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Abstract
We consider the problem of learning deep representa-
tion when target labels are available. In this paper, we
show that there exists intrinsic relationship between tar-
get coding and feature representation learning in deep
networks. Specifically, we found that distributed binary
code with error correcting capability is more capable of
encouraging discriminative features, in comparison to
the 1-of-K coding that is typically used in supervised
deep learning. This new finding reveals additional ben-
efit of using error-correcting code for deep model learn-
ing, apart from its well-known error correcting property.
Extensive experiments are conducted on popular visual
benchmark datasets.

Introduction
Learning robust and invariant representation has been a
long-standing goal in computer vision. In comparison to
hand-crafted visual features, such as SIFT or HoG, fea-
tures learned by deep models have recently been shown
more capable of capturing abstract concepts invariant to
various phenomenon in visual world, e.g. viewpoint, il-
lumination, and clutter (Girshick et al. 2014; Krizhevsky,
Sutskever, and Hinton 2012; Ouyang et al. 2014; Sun, Wang,
and Tang 2014; Sun et al. 2014; Zhu et al. 2014; 2013;
Luo, Wang, and Tang 2012). Hence, an increasing number
of studies are now exploring the use of deep representa-
tion (Razavian et al. 2014) on vision problems, particularly
on classification tasks.

Existing studies first learn a deep model, e.g. convolu-
tional neural network, in a supervised manner. The 1-of-K
coding, containing vectors of length K, with the k-th ele-
ment as one and the remaining zeros, is typically used along
with a softmax function for classification. Each element in a
1-of-K code represents a probability of a specific class. Sub-
sequently, the features of a raw image are extracted from the
penultimate layer (the layer before the output layer) or shal-
lower layers, to form a high-dimensional feature vector as
input to classifiers such as Support Vector Machine (SVM).

Is 1-of-K the best target coding method? The goal of this
paper is to investigate an alternative target coding approach
for the aforementioned deep feature learning pipeline. There
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Figure 1: Is 1-of-K the best target coding? To examine the feature
representation when a deep model is trained with different coding
schemes, we project the features extracted from a deep convolu-
tional neural network’s penultimate layer to a two-dimensional em-
bedding using multi-dimensional scaling. Hadamard coding is ca-
pable of separating all visually ambiguous classes {9, 8, 6}, which
are confused in 1-of-K coding.

have been intensive efforts to improve supervised learning
of deep models, e.g. joint learning of embedding task using
unlabeled data (Weston, Ratle, and Collobert 2008), multi-
task learning (Zhang et al. 2014), introducing intermediate
training phase (Goh et al. 2013), and replacing softmax layer
with SVM (Tang 2013). Nevertheless, the influence of target
coding is little explored in deep representation learning. We
believe that feature representation can be influenced by the
training signals encoded in the target formation. We there-
fore hypothesize that better features can be induced if we
design the target code appropriately through coding theory.

Target coding is gaining popularity in machine learning
community for the multi-label prediction problem (Hsu et
al. 2009; Cisse et al. 2013). The studies that are closer to
our work are (Dietterich and Bakiri 1994; Langford and
Beygelzimer 2005), which solve multi-class learning prob-
lems via error-correcting output codes. The key idea of these
studies is to exploit error-correcting codes as target vectors,
so that a classifier can recover from constant fraction of bi-
nary errors in target prediction. Our work has a different fo-
cus: we wish to investigate how a target coding would influ-
ence the feature representation in a deep network, beyond its
current use for error correcting. This perspective is new.

We present our interesting observation in Figure 1 to
demonstrate what one could achieve by replacing 1-of-K
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with the Hadamard code (Langford and Beygelzimer 2005)1

as target vectors in deep feature learning. It is observed that
even on just a two-dimensional embedding space, the fea-
tures induced by the Hadamard code-based learning can al-
ready be easily separable. In contrast, the feature clusters
induced by 1-of-K are overlapping. The separation of such
clusters may only be possible at higher dimensions.

In this paper we make the following contributions: (i) We
present the first attempt to analyse systematically the influ-
ences of target coding to feature representation; (ii) We show
that the error-correcting Hadamard code encompasses some
desired properties that are beneficial for deep feature learn-
ing. (iii) We validate the coding scheme with detailed ex-
amination of feature representation in each hidden layer of
a deep model. Extensive experiments demonstrate that er-
ror correcting codes are beneficial for representation learn-
ing, leading to state-of-the-art results on MNIST, STL-10,
CIFAR-100, and ILSVRC-2012, in comparison to the typi-
cally used 1-of-K coding scheme.

