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ABSTRACT

Transport-based methods have emerged as a leading paradigm for building genera-
tive models from large, clean datasets. However, in many scientific and engineering
domains, clean data are often unavailable: instead, we only observe measurements
corrupted through a noisy, ill-conditioned channel. A generative model for the
original data thus requires solving an inverse problem at the level of distributions.
In this work, we introduce a novel approach to this task based on Stochastic Inter-
polants: we iteratively update a transport map between corrupted and clean data
samples using only access to the corrupted dataset as well as black box access to
the corruption channel. Under appropriate conditions, this iterative procedure con-
verges towards a self-consistent transport map that effectively inverts the corruption
channel, thus enabling a generative model for the clean data. The resulting method
(1) is computationally efficient compared to variational alternatives, (ii) highly
flexible, handling arbitrary nonlinear forward models with only black-box access,
and (iii) enjoys theoretical guarantees. We demonstrate superior performance on
inverse problems in natural image processing and scientific reconstruction, and
establish convergence guarantees of the scheme under appropriate assumptions.

1 INTRODUCTION

Generative modeling has become a central tool for learning high-dimensional data distributions.
Transport-based methods, including diffusion-based models (Ho et al.l 2020} Song et al.||2021) and
flow-based models (Albergo & Vanden-Eijnden, |2023; Lipman et al., [2022; [Liu et al., |2023)) have
emerged as leading frameworks for training high-quality generative models, with a wide range of
applications from natural image synthesis (Rombach et al.,2022)) to molecular design (Watson et al.,
2023)). These methods rely on access to clean samples x ~ 7 of the target distribution, which are
plentiful in many machine learning tasks.

However, in many scientific and engineering applications, such clean data of interest is unavailable.
Instead, we only observe corrupted measurements y through a forward map y = F(x) that is typically
noisy and ill-conditioned. Examples include medical imaging, where we observe tomographic
projections of internal structures, astronomical observations affected by atmospheric distortion, and
other measurement processes that introduce noise and information loss (Tarantolal 2005). As a result,
the target data x is never observed directly, rendering standard generative modeling inapplicable.

Recent work has begun to tackle this fundamental limitation, aiming to generate clean data x using
only corrupted observations y. Most existing approaches, however, require the forward model to be
explicitly specified and differentiable, often with additional structural assumptions. For example,
Daras et al.|(2023); |[Kawar et al.|(2024)); Chen et al.| (2025);|Zhang et al.|(2025)) train diffusion models
with corrupted data under explicit linear forward models and additional rank condition. |Akyildiz
et al.| (2025)) learns a generative prior by directly minimizing the sliced-Wasserstein-2 distance
between observed data and model outputs. A classical alternative is Empirical Bayes, leading to
approaches based on variational inference, such as the EM algorithm in|Rozet et al.| (2024); |Bai et al.
(2024)), which again depends on a known forward model. In many cases, further restrictions are
imposed, such as linearity with Gaussian noise to enable Tweedie’s formula for approximate posterior
sampling (Daras et al.,|[2023}; |Rozet et al., [ 2024)).
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In this work, we introduce a framework for this inverse generative modeling task using only corrupted
observations y and black-box simulation of the forward process F. Our approach leverages stochastic
interpolants (SI) (Albergo & Vanden-Eijnden, [2023; |Albergo et al., 2023) with a self-consistent
training procedure: we iteratively transport observed data to clean samples via a learned velocity
field, then enforce consistency by requiring that these generated samples, when passed through F,
reproduce the original observation distribution. This scheme not only eliminates the need for clean
data in generative modeling within the inverse problem settings, but also avoids backpropagation
or posterior sampling through F. As a result, our framework applies directly to nonlinear forward
models (e.g., motion blur), non-differentiable operators (e.g., JPEG compression), and non-Gaussian
noise (e.g., Poisson noise), substantially broadening the applicability of inverse generative modeling.
Conceptually, this makes our approach akin to model-free reinforcement learning, which optimizes
policies through interaction with a simulator, whereas most prior methods resemble model-based
control, relying on explicit knowledge and differentiability of the underlying physics.

Problem setup We consider a probability distribution of interest m € P({2), and a forward model
F : Q — € that we allow to be stochastic, i.e., y = JF(z) defines a conditional distribution of y given
z on Q. Some representative examples in 2 = R? include the additive white gaussian noise (AWGN)
channel y = = + o€, with £ ~ v4 = N(0,1;), or tomography, where y = M + o0&, T is the Fourier
transform of x and M is a certain (possibly random) projection operator along frequency rays.

Since F is a channel that does not introduce additional information about x, we assume that the
observation space {2 can be embedded back into the data space €2 in a way that preserves all
information contained in y. That is, the embedding itself does not introduce any additional information
loss beyond what is already incurred by F. With a slight abuse of notation, we therefore redefine F
asamap F : {2 — Q. We define the kernel kr(y, x) associated with F as the conditional distribution
of y = F(z) given z. This channel pushes forward the data distribution 7 to an observation
distribution p € P(RQ2), given by u = Kxm, where K x is the integral operator with kernel k£, i.e.,

w(y) = [ kr(y,z)dr(z).

The forward model F is often ill-conditioned, non-deterministic (and therefore non-invertible) as a
mapping in €2, thus justifying the need to regularize the inverse problem of recovering = from the
observations y = F(x). However, the situation is different when viewed at the level of probability
measures P (£2): as soon as K x is invertible in P(£2), one can hope to recover 7 from p by inverting
the linear relationship . = Kxm. To illustrate this point, consider the AWGN channel: while the
optimum reconstruction at the level of the samples (in the MSE sense) is given by the posterior mean
& = E[z|F(x)], and generically we have E ||z — Z||* > 0, the associated inverse problem at the level
of distributions amounts to a deconvolution, i.e., 4 = 7 x ¥,, which is invertible for any noise level o.

We approach this inverse generative modeling task by first assuming that we have access to i, either
directly, or from a dataset of observations {y; };, y; ~ p that can be fed into a generative model that
produces an estimate ji. We also assume only black-box access to a general (potentially nonlinear)
forward model F, without requiring its analytical form or gradients.

Additional related works We note growing interest in generative models trained on mixtures
of clean and noisy data (Daras et al., [2024; [2025} |[Lu et al.l 2025; Meanti et al.l [2025). These
approaches assume some clean samples, whereas our setting relies solely on corrupted observations.
While our method is tailored for this more constrained regime, it can be applied straightforwardly to
settings with partial access to clean data. On the theoretical side, [Li et al.| (2024} [2025) study inverse
problems over measure spaces, analyzing stability, variational structures, and gradient flows. Our
work complements these studies by introducing a practical and scalable algorithmic framework while
also establishing convergence guarantees under appropriate assumptions.

