The necessity of dynamic subgraph de-
sign. We aim to investigate the importance
of dynamic subgraphs and explore which sub-
graph extraction strategy is more suitable for
dynamic graph learning. Specifically, we
first construct two variants of EpoD, i.e.,
EpoD-NoSub and EpoD-PartitionSub. EpoD-
NoSub is a variant of EpoD that does not
utilize dynamic subgraphs for spatiotempo-
ral prediction, which just uses the perceived
environment only by incorporating features.
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EpoD-PartitionSub means an EpoD variant with partition-based subgraph extraction strategy like
static graph learning. We perform ablation experiments on PEMS08, PEMS04 and Yelp, as shown
in Tab. 3. First, we observe that the performance difference between EpoD and EpoD-NoSub is
substantial, with a maximum gap exceeding 2. It means the utilization of dynamic subgraphs not
only enhances interpretability but also is crucial for improving generalization performance. Second,
we EpoD had a more pronounced effect than EpoD-PartitionSub. In addition, more experiments
show that EpoD is more stable than EpoD-PartitionSub.

4.5 Efficiency Analysis

Table 4: Efficiency analysis of EpoD
(s/epoch).

Dataset DIDA EAGLE EpoD

COLLAB 11.21 12.05 11.84
Yelp 6.89 7.38 7.34
ACT 9.27 9.76 9.59

We analyze the efficiency of EpoD theoretically and
practically. We utilize |V | and |E| to denote the num-
ber of nodes and edges in the graph, d to represent the
dimension of implicit representation, and T to repre-
sent the time step of historical observations. The time
consumption mainly comprises three components: the
spatio-temporal graph aggregation process, the prompt
answer process, and the dynamic subgraphs sampling
process. The time complexity of the spatio-temporal ag-
gregation is O(T ·(|E|·d+|V |·d2)). The prompt answer
process primarily involves a cross-attention operation, with a time complexity of O(T · |V | · d). The
dynamic subgraphs sampling module implements node-centered sampling, with a time complexity
of O(T · |V |). Therefore, the time complexity of EpoD is O(T · d · |E| + T · (1 + d + d2) · |V |).
In conclusion , EpoD exhibits linear time complexity concerning the number of nodes and edges,
which is competitive with existing dynamic GNNs such as DIDA, EAGLE, and CaST.

We also conduct efficiency comparisons of EpoD, DIDA, and EAGLE in COLLAB, Yelp, and ACT
datasets, measuring the time taken per epoch (s/epoch). All experiments are run on an NVIDIA
A100-PCIE-40GB. Empirically, we observe that the operational efficiency of our method is compet-
itive with existing approaches.

5 Conclusion and Future Work

In this paper, we propose a novel dynamic graph learning framework EpoD to tackle the temporal dis-
tribution shift issue by exploiting prompt learning. Inspired by the powerful ability of prompt learn-
ing in perceiving underlying semantic and causal associations, we first introduce a self-prompted
environment inference mechanism. This approach aims to extract underlying environment vari-
ables that potentially influence temporal distribution shift. Subsequently, we propose a novel causal
pathway that leverages dynamic subgraphs as mediating variables to effectively utilize the inferred
environment embedding. Experiments on real-world datasets and toy examples show that our EpoD
effectively improve the dynamic graph learning under temporal shifts, especially boosting the inter-
pretability via dynamic subgraphs.

Limitations. One of the limitation of our work is its strong dependence on graph topology. Specif-
ically, our subgraph discovery strategy essentially is the node filtering based on K-hop neighbors,
which can be regarded as subtracting elements from the graph topology. However, the graph topol-
ogy constructed by distance-based adjacency matrix always lacks adaptability to dynamic changes
in the relationships between nodes [53]. In the future, we aim to improve the extraction process of
node-centered dynamic subgraphs. We intend to form subgraphs from an empty topology by taking
into account both the perceived environment embeddings and the initial distance information.
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A Broader impacts

Dynamic graph learning models are widely used to support social development, such as recommen-
dation systems and smart cities. However, with the increasing complexity of data scale and ap-
plication scenarios, the distribution shifts between training and test data have become a significant
obstacle in the development of dynamic graph learning. In light of this, our work aims to address the
issue of data distribution shifts in the model and promote the broader application of graph learning
in various fields. Therefore, our work aims to develop a model with the out-of-distribution general-
ization ability and thereby promote the widespread application of dynamic graph learning in various
fields.