Preliminaries
A Definition of Target Coding
We first provide a general definition of target coding (or tar-
get code), which has 1-of-K code as a special case.

Definition 1. Let T be a set of integers, called the alpha-
bet set. An element in T is called a symbol. For example,
T = {0, 1} is the binary alphabet set. A target code S is
a matrix S ∈ T n×l. Each row of a target code is called a
codeword. Here, l denotes the number of symbols in each
codeword and n denotes the total number of codewords.
For a target code S, we denote A = {αi}ni=1 be the set
of empirical distributions of symbols in the rows of S , i.e.
for i = 1, 2, . . . , n, αi is a vector of length |T |, with the
t-th component of αi counting the number of occurrence
of the t-th symbol in the i-th row of S. Similarly, we let
B = {βj}lj=1 be the set of empirical distributions of sym-
bols in the columns of S. Given two distinct row indices i
and i′, the Hamming distance between row i and row i′ of a
target code S is defined as |{j : Sij 6= Si′j}|, i.e. it counts
the number of column indices such that the corresponding
symbols in row i and row i′ are not equal. For simplicity, we
call it pairwise Hamming distance.

The second column of Table 1 shows an example of 1-
of-K binary target code, which is typically used in deep
learning for representing K classes. Each of the K sym-
bols, either ‘0’ or ‘1’, indicates the probability of a spe-
cific class. The target code here can be written as S = I ,
where I ∈ T K×K is an identity matrix. It is easy to attain
some properties of the 1-of-K coding. For instance, let αit

represents the counts of the t-th symbol in the i-th row, for
i = 1, 2, ...,K, we have αi1 = K−1

K and αi2 = 1
K , since

only one symbol in each codeword has a value ‘1’. Similarly,
we have βj1 = K−1

K and βj2 = 1
K . The pairwise Hamming

distance is two.

1A well-known error-correcting coding method based on
Hadamard matrices.

Table 1: Target codes for representing different visual classes.

Classes 1-of-K Hadamard code of length 7
bird 1 0 0 0 0 0 0 1 0 1 0 1 0 1
cat 0 1 0 0 0 0 0 0 1 1 0 0 1 1
dog 0 0 1 0 0 0 0 1 1 0 0 1 1 0
human 0 0 0 1 0 0 0 0 0 0 1 1 1 1
horse 0 0 0 0 1 0 0 1 0 1 1 0 1 0
bench 0 0 0 0 0 1 0 0 1 1 1 1 0 0
deer 0 0 0 0 0 0 1 1 1 0 1 0 0 1

Constructing Class Label from Hadamard Code
We wish to show that apart from representing classes, the
target coding can play additional roles. Error-correcting in
target prediction is a good example that makes good use
of target coding (Dietterich and Bakiri 1994; Langford and
Beygelzimer 2005). We show that apart from error correct-
ing, target coding is capable of facilitating the learning of
better feature representation.

In this paper, we study a popular error-correcting code,
the Hadamard code, which has been used as target coding
for classifier for its capability of error-correcting (Langford
and Beygelzimer 2005). A Hadamard code can be generated
from the Hadamard matrix (Hadamard 1893; Hedayat and
Wallis 1978). A matrix H ∈ {+1,−1}m×m, whose entries
are either ‘+1’ or ‘−1’, is called the Hadamard matrix if
HHT = mI , where I is an identity matrix. The definition of
the Hadamard matrix requires that any pair of distinct rows
and columns are orthogonal, respectively.

A possible way to generate the Hadamard matrix is by
the Sylvester’s method (Hedayat and Wallis 1978), where
a new Hadamard matrix is produced from the old one by
the Kronecker (or tensor) product. For instance, given a
Hadamard matrixH2 = [+ +;+−], we can produceH4 by
H4 = H2 ⊗ H2 as below, where ⊗ denotes the Kronecker
product. Similarly,H8 is computed byH4 ⊗H2.

H4 =
[
+ +
+ −

]
⊗

[
+ +
+ −

]
=

[
+ + + +
+ − + −
+ + − −
+ − − +

]
,

H8 =


+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −

 .