2 PRELIMINARIES

Standard Stochastic Interpolant (assuming access to clean data) Let 7 be the clean data
distribution we wish to sample from and p be the distribution of the corrupted data that are available
to us, both supported on R%. Following Albergo et al. (2023), a linear stochastic interpolant I,
between 7 and p is defined by

I = ocqwo + By + ez, t€(0,1], ()
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where (¢, 1) is sampled from a joint distribution (or coupling) v(dzg,dz;) that maintains the
marginals [, v(-,dz1) =, [p, v(dxo,-) = g, and z ~ 4 is independent Gaussian noise. The
schedules ay, B, 7 satisfy boundary conditions ag = 1 = 1, ;3 = Sy = 0, and g = 71 = 0.
Define the velocity field

b(t, .Z’) = E[If|]{» = LE]

The solutions to the probability flow ordinary differential equation (ODE)
X; = b(t, X;) 2

have the property that X;—1 ~ p if X;—¢ ~ « (forward direction), and X;—og ~ 7 if X;—1 ~ p
(backward direction). The latter enables clean sample generation from the observation distribution by
integrating backward using the drift b. The drift b can be learned efficiently in practice by solving the
least-squares regression problem

1
argmin/ E[|b(t, I;) — I,)?] dt := Eﬁ’u(i)) 3)
b 0

where E denotes an expectation over the coupling (xg, 1) ~ v and z.

SI with diffusion The above ODE form for SI can be extended to stochastic differential equation
(SDE). Consider another vector-valued function called the denoiser

g(t,z) = E[2|I; = z].
Similar to the property of the backward ODE, the solutions to the following reverse-time SDE
dXP =b(t, XP)dt + ey tg(t, XP)dt + V26, dWP )

have the property that if X2, ~ p is independent of W2, then X2, ~ m. Here ¢, € C°([0,1])
with €, > 0 is an arbitrary time-dependent diffusion coefficient, and WtB = —Wj_. We note (@) is
closely related to the SDE in score-based diffusion models: specifically, when n(¢) > 0, we have
s(t,x) == Vylogp(t,x) = —n~1(t) g(t,z), where p(t,r) denotes the probability density of I;.
From now on, and for simplicity, we will assume a fixed (i.e., time-independent) diffusion coefficient
e. Tt is straightforward to see when € = 0, the reverse-time SDE becomes ODE. Similar to (3), the
denoiser g can be learned efficiently in practice by solving another least-squares regression problem
respect to the noise:

1
arg min/ Ellg(t,I;) — z|2] dt := Sg#(g). 5)
g 0

Notation To simplify notation while covering both ODE and SDE settings, we use © to denote
the required functions for generative modeling: © = {b} in the ODE case, and © = {b, ¢} in the
SDE case. Let ®¢ denote the backward transport map induced by ©; that is, o (y) = X under
backward ODE () with terminal condition X; = y or ®g(y) = X under reverse-time SDE (@)
with terminal condition X = 3. Accordingly, such a transport map induces a pushforward from
the observation distribution p to the clean data distribution, denoted by mg = (®g ). Note that
in the SDE case, ®¢ is a random map due to the Brownian motion, and the pushforward should be
interpreted as the expected pushforward, i.e., averaging over the randomness of the Brownian motion.

Finally, recall that in (3)), we use 5}:, " (13) to denote the loss associated with a candidate drift function

b, defined with respect to the SI between 7 and p. Similarly, the objective £7 ,(g) for the denoiser is
defined in (©).

3 SELF-CONSISTENT STOCHASTIC INTERPOLANTS

In the standard generative modeling setting with direct access to clean data samples zg ~ 7 and
corrupted samples z1 ~ p, one may use, for example, the independent coupling v(dzo,dz;) =
m(dzo)u(dzy) to construct a Monte Carlo approximation of the expectation in the objective G)(5).
However, in our inverse problem setting, we only observe corrupted data from p and lack access to
clean samples from w. So it is a priori not obvious how to construct the SI (I). We now describe how
to construct and train a self-consistent SI using only black-box access to the forward map F.
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3.1 ITERATIVE SCHEME FOR SELF-CONSISTENCY

Eq (T) provides a natural transport between the observed and clean distribution, but is actionable only
when one has sample access to both 7 and u. Observe first that if we replace the sample access of y
by oracle access to the forward channel F, we could still build a transport from 7 to p by leveraging
the fact that = K z7. Indeed,

I =z + BiF(x) + 1wz, t€[0,1], x~m z2~7q Lz, 6)

defines a valid interpolation between 7 and p, and can be directly sampled for training the optimal
vector functions ©*. For a generic measure p replacing 7 in @, we denote by b, and g, their
associated velocity and denoiser fields.

Observe that the associated backward transport map ®* := ®g-~ can be used to push observations
from p toward clean samples from 7, effectively defining a local inverse of the channel, in the sense
that Kr®%p = x In other words, ®* specifies a self-consistency condition on the observation
probability domain; see Fig. [1]

However, there is a crucial difference in our setup: rather than accessing {7, F}, we instead have
acccess to {u, F }. The key idea is to turn the self-consistency equation K F®%p = pinto a procedure
that adjusts © to push K ;(@@)E]# 1 back to 1. We use SIs to connect each of these two distributions

to a common ‘empirical prior{me = ()4 u. Consistency is then enforced by bringing the two
SIs close to each other, leading to a natural bi-level fixed-point iteration scheme; see Alg. (1| The
outer loop updates ©%) to ©*+1) by constructing, at each step k, the following SI

It(kﬂ) = Qo (y) + BiF(Pow () + vz, t€[0,1],y~p, z2~vq,y L2 @)

This SI is directly sampleable given ©(*) and samples from y, and we train it using standard SI
loss @)(3) via stochastic gradient descent as the inner loop to obtain ©@(*+1):

. L . . k+1
Q(k) via [@) I(k+1) minimizers in B)(3) with It( b @(k-{-l). (8)
‘E’ step ‘M’ step

We remark that this bi-level scheme resembles the EM-type algorithm in [Rozet et al.[(2024); Bai
et al.[(2024), where the clean data is updated in the outer loop and the score function is retrained
in the inner loop. However, their method requires an explicitly linear forward model and relies on
uncontrollable approximations to posterior sampling. In contrast, our data-driven backward transport
map does not rely on these assumptions and enables learning the SI in Eq. (/) with only black-box
access to F.

We easily verify that as soon as the channel is injective, 7 is the only admissible fixed point of our
iterative scheme (see proof in App.[A.T)), similarly as the consistency guarantees in[Daras et al.| (2024).
In Section ] we will show that by making additional assumptions beyond injectivity, one can establish
unconditional convergence guarantees for our scheme.

Proposition 1 (7 is the only admissible fixed point). Assume that Kx is injective and that the
iterative scheme (8) converges to a fixed point ©*. Then mgo« = T.

© (for defining 7e ) L Algorithm 1: Training of Self-Consistent SI

If- N
self-consistency 1 @ « @(0) // Initialize
y Crmo 2 forkinl... K do

e

IP (for updating ©)

Data Probability Space Observation Probability Space 3 foriinl... Ttr do
4 Sample I; in [7) with ©*)
Figure 1: Schematic of the method: the fixed point ©* 5 SGD update of © via losses (3)([@)

satisfies Crme+ = p, which in turns implies me+ =
7. No samples from 7 are required—the approach
only uses corrupted samples from p and the map F.

