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Abstract

Bias problems in the estimation of maxima of random variables are a well-known
obstacle that drastically slows down Q-learning algorithms. We propose to use
additional insight gained from distributional reinforcement learning to deal with
the overestimation in a locally adaptive way. This helps to combine the strengths
and weaknesses of the different Q-learning variants in a unified framework. Our
framework ADDQ is simple to implement, existing RL algorithms can be improved
with a few lines of additional code. We provide experimental results in tabular,
Atari, and MuJoCo environments for discrete and continuous control problems,
comparisons with state-of-the-art methods, and a proof of convergence.

1 Introduction

Watkins’ Q-learning is one of the most popular learning algorithms as it has a simple update structure
that is straight forward to implement. In each round the agent observes a new reward signal and
updates the currently estimated state-action function by combining the new reward signal with the
best currently estimated action in the next step. In contrast to some other algorithms the algorithm
combines simplicity with mathematical tractability, in essence it’s Banach’s fixed point iteration
for Bellman’s optimality operator with estimation errors (see e.g. Bertsekas and Tsitsiklis, 1996).
Unfortunately, the update rule involves a maximum and the estimation of expectations of maxima
of random variables suffers from overestimation bias. In the context of Q-learning we refer to the
seminal papers Thrun and Schwartz, 1993 and van Hasselt, 2010. Even though convergence for
tabular cases is proved the convergence can often be seen only after millions of iterations.

Motivated by statistical approaches to the estimation of the expectation of maxima of random
variables the concept of double Q-learning was introduced in van Hasselt, 2010. Instead of only
using a set of random variables one uses two independent sets. One is used to detect the maximal
index, the other set to evaluate the random variable corresponding to the maximal index. In the
context of Q-learning this translates to keeping two copies of the Q-matrix that are alternated to
either detect the best action and to evaluate the corresponding Q-value. Double Q-learning reduces
the overestimation (with function approximation see Figure 2 in Fujimoto et al., 2018) and sometimes
even underestimates. A bit of care is needed, double Q-learning is not always superior to Q-learning
(or other variants) the additional negative bias can be unfavorable. This can for instance be seen in a
simple two-state example (compare Example 6.7 in Sutton and Barto, 2018 and also Lan et al., 2020
for the underestimation effect in the same example) but also in the simple grid world example in van
Hasselt, 2010 if the reward distributions are chosen less random as in simulations presented in the
paper. In simple words: Q-learning prefers regions with large reward variance, but those must not
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be desirable if rewards have small expectations. Thus, depending on parameters in many models
either Q-learning or double Q-learning performs weak or strong. Even though overestimation has
mostly negative effects it can also have positive effects, for instance to trigger exploration or to help
distinguish good and bad actions. For Q-learning with function approximation it is known for Atari
games that deep double Q-learning often outperforms Q-learning but sometimes fails badly. The
present article is motivated by the desire to combine the strengths of both algorithms.

A number of techniques have been introduced to deal with overestimation bias. Some with even more
bias than double Q-learning (e.g. clipped Q-learning from Fujimoto et al., 2018) others with less
additional negative bias. Weighted double Q-learning Zhang et al., 2017 used a weighted combination
of Q- and double Q-learning estimators. Ensemble Q-learning and averaged Q-learning Anschel
et al., 2017 take averages of multiple action values, an approach that also reduces variance. A more
recent idea is to use more than only two copies and combine those to a single estimator, see Lan et al.,
2020. The number of copies can then be used to find the right amount of over- and underestimation
to optimise performance for a given model and to reduce variance. The approach has the drawback
that the number of copies must be optimised as an additional hyper-parameter and cannot be adapted
during a running training process. Bias-corrected Q-Learning Lee et al., 2013 subtracts a bias-term in
order to turn Q-learning into an unbiased stochastic approximation algorithm.

We use distributional reinforcement learning (DRL) to provide a simple framework of algorithms
that (i) uses distributional properties to combine for every state-action pair adaptively Q- and double
Q-learning updates during training to use their respective advantages, (ii) is easy to implement in
existing algorithms, (iii) can be proved to converge in the simplest tabular setting.

To develop a locally (on state-action pair level) adjustable algorithm our approach is to ignore
the basic statistical idea behind double Q-learning and purely see such algorithms as stochastic
approximation algorithms with additional bias (a bit similar to SARSA compared to Q-learning).
We modify the bias such that the bias is adapted to the current estimation situation. It is empirically
known that high stochasticity favours double Q while low stochasticity favors Q-learning (see also
our Section A). Thus, the variance of estimated Q-values seems a good idea for the interpolation
weights. Unfortunately, standard Q-learning only takes track of expectations. This is where DRL
enters the algorithm. In DRL one estimates the entire distributions of discounted total rewards. We
use DRL to compute the variance (more precisely, the left-truncated variance) and for actions with
relatively low (resp. high) variance favor the Q-learning update (resp. double Q-learning update). The
figure below gives two tabular examples (details in Appendix A) that highlight the idea of our article.
A gridworld (with fake goal and region of high stochasticity) and an extension of Sutton’s example.
These environments have high and low stochasticity regions, making them potentially complicated
for both Q- and double Q-learning. The environments look artificial but similar properties can be
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Figure 1: Variants of grid world and an extension of the Sutton/Barto example.

expected in realistic environments. The simulations below (for the Sutton/Barto example) show
that adaptive distributional double Q-learning introduced below is more robust, it adapts to the
stochasticity by stopping the excitement of Q-learning in high variance regions.
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Figure 2: Three mean/variance combinations in the extended Sutton/Barto example. Proportion of
optimal action in A for Q- (blue), distributional Q- (yellow), double Q- (green), distributional double
Q- (purple), adaptive distributional double Q-learning (red, us). Details are given in Appendix A.

2 Problem setting and heuristics

Let us fix a Markov decision process (S,A,R, p), where S is the state-space, A the space of allowed
actions,R is the reward space, and p a transition kernel describing the distribution of the reward r
and the new state s′ when action a is played in state s. Given a time-stationary policy π, a Markov
kernel on S ×A, there is a Markov reward process (St, At, Rt) with transitions

Pπ(Rt = r, St+1 = s′, At+1 = a′|St = s,At = a) = π(a′ : s′)p(r, s′ : s, a).

The goal of the agent in reinforcement learning is to find a policy that maximises the expected
discounted reward V π(s) = Eπ[

∑∞
t=0 γ

tRt|S0 = s] for all starting states s. The discounting factor
γ ∈ (0, 1) is fixed. In the discrete setting S and A finite it is well-known that optimal stationary
policies exist and can be found as greedy policy obtained by the unique solution matrix Q∗ to
T ∗Q = Q. The non-linear operator (T ∗Q)(s, a) = r(s, a) +

∑
s′∈S p(s′ : s, a)maxa′∈A Q(s, a)

is called Bellman’s optimality operator. Bellman’s optimality operator is a max-norm contraction
on the S ×A matrices. Using Banach’s fixed point theorem the solution can in principle be found
by iteratively applying T ∗ to some initial matrix Q0. The drawback of this approach is the need to
know the operator T ∗ explicitly, thus, having explicit knowledge on the transitions p. Using standard
stochastic approximation algorithms the fixed point Q∗ can be approximated by the recursive scheme

Qn+1(s, a) = Qn(s, a) + αn(s, a)(r + γmax
a′

Qn(s
′, a′)−Qn(s, a)). (1)

Here s′, r is a one-step sample obtained from p(· : s, a) and the step-sizes are assumed to satisfy
the Robbins-Monro conditions. The exploration can be on-policy (using Qn) or off-policy, the only
requirement is infinite visit of all state-action pairs. The algorithm was proved to converge in the
tabular setting, see for instance Tsitsiklis, 1994. For some results with function approximation see
for instance Melo and Ribeiro, 2007. The problem of Q-learning is the tendency for overestimation,
the values Qn(s, a) will typically be larger than Q∗(s, a). Here is why. In case some Qn(s, a)
is overestimated by a surprisingly large random sample r the maximum maxa′ Qn(s, a

′) will be
overestimated as well and thus spread the overestimation to neighboring state-action pairs. This
overestimation will prevail for quite some time, only the discount factor helps to get Q-values down.

Most tricks to avoid overestimation add a bias to the righthand side of (1). This may not be obvious
from the heuristic ideas, but can be seen in the convergence proofs (e.g. the sketch of proof in van
Hasselt, 2010). Since this is also behind the convergence proof for SARSA (see Singh et al., 2000)
we refer to the trick as SARSA trick. Here is the double Q update with SARSA trick:

QA
t+1(s, a) =

Q-learning︷ ︸︸ ︷
(1− α)QA

t (s, a) + α
(
r + γQA

t (s
′, a∗)+

bAt︷ ︸︸ ︷
γ
(
QB

t (s
′, a∗)−QA

t (s
′, a∗)

) )
QB

t+1(s, a), = (1− α)QB
t (s, a) + α

(
r + γQB

t (s
′, b∗)︸ ︷︷ ︸

Q-learning

+ γ
(
QA

t (s
′, b∗)−QB

t (s
′, b∗)

)︸ ︷︷ ︸
bBt

)
,

(2)

where a∗ = argmaxQA(s, a) and b∗ = argmaxQB(s, a). For clipped Q-learning the bias terms
are even more negative, the possibility of positive bias is clipped: bAt = γmin{QB

t (s
′, a∗) −

QA
t (s

′, a∗), 0} and similarly for bB . In our interpretation double Q-learning is nothing but Q-
learning with an additional bias term that is typically negative (one compares the matrix QB with QA
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but at a maximal entry of QA) and clipped Q-learning subtracts even more. In essence there is no
deeper reason behind the particular bias formulas, they are chosen such that the update rule simplifies
and is easy to implement. Here is the little trick we add on top. We suggest to study bias terms of the
form

CA
t+1(s, a)︸ ︷︷ ︸

new

γ
(
QB

t (s
′, a∗)−QA

t (s
′, a∗)

)
and CB

t+1(s, a)︸ ︷︷ ︸
new

γ
(
QA

t (s
′, b∗)−QB

t (s
′, b∗)

)
with some state-action dependent constants C ∈ [0, 1]. Choosing C closer to 0 or 1 allows the
algorithm to emphasise the update rule of Q- or double Q-learning. Subtracting larger bias emphasises
the tendency of double Q-learning to underestimate. We then use DRL to chose C adaptively in a
way that they favour Q-learning when Q-learning is favorable and favor double Q-learning when
double Q-learning is favorable. In Section 3 we present the basic tabular version that is extended in
Section 4 to the distributional DQN- and in Section 5 to the distributional actor-critic framework.