Therefore, the size of the Hadamard matrix is a power of 2. If
we look at any two distinct rows (or columns) of a Hadamard
matrix of length m, there are exactly m/2 pairs of entries
whose signs agree with each other, and exactly m/2 pairs
whose signs are opposite. Thus, the distance between any
two rows is a constant and equals m/2.

Now, we can construct the target code S from the
Hadamard matrix. Let H ∈ {+1,−1}m×m be a Hadamard
matrix. S ∈ T (m−1)×(m−1) is obtained by first removing
the first row and the first column of H, and then mapping
‘+1’ to ‘0’ and ‘−1’ to ‘1’. According to the definition of
H, there are exactly m/2 ones in each row and each column
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of S. Since any two rows of a Hadamard matrix are orthog-
onal, the pairwise Hamming distance of S is equal to m/2.
The right-most column of Table 1 gives an example of S of
size 7× 7, obtained fromH8 as above.

Note that for most of the time, we cannot achieve a target
code that contains exactly K codewords for K number of
classes, since the length of the Hadamard matrix, m is power
of 2. Without loss of generality, we let C ∈ T K×(m−1) be a
matrix of labels of K classes, i.e. for i = 1, 2, ...,K, the i-th
class is labeled by the i-th row in C. Here, C is constructed
by choosing K codewords from S ∈ T (m−1)×(m−1).

Relevance of Target Coding in Deep Learning
In this section we discuss the properties of the
Hadamard code, which is well-established in previous
works (Hadamard 1893; Hedayat and Wallis 1978), and
relate these properties to representation learning in deep
model.
Property 1. Uniformness in each row of S – Each row of
a Hadamard code has m

2 symbols that equals one.
The row uniformness introduces redundancy to target pre-

diction. Specifically, each row of S represents a class label.
Rather than having exactly a single symbol ‘1’ as in the con-
ventional 1-of-K code, each codeword in a Hadamard code
has the same number of redundant symbols that are equal
to ‘1’. This property suggests the error-correcting property,
which allows for a stronger resilience in target responses
against noise-corrupted raw imagery inputs. Specifically, if
a limited number of symbols is corrupted, recognising the
true object class may still be possible. More symbols ‘1’
(subject to other properties as follows) translate to a larger
error-correcting capacity, which enables the responses at the
target layer to be used directly for robust nearest neighbour
classification.
Property 2. Uniformness in each column of S – Similarly,
each column of a Hadamard code has m

2 symbols that equals
one.

This property is little explored but desired in represen-
tation learning. In essence, it shares a similar spirit advo-
cated by (Bengio 2009), which can be further traced back
to the Perceptron algorithm by (Rosenblatt 1958). Specifi-
cally, each column of S can be treated as a ‘decision func-
tion’, which encourages the partitioning of the input space
into two balanced regions, i.e. approximately half of the
classes will lie on a region, and the remaining classes will be
grouped to another region. Given multiple columns, differ-
ent partitions can be induced and thus combined to give rise
to a potentially exponential number of region intersections
in the input space. With this property, a Hadamard based
target code essentially promotes such formation of complex
regions to induce features that separate the data better, and
consequently provide discriminative and robust description
for the data. We will show this phenomenon by examining
layer-wise feature representation in the experiment section.
Property 3. Constant pairwise Hamming distance of S
– As the Hadamard code is both row and column uniform,
the pairwise Hamming distance is also m

2 , implying that the

Hamming distance between any two codewords is half of the
codeword’s length.

This property naturally demands each class to have its
own unique codeword equally distanced away from those
of all other classes. Samples from the same class are forced
to map to the same codeword. This property is thus useful to
enforce such mapping and encourage invariant feature rep-
resentation.

Discussion: Recall that the class labels C ∈ T K×(m−1)

is constructed by choosing K codewords from S ∈
T (m−1)×(m−1). However, since m is power of 2, C ∈
T K×(m−1) violates the second property when the class
number is smaller than m−1, that is K < m−1. We propose
a greedy search method to select C from S to approximate
the second property. This method works well in practice be-
cause the search space is actually small (i.e. m−1). Specifi-
cally, a codeword from S is chosen, iff appending this code-
word to C does not disrupt the uniformness of each column.
For example, we construct C when K = 10 and m = 128 or
256, using both greedy search and random selection. The
distributions of the numbers of ‘1’ in columns are illus-
trated in Fig.2, which shows that greedy search can better
fulfil the column-uniformness (i.e. ideally, all columns con-
tain 5 symbols ‘1’. Specifically, for the greedy search when
m = 256, 95% columns contains 4 ∼ 6 symbols ‘1’), while
random search leads to trivial columns.