6 0k —oe // Update transport map
7 return ©(F)

'In contrast to a global inverse, which would require z®4v = v for all v € P(Q), a much stronger
condition.
’In the spirit of Empirical Bayes.
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3.2 TRUNCATED INNER-LOOP OPTIMIZATION FOR EFFICIENCY

For the sake of efficiency, in practice, we do not solve the inner problem to convergence at each
step k; instead, we initialize the parameters from ©(*) and update them for 7}, gradient steps. See
Alg. [T] for a description of the resulting algorithm and Alg. 2]in App. [B] for more details. In the
special case Ti, = 1, the algorithm is equivalent to treating I in (7)) as dependent on © but applying
stop-gradient to I; when computing the gradient of the corresponding loss function. Nevertheless,
we retain the two-loop formulation in Alg[I]to emphasize the more general form and better match the
bi-level scheme introduced earlier.

4 THEORETICAL ANALYSIS

In this section we analyze the iterative scheme from Sec. [3.1] and establish convergence in KL
divergence to the ground truth distribution focusing in the SDE setting ¢ > 0, by exploiting a
contraction property of the scheme. For that purpose, we first introduce two key assumptions that
control (i) the stability of the SI drift to initial conditions, and (ii) the condition number of the inverse
problem at the distribution level. We focus on the idealised continuous-time limit, and leave time
discretization aspects for future work. In the following, we will often use a reference L? metric in the
space of flows C([0, 1] x Q; ), given by [[b]2 | := Esvvmif(o,1)Eanr, [[[6(t, @) |?] , where 7, is the
law of the oracle SI defined in (6). For notational simplicity, we use K to denote K, throughout this
section without risk of ambiguity. We also define 7(*) := (®g ) )14, the estimate of data distribution
at (outer loop) iteration k. While we initially introduced the denoiser g, we will henceforth mainly
use the score s in analysis for convenience, noting that the two are equivalent.

4.1 ASSUMPTIONS

Condition Number An important aspect of the problem is that there are two distinct notions of
error, whether it is measured on the ‘data’ side, i.e., KL(7||7(*)), or on the ‘observation’ side, i.e.,
KL(u||p*®) = KL(Kx||K7(*)). Since the learner only has access to data from s, a necessary
condition to guarantee that we can recover the original data distribution is injectivity, i.e., that
KL(Kr||K7) = 0 implies m = 7. However, this is not sufficient to provide a quantitative estimate of
KL(7||7%) in terms of KL(u||K#). In other words, the inverse problem Km = i is generally singular
in P(£2), even for the simplest channels, due to the infinite-dimensional nature of the domain.

To mitigate this issue, we need to regularize this inverse problem by restricting (or penalizing) the
domain of possible velocities and scores arising from the SI objectives (3)(3), so that the resulting
constrained optimization returns i)ﬂw), S.) € By, where B is indexed by a complexity measure A,
e.g., neural networks with O(\~!) parameters. In turn, these regularised objectives inject regularity
in 7(®), i.e., for all k£ we have 7(%) € S,, the class of terminal densities obtained by running a
Fokker-Plank equation with drifts in 3. We can now consider the condition number of IC around 7:

y = sup 7l p)
pesy KL(Km||Kp)
We verify in Appendix [A.2]that x is well-defined. Note that by the data-processing inequality, we
always have x > 1. The (regularised) inverse problem becomes non-singular whenever x < oco. The
purpose of regularisation, in this abstract context, is to restrict the range Sy as to make x small, while
maintaining a small approximation error.

®

A particularly simple form of regularisation is to consider a continuous parametric model {b,,, s,, }
where w € D is in a compact domain, which encompasses most practical setups. Combined with
the injectivity of the channel, this allows us to have xy < co. For technical reasons, we consider the
misspecified setting:

Proposition 2 (Finite condition number for compact hypothesis class). Assume that KC is injective,
that D is a compact parameter space, with continuous parametrization of the drift and score models,
and that  cannot be exactly represented by the model. Then y < oo.

Unsuprisingly, under such general conditions, we are unable to quantify the condition number. We
expand the condition number properties in Appendix
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Lipschitz stability of SI Recall our definition of b, s, the velocity and score associated with the
Slin @ In order to control the contraction of our iterative scheme, we will assume that the function
T fr = by + €Sy, that maps the candidate data model 7 to the drift of a Fokker-Plank equation
transporting 7 to K, is Lipschitz with respect to the KL divergence:

Va7, || fr = fallz,., < LKL(||7) . (10)

We denote by L = Li . its Lipscthiz constant. In words, a SI builds a diffusion bridge between 7
and K, and L measures the sensitivity of its drift to initial conditions. Notice that this Lispschitz
constant depends on the design of the SI, and could potentially be lowered by going beyond the usual
linear interpolants, and ‘preconditioning’ to /C; this strategy is beyond the scope of this work and is
left for future exploration.

4.2 CONTRACTION IN KL DIVERGENCE

Our main result is the following:
Theorem 1 (Contraction in KL). Assume € > 0 and that SI satisfies (I0). Let x be the condition

number of the regularized channel. Let §*) = max(||p®) — b(*) [ sk — 5(k) 70.0y) De the
1

o

error incurred at iteration k, and assume that %) < § for all k. Then, if L < 4ex™", we have

KL(x||7®) < 2(1 + 45 — x HPKL(7| |7 @) + 0(5?) . (11)
€

The proof is in Appendix and exploits explicit KL inequalities of Fokker-Plank equations.
Instrumental to the contraction is the ability to relate errors in measurement space back to data space
— precisely what is enabled by the condition number. An interesting interpretation of Theorem(T]is that
it provides global convergence guarantees for a seemingly complex non-convex objective function,
given in (I4), by replacing the ubiquitous gradient descent strategy with a tailored ‘Picard-type’
iterative scheme. In that sense, our guarantees go beyond the qualitative results of the self-consistency
loss in|Daras et al.| (2024). The upper bound captures the typical tradeoff between approximation
and estimation errors: a ‘small’ function class has a smaller condition number, which improves
the contraction rate, but in turn causes the error § to increase (the proof provides explicit error
dependencies in §). That said, a quantitative analysis of this tradeoff in specific function classes is
beyond the scope of this work, but an interesting question deserving further attention.

Remark 2 (Stability). Theorem[l|shows that the scheme is stable to estimation errors of the drift
and score. However, notice that the error is measured on a path distribution (7;).c[0,1] different

from the training distribution (w§k))t€[071], and we rely on a uniform guarantee across all iterations.
In that sense, the quantity 0 captures an out-of-distribution error which is more stringent than the
typical Fisher stability bounds in generative diffusion literature (Chen et al.| |2022; |Benton et al.,
2023). Finally, we remark that if one has access to an estimate [i rather than i, the scheme pays an
additional O(KL(u||ft)) additive term, following a standard data-processing argument.

Contraction in Fokker-Plank Channels An interesting class of channels where the previous result
is more explicit is given by Fokker-Plank Channels (Wibisono et al.,2017). These are channels where
the forward map F can be expressed as a diffusion process itself; in other words, the law of F(z)
given x agrees with the law of X, where X solves

dX, = f(t, X)dt +V2edW;, Xo=2z, (12)

for some well-posed drift f. In this case, if the Fokker-Plank representation of the channel is known,
we can replace the linear ST in (6) by (IZ). A prominent example of a Fokker-Plank channel is the
AWGN channel, where f = 0. Now, observe that in this case the drift of the forward process does
not depend on initial conditions, thus L = 0. We then immediately obtain:

Corollary 1 (Contraction for Fokker-Plank channels). Under the same hypothesis as in Theorem([l)
using the Fokker-Plank interpolant yields a KL exponential contraction with rate 1 — x 1.