We ensure the full ethical compliance of our work, and all the datasets we utilize are publicly avail-
able. Our work does not involve human subjects and does not introduce any potential negative social
impacts or issues related to privacy and fairness.

B Notations

Table 5: Classification accuracies for naive Bayes and flexible Bayes on various data sets.

NOTATIONS DESCRIPTIONS

G = {Gt}Tt=1 A DYNAMIC GRAPH ACROSS T STEPS

Gt = (Vt,X t,At) A t-STEP GRAPH WITH THE NODES Vt , FEATURES X t AND EDGES At

X t ∈ RN×D THE FEATURE MATRIX X t OF t-STEP GRAPH SNAPSHOT

P ∈ RT×N×d LEARNABLE PROMPTS MATRIX OF RT×N×d

X = (XX, YX) HISTORICAL OBSERVATIONS IN PREDICTION TASKS

XS = {Vt, X̂ t, Ât}Tt=1 HISTORICAL OBSERVATIONS REPRESENTED BY DYNAMIC SUBGRAPHS

E TEMPORAL ENVIRONMENT VARIABLE IN PREDICTION TASKS

Y THE FUTURE EVOLUTION TREND IN PREDICTION TASKS

XX THE OBSERVABLE FEATURE OF HISTORICAL OBSERVATIONS

YX THE OBSERVED LABELS WITH EVOLUTION PATTERNS

ZE CONTINUOUS FEATURES OF ENVIRONMENT VARIABLES

Z NODE EMBEDDING BY ENCODING ORIGINAL FEATURES

C SPATIAL VARIABLE IN STRUCTURAL CAUSAL MODEL

gθ(·) A CROSS-ATTENTION NETWORK

hϕ(·) A SPATIO-TEMPORAL NETWORK BACKBONE

fψ(·) A SPATIO-TEMPORAL NETWORK BACKBONE IN FINAL PREDICTION STAGE

C Detailed Proof of Theorem 3.1

Lemma 3.1. (The Chain Rule for Mutual Information [2]) For any set of random variables X , Y ,
and Z, the chain rule is expressed as

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ), (17)

where I(X;Y, Z) denotes the mutual information between X , Y , and Z, I(X;Y ) represents the
mutual information between X and Y , and I(X;Z|Y ) represents the conditional mutual information
between X and Z given Y . The rule signifies that the overall mutual information in the system can
be decomposed into two components: the mutual information between X and Y , and the conditional
mutual information between X and Z given Y . It reflects how information is transmitted and shared
within complex systems.

Theorem 3.1. If there exists a causal relationship between unseen environment pattern Z∗
E and the

label XX, Z∗
E is the optimal solution of SPL objective.

Proof. Consider The Chain Rule for Mutual Information, we derive the following equation:

I(ZE ;YX) = I(YX;XX,ZE)− I(XX;YX|ZE) (18)
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I(ZE ;XX) = I(XX;ZE ,YX)− I(XX;YX|ZE) (19)

We then get I(ZE ;YX)−βI(ZE ;XX) = I(YX;XX,ZE)−(1−β)I(XX;YX|ZE)−βI(XX;ZE ,YX).
Thus, optimizing Eq. 6 is to maximize I(YX;XX,ZE) and minimize (1 − β)I(XX;YX|ZE) +
βI(XX;ZE ,YX). Next, we investigate whether Z∗

E is the result of optimization.

(i) Maximizing I(YX;XX,ZE) reflects the combination of XX and ZE can make optimal prediction.
Since XX is constant, ZE = Z∗

E ensures that the features used for prediction have the greatest
overlap with the ground-truth.