Figure 2: Greedy search better preserves column-uniformness,
while random search violates.

Using Target Code in Convolutional Network

Convolutional
layer 3

Locally-
connected

layer

Pooling
layer 2

Pooling
layer 3 Fully-

connected 
layer 1Input layer

Convolutional
layer 2

Pooling
layer 1

Convolutional
layer 1 Fully-

connected 
layer 2

Output layer

Figure 3: The CNN structure used in our experiments.

Given a data set with N training samples, {xi,yi}Ni=1,
where xi denote the i-th sample and ∀iyi ∈ C is the cor-
responding label. We adopt the deep convolutional network
(CNN) to learn feature representation by minimizing the Eu-
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Figure 4: The change of features observed when applying 1-of-K
and the Hadamard coding: We deliberately choose three visually
ambiguous classes {tiger, lion, leopard} from CIFAR-100, indi-
cated by red, green, blue, respectively. We extracted the features
from different CNN layers depicted in Figure 3, namely convolu-
tion layer 3, locally-connected layer, and fully-connected layers 1
and 2. To examine the feature representation given different coding
schemes, we project the features to a two-dimensional embedding
using multi-dimensional scaling. We compare 1-of-K against the
Hadamard code with length 127 and 255 (HC-127 and HC-255). It
is observed that the Hadamard code yields better data factorization
than 1-of-K coding. Longer Hadamard code leads to more separa-
ble and distinct feature clusters.

clidean loss,

argmin
{W`,b`}L`=1

N∑
i=1

‖ yi − f(xi; {W`,b`}L`=1) ‖22, (1)

where W` and b` denote the filters and the biases at the `-
th layer, respectively. As the Hadamard code is independent
to a network structure, any other deep models can be em-
ployed as well. Exploring an optimal structure is out of the
scope of this paper. Instead, we focus on the effectiveness of
the target code based on a common CNN model. The CNN
architecture is shown in Figure 3, which follows the struc-
ture in (Srivastava and Salakhutdinov 2013). The details of
the network parameters are provided in the supplementary
material. For all experiments, we apply the same network
structure in order to verify whether the performance gain is
attained by target coding.

Experiments
Influence of Target Coding at Deep Layers
We are interested to examine the influence of target coding
on feature representation in each deep layer. We use CIFAR-
100 dataset in this experiment. To visualize the feature rep-
resentation in each layer, we first extract features from the

respective layers2, and then project the features to a two-
dimensional embedding space by using multi-dimensional
scaling. Figure 4 visualizes the feature subspace of differ-
ent layers of three CNNs. All CNNs have the same network
structure as depicted in Figure 3, but trained using differ-
ent target codings. It is observed that the Hadamard cod-
ing yields more discriminative sub-space clusters than the
1-of-K coding. The influence of the Hadamard code is less
obvious in shallower layers, e.g. convolutional layer 3 and
locally-connected layer, whilst greater influence is exerted
at the top fully connected layers. It is also observed that us-
ing longer Hadamard code is beneficial since a longer code
implies more ’decision functions’, leading to more complex
regions formation for better space factorization (see Prop-
erty 2).

Evaluating the Effectiveness of Target Coding
We performed two sets of experiments3 to quantitatively
evaluate the effectiveness of target coding. Three popular
benchmark datasets were used, i.e. variant of the MNIST
dataset with irrelevant backgrounds and rotation4, STL-10,
and CIFAR-100. We followed the standard testing protocol
and training/test partitions for each dataset. The details of
each dataset are provided in the supplementary material.

In the first experiment, we examined how well the features
extracted from a CNN’s penultimate layer could perform. It
is hard to measure the performance of features directly. A
viable way practiced by existing studies is to apply them on a
standard predictive model, e.g. k-NN or SVM, and measure
the classification performance. In the second experiment, we
evaluated the classification performance based directly on
the CNN’s outputs.

For the network design, we trained the same CNN struc-
ture using the Hadamard code and 1-of-K code, respec-
tively. The structure is shown in Figure 3. Due to space
constraint, the detailed settings of the CNN for each dataset
are provided in the supplementary material. For the hyper-
parameters, such as learning rates, we tried searching for
optimal values for different coding schemes but observed
no significant difference in performance. From our experi-
ments, we observed that learning rate mainly affects the con-
vergence speed. Different learning rate would still lead to
similar and stable results when we allow sufficient training
time for convergence. To have a fair comparison, we set the
hyper-parameters the same and optimally for all methods.
The only difference is thus on the target coding scheme.