5 EXPERIMENTS

We apply our method to a variety of forward models across three settings: (i) synthetic low-
dimensional datasets, (ii) imaging tasks, and (iii) a scientific application in quasar spectral recovery.
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In some tasks, a latent variable M associated with F is observed, such as the random mask accompa-
nying each observation in the masking task. In such cases, we additionally condition the vector fields
on M. This procedure is fully compatible with our framework: it is equivalent to appending M to the
observation, redefining the forward map as F(z) = (y, M), and keeping the corresponding channels
of the SI constant with value M. More implementation details are provided in App.[C]

5.1 LOW DIMENSIONAL SYNTHETIC MODELS

We use this setting to compare between the ODE and SDE formalism. We take the two-moon dataset
for the true data distribution and consider the AWGN channel, i.e., F as the corruption with Gaussian
noise of fixed variance o,,. In Fig. [2] we show the results for a high noise (o, = 1.0) and low noise
(0, = 0.5) setup. For low or intermediate noise, both formalisms give similar results. However, for
the high noise case, ODE restoration collapses into artificially thin arms for the two moons while
SDE results remain stable.

We use these observations to guide our Data Observations ~ ODE restored  SDE restored
large scale experiments. While the SDE ;
formalism is more robust for highly cor-
rupting forward models, and a positive dif-
fusion coefficient € > 0 is necessary in our
contraction results (see Theorem |I|), both
approaches work well for moderate corrup-
tions in practice. On the other hand, the

SDE. apprqach is .compu'ta.tionally more ex- Figure 2: AWGN channel: Comparing ODE and SDE
pensive as it requires training two networks restoration for different noise levels (o).
and converges more slowly. Thus we inves- "

tigated ODE formalism on the following high-dimensional examples. We broadly found them to be
sufficient and present these results next.

0,=0.50

o, =1.00

5.2 IMAGING TASKS

Setup We use CIFAR-10 dataset (and CelebA dataset for JPEG compression) as the clean data
distribution 7 and generate one observation y per image with the forward model. We model the
velocity field b in our SI with the U-net from Dhariwal & Nichol| (2021)), but using only 64 channels
resulting in ~32 million parameterﬂ We train all networks for 50,000 iterations, which required
~54 GPU hours on A100.

DPS Baseline We quantify the quality of the restored samples from our trained SI by evaluating the
LPIPS metric (Zhang et al.,|2018)) and compare it with DPS approach from |Chung et al.| (2022}, a
popular and strong inverse solution based on diffusion models. DPS requires a pre-trained diffusion
model on the original dataset to solve the inverse problem. Hence we train a large diffusion model with
similar U-net architecture but 96 channels instead of 64 (~ 70 million parameters), which achieved
an FID of 5.16. For every inverse problem, we also did a grid search to select the best guidance
strength hyperparameter as we found the good values to be very different from the recommendations
in the original paper. Hence, this baseline has four advantages over our approach: i) most importantly,
it uses the clean data to train a generative model, ii) it requires gradients of the forward map unlike
our black-box only access, iii) our implementation uses a 2x larger neural network, and iv) benefits
from a task-specific hyperparamter search.

i) Random masking Following |Daras et al.|(2023); |[Rozet et al.[ (2024), this map generates an
observation y by masking each pixel of an image = independently with probability p, and adding
isotropic Gaussian noise (o,,). As in their setting, we assume access to the mask M for each y and
use it to condition our SI. We also pre-process the observations by adding independent standard
Gaussian noise to masked pixels as it improves the final results. We show the restored images in Fig.
|3_E| and LPIPS metric for different levels of added noise (o,,) in Table m Our restored samples are
comparable to DPS in the low noise case but better in the high noise case. We find this to be the case
in other examples as well.

3Speciﬁcally, we use the implementation herel


https://github.com/NVlabs/edm/blob/main/training/networks.py
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Table 1: LPIPS metric comparing restoration quality Table 2: FIDs for random masking with dif-
of our SI and DPS. Unlike our approach, DPS requires ferent masking probabilities p. To account
access to clean samples for pre-training and gradients for differing architectures, baseline’ is FID

of the forward map for sampling. for our model on the clean CIFAR-10 data.
Forward Model Ours  DPS Method p  FID
o 020 1170
Random Mask (p = 0.5,0,, = 107°)  0.0051  0.0049 Ambient Diffusion 040 18.85
Random Mask (p = 0.5, 0, = 0.1) 0.0064  0.0072 P E—
. 025 5.88
Gaussian Blur (0g = 1.0,0,, = 0.1)  0.005  0.009 EM Posterior 050 676
Gaussian Blur (O'R = 107 On = 025) 0.015 0.025 0.25 5.38
Motion Blur (0r = 1.0,0, = 1075 0.0072  0.0026 Ours (generated) 50 674
Motion Blur (6 = 1.0, 0, = 0.1) 0.011 0.012 Baseline 0.00 5.16

To compare with inverse generative models from prior work, we use the trained SI to restore the
observations; that is, we transport all observations y to the data space via @ (y), and use these samples
to train a generative diffusion model. We use the same architecture as above, but with 96 channels.
Table[2]shows the FID scores for observations with two different masking probabilities and negligible
added Gaussian noise (X = 10~°). Our method vastly outperforms Ambient Diffusion
[2023). It is comparable with EM Posterior method (Rozet et al.,[2024), but more computationally
efficient: we required a combined ~ 86 GPU hours (54 and 32 GPU hours to train SI and diffusion
model respectively) compared to their 512 GPU hours.

Original
Image
Original
Image

©
£
2
=t
]

Random
Motion
Blur

Gaussian
Blur

Restored
(Ours)
Restored
(Ours)
Restored
(Ours)

DPS

(a) F: Random mask (b) F: Gaussian blur + noise (c) F: Motion blur + noise
(p=0.5,0n = 1079). (cr =1,0, =0.1). (kernel size = 5, o, = 0.1)

Figure 3: Restored samples for different forward maps from our interpolants and DPS.

ii) Gaussian blurring with noise The forward map is blurring with a Gaussian kernel with o = 1
and adding noise. Here we add Gaussian noises with different levels (o,, = 0.10, 0.25) and show the
results for Poisson noise case in the appendix. This demonstrates that, unlike previous works, e.g.,
Daras et al.| (2023)), our approach can handle non-negligible and non-Gaussian noise.

iii) Motion blurring The previous two examples involve linear forward maps. We now consider a
nonlinear one: motion blur. Fig.[3c|shows restored samples for observations with a 5-pixel motion
kernel and small Gaussian noise (¥ = 10~%). The blur direction is randomly assigned per image and

assumed known for conditioning the SI. While Daras et al.|(2023); Rozet et al.| (2024) are limited to
linear operators, our method handles nonlinear maps with only black-box access.

iv) JPEG compression This is another common non-linear corruption operator with real-world
applications. The forward map is JPEG compression with quality factor (¢) and added Gaussian noise
(o, = 0.01). For training, we corrupt every image randomly with a different factor ¢ ~ U{[0.1, 1]
(where ¢ = 1 implies no compression) and assume this latent parameter ¢ is known for each
observation to condition the SI. Fig. ] shows the restored image with our trained SI for different
strengths of compression. The restored image gets closer to the original with lower compressions,
and we restore a physically plausible image even for ¢ = 0.1. In Appendix [D.4] we show that our
trained Sl is stable to extrapolations of g outside the training regime.
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5.3 QUASAR SPECTRA

Scientists observe quasars through telescopes and hence the observed spectra differ from the underly-
ing true spectra due to noise, finite spectral resolution and finite observation time. Recovering the
true spectra from these observations is of interest to both study individual objects and to understand
the evolution of quasars as a whole.