(ii) Since I(XX;YX|ZE) ≥ 0 and I(XX;ZE ,YX) ≥ 0. If β ∈ [0, 1], the lower bound of (1 −
β)I(XX;YX|ZE) + βI(XX;ZE ,YX) is 0. Next, we prove our SPL can achieve I(XX;YX|Z∗

E) = 0
and I(XX;Z∗

E ,YX)) = 0 in detail. I(XX;YX|Z∗
E) represents the conditional mutual information

between XX and YX given Z∗
E . Because we manually add random noise ϵ at Eq. 4, our model can be

viewed as a map YX = f(Z∗
E)+ϵ. Obviously, ϵ is independent of YX. We can get I(XX;YX|Z∗

E) =
0. I(XX;Z∗

E ,YX)) = 0 is also proven the independence between XX and Z∗
E .

We have proved it.

D Causal Interpretation of Dynamic Subgraphs

X
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XS

Figure 5: SCMs of dynamic graph. (a) Traditional generation understanding of dynamic graph; (b)
Indirect effect of environment factors; (c) Dynamic subgraph as mediating variable.

With the causal theory [28], we can build a coherent progression for the proposal of EpoD.

The Structural Causal Model in the dynamic graph. The Structural Causal Model (SCM) in
the dynamic graph fosters a deeper understanding of the generation process of spatio-temporal
graphs. Many methodologies have achieved impressive performance in addressing the issue of
spatial-temporal distribution shifts. The widely utilized SCM is shown in Fig. 5(a).

• E → X ← C. The historical observation X consists of two parts: temporal environment
variable E and spatial context C. In many works, these two aspects are often treated as
disjoint factors and discussed decouplingly, i.e, E ⊥ C.

• E → Y ← C. Temporal environment variable E and spatial context C also determine the
future evolution trend Y. Most studies keep this assumption that historical observations X
and future evolution Y are influenced by the same E and C. However, this is not the case
in the real-world dynamic graphs, giving rise to the distribution shift issue.

• X → Y. Historical observations are useful for predicting future evolution. A thorough
understanding of historical observations serves as a crucial foundation for exploring the
invariant evolution model of dynamic graphs.

The mediating effect in the dynamic graph. The efforts on how temporal environment factors and
spatial contexts influence the evolution of dynamics graph has been extensively made. However,
even though some studies claim disentanglement of spatial-temporal dependencies, it is acknowl-
edged that true separation may not be fully achieved. Most of them inherently concentrated on
exploring the interplay between spatial and temporal dynamics. In fact, some pioneering researches
have revealed the temporal evolution mostly stem from the changes over spatial dependencies. To
this end, we further summarize such indirect influence as mediating effect within dynamic graph, as
shown in Fig. 5(b).
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• E → C → X. The historical observation X is seen as the evolution process of spatial
context C, where C covers the temporal environment information E.

• X ← C → Y. Spatial context C directly determine current observations X and future
evolution trend Y.

But according to the complete mediation effect theorem, this SCM eliminates the direct effect of
temporal variable E on future spatio-temporal evolution Y. This necessitates us to contemplate
whether C has the capacity to serve as a mediation variable. Given the time-varying property in
dynamic graph, the only spatial context cannot sufficiently interpret the temporal evolution of graphs.
Therefore, a mediating variable simultaneously encapsulating spatial dependencies and temporal
dynamics is required.

Dynamic subgraphs as mediating variables. The dynamic spatial variations induced by environ-
ment factors are essentially rooted in the changes of local dependencies. Thus, a novel SCM is
introduced, which employ dynamic subgraph XS as the mediation variable as illustrated in Fig. 5(c).

• X← C→ XS → Y. Dynamic subgraph XS is more abundant than the spatial context C. In
other words, dynamic subgraph XS utilizes substructures to encompass spatial information
C, capturing temporal environment factors E through dynamic evolutive subgraphs.

Dynamic subgraphs exhibit both temporal and spatial characteristics, also serve as the mediation
variable from X to Y. This design offers us a chance to address distribution shift issue along the
practices of causal adjustment [28]. We can observe a back-door path between causal path X and
Y, i.e., X ← C → XS → Y. The backdoor adjustment pattern leveraging do-calculus on dynamic
subgraph XS is,

P (Y = y|do(X = x)) =
∑
xS

P (Y = y|X = x,XS = xS)P (XS = xS) (20)

In essence, our EpoD can be viewed as employing backdoor adjustments to estimate P (Y|do(X)) by
discovering dynamic subgraphs, where the prompted environment supports the subgraph discovery
process.