3 Tabular adaptive distributional double Q-learning

For a concise treatment of DRL we refer to the book Bellemare et al., 2023 and only recall the
notation needed to formulate our algorithms. Given a Markov decision model and a stationary policy
π, Rowland et al., 2018 define the return distribution function as

ηπ(s, a)(B) := Pπ
( ∞∑

t=0

γtRt ∈ B
∣∣∣S0 = s,A0 = a

)
for B ∈ B(R). There have been plenty of theoretical articles on DRL [Bellemare et al., 2017; Dabney
et al., 2018; Rowland et al., 2018; Lyle et al., 2019; Bellemare et al., 2023; Rowland et al., 2023;
Rowland et al., 2023] establishing distributional Bellman operators, contractivity, convergence proofs
of dynamic programming and temporal difference algorithms and projection operators. It was shown
[Bellemare et al., 2017; Bellemare et al., 2023] that the return distribution function is the unique
solution to ηπ = T πηπ, where T π : P(R)S×A → P(R)S×A is the distributional Bellman oper-
ator defined as (T πη)(s, a) =

∑
r,s′,a′∈R×S×A br,γ#η(s′, a′)p(s′, r; s, a)π(a′; s′) with bootstrap

function br,γ(z) = r + γz and push-forward of measures f#ν(B) := ν(f−1(B)). In order to work
algorithmically with DRL parametrisations F of measures need to be used. Distributional Q-learning
proceeds similarly to classical expectation Q-learning. For a tuple (s, a, r, s′) compute a one-sample
approximation of the distributional Bellman optimality operator and update the old estimate of the
distribution η behind the expectation Q(s, a). To ensure that the procedure stays in the parametrised
family F it is crucial that projections of measures into F can be computed explicitly. There are two
simple parametrisations that have been used successfully. Categorical (fixing a number of atoms
with variable weights at fixed locations) and quantile (fixing a number of atoms with fixed weights
but variable locations). For the categorical algorithm suppose a set of m evenly spaced locations
θ1 < · · · < θm is fixed and the categorical measures are defined by

FC,m =
{ m∑

i=1

piδθi

∣∣∣ pi ≥ 0,

m∑
i=1

pi = 1
}
.

As argued in Rowland et al. 2018 in the case of FC,m the projection works as follows. The mass is
distributed to the nearest atoms with mass proportional to the distance. For a Dirac measure δy

ΠC(δy) =


δθ1 : y ≤ θ1
θi+1−y
θi+1−θi

δθi +
y−θi

θi+1−θi
δθi+1

: y ∈ (θi, θi+1]

δθm : y > δm

and for a mixture linearly extended by ΠC(
∑m

k=1 pkδyk
) =

∑m
k=1 pkΠC(δyk

).

Let us now turn towards the algorithms, first in the categorical setup followed by the quantile setup.
Our crucial ingredient to the algorithm is the mixing with β which depends crucially on the choice
that can depend on time and state-action pair. For the moment we keep β arbitrary, a concrete choice
is fixed at the end of this section. Extending arguments from the literature, notably the convergence
proof for categorical Q-learning of Rowland et al., 2018 and the SARSA trick of Singh et al., 2000
used in van Hasselt, 2010 to sketch a proof of convergence of double Q-learning, we prove almost
sure convergence of Algorithm 1.
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Algorithm 1 ADDQ: tabular categorical setting
Require: ηAt (s, a) =

∑m
k=1 p

A
k (s, a)δθk , ηBt (s, a) =

∑m
k=1 p

B
k (s, a)δθk for each (s, a), state-

action pair (st, at) to be updated
Determine αt(st, at) and sample transition (st, at, Rt, St+1)
Randomly choose UPDATE(A) or UPDATE(B)
if UPDATE(A) then

a∗ ← argmaxa EZ∼ηA
t (St+1,a)[Z]

Determine βA
t+1(st, at) ∈ [0, 1]

▷ Compute mixture ◁
ν ← βA

t+1(st, at)η
A
t (St+1, a

∗) + (1− βA
t+1(st, at))η

B
t (St+1, a

∗)
η̂∗ ← bRt,γ#ν
▷ Project target back onto support ◁
η̂ ← ΠC(η̂∗)
ηAt+1(st, at) = (1− αt(st, at))η

A
t (st, at) + αt(st, at)η̂

ηAt+1(s, a) = ηAt (s, a) for all (s, a) ̸= (st, at)

return ηAt+1
else if UPDATE(B) then

Proceed analogously with A and B exchanged
return ηBt+1

Theorem 1. Given some initial return distribution functions ηA0 , η
B
0 supported within [θ1, θm], the

induced Q-values, i.e. the expected values of the return distributions (ηAt ), (η
B
t ), recursively defined

by Algorithm 1 converge almost surely towards Q∗ if the following conditions are satisfied:

(i) the step sizes αt(s, a) almost surely fulfill the Robbins-Monro conditions.

(ii) rewards are bounded in [Rmin, Rmax] and [Rmin

1−γ , Rmax

1−γ ] ⊆ [θ1, θm],

(iii) the choice of updating ηA or ηB is random and independent of all previous random variables

(iv) (βA
t )t∈N, (β

B
t )t∈N only depend on the past and fulfill limt→∞ |βA

t −βB
t | = 0 almost surely.

If additionally the MDP has a unique optimal policy π∗, then (ηAt ), (η
B
t ) converge almost surely in

ℓ̄2 to some limit η∗C ∈ FC,m and the greedy policy with respect to η∗C is the optimal policy.

The algorithm is a double version of categorical Q-learning with a modified adaptive update rule. As
usually a state-action pair (st, at) is chosen by some exploration mechanism (essentially arbitrarily)
from which the MDP dynamics are used to sample the reward Rt and the next state St+1 (we use
capital letter for random variables that must be sampled). As for double Q-learning it is decided
randomly to update copy A or B. The position a∗ (resp. b∗) only requires information on the expected
action value while the distributional update uses the entire action value distributions η. For the update
we use the double Q-update in a distributional sense. To compute the bias terms we compute the
mixture distribution of the action value distributions behind the expectations QA(St+1, a

∗) and
QB(St+1, a

∗). The mixture distribution is discounted by γ and shifted by the reward sample Rt

(push-forward). This distribution is still discrete with atoms different from the fixed θ1, ..., θm. This is
fixed by projecting back to FC,m. Finally, see (2) again, the bias terms are mixed with the distribution
behind the expectation QA(st, at). Since both have atoms θ1, ..., θm no further projection is needed.

The categorical approach has multiple disadvantages, most notably rewards and chosen atoms must
be compatible. The algorithm is included because a rigorous convergence proof can be given, the
structure is easier to catch, and the implementation is a bit simpler. We now turn to the more
interesting quantile setup of Dabney et al., 2018. The difference to the categorical setup is the
parametric class

FQ,m =
{ m∑

i=1

1

m
δθi : θi ∈ R

}
that does not have fixed atoms (but fixed weights). The update step is a gradient step in computing the
Wasserstein-projection on FQ,m of the target distribution η̂ (see algorithm below), that is a gradient
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step in the quantile Huber-loss minimisation:

min
θ̂A
1 (s,a),...,θ̂A

m(s,a)

m∑
i=1

EZ∼η̂[ρ
κ
τi(Z − θ̂Ai (s, a))],

with quantile mid-points τi = 2i−1
2m and

ρκτ (u) =

{
|τ − 1u<0| 12u

2 : |u| ≤ κ

|τ − 1u<0|κ(|u| − 1
2κ) : |u| > κ

.

Algorithm 2 gives pseudocode for the quantile variant of Algorithm 1. In addition to its already

Algorithm 2 ADDQ: tabular quantile setup
Require: ηAt (s, a) =

∑m
k=1

1
mδθA

k (s,a), ηBt (s, a) =
∑m

k=1
1
mδθB

k (s,a) for each (s, a), state-action
pair (st, at) to be updated, parameter κ ≥ 0

Determine αt(st, at) and sample transition (st, at, Rt, St+1)
Randomly choose UPDATE(A) or UPDATE(B)
if UPDATE(A) then

a∗ ← argmaxa EZ∼ηA
t (St+1,a)[Z]

Determine βA
t+1(st, at) ∈ [0, 1]

▷ Compute mixture ◁
ν ← βA

t+1(st, at)η
A
t (St+1, a

∗) + (1− βA
t+1(st, at))η

B
t (St+1, a

∗)

η̂ ← bRt,γ#ν and writing η̂ =:
∑m

j=1
1
mδθtarget

j

▷ Gradient step in order to minimise quantile Huber loss ◁

θ̂Ai = θAi (st, at)− αt(st, at)∇θA
i

1
m

∑m
j=1 ρ

κ
τi(θ

target
j − θAi (st, at)) i = 1, . . . ,m

ηAt+1(st, at) =
∑m

i=1
1
mδθ̂A

i

ηAt+1(s, a) = ηAt (s, a) for all (s, a) ̸= (st, at)

return ηAt+1
else if UPDATE(B) then

Proceed analogously with A and B exchanged
return ηBt+1

strong state-of-the-art performance, distributional RL enables us to choose the adaptive parameter
β
A/B
t (s, a) 1 based on the entire return distributions to leverage concepts such as left-truncated

variance or measuring the divergence of the double estimator using the Wasserstein distance as
introduced later on.