For the true data distribution, we take the quasar spectra from Sloan Digital Sky Survey data
release (Lyke et al., [2020). We isolate 30,000 quasars in redshift z € [2.75,3.25] and consider
A € [400nm, 650nm] resulting in spectra of length D = 1024. We approximate the forward model
with a combination of flux calibration error (offset), a Gaussian smoothing, and added Gaussian
noise. Unlike imaging examples, for every observation, we randomly vary the size of the smoothing
kernel within 5% and add noise with a different magnitude depending on a randomly chosen SNR.
We assume we do not have access to these latent parameters of any observation. In Fig.[5] we show
the restored spectra for observations in the two extreme regimes that different telescopes operate in:
i) observations with high spectral resolution and low SNR (high noise), and ii) those with low spectral
resolution and high SNR. In both cases, the restored spectra have much more accurate features (like
peak heights and locations), which are used to determine the position and metallic composition of
different quasars.
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(a) F: High spectral resolution, low SNR (b) F: Low spectral resolution, high SNR
Alog A = 5000 + 5%, SNR € [0.5, 2] Alog A = % =+ 5%, SNR € [30, 50]

Figure 5: Restored quasar spectra for different observational scenarios.
6 CONCLUSION

We presented a self-consistent SI framework for reconstructing the underlying data distribution using
only corrupted observations and a black-box channel. The proposed bi-level iterative scheme is
computationally practical and enjoys provable convergence under suitable assumptions. Compared to
existing approaches, our method accommodates a much broader class of nonlinear forward models.
Experimentally, we demonstrated its effectiveness across a range of inverse problems, achieving
competitive performance even against methods that rely on additional access to the forward model
(e.g., Ambient Diffusion) or even clean data (e.g., DPS).

Looking ahead, the framework can be naturally combined with large latent-variable models and used
to provably model posterior distributions via Follmer processes [Chen et al.| (2024), both of which
are promising directions for future exploration. On the theoretical side, an important limitation of
our current analysis is that it only concerns the SDE setting with € > 0; a natural next step is to
explore contraction properties in Wasserstein, which could then capture the ODE variant. Finally,
another direction is to quantify the condition number in representative channels for explicit choices
of regularization, which would provide further insight and practical guidance for algorithm design.



Under review as a conference paper at ICLR 2026

REFERENCES

O Deniz Akyildiz, Mark Girolami, Andrew M Stuart, and Arnaud Vadeboncoeur. Efficient prior
calibration from indirect data. SIAM Journal on Scientific Computing, 47(4):C932—-C958, 2025.

Michael Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
In ICLR 2023 Conference, 2023.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313-326, 1982.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical
society, 68(3):337-404, 1950.

Weimin Bai, Yifei Wang, Wenzheng Chen, and He Sun. An expectation-maximization algorithm
for training clean diffusion models from corrupted observations. Advances in Neural Information
Processing Systems, 37:19447-19471, 2024.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. /EEE
Transactions on Information theory, 39(3):930-945, 2002.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-linear conver-
gence bounds for diffusion models via stochastic localization. arXiv preprint arXiv:2308.03686,
2023.

Nicholas M Boffi and Eric Vanden-Eijnden. Probability flow solution of the fokker—planck equation.
Machine Learning: Science and Technology, 4(3):035012, 2023.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Tianyu Chen, Yasi Zhang, Zhendong Wang, Ying Nian Wu, Oscar Leong, and Mingyuan Zhou.
Denoising score distillation: From noisy diffusion pretraining to one-step high-quality generation.
arXiv preprint arXiv:2503.07578, 2025.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S Albergo, Nicholas M Boffi, and Eric Vanden-
Eijnden. Probabilistic forecasting with stochastic interpolants and f\” ollmer processes. arXiv
preprint arXiv:2403.13724, 2024.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022.

Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Klivans. Am-
bient diffusion: Learning clean distributions from corrupted data. Advances in Neural Information
Processing Systems, 36:288-313, 2023.

Giannis Daras, Alex Dimakis, and Constantinos Costis Daskalakis. Consistent diffusion meets
Tweedie: Training exact ambient diffusion models with noisy data. In Forty-first International
Conference on Machine Learning, 2024.

Giannis Daras, Adrian Rodriguez-Munoz, Adam Klivans, Antonio Torralba, and Constantinos
Daskalakis. Ambient diffusion omni: Training good models with bad data. arXiv preprint
arXiv:2506.10038, 2025.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Weinan E, Chao Ma, and Lei Wu. The barron space and the flow-induced function spaces for neural
network models. Constructive Approximation, 55(1):369-406, 2022.

10



Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Bahjat Kawar, Noam Elata, Tomer Michaeli, and Michael Elad. GSURE-based diffusion model
training with corrupted data. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Qin Li, Maria Oprea, Li Wang, and Yunan Yang. Stochastic inverse problem: stability, regularization
and wasserstein gradient flow. arXiv preprint arXiv:2410.00229, 2024.

Qin Li, Maria Oprea, Li Wang, and Yunan Yang. Inverse problems over probability measure space.
arXiv preprint arXiv:2504.18999, 2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In The Eleventh International Conference on Learning Representations,
2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In The Eleventh International Conference on Learning
Representations, 2023.

Haoye Lu, Qifan Wu, and Yaoliang Yu. Stochastic forward—backward deconvolution: Training
diffusion models with finite noisy datasets. In Forty-second International Conference on Machine
Learning, 2025.

Brad W. Lyke, Alexandra N. Higley, J. N. McLane, Danielle P. Schurhammer, Adam D. Myers,
Ashley J. Ross, Kyle Dawson, Soléne Chabanier, Paul Martini, Nicolas G. Busca, Hélion du
Mas des Bourboux, Mara Salvato, Alina Streblyanska, Pauline Zarrouk, Etienne Burtin, Scott F.
Anderson, Julian Bautista, Dmitry Bizyaev, W. N. Brandt, Jonathan Brinkmann, Joel R. Brownstein,
Johan Comparat, Paul Green, Axel de la Macorra, Andrea Mufioz Gutiérrez, Jiamin Hou, Jeffrey A.
Newman, Nathalie Palanque-Delabrouille, Isabelle Paris, Will J. Percival, Patrick Petitjean, James
Rich, Graziano Rossi, Donald P. Schneider, Alexander Smith, M. Vivek, and Benjamin Alan
Weaver. The Sloan Digital Sky Survey Quasar Catalog: Sixteenth Data Release. Astrophysical
Journal Supplement Series, 250(1):8, September 2020. doi: 10.3847/1538-4365/aba623.