E Experiment Details

E.1 Datasets

Our experimental design included the selection of seven real-world dynamic graph datasets from
two distinct domains. The detailed statistics of the datasets are as shown in Tab. 6. We select a
shifted link attribute from COLLAB, Yelp and ACT datasets respectively to simulate the distribution
shift scenario in the real world. The shifted attribute links become accessible only during the out-
of-distribution (OOD) testing stage. This scenario is more practical and challenging in real-world
situations, as the model cannot capture any information about the filtered links during training and
validation.

PEMS08 [34] is collected from the Caltrans Performance Measurement System (PeMS), which
records the real traffic network flow data from 07/01/2016 to 08/31/2016. It delineates a dynamic
graph data of a traffic network with 170 sensors across 17,856 steps. Among the known traffic
datasets, it falls into the category of small-scale dataset.

PEMS04 [34] records the real traffic network flow data from 01/01/2018 to 02/28/2018. It describes
a dynamic graph data of a traffic network with 307 sensors across 16,992 steps. It belongs to a
medium-scale traffic dataset.

SD [24] is a sub-dataset of the large-scale dataset CA proposed by [24]. It comprises traffic flow
data recorded by 716 sensors in San Diego county from 01/01/2017 to 12/31/2021.

GBA [24] is a larger traffic dataset than SD, which is also a sub-dataset of the large-scale dataset
CA. It contains traffic flow data provided by 2,352 sensors in 11 counties situated in the Greater Bay
Area from 01/01/2017 to 12/31/2021.
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COLLAB [40] is an academic collaboration dataset comprising papers published between 1990 and
2006, spanning 16 graph snapshots. In this dataset, nodes represent authors, and edges represent co-
authorship relationships. The edges include five attributes based on co-authored publications: "Data
Mining", "Database", "Medical Informatics", "Theory" and "Visualization".

Yelp [33] is a dataset containing customer reviews on businesses. In this dataset, nodes represent
customers and businesses, while edges capture review behaviors. The edges are associated with five
attributes based on business categories: "Pizza", "American (New) Food", "Coffee & Tea", "Sushi
Bars" and "Fast Food".

ACT [18] characterizes student interactions on a MOOC platform over a span of one month, consist-
ing of 30 graph snapshots. In this dataset, nodes represent students or the targets of actions, while
edges signify various student actions.

Table 6: Statistics of the real-world dynamic graph datasets.

DATASET # NODES # EDGES # GRAPH SNAPSHOTS TEMPORAL INTERVAL

PEMS08 170 276 17,856 5 MINUTES

PEMS04 307 338 16,992 5 MINUTES

SD 716 17,319 525,888 5 MINUTES

GBA 2,352 61,246 525,888 5 MINUTES

COLLAB 23,035 151,790 16 1 YEAR

YELP 13,095 65,375 24 1 MONTH

ACT 20,408 202,339 30 1 DAY

E.2 Detailed Implementation

Algorithm 1: The training process of EpoD

Input: historical dynamic graph data X = {Gt}Tt=1
Initial: dynamic graph encoders hϕ and fψ , cross-attention mechanism decoder gθ, learnable
prompt P, the number of epochs K
for i = 1 to K do

Environment prompt stage:
ZE = gθ(P,Z) + ϵ, Z = hϕ(XX) (ϵ ∼ N (0, I))
ŶX = Linear(ZE)
Environment utilization stage:
St = (M t)T ·N t as shown in Eq. 9
Ât = St ⊙ (At)K , X̂ = CONCAT([X ,ZE ])
XS = {Ĝt}Tt=1 = {Vt, X̂ t, Ât}Tt=1

Ŷ = fψ(XS)
Optimizing:
min
ϕ,θ,P,ψ

L = −E[logPψ(Y|XS) + log Pϕ,θ(YX|XX,P)] + βE[KL(Pθ(ZE)||Pϕ(Z|XX))]

end for
Return hϕ, fψ , gθ and P

We implement our EpoD with PyTorch 1.11.0 on a server with NVIDIA A100-PCIE-40GB. The
detailed training process is shown in Alg. 1. All experiments are repeated with 10 different ran-
dom seeds of [1,2,3,4,5,6,7,8,9,10]. The reported results include the mean and standard deviation
obtained from these 10 runs.