Experiment I: Hidden-layer feature performance We
applied PCA on the features extracted from the CNN model

2We used the toolbox implemented by (Krizhevsky, Sutskever,
and Hinton 2012) to extract feature maps of different layers. The
deep representation used in our experiment is simply the concate-
nation of feature maps from the same layer into feature vectors.

3http://mmlab.ie.cuhk.edu.hk/projects/TargetCoding/ (For
more technical details of this work, please contact the correspond-
ing author Ping Luo via pluo.lhi@gmail.com)

4This MNIST variant corresponds to the challenging mnist-rot-
back-image reported in (Rifai et al. 2011; Sohn et al. 2013; Vincent
et al. 2010).
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Table 2: Classification accuracy (%) on MNIST, STL-10, and CIFAR-100. The best performers in each column are in bold. The Hadamard
code and 1-of-K schemes employed the same CNN structure.

Methods Hidden-layer features Direct classification k-NN on target response
MNIST STL-10 CIFAR-100 MNIST STL-10 CIFAR-100 MNIST STL-10 CIFAR-100

Hadamard code, HC-63 78.44 67.04 – 81.46 71.51 – 77.38 71.56 –
Hadamard code, HC-127 82.03 68.97 58.96 84.02 72.56 63.17 81.89 72.15 62.21
Hadamard code, HC-255 84.08 70.66 60.98 85.47 73.15 64.77 84.85 72.46 63.07

1-of-K 72.83 60.01 59.55 79.25 69.82 61.00
(Sohn et al. 2013): supervised PGBM 55.33 – – – – –

(Sohn et al. 2013): PGBM+DN-1 – – – 63.24 – –
(Rifai et al. 2011): CAE-2 – – – 54.77 – –

(Vincent et al. 2010): SDAE-3 60.93 – – 56.24 – –
(Bo, Ren, and Fox 2013): HMP – – – – 64.50 –

(Gens and Domingos 2012): SPN – – – – 62.30 –
(Zou et al. 2012):Simulated Fixations – – – – 61.00 –
(Coates and Ng 2011): RF+L2-SVM – 60.01 – – – –

(Krizhevsky, Sutskever, and Hinton 2012): CNN 77.24a 68.30a – 78.06a 70.80a –
(Goodfellow et al. 2013): Maxout networks – – – – – 61.43
(Srivastava and Salakhutdinov 2013): CNN – – 57.26b – – 62.88

(Srivastava and Salakhutdinov 2013): Tree-based priors – – – – – 63.15
(Lin, Chen, and Yan 2013): NIN – – – – – 64.32

a. Results are obtained using the published code and network structures (Krizhevsky, Sutskever, and Hinton 2012). b. Result is obtained using the structure in (Srivastava and Salakhutdinov 2013).

(penultimate layer) and then performed k-NN classification.
We chose k-NN instead of SVM to have a more direct eval-
uation on the feature performance. The 2nd-4th columns of
Table 2 summarise the performance comparisons between
the features guided by the Hadamard code and the typical
1-of-K coding schemes. We also list the state-of-the art re-
sults reported in the literature. For completeness, the list
also covers unsupervised representation learning approaches
(e.g. (Vincent et al. 2010)). Note that our key comparison is
still between the Hadamard and typical 1-of-K codings.

The Hadamard code performs the best among different
methods, even if we consider only a short code with a
length of 63. In particular, a large margin of improvement
is observed against 1-of-K coding, even on the challeng-
ing MNIST dataset with irrelevant patterns as background.
The results suggest the benefits of using Hadamard code
for learning robust and invariant features. Since the only
change we made was replacing the 1-of-K coding with the
Hadamard coding, the better performance is thus attributed
to the more effective target coding. When the code length is
increased to 255, we obtain even better results, with an aver-
age relative improvement over 11% in comparison to 1-of-
K coding across all three datasets. The results are expected
since HC-255 contains more bits than HC-63 and HC-127,
which helps inducing more complex region intersections for
richer input description.