Giacomo Meanti, Thomas Ryckeboer, Michael Arbel, and Julien Mairal. Unsupervised imaging
inverse problems with diffusion distribution matching. arXiv preprint arXiv:2506.14605, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Francois Rozet, Gérome Andry, Francois Lanusse, and Gilles Louppe. Learning diffusion priors from
observations by expectation maximization. Advances in Neural Information Processing Systems,

37:87647-87682, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Albert Tarantola. Inverse problem theory and methods for model parameter estimation. SIAM, 2005.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
structure and function with rfdiffusion. Nature, 620(7976):1089-1100, 2023.

Andre Wibisono, Varun Jog, and Po-Ling Loh. Information and estimation in fokker-planck channels.
In 2017 IEEE International Symposium on Information Theory (ISIT), pp. 2673-2677. IEEE, 2017.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586-595, 2018.

Yasi Zhang, Tianyu Chen, Zhendong Wang, Ying Nian Wu, Mingyuan Zhou, and Oscar Leong.
Restoration score distillation: From corrupted diffusion pretraining to one-step high-quality
generation. arXiv preprint arXiv:2505.13377, 2025.

11



Under review as a conference paper at ICLR 2026

A PROOFS

For notational simplicity, we use C to denote Kz, the forward integral operator that pushes 7 to ,
and we adopt this shorthand throughout this section without risk of ambiguity.

A.1 PROOF OF PROPOSITION

Proof. Recall our iterative scheme as

. S . s (k1)
via (/) k41) minimizers in with I
@(k) It( +1) @@ t @(k-l‘l). (13)
‘E’ step ‘M’ step

If the above iteration converges to a fixed point ©*, and the channel is injective at the level of
distributions, i.e., X = KCm implies 7 = m, then the corresponding transport map $g« transports
corrupted samples from g into clean samples from 7. To see this, consider mg- = (Do~ )xL.
We prove only the SDE case, as the ODE case corresponds to the special case when € = 0. By
definition of mg~ and the property of time-reversal SDE, ©* transports mg« to p under the forward
SDE (Andersonl [1982; |Song et al.,|2021])

Adx[ = b(t, XI)dt — eg(t, X[ )dt + v/2e,dW,.

On the other hand, since ©* is the optimal solution trained from the SI between wg« and g+, the
above forward SDE also transport samples from mg~ to Kmg~ (Albergo et al., 2023). As a result we
must have K zmg+« = u, which means that T+~ = 7 thanks to injectivity. ]

Loss function perspective Our iterative scheme can be viewed as a specific procedure to find a
fixed point ©* satisfying self-consistency. Alternatively, such a fixed point can be characterized as a
minimizer of a loss function that penalizes discrepancies between two transport descriptions. Given a
generic pair © = {b, g} of drift and denoiser models, the corresponding backward transport defines
a distribution g = (®g)4u, and then the objectives associated with the SI between mg and Krg
defines minimizers b, and g,,. We seek to align them with the original pair via the loss

L(b,g) = b=brg, 17+ 19— grp 117 (14)

where || - || here denotes an L? with respect to an arbitrary base measure. The main challenge when
analyzing gradient-based optimization of this loss is the highly non-linear dependencies arising from
the transport map.

A.2 ADDITIONAL DETAILS ON CONDITION NUMBER

An important aspect of the problem is that there are two distinct notions of error, whether it is
measured on the ‘data’ side, i.e., KL(7|[7(¥)), or on the ‘observation’ side, i.e., KL(u||u*)) =
KL(Kr||K7 (k). Since the learner only has access to data from s, a necessary condition to guarantee
that we can recover the original data distribution is injectivity, i.e., that KL(Kr||K#) = 0 implies
m = 7. However, this is not sufficient to provide a quantitative estimate of KL(7||7) in terms of
KL(u||K7). In other words, the inverse problem Cm = p is generally singular in P(2), even for
the simplest channels, due to the infinite-dimensional nature of the domain. Regularisation is thus
necessary.

For that purpose, we modify the ST objectives (3)(5) with a regularised objective:

by = arg miné’gﬁw(i)) + )\R(I;) , Or =argminY . (§) + AR(G) , $x(t,z) = —v(t) g
b 9 ’

(15)

Here, the term R enforces some type of regularity (e.g., a RKHS norm (Aronszajn, [1950), or a
Barron-type norm (Barron, [2002; E et al., 2022)) in the solution within L* (7o q)). Indeed, if we
assume that F is bounded in L2, i.e., E[|| F(X)||2] < C1E[||X||?] + C. then the minimisers by, jx
in are guaranteed to satisfy max(R(bx), R(G=)) < A\t max(E|/L;||?, E[|z]?]), and therefore

br, 8x € By = {f; R(f) < (CLE[[IX|*] + C2)A "'} . (16)

12
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In turn, these regularised objectives inject regularity in 7(¥), in the sense that for all k we have
7(k) € Sy, the class of terminal densities obtained by running a Fokker-Plank equation with drifts in
B,. To simplify the technical analysis, and without sacrificing much generality, we will assume that
m ¢ Sy forany A > 0 El We can now quantify the condition number of K ‘centered’ at 7:

G
pesy KL(Kn|[Kp)

Note that by the data-processing inequality, we always have xy > 1. The (regularised) inverse
problem becomes non-singular whenever y < oco. The purpose of regularisation, in this context,
is to restrict the range Sy as to make x small, while maintaining a small approximation error;
this tradeoff will be made explicit next. Observe that, if p € Sy, by Girsanov’s theorem we have

KL(7||p) < e 1[|b* = b,||? + €]|s* — 8,||> < oo , which shows that y is well-defined.

7)

A.3 PROOF OF PROPOSITION

‘We restate the result for convenience:

Proposition 3 (Finite Condition number for Compact Hypothesis Class). Assume that IC is injective,
that D is a compact parameter space, with continuous parametrization of the drift and score models,
and that  cannot be exactly represented by the model. Then xy < oo.

Proof. Let F : D — P () be the function that maps a model {bg, sg } to F(©) = 71, where ()
is the marginal law of (X;);, which solves the SDE

dX; = (bo(t, Xy) + 2es9(t, X3))dt + V/2edW, (18)

Xo~ 1. (19)

Define G(©) := KL(Kr||F(©)). We claim that G is positive for all © € D and that G is lower

semi-continuous. Indeed, since we are assuming a misspecified model, we have KL(r||F(©)) > 0
for all © € D, which implies G(©) > 0 for all © € D thanks to the injectivity of /.

Moreover, the mapping v — KL(u||v) is lower semi-continuous in the weak topology. This follows
from the Donsker-Varadhan variational representation of the KL divergence:

KL(ullv) = sup {(f, 1) —log(e 1)} .

The map v — —log(ef, v) is weakly continuous for all f € C;, and the supremum of continuous
functions is lower semicontinuous. Now, consider any sequence (0,,),, such that ||©,, — ©|| — 0 as
n — oo. By Girsanov’s theorem, observe that

KL(F(O)|IF(©n)) < 7' [[be — b, |I* + ¢llse — s, . (20)

which shows that KL(F(0)||F(0,)) — 0 as n — oo thanks to the continuity of the mappings
© — {b, g}o. By Pinsker’s inequality, we also have that | F(©) — F(©,,)|/Tv — 0, which shows
that F(©,,) converges weakly to F'(O), and therefore

lirr_l)infG(@n) >G(O), 21
showing that GG is LSC as claimed.