Choice of adaptive β: We will use adaptive rates βt+1(s, a) closer to 1 if ηt(s, a), the distribution
behind Qt(s, a), has small variance. In that case the update at (s, a) is closer to Q- than double
Q-learning. In fact, we will be slightly more accurate. Large negative deviations do not influence the
maximum, only positive deviations matter. Thus, we decided to use so-called left-truncated variances
(LTV) the variance restricted to the right side of the median. LTV has already been used in DRL
before, see for instance Mavrin et al. 2019. For a distribution ν ∈ FQ,M the definition is

LTV(ν) =
1⌈
m
2

⌉ m∑
i=⌈m

2 ⌉
(θ⌈m

2 ⌉ − θi)
2,

the variance over the upper half of atoms. For categorical distributions ν =∈ FC,m we define

LTV(ν) =

m∑
i=M

pi(θM − θi)
2,

where M ∈ {1, . . . ,m} is the smallest index fulfilling
∑M

i=1 pi ≥ 0.5. Here is the choice of adaptive
β used for our tabular experiments:

1We use A/B to indicate that either A or B can be chosen.
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1. Compute left truncated variances of ηA/B
t (s, a) and denote them by ltvA/B

s (a).

2. Compute the averages ltvs(a) = 1
2

(
ltvAs (a) + ltvB

s (a)
)

and ltvs = 1
|A|

∑
a∈A ltvs(a).

3. Compute β̂t+1(s, a) :=
ltvs(a)

ltvs
, values close to 1 correspond to relatively large variance.

4. Define

βB
t+1(s, a) := βA

t+1(s, a) :=


0.75 : β̂t+1(s, a) < 0.75

0.5 : β̂t+1(s, a) ∈ [0.75, 1.25]

0.25 : β̂t+1(s, a) > 1.25

. (3)

The choice of β is rather simple minded, we tried not to over-engineer the choice and used this simple
choice for all our simulations. The case study in the appendix shows that this choice of β performs
well compared to more/less aggressive choices and constant mixtures of Q- and double Q-learning.

4 Adaptive double C51/QRDQN

We extend our ideas to RL with function approximation and modify quantile regression DQN
(QRDQN) and C51 by using two copies with adaptive local bias control. The main contribution are
LTV_C51, LTV_QRDQN, and WS_QRDQN. Implementation details are given in Appendix B.

Adaptive double C51 Algorithm: The C51 algorithm obtained its name from using a categorical
representation with m = 51 atoms. Discounted return distributions η(s, a) are parameterized via
feedforward neural networks following the DQN architecture [Mnih et al., 2015]. The state s serves
as input and the last linear layer outputs m = 51 logits for each action followed by a softmax.

Following Bellemare et al., 2023, Section

Figure 3: Ex. Asterix, more in Appendix B.1

10.2, we write ηω(s, a) =
∑m

i=1 pi(s, a;ω)δθi
where ω comprises the online networks weights.
The corresponding expectation is denoted by
Qω(s, a) =

∑m
i=1 pi(s, a;ω)θi. Given a re-

alized transition (s, a, r, s′) from the replay
buffer the target becomes

η̄(s, a) = ΠC(br,γ#ηω̄(s
′, a∗)) =:

m∑
i=1

p̄iδθi ,

where a∗ = argmaxa′ Qω̄(s
′, a′). Here, ω̄ de-

notes the parameters of a separate target net-
work which is kept constant and overwritten
every e.g. 10000 steps with the parameters
from the online network. The loss is calculated
as cross-entropy loss −

∑m
i=1 p̄i log pi(s, a;ω)

based on which the network parameters are up-
dated using gradient descent over mini-batches.
In the experiments we consider variants where
we keep track of two independently initialized
online networks denoted by ωA, ωB and a pair of respective target networks. For each gradient step
we simulate a vector of random variables with the same size as the batch size with each element
determining which of the two estimators is being updated based on the respective transition with the
same position in the batch. Accordingly, we use twice the batch size for these methods, so that on
average per gradient step, the same number of transitions is used for each estimator, compared to
the single-estimator case. Given a transition (s, a, r, s′) we consider different variants for the simple
temporal difference targets

η̄(s, a) = ΠC(br,γ#Γ)

in the following combinations. If A/B is updated then only Γ is replaced in the following way:

(i) Pure double estimator: ΓA/B = ηω̄B/A(s′, z∗), where z∗ = argmaxa′ Qω̄A/B (s′, a′).
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(ii) Double estimator based on target network, inspired by van Hasselt et al., 2015: The batch size
is the same as in the single estimator case, there are no extra networks. The choice corresponds to

Γ = ηω̄(s
′, z∗), z∗ = argmax

a′
Qω(s

′, a′).

Greedy action selection is with respect to the online network, i.e. the target network acts as B, the
online network as A.

(iii) Clipped estimator, inspired by Fujimoto et al., 20182: Set ΓA/B = ηω̄X (s′, z∗), where
z∗ = argmaxa′ Qω̄A/B (s′, a′) and X = argminc∈{A,B} Qω̄c(s′, z∗).

(iv) Left-truncated variance (LTV) adaptive double target: Motivated by our tabular algorithm
we define the locally adaptive mixture of Q- and double Q-update:

ΓA/B = β(s, a;ω)ηω̄A/B (s′, z∗) + (1− β(s, a;ω))ηω̄B/A(s′, z∗),

where z∗ = argmaxa′ Qω̄A/B (s′, a′). The rule to determine β(s, a;ω) is analogue to the previous
section (Equation (3)) and uses the online network’s distributions ηωA , ηωB .

Experimental results in Appendix B.1 show that our LTV-based adaptive algorithm performs well
throughout five standard Atari environments while performance of other algorithms varies over
different environments. This relates closely to our observations in tabular control (Appendix A).

Adaptive double QRDQN: We next turn towards adaptive double QRDQN. Using the same network
architecture as C51, QRDQN approximates return distributions using the quantile representation.
Therefore the last layer outputs the m quantile locations for each action. In the quantile setup we write
ηω(s, a) =

1
m

∑m
i=1 δθi(s,a;ω) with induced mean values Qω(s, a) =

1
m

∑m
i=1 θi(s, a;ω). Given a

sample transition (s, a, r, s′), the network parameters are updated via gradient descent with respect
to the loss function

L(ω) = 1

m

m∑
i,j=1

ρ1τi(r + γθj(s
′, z∗; ω̄)− θi(s, a;ω)), z∗ = argmax

a′
Qω̄(s

′, a′), (4)

and the quantile mid-points τi = 2−1
2m . For the double estimator variants the target atoms Γ =

{r + γθj(s
′, z∗; ω̄) : j = 1, . . . ,m}, which are used to calculate the loss, are replaced as follows:

(i) Double, Clipped, LTV adaptive: analo-

Figure 4: Ex. Asterix, more in Appendix B.2

gously to the previous section.

(ii) Wasserstein reduced mixture (Wasser-
stein QRDQN): To show robustness of our
adaptive bias control approach we introduce
a second (more indirect) way for adaptive bias
control. We need this alternative for continu-
ous control in Section 5 as β from Equation
(3) is not well-defined for infinitely many ac-
tions. In order to control the overestimation
bias, based on the current estimates, we use
the 1-Wasserstein w1 distance of both estimates
from the mixture distribution. A large discrep-
ancy between ηω̄A and ηω̄B is a sign that one
estimate has been overestimated. Since in DRL
we have access to the full return distribution,
this allows us to measure the estimator’s di-
vergence directly based on the Wasserstein dis-
tance, a metric for probability distributions. The
more aligned both distributions, the smaller the reduction. We replace

Γ = {r + γ(θj(s
′, z∗; ω̄X)− βw1(ηω̄A(s′, z∗), ηω̄B (s′, z∗))) : j = 1, . . . ,m, X = A,B},

where z∗ = argmaxa′(Qω̄A(s′, a′) +Qω̄B (s′, a′)) and accordingly the 1
m in (4) is replaced by 1

2m .

Since w1(ν, ν
′) ≥ |EZ∼ν [Z]− EZ∼ν′ [Z]| factors fulfilling β ∈ (0, 1

2 ) are reasonable. In the Atari
experiments we fix β = 0.1, an experiment with varying β is provided in Appendix B.3.

2TD3 [Fujimoto et al., 2018] introduced clipping in an actor-critic setting, where the action is given by the
actor. In our C51 adaptation we select the greedy action based on the target network that is updated.
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(iii) Truncated QRDQN, inspired by Kuznetsov et al., 2020: Drop top k atoms of the mixture:

ΓA/B = {r + γθ̂j(s
′, z∗) : j = 1, . . . , (2m− k)}, where

θ̂j(s
′, a′) = sort({θi(s, a; ω̄X) : i = 1, . . . ,m, X ∈ {A,B}})j

and z∗ = argmaxa′ Qω̄A/B (s′, a′) and accordingly the 1
m in (4) is replaced by 1

2m−k .

Experimental results in Appendix B.2 show that both our algorithms work similarly well and
outperform the other examples with comparable algorithm architecture. This suggests that not
the exact form of bias control matters, but mostly the local adaptivity. On these environments
sample efficiency and final performance are improved. Let us compare the experiments with the
experiments in tabular control (Appendix A). If algorithms subtract non-adaptive biases then there
performance depends on the stochasticity of the environment. This can be seen for double, even
more for clipped, but also for truncated mixture. Truncated mixture is actually adaptive but shifts
distributions downward even if both copies are identical. The way we control bias represses bias
control if copies are equal.

5 Adaptive double QR-SAC

TD3 [Fujimoto et al., 2018] proposed to take

Figure 5: Ex. Humanoid, more in Appendix B.3

the minimum over two independently initial-
ized critics (clipping) in the temporal difference
target which is also applied in SAC [Haarnoja
et al., 2017; Haarnoja et al., 2018; Haarnoja et
al., 2018]. REDQ [Chen et al., 2021] minimizes
over a randomly selected set of critics (in-target
minimization) and Realistic Actor-Critic [Li et
al., 2023] uses a ’punished Bellman update’ in
combination with universal value function ap-
proximation (UVFA) in order to mitigate under-
/overestimation bias. TQC [Kuznetsov et al.,
2020] is a state of the art algorithm that suc-
cessfully enhances SAC by distributional RL,
as the critic is a quantile network trained with
the quantile regression loss. A crucial aspect
of TQC is its precise overestimation control,
achieved by truncating the topmost atoms of
a mixture of multiple quantile networks in the
TD target. This method significantly increased
performance on the MuJoCo benchmark.