Figure 5 shows some classification examples. It can be ob-
served that despite 1-of-K performs well on easy instances,
e.g. apple and butterfly, its performance is inferior than
the Hadamard coding-based CNN, when applied to difficult
classes like raccoon and chimpanzee.

Experiment II: Direct classification performance With
improved features learned in hidden layers, we expect better
direct classification performance from the Hadamard cod-
ing. In this experiment, the baseline 1-of-K was used along
with softmax for class prediction. For our approach, we eval-
uated two variants: (i) we pre-trained the CNN guided by the
Hadamard code and subsequently applied logistic regression
at the top layer for fine-tuning and class prediction; (ii) we

GT:Apple
Pred:Apple

GT:Apple
Pred:Apple

GT:Apple
Pred:Apple

GT:Butterfly
Pred:Butterfly

GT:Butterfly
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C
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H
C
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Figure 5: We show some CIFAR-100 classification results by
CNN trained with 1-of-K, HC-127, and HC-255.

performed nearest neighbour class assignment by computing
the Hamming distance between target responses (predicted
codewords) and class codewords.

Columns 5th-7th summarise the results of variant-(i). The
Balanced Code approach achieves the best accuracy re-
ported so far on both MNIST and STL-10, whilst com-
pares favourably to the state-of-the-art approaches (Good-
fellow et al. 2013; Srivastava and Salakhutdinov 2013;
Lin, Chen, and Yan 2013) on CIFAR-100. Note that (Good-
fellow et al. 2013; Srivastava and Salakhutdinov 2013;
Lin, Chen, and Yan 2013) involve elaborate strategies in
their learning steps, e.g. multiview inference5, sliding a mi-
cro network over the input, or dropping weight to achieve
better regularisation. On the contrary, the Hadamard code
method is evaluated on a standard CNN structure. Neverthe-
less, this does not prohibit one to adopt similar strategies as
in the aforementioned studies to boost the CNN performance
further. Columns 8th-10th provide the results of variant-
(ii). This variant records comparable results to variant-(i)
but achieves better performance than using hidden-layer fea-
tures alone, thanks to the additional error-correcting capabil-

5Test error is computed as an average over 10 patches of the
original images (4 corner patches, center patch, and their horizontal
reflections). This will usually produce better results than testing on
the center patch alone.
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ity in the Hadamard target code. It is worth mentioning that
variant-(ii) yields better results than 1-of-K and some con-
temporary methods even with just simple nearest neighbor
classification.

Further Analysis
Performance convergence: Figure 6 shows that CNNs
trained on (a) MNIST, (b) STL-10, and (c) CIFAR-100,
guided by the Hadamard code of different lengths take al-
most the same number of iterations to converge to their best
performance. It is observed that longer target code consis-
tently performs better than the shorter code given the same
training epoch. Again, longer code facilitates more complex
region intersections (see Property 2), thus yielding better
performance.
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Figure 6: (a)-(c) Feature performance of a CNN when trained with
the Hadamard code (HC) of different lengths. The x-axis represents
the number of training epochs. (d) Here we vary the number of fil-
ters in the last two layers of the CNN to obtain different model
complexities. 1-of-K performs poorer than the Hadamard code un-
der all complexities considered. MNIST dataset is used.

Performance under different model complexities: In
this experiment, we trained the same CNN model on
MNIST, but varying the number of filters in the last two con-
volutional layers. At different model complexities, we mea-
sure the test performance of hidden-layer features by using
k-NN as a classifier. As can been seen in Figure 6 (d), the
Hadamard code achieves the best classification accuracy rate
when the number of parameters is set around 1 × 104, and
its performance degrades gracefully with increasing model
complexity due to over-fitting. The results suggest that by
simply adjusting the model complexity, we are not able to
bring 1-of-K’s performance any close to the best perfor-
mance of the Hadamard code.

Greedy search vs. random search: Our experiments on
MNIST show that selecting class labels C from target code
S by greedy search yields better performance than random
search (84.85% vs. 84.38%) for HC-255. This suggests the
importance of the second property, i.e. the column uniform-
ness.

Table 3: Top-1 classification accuracy (%) on ImageNet-2012 val-
idation set (predicting on the center patch).