Now, observe that
KL(7||[F(0)) < € '[lbe — b*||* + €|lse — s*[|* := J(©)

and

KL(x||F(© J(©

TlIF©) _ JO) o o

KL(u[|[KF(©)) — G(©)
The function 7 is the ratio between a continuous function and a positive, lower semicontinuous
function. It follows that r is upper semi-continuous, and therefore

x < sup r(©) < o0,
©eD

since USC functions attain a maximum over compact sets. ]

“That is, we assume we are in the more general misspecified setting; this is to avoid degeneracies in the
definition of the condition number where both numerator and denominator can be zero.

13
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A.4 PROOF OF THEOREM

Proof. The strategy of the proof is to establish a comparison between KL(||7(®)) and KL (7 ||x (1)
by exploiting the relationship between the diffusion bridges that relate them.

For that purpose, let I;* be the oracle SI, given by

I' = X+ 8 F(X)+vz, X ~7". (23)
Let 7 be the law of I}. It solves the Fokker-Planck equation
Oy =V - ((—b" — es™)my) + eAmy (24)
m=n,m=Kr=u,
where
b*(t,z) =E[I} | I} = 2], (25)
s*(t,x) == —Ehy 'z | [} =a]

as well as the reverse Fokker-Planck equation

Oty =V - ((=b* 4+ es™)my) — eAmy (26)
m=Knr=u, mg=m.

Consider also the SI at iteration k of our algorithm. Given 7(*), we consider the interpolant

I = X + BF(X) + vz, X ~ k) 27)
its associated (exact) drift and scores
b®)(t,2) = B | 1) = a], (28)

s (t,x) = —Ey; 2| It(k) =z,
as well as the estimated drifts and scores, that we recall are given by
b = argmin 2 o (0) + AR(D) , 3 argmin 3 i (8) +AR(3) . (29)
; ; 5 ;
They define respectively a forward Fokker-Planck equation

Oy =V - ((fb(k) — es(k))ﬂt) + eAm, (30)
mo=a® m =Kr® = M(k) ,
and a reverse Fokker-Planck equation

Oy =V - ((—l;(k) + e§(k))7rt) — eAmy 31
™ =MW, T = 7T(k+1).
It is also useful to define f := b + €s to be the total drift of the forward (i.e., from data to measure-

ments) diffusion; with the corresponding oracle f*, iterate f(*) and estimated f (%) versions defined
analogously. From (24), (26), (30) and (31) we immediately verify that the reverse drift becomes
—f =+ 2es.

The following lemma relates the rate of KL along two SDEs. We reproduce the proof later for
completeness, but it is a known result, e.g., (Boffi & Vanden-Eijnden, 2023} Proposition 1) or
(Albergo et al.,[2023, Lemma 2.22):

Lemma 1 (KL divergence along two diffusion processes). Let dX; = b(t, X;)dt + v/20dW, and

dY: = a(t,Y:)dt + v20dW; be two diffusions, and y;, vy denote the marginal law of X; and Y;
respectively. Then

d
aKL(MtHVt) = —ol(pe|lve) + Ep, (b—a, Vg — Vloguy) (32)
where 1(pi||v) = E,[||V log u — Vlog v||?] is the Fisher divergence.

14
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In the particular setting where b = a, one obtains a de Bruijn identity:

Lemma 2 (de Bruijn Identity).

d
ZKL(m| ") = —o1(m||m")) (33)

Besides a control of the marginal KL, we will also use Girsanov’s theorem to obtain control of the
KL divergence between path measures of (X;); and (Y%);:

Lemma 3 (Girsanov Theorem). Let dX; = b(t, X;)dt + v20dWy and dY; = a(t, Y:)dt + v/ 20dW,
be two diffusions, and let o 1) and v|g 1) be the path measures of Xy and Yy, respectively. Assume
the Novikov integrability condition. Then

1 T
KL (ol o) = KLGiolloo) + 1By [ llatto) =bita)lPar. 34)

By the data processing inequality, a direct consequence of Lemma 3]is

Corollary 2.

1 T
KL(ur||vr) < KL(po|v0) + — E / la(t, z) — b(t, z)|%dt . 35)
0

Ao Hlo,T)
We first apply Corollary2]from ¢ = 1 to t = 0 to the two reverse Fokker-Planck equations (26) and
, respectively sending p back to 7, and the current model sending j back to 7(**1)_ Since they

share the same initial condition, we have

1

1
“ /0 Ex, | f*(t,2) = [0 () = 26(s7 (t,2) = 50t ) Pdt . (36)

We now apply LemmalT]to the pair of forward Fokker-Planck equations (24) and (30} , to obtain

KL(x][r* D) <

1
KL(x||r®) = KL(ul[x®) + eE/ 1V log 7, — V log 7 2t 37)
0
1
- E,r/ (f* = f® Vlogm — Vlegm¥)at
0
1
= KL(uln®) + B [ I = s P

1
_Eﬂ'/ <f*_f(k)a8:_8§k)>dt .
0

From (36) and (37) we thus have
1 * A * ~ * R * N
2= PO +ells = 8012 = (= f0st =5 0) 0 38)

Assuming a drift and score approximation error uniformly bounded by §, we have

KL (x| ") <

1
KL(x|[x®*D) < ZEIf* = fWI2 +ells” = sO)2 B = f0, 5% = 1) (39)
1 142, ., .
ot (prer) s (S0P - O a0l 1) 6o
< KL(x[|7 ™) = KL(ul[x™) (41)
1 * k. *
+ 1 Bl - FPUP + Ci(€)8% + 6(Ca(e) 6" = bW + Cs(e)|s* — ™M) .
(42)
Now, using the condition number and SI Lipschitz assumptions, denoting n = 1 + i —x~ 1, and
redefining 5= v/C16, we obtain
KL(r||7* D) < pKL(n||7®) 4 62 + 26C([|o* — b || + [|s* — s®])) . 43)
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Observe that from and using Cauchy-Schwartz, we have

ls* = s®)2 < (1= xHKL(x||x™) + [(f* = 1®), 5" = sP))| (44)
< (1= x"HKL(r(|n®)) + /LKL (z |7 ®) |s* — 5@ (45)
< KL(x |7 ™) + /nKL(a| |7 ®))|s* — s, (46)

which implies ||s* — s®)|| < 2,/7KL(7||7(*®)), and therefore

[* = bW + [|s* — s || < C\/nKL(x[|7®) . (47)
Thus, by redefining 6 = C.0 for some appropriate constant C, we obtain
KL(x|[x* D) < gKL(x|[7*)) + 6% + 261 /nKL(7||x®)) (48)
= < nKL(r||x(®)) +S>2 . (49)
Setting ay, = KL(n||7(*))1/2, we arrive at the linear recurrence

i1 < ok + 6. (50

Solving this linear recurrence yields

o, <1200 + T 7 (51)
hence
5 2
KL(7T||7T(k)) < (nk/an + ) (52)
L—=n
)

< 20FKL(x||x@) + 2 (53)

- =P
as claimed. |

Proof of Lemmal[l] Let Ky = KL(p||ve) = [ pue(z) log (
v, solve the Fokker-Planck equations

)) dx. By definition, the laws p; and

Orpr =V - ((—=b+ oV log pg) jue) 4
vy =V - ((—a+oViegu)ny) . (55)
We compute
d
%Kt = —/ 5:((2 Oy ()dx + /log (5:((2) Ot (x)dx (56)