Wasserstein Reduced QR-SAC: We build on TQC’s framework combining quantile networks with
SAC, but replace the TQC target with our Wasserstein reduced mixture target. Additionally, unlike
TQC, which updates every critic with every transition drawn from the replay buffer, we randomly
select one of the two critics for each transition. This approach prevents a too quick alignment given
the identical targets, ensuring that the differences between the two networks arise from more than
just their initializations. In particular, given a transition (s, a, r, s′), the target atoms, based on which
we calculate the quantile Huber loss, are

θ̄j = r + γ
(1
2
(θj(s

′, a′; ω̄A) + θj(s
′, a′; ω̄B))− βw1(ηω̄A(s′, a′), ηω̄B (s′, a′))− αE

)
for j = 1, . . . ,m, where a′ ∼ π(·; s′, ϕ) is an action given by the current actor network and the
deduction of E = log(π(a′; s′, ϕ)) comes from the maximum entropy regularisation applied in SAC.

Experiments on MuJoCo environments, Figure 14 of the appendix, show a comparison of TQC3.
in comparison with a clipped (resp. double) target and our Wasserstein reduced mixture target. As
expected double can perform well/badly. Adding bias control by clipping improves QR-SAC almost
to the level of TQC, our Wasserstein target algorithm (red) even a bit more. It should be mentioned

3In the original paper TQC uses N = 5 critics. For an equal comparison, we use 2 critics for every algorithm.
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that we did not over-engineer the choice of β, we used β = 0.3 for all environments besides Hopper
(β = 0.5). This is reasonable, for Hopper also TQC switches to drop 5 instead of 2 atoms per critic.

6 Summary and limitations

In this article we introduce ADDQ, a simple way to profit at the same time from the estimation biases
of Q- and double Q-learning. This is achieved by subtracting state-action dependent biases that
take into account variances of current estimates. Even though no detailed tuning was performed our
modifications greatly improve the base algorithms C51, QRDQN, and SAC with quantile networks.
There are a number of further developments that should be considered in future work. Our simple
choices of β works surprisingly well, more adaptivity (in particular in the actor-critic setting) should
further improve the algorithms.
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The example is inspired by Example 6.7 in Sutton and Barto, 2018 that has been studied further in
Lan et al., 2020. Our extended example is more complex as it includes more states and more effects
that are supposed to mimic (in a very simplified setting) effects from more realistic environments.
There are four non-terminating states (A, B, C, D) and three terminating states, the boxes. In
non-terminating states A, C, and D several actions can be taken that all lead to the same next state.
Rewards for all transitions from A are 0, all other rewards are Gaussian, with equal laws for all
actions (arrows) leaving the same state. We denote by NB , NC and ND the number of possible
actions in the respective states. The goal is to learn the optimal action (left/right/down) in state A.

In what follows we provide a simulation study of our tabular algorithms from Section 4. We start
with six plots for the quantile version of adaptive distributional double Q-learning and provide at the
end of this section the same plots for the categorical setting.

The figure below shows a comparison of Q-, double Q-, and our (quantile) adaptive tabular algorithm.
The choices of parameters are chosen such that they highlight difficulties for Q- and/or double
Q-learning. We plot optimal decisions in A over 10,000 runs. We discount with γ = 0.9 and perform
ϵ-greedy exploration with ϵ = 0.1

Figure 6: Three extreme scenarios.

The choices of parameters used in the three simulations are as follows:

NB , µB , σB NC , µC , σC ND, µD, σD

left 300, -0.3, 1 5, 0.15, 0.5 5, 0.15, 0.5
middle 300, -0.3, 1 50, 0.1, 1 50, 0.1, 1
right 300, -0.75, 10 5, 1.25, 1.25 5, 1.25, 1.25

The parameter choices are extreme in order to present clear visual statements. All plots clearly show
the danger of Q-learning. The agent tends to prefer regions (here states) with high variance as the
maximum in the update forces to follow large reward samples. If coincidentally these states are also
good (i.e. have large expectation) Q-learning profits. Otherwise Q-learning fails. Double Q-learning
is somewhat opposite. The agent prefers uniformity over actions which is favored by small variances.
If such regions have large expected rewards this behavior is desirable, otherwise not. In the regime on
the right the left state has relatively high variance (compared to the alternatives), but small expectation.
This makes the overestimation of Q-learning harmful, while double Q rightfully prefers the state
with smaller variance (and larger expectation). In the middle, the variances are equal, but having two
stochastic states on the right side, leads Q-learning to overestimate the (coincidentally) optimal state.
The effects are mixed on the left, favouring an interpolation between the two. What can be seen is
that the adaptive algorithm performs well in all situations. In the cases where one of Q- or double Q
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is much better, our algorithm adapts β so as to be similar to this algorithm. However, this is not all.
In the case when choosing over- and underestimation everywhere is harmful, our state-action wise
adaptive choice can be superior as can be seen in the left plot. To gain a better feeling for properties
of adapted distributional double Q-learning we provide simulations with different atoms and different
β. The three sets of parameters (left, middle, right) from above are kept fixed.

Figure 7: Different choices of adaptive and constant β.

The choice of adaptive β is crucial for our approach. While constant β corresponds to a fixed
mixture of Q- and double Q-learning the main idea of this article is to chose β that locally depend on
state-action pairs. Adaptive β can be ’aggressive’ or ’conservative’, depending on how strongly they
prefer the Q- or double Q-learning update. In the figure above we study the following choices:

• For aggressive β we choose β to be 0 or 1 if β̂t(s, a) is outside the interval [0.99,1.01],
yielding more extreme switching between the two variants.

• For conservative β, we choose β to be 0.4 or 0.6 if β̂t(s, a) is outside the interval [0.6,1.4],
yielding a smoother switching.

It turns out that the choice of β from Equation (3) performs quite robust over different type of
environments.

Finally, we provide the same simulations for our categorical variant of adaptive distributional double
Q-learning. We again compare Q- and double Q- with (categorical) adaptive distributional double
Q-learning and then only (categorical) adaptive distributional double Q-learning for the same choices
of β as above. The simulations confirm the observations for the quantile algorithm. The algorithm is
quite robust over different environments and choices of β:

Figure 8: Analogous plots (same colours) for the categorical variant of our algorithm
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A.2 Gridworld Experiments

In this section we provide a second tabular example. The example is quite different from the extended
Sutton/Barto example but shares common features. The example is motivated by the example in the
appendix of van Hasselt, 2010. In van Hasselt, 2010 it was shown that double Q-learning outperforms
Q-learning on gridworld where ordinary states get Bernoulli rewards either +10 or −12. With less
variance or in the typical situation of rewards −1 the opposite is the case and Q-learning outperforms
double Q-learning. Our example shows that one can also create simple gridworld examples on which
both Q- and double Q-learning do not perform well.

S

F
G

S

F

G

Figure 9: Gridworld 1 and Gridworld 2

We created two variants of gridworld to highlight the influence of (local) stochasticity on Q-learning
algorithms. The agent starts in state S and each episode ends in the terminal states F and G. The
parameters are chosen so as to make G preferable to F , F is a fake goal. Similar to the example
from van Hasselt, 2010 the goal is to maximise the average reward per step, as each non-terminating
step has negative mean value. The light gray area represents a more stochastic region of the grid
world. The rewards in F and G are deterministic, denoted by RF and RG. The other states yield
Bernoulli rewards, either e1 or e2 for the normal states and s1 or s2 for the stochastic states. Double Q
underestimates the stochastic region and is more tempted to chose the terminal state F . In contrast, a
highly variable stochastic region may cause Q-learning to spend more time in it (Q-learning believes
the gray region is better than it really is) and thus find the state G later. Depending on the choice of
parameters these effects may dominate or be irrelevant.

As in the previous section, different choices of parameters can cause Q-/double Q-learning or both to
struggle. Three such scenarios are summarised in the plots below, comparing Q-, double Q-, and
our adaptive tabular algorithms. Once again, extreme choices of parameters are chosen to create
examples that highlight the difficulties for Q- and double Q-learning and the strengths of our adaptive
algorithm.

Figure 10: Three extreme scenarios

The plots have been created for Gridworld 1 and two parameter configurations of Gridworld 2:

Gridworld RG RF small randomness high randomness
left 1 8.5 1.5 e1 = −0.5, e2 = −0.5 s1 = −11, s2 = 10
middle 2 6 -0.5 e1 = −2, e2 = 1 s1 = −9, s2 = 8
right 2 8.5 3 e1 = −2, e2 = 1 s1 = −10, s2 = 9
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What can be seen is that the adaptive algorithm performs well in all situations, adapting to the
strengths of Q- and double Q, but also works when both algorithms struggle. This is because the
adaptive algorithm locally adapts to over- and underestimation according to the variance.

The final plots show the effect of different choices of β from the previous section. It turns out that the
choice from Equation (3) is robust for the three scenarios.

Figure 11: Different choices of our algorithm.
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B Deep reinforcement learning experiments

To ensure fair comparison we modified the algorithms C51 [Bellemare et al., 2017] and QRDQN
[Dabney et al., 2018] within the Stable-Baselines3 framework [Raffin et al., 2021]. The C51
implementation has been added to this framework by adapting from the Dopamine framework [Castro
et al., 2018] and the DQN Zoo [Quan and Ostrovski, 2020]. We run Atari environments from
the Arcade Learning Environment [Bellemare et al., 2013] and MuJoCo [Todorov et al., 2012]
environments both using the Gymnasium API [Towers et al., 2023]. We run the experiments via the
RL Baselines3 Zoo [Raffin, 2020] training framework.

The code to the implementations of this section has been uploaded as a zip file and will be provided
on GitHub for the final version.

The experiments were executed on a HPC cluster with NVIDIA Tesla V100 and NVIDIA A100
GPUs. The replay buffer on Atari environments takes around 57GB of memory and less than 7 GB of
memory for MuJoCo environments.