Traffic flow prediction. In the experiments of traffic flow prediction, our task is to predict the next
24 steps based on the historical 12 steps observations (12 → 24). Besides, we choose traffic data
from the SD and GBA datasets from 2019 to 2020 in order to add the distribution shift scenarios
arising from COVID-19. The selected spatio-temporal graph neural network backbone is Adaptive
Graph Convolutional Recurrent Network (AGCRN) [3].
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Social link prediction. The task of social relationship analysis is to exploit past graphs to make
link prediction in the next time step. Following the measures of [61], we introduce perturbations
to test data to simulate the scenario of distribution shift in those datasets. Specifically, we select
Data Mining and Pizza as the shifted attributes in COLLAB and Yelp. For dataset ACT, we employ
K-Means to cluster the action features into five categories and randomly select a certain category
(the 5th cluster) of edges as the shifted attribute. Besides, Disentangled Dynamic Graph Attention
Networks (DDGAN) [61] is chosen as our spatio-temporal graph neural network backbone.

E.3 Metrics

We utilize Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to assess the per-
formance of our EpoD and baselines. Both metrics quantify the error between model predictions
and actual observations in regression tasks. A smaller value for these metrics indicates better model
performance. MAE is less sensitive to outliers due to its use of absolute differences, while RMSE is
more sensitive to large errors due to its use of squared differences. Given the actual observation Yi
and the corresponding predicted value Ŷi for n samples, two metrics are calculated as follows:

MAE =
1

n

n∑
i=1

|Yi − Ŷi| (21)

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)
2
. (22)

E.4 Toy dataset

We manually design a toy dataset EnvST with temporal distribution shift to explore the generalizabil-
ity of EpoD. Tab. 7 describes the statistical information of EnvST. Specifically, EnvST illustrates the
evolution sequence of a graph with 100 nodes across 1000 steps, where the topology of each snap-
shot does not change over time. The feature of each node in EnvST encompasses three components,
i.e., [xA, xB , xC], where xA and xB represent evolution-causal features but xB is masked after
the data is generated, xC indicates available evolution-spurious feature. To simulate the temporal
distribution shift in the dynamic graph, the training and test dataset of xA, xB and xC are sampled
from distributions with significant differences separately. The label of each node on the EnvST at t
step is activated by updated feature yti ∼ Bern(σ(zti)), where σ(·) is the sigmoid function.

𝑥 𝑥 𝑥

Available evolution-causal feature Unseen evolution-causal feature Available evolution-spurious feature

Figure 6: Feature description of the toy dataset.

Table 7: Statistics of the toy dataset.

NOTATION DESCRIPTION DIMENSION

N THE NUMBER OF NODES IN THE GRAPH 100
T THE NUMBER OF EVOLUTION STEPS OF DYNAMIC GRAPHS 1000
xA AVAILABLE EVOLUTION-CAUSAL FEATURE 3
xB UNSEEN EVOLUTION-CAUSAL FEATURE 3
xC AVAILABLE EVOLUTION-SPURIOUS FEATURE 3
y EVOLUTION LABEL 1

As shown in Fig. 6, the feature of each node in EnvST encompasses three components, i.e., [xA, xB ,
xC]. xA and xB represent evolution-causal features but xB is masked after the data is generated,
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xC indicates available evolution-spurious feature. To simulate the temporal distribution shift in the
dynamic graph, the training and test dataset of xA, xB and xC are sampled from distributions with
significant differences separately. The label of each node on the EnvST at t step is activated by
updated feature yti ∼ Bern(σ(zti)), where σ(·) is the sigmoid function. The feature is updated by
aggregating the neighbor information of the last k time steps,

zti =
∑

l=t,...,t−k

∑
j∈Ni

Aggregate(xlA(j), x
l
B(j)). (23)
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Figure 7: Performance is influenced by spurious information.