= [ By. ((—a+ oViogv)v)dw + /log ('ut) V- ((=b+ oVlog ) p)dz (57)

Vi

= /(V (T) ,—a+ oVlog v yvdr — / <V10g (T) ,(=b+0oVlog ut)> pedx (58)
t t

/<Vlog <‘lf:) —a+b—oVliog (‘Z>>ut (59)

= —ol(pe|lve) + Ep, (b—a,Viog e — Vloguy) . (60)
|
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B DETAILED ALGORITHM PSEUDOCODE

Algorithm 2: Training of Self-Consistent Stochastic Interpolant

Input :Observation distribution p, Forward mapping F, Interpolant schedule («, 3, ),
Initialization of drift and denoiser ©° = {b(®) (0}, Total number of iterations K,
Number of transport steps 7},

Output : Optimized networks @) = {p(K) 4(K)}

0+ 00 // Initialize transport map

forkinl...K do
fortinl...Ti, do
Yy~ p
x=Pgur-n(y) // Backward transport to get a data sample
§=F(x) // Map back to observations

2z~ N(0,1); t ~U(0,1)
It = cqx + By + 12
SGD update of © via losses G)([3)
0k «— e // Update transport map

return © (%)

C IMPLEMENTATION DETAILS

Architecture of models We give the architecture details of our SI and diffusion model here. Both
architectures are the U-net from Dhariwal & Nichol|(2021]), specifically following the implementation
herel The main difference is that we reduce the number of model channels in the first layer from
default 192 to 96 for the diffusion model and 64 for the stochastic interpolant. This is primarily done
for computational reasons. As a result, the small model (64 channels) has ~32 million parameters
while the large model has ~70 million parameters. Maximum positional embedding for the diffusion
model and SI is taken to be 10,000 and 2 respectively.

For 2-D latent parameters as used in random masking, we process them with a small U-net consisting
of 2 convolution blocks sandwiched between two mode convolution layers and the number of channels
given by channel multiplier. We concatenate this with the image along channel dimension. For 1-D
latents as used in motion blur and JPEG compression, we process them with a three layer perceptron
and then add them to the time embedding.

Table 3: Model configuration parameters

Parameter Value
Model channels 96 (64)
Channel multiplier [1,2,3,4]
Channel multiplier for embeddings 4
Number of blocks 3
Attention on resolutions [32, 16, 8]
Dropout Fraction 0.10
Max positional embedding 10000 (2)
Number of channels in latent U-Net 8

C.1 TRAINING PARAMETERS

We use the same hyperparameters for all the experiments. The backward transport map via ODE
or SDE is performed in 64 steps. We experimented with different choices of 7;;, the number of
backward transport steps in Alg.|l} and observed only minor differences across values, with 7j, = 1
already sufficient for all current experiments. For simplicity, we therefore set T3, = 1 throughout this
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work. For experiments with ODE, we choose the schedule of STas oy =1 — ¢, 5 = ¢,y = 0. For
experiments with SDE, we keep the same schedule for «;, f;, set v+ = t(1 — t), and use € = 0.1.

When ©) is far from the optimal at the early stages of the outer iteration, the distribution of
self-generated observations Kz (P gx) )4 may differ significantly from p, and consequently slow
down the convergence in practice. To mitigate this effect, we modify the interpolant (7)) by replacing
F(Pge (y)) with a mixture: with probability p (set to 0.9 in our experiments), we use the generated
observation, and with probability 1 — p, we use the original y. As long as p > 0, following the same
argument in Prop. [T} we know the fixed point still gives us the desired optimal parameters ©*.

Furthermore, to enhance computational efficiency, for every data mapped back with ODE integration,
we (re)-sample the observations twice to generate two interpolated points. This amortizes the cost
of ODE integration, which is the most expensive step in the training process. We fix the learning
rate to be 0.0005 and use cosine schedule with warmup. Random masking, motion blur and JPEG
experiments are trained for 50,000 iterations while other experiments are trained for 20,000 iterations.

D ADDITIONAL RESULTS

D.1 DIFFUSION MODEL

We train a big and a small diffusion model on clean CIFAR-10 data. For sampling, we use 256 steps.
The FID for these models is 5.16 and 6.64 respectively. In Fig. [6]and [7] we show some randomly
drawn samples from these models.
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| e
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Figure 7: Randomly drawn images from the smaller diffusion model trained on cleaned images.

D.2 RANDOM MASKING

In Fig. 8] we show additional results for random masking experiment with 25%, 50% and 75%
pixels randomly masked. The quality of restored images declines with increasing corruption, but the
restored samples are close to original image even for 75% corruption.

For generative modeling, we train a new diffusion model on the samples restored with SI. Fig[9]shows
samples from the model trained on the restored samples of the random masking experiment with 50%
corruption and negligible noise. As reported in the main text, FID of this model is 6.74.
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Random Mask Original

Restored

Restored Random Mask Original

Original

Restored Random M.

(c) Random masking with 75% pixels masked.

Figure 8: Restoring images with SI for varying fractions of masked pixels (levels of corruptions).

Figure 9: Samples from the diffusion model trained on the restored samples of random masking
experiment with 50% corruption.

D.3 MOTION BLUR

In Fig. we show additional results for the motion blur experiment with increasing size of the
motion blur kernel from 5 to 9 pixels.

D.4 JPEG COMPRESSION

In Fig. [TT] we show restorations for JPEG corruption for additional images that have been compressed
with randomly chosen ratios. The SI is able to restore samples across a broad range of corruptions.

In addition, we consider another setting where we have training samples that are corrupted with
q ~ U[0.1,0.5], i.e., we never see high quality samples. The results for the trained SI in this setting
are shown in Fig. [[2)and[T3] The restoration for low-quality samples is poorer than when SI was
trained on some samples with compression ratio of more than 0.5. However, note that the SI remains
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Restored ~ Motion blur  Original

Restored ~ Motion blur  Original

(c) Motion blur with blur kernel of 9 pixels.

Figure 10: Restoring images with SI for varying size of motion blur kernel (levels of corruptions).

Original

Restored JPEG Compress Image

Figure 11: Additional images for JPEG restoration for the model trained on samples with
q ~ U[0.1,1.].

stable in the extrapolation range, i.e., when restoring sample of ¢ > 0.5, the interpolant does indeed
improve the restored image even though it has never seen samples in this regime.

D.5 GAUSSIAN BLURRING WITH POISSON NOISE
In this section, we present additional results for when the forward map is blurring with a Gaussian

kernel followed by adding Poisson noise. We add noise with two different levels, A, = 0.1 and 0.5.
The restored images here demonstrate that our approach also works in the non-Gaussian noise setting.
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Figure 12: F: JPEG compression + noise (o, = 0.01): results for different compression levels (Top:
Corrupted; Bottom: Restored). Model is trained only on samples with g ~ /[0.1, 0.5]. Results for

higher qualities are in extrapolation regime.

Figure 13: Additional images for JPEG restoration for the model trained on samples with
q ~ U[0.1,0.5] only.

Restored JPEG Compress Image
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(b) Gaussian blur (cr = 1) with Poisson noise A, = 0.25.

Figure 14: Restoring images with SI for Gaussian blurring with Poisson noise for different noise
levels.
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