For the experiments the training has been interrupted every 50000 (Atari) / 25000 (MuJoCo) steps
and 10 evaluation episodes without exploration have been performed. The plots below show the mean
total reward (sum of all rewards) averaged over 3 seeds with standard errors of seeds as the shaded
regions. To improve visibility a rolling window of size 4 is applied. Atari runs took less than 48
hours for 20 million train steps and periodic evaluations and MuJoCo runs less than 36 for 10 million
train steps (Humanoid) and periodic evaluations. Note that one timestep in the Atari environments
corresponds to 4 frames, which are stacked together. This corresponds to repeating every action 4
times in the actual game. Therefore 20 million timesteps correspond to 80 million frames.

B.1 Adaptive double C51 Experiments

As in Bellemare et al., 2017 we use 51 atoms for all C51 variants. All other hyperparameters are
identical to those given in Table B.2.

Figure 12: Experiments on Atari environments, using all categorical algorithms from Section 4
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Environments C51 Double_C51 Double2015_C51 Clip_C51 LTV_C51
DemonAttackNoFrameskip-v4 99682 +/- 224 94961 +/- 4895 99858 +/- 3540 102885 +/- 5005 85230 +/- 2276
GopherNoFrameskip-v4 18241 +/- 1063 52631 +/- 9204 15505 +/- 899 50211 +/- 8318 43346 +/- 19994
AsterixNoFrameskip-v4 263093 +/- 11803 270030 +/- 8655 281073 +/- 16837 21000 +/- 3798 407403 +/- 28542
PhoenixNoFrameskip-v4 63568 +/- 4855 99317 +/- 6721 53728 +/- 12261 4985 +/- 87 133240 +/- 14603
YarsRevengeNoFrameskip-v4 29010 +/- 8041 33757 +/- 10066 12834 +/- 1493 10942 +/- 1761 32091 +/- 7524

Table 1: Comparison of final performance on Atari environments. Values show the average over 10
evaluation epsiodes and 3 seeds with standard errors over the seeds.

B.2 Adaptive double QRDQN Experiments

Figure 13: Experiments on Atari environments, using all quantile algorithms from Section 4

Environments QRDQN Double_QRDQN Double2015_QRDQN Clip_QRDQN Trunc_QRDQN LTV_QRDQN WS_QRDQN
DemonAttackNoFrameskip-v4 115706 +/- 2053 129010 +/- 682 111057 +/- 4307 124011 +/- 1598 125708 +/- 575 125166 +/- 262 124247 +/- 1455
GopherNoFrameskip-v4 52219 +/- 5009 63463 +/- 23046 61715 +/- 9728 73197 +/- 10218 67561 +/- 6148 58726 +/- 16318 83505 +/- 4696
AsterixNoFrameskip-v4 88013 +/- 18430 31050 +/- 2286 61955 +/- 6473 2973 +/- 742 20543 +/- 1253 195613 +/- 53041 221328 +/- 29495
PhoenixNoFrameskip-v4 44527 +/- 8129 5091 +/- 121 44206 +/- 14257 5163 +/- 313 5234 +/- 85 96424 +/- 43412 63868 +/- 13198
YarsRevengeNoFrameskip-v4 24123 +/- 1497 24240 +/- 13716 25024 +/- 1507 21242 +/- 5147 33759 +/- 10867 39304 +/- 11551 34827 +/- 11271

Table 2: Comparison of final performance on Atari environments. Values show the average over 10
evaluation epsiodes and 3 seeds with standard errors over the seeds.

HYPERPARAMETER QRDQN Double2015_QRDQN Double_QR-SAC Clip_QRDQN Trunk_QRDQN LTV_QRDQN WS_QRDQN

OPTIMIZER ADAM
LEARNING RATE 5 · 10−5

DISCOUNT FACTOR γ 0.99
REPLAY BUFFER SIZE 1 · 106
BASE ARCHITECTURE DQN
NUMBER OF QUANTILE NETWORKS 1 2
MINIBATCH SIZE 32 64
TARGET UPDATE INTERVAL 10000
GRADIENT STEPS PER TRAIN ITERATION 1
ENVIRONMENT STEPS PER ITERATION 1
LEARNING STARTS 50000
EXPLORATION FRACTION 0.025
EXPLORATION FINAL EPSILON 0.01
NUMBER OF ATOMS m 200
HUBER LOSS PARAMETER κ 1
β - 0.1
NUMBER OF DROPPED ATOMS PER CRITIC - 15 -

Table 3: Hyperparameters for QRDQN like algorithms for Atari environments. Hyperparameters for
C51 are identical besides the number of atoms m is 51
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B.3 Wasserstein Reduced QR-SAC

Figure 14: Experiments on MuJoCo environments, using all algorithms from Section 4

Environments TQC Double_QR-SAC Clip_QR-SAC WS_QR-SAC
Humanoid-v4 10210 +/- 263 3897 +/- 954 9362 +/- 483 11105 +/- 261
HalfCheetah-v4 17147 +/- 86 17837 +/- 60 17619 +/- 366 17730 +/- 107
Ant-v4 6295 +/- 329 3726 +/- 347 7651 +/- 187 7953 +/- 252
Hopper-v4 2185 +/- 909 1659 +/- 217 2030 +/- 14 2538 +/- 700
Walker2d-v4 5796 +/- 264 3139 +/- 187 6446 +/- 121 6838 +/- 109

Table 4: Comparison of final performance on MuJoCo environments. Values show the average over
10 evaluation epsiodes and 3 seeds with standard errors over the seeds.

HYPERPARAMETER TQC Double_QR-SAC Clip_QR-SAC WS_QR-SAC

OPTIMIZER ADAM
LEARNING RATE 3 · 10−4

DISCOUNT FACTOR γ 0.99
REPLAY BUFFER SIZE 1 · 106
NUMBER OF CRITICS N 2
NUMBER OF HIDDEN LAYERS IN CRITIC NETWORKS 3
SIZE OF HIDDEN LAYERS IN CRITIC NETWORKS 512
NUMBER OF HIDDEN LAYERS IN POLICY NETWORK 2
SIZE OF HIDDEN LAYERS IN POLICY NETWORK 256
MINIBATCH SIZE 256 512
ENTROPY TARGETHT −dimA
ACTIVATION FUNCTION ReLU
TARGET SMOOTHING COEFFICIENT 0.005
TARGET UPDATE INTERVAL 1
GRADIENT STEPS PER ITERATION 1
ENVIRONMENT STEPS PER ITERATION 1
LEARNING STARTS 10000
NUMBER OF ATOMS m 25
HUBER LOSS PARAMETER κ 1

Table 5: Hyperparameters for continuous control algorithms
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ENVIRONMENT TQC: number of dropped atoms per critic WS_QR-SAC: β

Hopper 5 0.5
HALFCHEETAH 2 0.3
WALKER2D 2 0.3
ANT 2 0.3
HUMANOID 2 0.3

Table 6: Environment dependent hyperparameters for TQC and WSQR− SAC

Figure 15: Experiments with Wasserstein Reduced QR-SAC on Ant with varying values β. The
results show that the algorithm performs well across different reduction factors β, in particular in
comparison to TQC.
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C Convergence proof in the tabular categorical setup

In this section we give a convergence proof for the adaptive distributional double-Q algorithm in the
simplest setting, the categorical setting. The proof is based on known arguments from the literature
and requires some modifications to work in our generality. Since many papers only sketched proofs
we decided to spell out all details.
Remark 2 (Notation and short recap). The Cramér distance ℓ2 for probability distributions ν, ν′ ∈
P(R) is given by

ℓ2(ν, ν
′) =

(∫
R
|Fν(z)− Fν′(z)|2 dz

)1/2

.

Following Rowland et al., 2018; Bellemare et al., 2023 the supremum extension of a probability
metric d between two return distribution functions η, η′ ∈ PS×A is denoted as

d̄(η, η′) = sup
s,a∈S×A

d(η(s, a), η′(s, a).

Then the iterates ηk+1 = ΠCT πηk converge to the unique fixed point in FS×A
C,m with respect to ℓ̄2

based on Banach’s fixed point Theorem.
In particular, we highlight the contraction property

ℓ̄2(ΠCT πη,ΠCT πη′) ≤ √γℓ̄2(η, η′) (5)

[compare Rowland et al., 2018; Bellemare et al., 2023] while ΠC is a non-expansion.
Theorem 3 (Convergence of adaptive distributional Q-learning in the categorical setting). Given
some initial return distribution functions ηA0 , η

B
0 supported within [θ1, θm], the induced Q-values,

i.e. the expected values of the return distributions (ηAt ), (η
B
t ), recursively defined by Algorithm 1

converge almost surely towards Q∗ if the following conditions are satisfied:

(i) the step sizes αt(s, a) almost surely fulfill the Robbins-Monro conditions
∑∞

t=0 αt(s, a) =
∞ and

∑∞
t=0 α

2
t (s, a) <∞.

(ii) rewards are bounded in [Rmin, Rmax] and [Rmin

1−γ , Rmax

1−γ ] ⊆ [θ1, θm],

(iii) the choice of updating ηA or ηB is random and independent of all previous random variables

(iv) the sequences (βA
t )t∈N, (β

B
t )t∈N only depend on the past and fulfill limt→∞ |βA

t −βB
t | = 0

almost surely.

If additionally the MDP has a unique optimal policy π∗, then (ηAt ), (η
B
t ) converge almost surely in

ℓ̄2 to some limit η∗C ∈ FC,m and the greedy policy with respect to η∗C is the optimal policy.

Note that the algorithm and proof uses βA/B
t+1 (s, a) with index t+ 1 when updating η

A/B
t . This is to

show that in general the parameter is allowed to depend on St1 and the respective greedy action, i.e.
it must only be Ft+1 measurable. To portray this generality in the following we will only write βA/B

t+1
without referencing a state-action pair.

The simplest way to guarantee the assumptions on the adaptive parameters βA, βB to be satisfied is
to chose them equal.