We conduct experiments from the following two aspects: 1) we investigate whether EpoD has the
capability to perceive masked environment feature xB , 2) we study whether EpoD can identify and
remove the spurious correlation xC .

Powerful perception for unseen environment. Fig. 3(a) and 3(b) show the distribution difference
between masked feature xB and prompted environment feature ZE , where experiments are con-
ducted on EnvST under the scenario of distribution shift. There is no doubt that ZE can match the
masked xB in the steady historical observation sequences, before shift point in these figures. More
importantly, we focus on the perception ability of prompt learning after the distribution shift occurs.
First, we categorize the scenarios of temporal distribution shift into two types: sharp shifts and shifts
with signals. The former indicates that any distribution shift signal can not be obtained from histor-
ical sequences. Fig. 3(a) shows our prompted environment feature ZE can still cover more than
half of the shifted features in the future steps. The latter illustrates the signals of distribution shift
has begun to emerge slightly in historical observations, which is a commonplace scenario in the
real world. For example, those individuals who were used to planning purchased warm clothes in
advance before the temperatures plummeted. As shown in Fig. 3(b), we observe that our prompted
environment variables can effectively cover slight early signal and utilize it to tackle OOD issue.

Robust spurious information identification ability. We then explore whether our EpoD can filter
out the disturbance of xC . Specifically, we have the following experiment design. Consider xC is
sampled fromN (µ, I), we set µ ∈ [0, 10] and record the performance of EpoD under the influence of
different spurious information as shown in Fig. 7. We can observe that the fluctuations in prediction
performance consistently fall within the acceptable error bounds. Therefore, we can conclude that
EpoD have the ability to identify spurious information xC .

F More Realted Works

Dynamic Graph Learning. Graph Neural Networks (GNNs) [10, 37, 54, 44, 36] and Sequence
Neural Networks (SNNs) [56, 15] have been extensively studied and have achieved great success in
real-world tasks. The GNN models we often use are GCN, GIN, PNA, etc; SNNs include LSTM,
RNN, TCN, etc. Therefore, spatio-temporal graph learning models have been widely studied in re-
cent years [50, 46, 45, 41, 43, 42]. Based on varying interpretations of the correlation between tem-
poral and spatial information, the current works are undertaken along two research lines. One claim
is to study temporal and spatial information in a decoupled manner, which is potentially present in
most current works [3, 19, 61]. Due to the intricate temporal and spatial relationships in reality, they
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often fail to offer sufficient interpretability and generalizability. The other one argues that spatial
context is influenced by the temporal information [65, 53]. These methods depict spatiotemporal
scenes that align more closely with the complexities of the real world. Moreover, this also presents
a feasible approach to tackle the distribution shift issue arising from the changes of temporal envi-
ronment. Our work falls into advancing the latter research line by exploiting causal structure model.

Subgraph Learning. Subgraph learning, with its robust causal interpretability, has achieved remark-
able success in static graph applications, such as molecular property prediction and social network
analysis [25, 57, 38, 21]. In essence, it captures the inductive bias inherent in graph data that lo-
cal dependencies are invariant patterns predicting ground-truth. We argue that dynamic subgraphs
may exhibit a similar inductive bias spatio-temporal evolution. But dynamic subgraphs remain an
unexplored area with no existing studies. To this end, this paper introduces a dynamic subgraph
learning mechanism to address the issue of temporal distribution shift resulting from the changes of
environment factors.

G Additional Results

G.1 Hyperparameter Sensitivity Analysis

We analyze the sensitivity of the hyperparameter β in Eq. 5, which functions as the trade-off for the
loss in Eq. 5. The value range of β is [0, 1]. We perform experiments on four real-world datasets, i.e,
PEMS08, PEMS04, SD, Yelp, and present the results in Fig 8. The results show that the sensitivity
of the prediction results to β is not very drastic. But the performances of EpoD on four datasets are
the best when β ∈ [0.2, 0.5]. Therefore, we set β = 0.2 is in our implementation.
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(b) PEMS04.
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Figure 8: Sensitivity analysis of the hyperparameter β on four real-world datasets.