1-of-K HC-1023 HC-2047
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) 56.9 58.4 58.9

Clarifai (Zeiler and Fergus 2014) 59.4 61.4 62.4

Scalability to large number of classes: This part shows
that the proposed method scales well to the 1000-category
ImageNet-2012 dataset, which contains roughly 1.2 mil-
lion training images, 50,000 validation images, and 150,000
testing images. We constructed two baseline models, the
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and Clar-
ifai (Zeiler and Fergus 2014). To demonstrate the effective-
ness of target code, we first pre-train the networks by fol-
lowing the practices in (Krizhevsky, Sutskever, and Hin-
ton 2012; Zeiler and Fergus 2014). However, we found that
Hadamard code is difficult to fit when large number of cat-
egories and data are presented. To improve efficiency, the
target code is equally divided into ten segments6, each of
which is used to fine-tune the above networks. Then the pre-
dictions of the segments are concatenated as the complete
prediction of Hadamard code. These networks can be fine-
tuned in parallel.

Specifically, the Clarifai is an extension of AlexNet,
where the group connections used in AlexNet’s layers 3, 4,
5 are replaced with dense connections in Clarifai and the fil-
ter size of the first layer in Clarifai is reduced from 11× 11
of AlexNet to 7 × 7. For both networks, the other parame-
ters are similar. Our implementation is based on Caffe (Jia
2013). For 1000 categories, the Hadamard matrix has a size
at least 1024×1024. Thus, we evaluate HC-1023, HC-2047,
and 1-of-K using the validation images and report the top-1
accuracies in Table 3. The accuracy of 1-of-K code is cal-
culated based on the softmax function, while the accuracy
of the Hadamard code is computed based on the Hamming
distance between predicted codewords and class codewords.
This experiment shows that the Hadamard code achieves
better performance than 1-of-K code and longer code tends
to improve the accuracies further.

Discussions
We have shown that the Hadamard code naturally comes
with some useful characteristics for representation learn-
ing, apart from its well-know error correcting property.
Experimental results have revealed its potential over the
typical 1-of-K coding scheme. We experimented with
the standard CNN (Srivastava and Salakhutdinov 2013),
AlexNet (Krizhevsky, Sutskever, and Hinton 2012), and
Clarifai (Zeiler and Fergus 2014) deep networks. All net-
works gained improved performance with the Hadamard
coding.

Our study opens some interesting and new directions to
pursue. Firstly, which property of the Hadamard code con-
tribute the most to the feature representation learning? We
found examining individual property separately not feasible,
since these properties are strongly related. Nonetheless, we

6For example, for a target code with 1023 bits, the first nine
segments have 100 bits, while the last one has 123 bits.
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observed that fulfilling all properties are critical for good
performance. For instance, 1-of-K coding only fulfils the
constant Hamming distance property. It yielded poorer per-
formance than the Hadamard coding. Without column uni-
formness, poorer results are observed. Without row uniform-
ness would jeopardise the error-correcting capability. Sec-
ondly, the properties are by no means complete. We believe
there exist other coding principles that worth further explo-
ration. For instance, one could manipulate the inter-code dis-
tance based on the prior information about the superclasses
of objects, i.e. the target code of orchid class should have a
closer distance to the rose class than the dog class, which be-
longs to a different superclass. Finally, it will be interesting
to find out if target coding works equally well for shallow
classifiers.

References
Bengio, Y. 2009. Learning deep architectures for AI. Foun-
dations and trends R© in Machine Learning 2(1):1–127.
Bo, L.; Ren, X.; and Fox, D. 2013. Unsupervised feature
learning for RGB-D based object recognition. In Experi-
mental Robotics, 387–402.
Cisse, M. M.; Usunier, N.; Artières, T.; and Gallinari, P.
2013. Robust bloom filters for large multilabel classifica-
tion tasks. In NIPS.
Coates, A., and Ng, A. Y. 2011. Selecting receptive fields in
deep networks. In NIPS.
Dietterich, T. G., and Bakiri, G. 1994. Solving multiclass
learning problems via error-correcting output codes. Journal
of Artificial Intelligence Research 2(1):263–286.
Gens, R., and Domingos, P. 2012. Discriminative learning
of sum-product networks. In NIPS, 3248–3256.
Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014.
Rich feature hierarchies for accurate object detection and se-
mantic segmentation. In CVPR.
Goh, H.; Thome, N.; Cord, M.; and Lim, J.-H. 2013. Top-
down regularization of deep belief networks. In NIPS.
Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville,
A.; and Bengio, Y. 2013. Maxout networks. arXiv preprint
arXiv:1302.4389.
Hadamard, J. 1893. Résolution d’une question relative aux
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