As in van Hasselt, 2010, the proof is based on the following stochastic approximation result, which
has been proven in Singh et al., 2000 based on [Bertsekas and Tsitsiklis, 1996 Proposition 4.5].
Lemma 4 (Singh et al., 2000 Lemma 1). Suppose (Ω,A,P, (Fn)) is a filtered probability space on
which all appearing random variables are defined. Suppose that

(i) a stochastic process (Fn)n∈N ⊂ Rd with the coordinates Fi,n for i = 1, . . . , d such that Fn

is Fn+1-measurable and for all i = 1, . . . , d

∥E[Fn|Fn]∥∞ ≤ κ∥Xn∥∞ + cn and V[Fi,n|Fn] ≤ K(1 + κ∥Xn∥∞)2 n ≥ 1,

where κ ∈ [0, 1], an adapted, stochastic process (cn)n∈N ⊂ R+ that converges to 0 almost
surely and some constant K > 0.
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(ii) the non-negative stochastic process (αn)n∈N ⊂ Rd, with the coordinates αi,n ∈ [0, 1] for
i = 1, . . . , d is adapted with

∞∑
n=1

αi,n =∞ and
∞∑

n=1

α2
i,n <∞ a.s..

Then, for any F0-measurable initial condition X0 the stochastic process (Xn)n∈N ⊂ Rd with
coordinates Xi,n for i = 1, . . . , d that is recursively defined by

Xi,n+1 = (1− αi,n)Xi,n + αi,nFi,n, n ∈ N,

converges almost surely to zero.

Furthermore, we follow Rowland et al., 2018 by first showing the convergence of the mean-values to
Q∗ and afterwards showing convergence of the return distribution functions, under the assumption of
a unique optimal policy, by coupling it with policy evaluation. The convergence of the latter is easier
to prove and we will do so at the end.

Lemma 5 (Adaptive Double Categorical Temporal Difference for Policy Evaluation). Given some
initial return distribution functions ηA0 , η

B
0 supported within [θ1, θm] and a stationary policy π ∈ ΠS ,

the return distribution functions (ηAt ), (η
B
t ) recursively defined by Algorithm 1, but with a∗ ∼

π(·;St+1) instead, converge almost surely towards the unique fixed point ηC ∈ P(R)S×A of the
operator ΠCT π with respect to ℓ̄2, if the following conditions are satisfied:

(i) the step sizes αt(s, a) fulfill the Robbins-Monro conditions:

•
∑∞

t=0 αt(s, a) =∞
•
∑∞

t=0 α
2
t (s, a) <∞,

(ii) rewards are bounded in [Rmin, Rmax] and [Rmin

1−γ , Rmax

1−γ ] ⊆ [θ1, θm],

(iii) the choice of updating ηA or ηB is random and independent of all other previous random
variables

The above result is only relevant for the proof of Theorem 3, as policy evaluation with a double
estimator is not of interest. Note that convergence of categorical temporal difference for policy
evaluation (in the single estimator case) has been proven in [Rowland et al., 2018 Theorem 2
mimicking Tsitsiklis, 1994 Theorem 2] and [Bellemare et al., 2023 Theorem 6.12 applying Tsitsiklis,
1994 Theorem 3 or Bertsekas and Tsitsiklis, 1996 Proposition 4.5].

Lemma 6. Let (αt)t∈N0
be a sequence fulfilling the Robbins-Monro conditions and (Yt)t∈N an iid

sequence of Bernoulli(0.5) random variables, i.e. P(Yt = 1) = P(Yt = 0) = 0.5 for all t ∈ N0.
Then (αtYt)t∈N0

also fulfills the Robbins-Monro condition.

Proof. The almost sure convergence of the summed squares is obviously fulfilled due to

∞∑
t=0

(αtYt)
2 ≤

∞∑
t=0

α2
t <∞ almost surely.

Due to independence of each Yt with {Yn|n ∈ N0, n ̸= t} as well as with α = (αt)
∞
t=0 we

will consider a two stage experiment, where we first draw the sequence α = (αt)
∞
t=0 and then

independently of this realization sample the iid sequence Y = (Yt)
∞
t=0. Due to the independence

the joint measure of α and Y is the product measure. Consider the product space (Ω,F ,P) =

(Ωα × ΩY ,Fα ⊗ FY ,P⊗N
α ⊗ P⊗N

Y ) where Ωα,ΩY = [0, 1]N, Fα,FY = B([0, 1])⊗N . Then, using

21



that
∑∞

t=0 αt =∞ Pα-almost surely, we have

P
( ∞∑

t=0

αtYt =∞
)

=

∫
Ωα

PY

( ∞∑
t=0

αtYt =∞
)
dPα(α)

=

∫
{(αt)∞t=0∈Ωα:

∑∞
t=0 αt=∞}

PY

( ∞∑
t=0

αtYt =∞
)
dPα(α)

(a)
=

∫
{(αt)∞t=0∈Ωα:

∑∞
t=0 αt=∞}

1 dPα(α)

=1,

where (a) can be seen as follows. Consider any deterministic sequence (bt) ⊆ [0, 1] fulfilling∑∞
t=0 bt =∞. Then

∞ =

∞∑
t=0

bt =

∞∑
t=0

btYt +

∞∑
t=0

bt1Yt=0.

Now notice that A =
∑∞

t=0 btYt and B =
∑∞

t=0 bt1Yt=0 are identically distributed and since the
sum of A and B is always infinity, almost surely either one of them is infinite. Given the identical
distribution, we infer

PY (

∞∑
t=0

btYt =∞) > 0.

But since (btYt) is an independent sequence of random variables and the event that the infinite sum
diverges is in the tail sigma algebra, the Kolmogorov 0-1 law yields:

PY (

∞∑
t=0

btYt =∞) = 1.

Remark 7. As outlined in [Rowland et al., 2018, Proof of Proposition 1], denoting byM(R) the
space of all finite signed measures on (R,B(R)), the subspace

M0(R) := {ν ∈M(R)|ν(R) = 0,

∫
R
Fν(x)

2dx <∞},

"where Fν(x) = ν([−∞, x)) for x ∈ R, is isometrically isomorphic to a subspace of the Hilbert
space L2(R) with inner product given by

⟨ν1, ν2⟩ℓ2 =

∫
R
Fν1(x)Fν2(x)dx.”

Then the affine translation δ0 +M0 is also an Hilbert endowed with the same inner product. It
contains probability measures ν ∈ P(R) satisfying∫ 0

−∞
Fν(x)

2 dx <∞ and
∫ ∞

0

(1− Fν(x))
2 dx <∞.

To see this, consider µ = ν − δ0 fulfills Fµ(x) = Fν(x) for x < 0 and Fµ(x) = Fν(x) − 1 for
x ≥ 1. Hence, µ ∈M0. The two conditions assure that the tails decay fast enough.
Note that the inner product induces a norm through ∥ν∥2ℓ2 = ⟨ν, ν⟩. And we have ℓ2(ν1, ν2) =
∥ν1 − ν2∥ℓ2 . In the following proof, we will make use of the relationship

ℓ22(ν1 + ν2, ν
′
1 + ν′2) = ∥ν1 − ν′1∥2ℓ2 + ∥ν2 − ν′2∥2ℓ2 + 2⟨ν1 − ν′1, ν2 − ν′2⟩

holding by bilinearity of the inner product.
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Proof of Thoerem 3. Step 1: Convergence of mean values to Q∗

The proof mainly follows Rowland et al., 2018 and van Hasselt, 2010. Let the filtration be given
by Ft = σ(ηA0 , η

B
0 , s0, a0, α0, R0, S1, Y1, β

A
1 , β

B
1 . . . , st, at, αt), where (Yn)n∈N is an iid sequence

of Bernoulli(0.5) random variables, independent of all other appearing random variables, such
that A is updated when Yn+1 = 1. Denote the expected values of the return-distributions by
QA

t (s, a) = ER∼ηA
t (s,a)[R] and overloading notation, let us further write E[ν] for the expected value

ER∼ν [R] of a probability distribution ν ∈ P(R). We will first consider how the expected values
evolve. Due to the symmetry of the updates it is sufficient to show convergence of QA

t to Q∗. It is
implied that α(s, a) = 0 for (s, a) ̸= (st, at). Further, define

Xt(st, at) :=QA
t (st, at)−Q∗(st, at)

Ft(st, at) :=1Yt+1=1

(
Rt + γ(βA

t+1Q
A
t (St+1, a

∗) + (1− βA
t+1)Q

B
t (St+1, a

∗))−Q∗(st, at)
)

+1Yt+1=0Xt(st, at)

Ft(s, a) :=0 whenever (s, a) ̸= (st, at)

with a∗ = argmaxa′∈ASt+1
QA(St+1, a

′). According to [Lyle et al., 2019 Proposition 1] projec-
tion ΠC is mean-preserving, i.e E[ΠCν] = E[ν] for when ν is a distribution supported within
[θ1, θm]. This is the case for every η̂∗ as in Algorithm 1, which can be seen as following. Assume
ηAt (st, at), η

B
t (st, at) ∈ FC,m. Then also

ν = βA
t+1η

A
t (St+1, a

∗) + (1− βA
t+1)η

B
t (St+1, a

∗)) ∈ FC,m,

and suppose ν =
∑m

i=1 piδθi for some pi. Then

η̂∗ := bRt,γ#ν =

m∑
i=1

piδRt+γθi .

But now
θ1 ≤

Rmin

1− γ
≤ Rmin

1− γ
≤ θm

(Assumption (ii)) guarantees that

θ1 ≤ Rt + γθi ≤ θm ∀ i ∈ {1, . . . ,m}
and η̂∗ is supported within [θ1, θm]. Similarly for a realized transition with (Rt, St+1) = (rt, st+1),
we have for the expected value of the distribution

E
[
brt,γ#

(
βA
t+1η

A
t (st+1, a

∗ + (1− βA
t+1)η

B
t (st+1, a

∗))
)]

=rt + γ(βA
t+1Q

A
t (st+1, a

∗) + (1− βA
t+1)Q

B
t (st+1, a

∗)).