We then analyze the sensitivity of hyperparameter L in Eq. 12. As shown in Tab. 8, we study the
performance of EpoD when L is set to [1, 10]. We observe that increasing the value of L tends to
improve its performance. However, it is important to note that this improvement comes at the cost
of increased time consumption. Therefore, we set L = 5 as a trade-off between performance and
time consumption.

Table 8: The performance (MAE) of different L in Eq. 12 on PEMS08.
Model 1 2 3 4 5 6 7 8 9 10

EopD 18.87 18.21 17.76 17.25 17.43 17.13 16.92 16.65 16.58 16.96

G.2 Backbone Sensitivity Analysis

Our EpoD essentially provides a solution for temporal distribution shits issue in dynamic graphs.
The most prominent characteristic of EpoD is the pluggability, which denotes that we can be applied
to numerous existing backbones. In the task of traffic flow prediction, we explore the performance
associated with the selection of different models as backbones as shown in Tab. 9. We get the
following two observations.

Obs 1. The EpoD-enhanced version consistently shows a significant improvement over the raw
backbone. On large-scale datasets with distributional shits, EpoD tends to exhibit more substan-
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Table 9: The MAE performance of EpoD with three different backbones (12→ 24).

MODEL PEMS08 PEMS04 SD(2019-2020) GBA(2019-2020)

ASTGCN [13] 19.34 22.89 28.36 32.58
EOPD+ASTGCN 17.75 21.78 26.72 28.76
DSTAGNN [19] 17.56 21.22 26.34 30.11
EPOD+DSTAGNN 17.21 20.76 24.89 27.89
AGCRN [3] 17.30 21.19 26.19 28.74
EOPD+AGCRN 16.92 21.12 23.58 27.26

tial performance improvements. This highlights the effectiveness of our EpoD in addressing the
distribution shift issue.

Obs 2. The expressive capacity of the backbone directly influences the predictive ability of the
model enhanced by EpoD. Since the performance of AGCRN is already excellent, the enhancements
introduced by EpoD often result in optimal results. This underscores the importance of selecting a
proficient backbone model for forecasting.

G.3 Interpretable Dynamic Subgraphs

In this subsection, we explore the interpretability of dynamic subgraphs under real-world scenarios.
In recent years, the most notable temporal-distribution shift phenomenon is the outbreak of COVID-
19. The introduction of LargeST [24] provides a chance for us to study this distribution shift of
traffic flow under COVID-19. We choose a local sensors network in GBA dataset and reconstruct
its evolution data at monthly intervals from 2019 (t = 1, ..., T ) to 2020 (t = T + 1, ..., T + k).
Then, we apply our EpoD trained on 2019 data to partition each snapshot into a bag of subgraphs, as
shown in the top panel of Fig. 9. It is evident that the nodes tend to suppress communication among
themselves when the distribution is shifting, and this phenomenon is particularly pronounced around
the three blue nodes. The bottom panel of Fig. 9 visualizes the ground-truth of this sequence, which
aligns with the information reflected in our dynamic subgraphs. This suggests that our EpoD exhibit
sensitivity to environment changes.

…

𝐭 = 𝟏 𝐭 = 𝐓 − 𝟏 𝐭 = 𝐓 𝐭 = 𝐓 + 𝟏

…

𝐭 = 𝐓 + 𝐤

… …

Figure 9: The interpretability of dynamic subgraphs within real-world scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of this paper clearly outline our contributions
and important assumptions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our manuscript contains "Limitations and Future Works" section in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide a comprehensive proof of our proposed theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We release the code using anonymous links.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We release the code using anonymous links.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe our experiment setup in detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The quantified results we provide are statistical results (mean and standard
deviation), obtained from conducting experiments with 10 different random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the resources (type and number of GPUs) that we conduct our
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have already read the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal im-
pacts of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our effort aim to address unresolved questions in the field, and all datasets
we used are public datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We thoroughly introduce all works that are related to our research, and care-
fully check the original license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: We have released the license of our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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