Hence, the expected values of the return distributions ηAt subtracted by Q∗ indeed evolve as

Xt+1(s, a) = (1− αt(s, a))Xt(s, a) + αt(s, a)Ft(s, a).

We now proceed similarly as in van Hasselt, 2010 to show that the conditions of Lemma 4 are
satisfied.
We first show that V[Ft(s, a)|Ft] is bounded for all (s, a) ∈ S × A and therefore satisfies
V[Ft(s, a)|Ft] ≤ K(1+κ∥Xt∥∞) as required. Since the rewards were assumed to be bounded there
is an R̄ > 0 such that |r|, |θ1|, |θm| ≤ R̄ ∀r ∈ R. Hence, we have

|Ft(st, at)| ≤|Rt + γ(βA
t+1Q

A
t (St+1, a

∗) + (1− βA
t+1)Q

B
t (St+1, a

∗))−Q∗(st, at)|
+|Xt(st, at)|

≤R̄+ 3R̄+ 2
R̄

1− γ
.

Next, we need to show that ∥E[Ft | Ft]∥∞ ≤ κ∥Xt∥∞ + cn. Let us therefore decompose

Ft(st, at) =1Yt+1=1

(
FQ
t (st, at) + γ(1− βt+1)(Q

B
t (St+1, a

∗)−QA
t (St+1, a

∗))
)

+1Yt+1=0αt(st, at)Xt(st, at)
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with FQ
t (st, at) := Rt + γQA

t (St+1, a
∗)−Q∗(st, at). This yields

|E[1Yt+1=1F
Q
t (st, at) + 1Yt+1=0αt(st, at)Xt(st, at)|Ft]|

= |1
2
E[Rt + γQA

t (St+1, a
∗)]−Q∗(st, at) +

1

2
Xt(st, at)|

≤ |T ∗QA(st, at)− T ∗Q∗(st, at)|+ |
1

2
Xt(st, at)|

≤ γ∥QA
t −Q∗∥∞ +

1

2
∥Xt∥∞

= (
1

2
γ +

1

2
)︸ ︷︷ ︸

<1

∥Xt∥∞,

since the Bellman optimality operator is a γ-contraction. Subsequently, it only remains to show that

ct := |E[1Yt+1=1γ(1− βA
t+1)(Q

B
t (St+1, a

∗)−QA
t (St+1, a

∗)|Ft]|

goes to zero almost surely. This is immediate if we verify that

XBA
t (s, a) := QB

t (s, a)−QA
t (s, a)

goes to zero almost surely for all (s, a) ∈ S ×A which will be achieved by another application of
Lemma 4. We infer that

XBA
n+1(sn, an)

=XBA
n (sn, an) + αn(sn, an)

(
1Yn+1=0

(
Rn + γ

(
βB
n+1Q

B
n (Sn+1, b

∗) + (1− βB
n+1)Q

A
n (Sn+1, b

∗)
)
−QB

n (sn, an)
)

−1Yn+1=1

(
Rn + γ

(
βA
n+1Q

A
n (Sn+1, a

∗) + (1− βA
n+1)Q

B
n (Sn+1, a

∗)
)
−QA

n (sn, an)
)

)
=(1− αn(sn, an))X

BA
n (sn, an) + αn(sn, an)

(
1Yn+1=0

(
Rn + γ

(
βB
n+1Q

B
n (Sn+1, b

∗) + (1− βB
n+1)Q

A
n (Sn+1, b

∗)
))

−1Yn+1=1

(
Rn + γ

(
βA
n+1Q

A
n (Sn+1, a

∗) + (1− βA
n+1)Q

B
n (Sn+1, a

∗)
))

+1Yn+1=1Q
B
n (sn, an)− 1Yn+1=0Q

A
n (sn, an)

)
=(1− αn(sn, an))X

BA
n (sn, an) + αn(sn, an)F̃n(sn, an),

with

F̃n(sn, an) =

(
1Yn+1=0

(
Rn + γ

(
βB
n+1Q

B
n (Sn+1, b

∗) + (1− βB
n+1)Q

A
n (Sn+1, b

∗)
))

−1Yn+1=1

(
Rn + γ

(
βA
n+1Q

A
n (Sn+1, a

∗) + (1− βA
n+1)Q

B
n (Sn+1, a

∗)
))

+1Yn+1=1Q
B
n (sn, an)− 1Yn+1=0Q

A
n (sn, an)

)
.
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Now, using that QB
n (sn, an), Q

A
n (sn, an), X

BA
n (sn, an), αn(sn, an) are Fn-measurable and Yn+1

is independent of Fn, the conditional expectation satisfies

|E[F̃n(sn, an) | Fn]| =
1

2
γ|E[βB

n+1Q
B
n (Sn+1, b

∗) + (1− βB
n+1)Q

A
n (Sn+1, b

∗)

−βA
n+1Q

A
n (Sn+1, a

∗)− (1− βA
n+1)Q

B
n (Sn+1, a

∗)|Fn]|

+
1

2
|QB

n (sn, an)−QA
n (sn, an)|

≤1

2
γ
(∣∣E[βB

n+1(Q
B
n (Sn+1, b

∗)−QA
n (Sn+1, a

∗))|Fn]
∣∣

+
∣∣E[(1− βB

n+1)(Q
A
n (Sn+1, b

∗)−QB
n (Sn+1, a

∗))|Fn]
∣∣

+
∣∣E[(βB

n+1 − βA
n+1)Q

A
n (Sn+1, a

∗)|Fn]
∣∣

+
∣∣E[((1− βB

n+1)− (1− βA
n+1))Q

B
n (Sn+1, a

∗)|Fn]
∣∣)

+
1

2
∥Xn∥∞

Now if E[QB
n (Sn+1, b

∗)|Fn] ≥ E[QA
n (Sn+1, a

∗)|Fn], by definition of a∗ we have QA
n (Sn+1, a

∗) =
maxa∈ASn+1

QA
n (Sn+1, a) ≥ QA

n (Sn+1, b
∗) and therefore∣∣E[QB

n (Sn+1, b
∗)−QA

n (Sn+1, a
∗)|Fn]

∣∣ =E[QB
n (Sn+1, b

∗)−QA
n (Sn+1, a

∗)|Fn]

≤E[QB
n (Sn+1, b

∗)−QA
n (Sn+1, b

∗)|Fn] ≤ ∥XBA
n ∥∞.

Analogously, if E[QB
n (Sn+1, b

∗)|Fn] < E[QA
n (Sn+1, a

∗)|Fn], then we have by definition of b∗∣∣E[QB
n (Sn+1, b

∗)−QA
n (Sn+1, a

∗)|Fn]
∣∣ =E[QA

n (Sn+1, a
∗)−QB

n (Sn+1, b
∗)|Fn]

≤E[QA
n (Sn+1, a

∗)−QB
n (Sn+1, a

∗)|Fn] ≤ ∥XBA
n ∥∞.

Similarly, by distinguishing cases, one shows that∣∣E[QA
n (Sn+1, b

∗)−QB
n (Sn+1, a

∗)|Fn]
∣∣ ≤ ∥XBA

n ∥∞ +
1

2
∥XBA

n ∥.

Combining the above yields∣∣∣E[F̃n(sn, an) | Fn]
∣∣∣ ≤ 1

2
γ(βB

n+1 + (1− βB
n+1))∥XBA

n ∥∞

+
∣∣∣γE[(βB

n+1 − βA
n+1)Q

A
n (Sn+1, a

∗)︸ ︷︷ ︸
<R̄<∞

|Fn]
∣∣∣+ ∣∣∣γE[((1− βB

n+1)− (1− βA
n+1))Q

B
n (Sn+1, a

∗)︸ ︷︷ ︸
<R̄<∞

|Fn]
∣∣∣

︸ ︷︷ ︸
:=c̃n→0, since |βA

n −βB
n | converges to 0 for n→∞ due to (iv)

.

Hence, we invoke Lemma 4 to obtain convergence of XBA
t and thus with another application of

Lemma 4, Xt(s, a) converges to zero which finally implies QA
t (s, a) (and also QB(s, a)) converges

to Q∗(s, a) almost surely for every (s, a) ∈ S ×A.

Since S,A are finite, for every ε > 0, there exists a random variable N > 0 such that for
all t > N , we have

max
z∈{A,B}

∥Qz
t −Q∗∥∞ < ε almost surely.

Step 2: Convergence of return distributions
Suppose the MDP has a unique optimal policy π∗. Now following Rowland et al., 2018, we take ε to
be half the minimum action gap for the optimal action-value function Q∗ = Qπ∗

, i.e.

ε =
1

2
min
s∈S

(Qπ∗
(s, π∗(s)−max

a̸=
Qπ∗

(s, a))

which is greater than zero by assumption (v). Hence, denoting the action of the deterministic optimal
policy in a certain state s by π∗(s), we get

max
a

QA
t (s, a) = max

a
QB

t (s, a) = π∗(s)

25



for all t > N. For some initial condition η̃0 ∈ FS
C,m, let now η̃k be the iterates created by a double

categorical policy evaluation algorithm for the optimal policy π∗, i.e.

η̃Ak+1(sk, ak) =(1− 1Yk+1=1αk(sk, ak))η̃k(sk, ak)

+1Yk+1=1αk(sk, ak)ΠC

(
bRk,γ#

(
βA
k+1η̃

A
k (Sk+1, π

∗(Sk+1))

+(1− βA
k+1)η̃

B
k (Sk+1, π

∗(Sk+1))
))

η̃Ak+1(s, a) =η̃Ak (s, a) for (s, a) ̸= (sk, ak).

and analogously for η̃B . Note that the appearing Yk, αk, β
A
k , β

B
k are chosen to be the same as in

the control case above. Then η̃A, η̃B converges almost surely to the unique fixed point η∗C of the
projected operator ΠCT π∗

with respect to ℓ̄2 by Lemma 5. Similarly to Rowland et al., 2018, we
now proceed by a coupling argument. Denote by πA

k , π
B
k any greedy selection rule with respect to ηAk

and ηBk and Ak = {πA
k = πB

k = π∗ for all n ≥ k}. Then Ak ⊆ Ak+1 and by the above explanation
we have P(Ak)↗ 1. Additionally, let B be the event of probability 1 for which the (double) policy
evaluation algorithm converges. Now on the event B ∪Ak, we have

ℓ̄22(η̃
A
n , η

∗
C)→ 0 and ℓ̄22(η̃

B
n , η∗C)→ 0.

Then by the triangle inequality it suffices to show ℓ̄2(η
A
n , η̃

A
n )→ 0 and ℓ̄2(η

B
n , η̃Bn )→ 0 on this event

too, since then the Theorem follows by P(B ∪Ak)↗ 1.
To prove this we will again apply Lemma 4. This time with d = 2 · |S||A|, where we identify

Xn :=

[
ℓ22(η

A
n , η̃

A
n )

ℓ22(η
B
n , η̃Bn )

]
∈ R2|S||A|.

Additionally, we expand the filtration by F̃n = σ(Fn, Yn+1) and define α̃A
n (s, a) = αn(s, a)1Yn+1=1

and α̃B
n (s, a) = αn(s, a)1Yn+1=0. By Lemma 6 these steps-size sequences still fulfill the Robbins-

Monro conditions.
Then, writing

νA =βA
n+1η

A
n (Sn+1, π

∗(Sn+1)) + (1− βA
n+1)η

B
n (Sn+1, π

∗(Sn+1))

ν̃A =βA
n+1η̃

A
n (Sn+1, π

∗(Sn+1)) + (1− βA
n+1)η̃

B
n (Sn+1, π

∗(Sn+1))

for short, for n ≥ k, on Ak we have

ℓ22(η
A
n+1(sn, an), η̃

A
n+1(sn, an))

=(1− α̃A
n (sn, an))

2∥ηAn (sn, an)− η̃An (sn, an)∥2ℓ2
+α̃A

n (sn, an)
2∥ΠC(bRn,γ#νA)−ΠC(bRn,γ#ν̃A)∥2ℓ2

+(1− α̃A
n (sn, an))α̃

A
n (sn, an)2⟨ηAn (sn, an)− η̃An (sn, an),ΠC(bRn,γ#νA)−ΠC(bRn,γ#ν̃A)⟩ℓ2 .

This can be rewritten in terms of Lemma 4 as

XA
n+1(sn, an) = (1− ζAn (sn, an))X

A
n (sn, an) + ζAn (sn, an)F

A
n (sn, an)

with ζAn (sn, an) = 2α̃A
n (sn, an)− α̃A

n (sn, an)
2 and

FA
n (sn, an) =

1

ζAn (sn, an)
(α̃A

n (sn, an)
2∥ΠC(bRn,γ#νA)−ΠC(bRn,γ#ν̃A)∥2ℓ2

+(1− α̃A
n (sn, an))α̃

A
n (sn, an)2⟨ηAn (sn, an)− η̃An (sn, an),

ΠC(bRn,γ#νA)−ΠC(bRn,γ#ν̃A)⟩ℓ2)

and FA
n (s, a) = 0 if (s, a) ̸= (sn, an). It is mentioned that ζAn (sn, an) > 0. Notice that,

∞∑
n=1

ζAn (sn, an) =

∞∑
n=1

(2α̃A
n (sn, an)− α̃A

n (sn, an)
2) =∞ a.s.

∞∑
n=1

ζAn (sn, an)
2 =

∞∑
n=1

4α̃A
n (sn, an)

2 − 4α̃A
n (sn, an)

3 + α̃A
n (sn, an)

2 <∞ a.s.

(6)
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Finally we have

|FA
n (sn, an)| ≤

1

ζAn (sn, an)
(α̃A

n (sn, an)
2γℓ̄22(β

A
n+1η

A
n + (1− βA

n+1)η
B
n , βA

n+1η̃
A
n + (1− βA

n+1)η̃
B
n )

+(1− α̃A
n (sn, an))α̃

A
n (sn, an)2

√
γ|⟨ηAn − η̃An ,

βA
n η

A
n + (1− βA

n )η
B
n − βA

n η̃
A
n − (1− βA

n )η̃
B
n ⟩ℓ̄2 |)

≤ 1

ζAn (sn, an)
(α̃A

n (sn, an)
2γ max

z∈{A,B}
ℓ̄22(η

z
n, η̃

z
n)

+(1− α̃A
n (sn, an))α̃

A
n (sn, an)2

√
γ max

z∈{A,B}
ℓ̄22(η

z
n, η̃

z
n))

=
α̃A
n (sn, an)

2γ + (1− α̃A
n (sn, an))α̃

A
n (sn, an)2

√
γ

2α̃A
n (sn, an)− α̃A

n (sn, an)
2

max
z∈{A,B}

ℓ̄22(η
z
n, η̃

z
n)

≤
(2α̃A

n (sn, an)− α̃A
n (sn, an)

2)
√
γ

2α̃A
n (sn, an)− α̃A

n (sn, an)
2

max
z∈{A,B}

ℓ̄22(η
z
n, η̃

z
n)

≤√γ max
z∈{A,B}

ℓ̄22(η
z
n, η̃

z
n) =

√
γ∥Xn∥∞

where we used regularity and 1/2-homogeneity of the ℓ2 metric as described in [Bellemare et al.,
2023 Section 4.6] as well as that ΠC is a non-expansion in ℓ2 and

|⟨u, βu+ (1− β)v⟩| = β⟨u, u⟩+ (1− β)|⟨u, v⟩| ≤ βmax(∥u∥2, ∥v∥2) + (1− β)∥u∥∥v∥
≤max(∥u∥2, ∥v∥2)

by the Cauchy-Schwarz inequality. Further, by the above the Variance also fulfills

V[FA
n (sn, an)|F̃n] = E[FA

n (sn, an)
2|Fn]− E[FA

n (sn, an)|F̃n]
2

≤ 2(
√
γ max

z∈{A,B}
ℓ̄22(η

z
n, η̃

z
n))

2

≤ 2γ sup
η,η∈FS

C,m

ℓ̄42(η, η
′) <∞.

Therefore, by Lemma 4 we obtain convergence ℓ̄2(η
A
n , η̃

A
n ) → 0 and ℓ̄2(η

B
n , η̃Bn ) → 0 on Ak. As

already described above, this results in

ℓ̄2(η
A
n , η

∗
C)→ 0 and ℓ̄2(η

B
n , η∗C)→ 0 almost surely.

Proof of Lemma 5. Let the filtration be given by Ft =
σ(ηA0 , η

B
0 , s0, a0, α0, R0, S1, Y1, β

A
1 , β

B
1 . . . , st, at, αt, Yt+1), where (Yn)n∈N is an iid sequence of

Bernoulli(0.5) random variables, independent of all other appearing random variables, such that A is
updated when Yn+1 = 1. To clarify, abbreviating

νA = βA
t+1η

A
t (St+1, At+1) + (1− βA

t+1)η
B
t (St+1, At+1)

νB = βB
t+1η

B
t (St+1, At+1) + (1− βB

t+1)η
A
t (St+1, At+1) where

At+1 ∼ π(·;St+1),

we are confronted with the updates

ηAt+1(s, a) = ηAt+1(s, a) + αt(s, a)1Yt+1=1(ΠC(bRt,γ#νA)− ηAt+1(s, a))

ηBt+1(s, a) = ηBt+1(s, a) + αt(s, a)1Yt+1=0(ΠC(bRt,γ#νB)− ηBt+1(s, a)).

As in the proof above, define α̃A
n (s, a) = αn(s, a)1Yn+1=1 and α̃B

n (s, a) = αn(s, a)1Yn+1=0. By
Lemma 6 these steps-size sequences still fulfill the Robbins-Monro conditions. Also note that as in
step 2 of the proof of Theorem 3, Yt+1 is Ft-measurable and hence so is α̃A/B

t . In order to align this

27



with Lemma 4, we rewrite

XA
n+1(s, a) = ℓ22(η

B
t+1(s, a), ηC(s, a))

=(1− α̃A
t (s, a))

2∥ηAt (s, a)− ηC(s, a)∥2ℓ2
+α̃A

t (s, a)
2∥ΠC(bRt,γ#νA)− ηC(s, a)∥2ℓ2

+(1− α̃A
t (s, a))α̃

A
t (s, a)2⟨ηAt (s, a)− ηC(s, a),ΠC(bRt,γ#νA)− ηC(s, a)⟩ℓ2

=(1− ζAt (s, a))XA
t (s, a) + ζAt (s, a)FA

t (s, a)

with ζAt (s, a) = 2α̃A
t (s, a)− α̃A

t (s, a)
2,

Xt :=

[
ℓ22(η

A
t , ηC)

ℓ22(η
B
t , ηC)

]
∈ R2|S||A|

and

FA
t (s, a) =

1

ζAt (s, a)
1α̃A

t (s,a)>0(α̃
A
t (s, a)

2ℓ22(ΠC(bRt,γ#νA), ηC(s, a))

+(1− α̃A
t (s, a))α̃

A
t (s, a)2⟨ηAt (s, a)− ηC(s, a),ΠC(bRt,γ#νA)− ηC(s, a)⟩ℓ2).

As in Equation (6), the sequence ζAt (s, a) fulfills the Robbins-Monro condition. Additionally, note
that there exists K > 0, such that ℓ22(ΠC(bRt,γ#νA), ηC(s, a)) < K independent of s, a, t. Further,
observe that

ct := max
z∈{A,B}

1

ζzt (s, a)
1α̃z

t (s,a)>0α̃
z
t (s, a)

2K → 0 for t→∞ almost surely.

We use that ΠC is mean-preserving [Lyle et al., 2019 Proposition 1] for discrete distributions
supported within [θ1, θm], which is satisfied by bRt,γ#νA, due to Assumption (ii) and νA ∈ Fm.
Together with the fact that ΠCT π is a

√
γ-contraction with respect to ℓ̄2 and the Cauchy-Schwarz

inequality, we have

|E[⟨ηAt (s, a)− ηC(s, a),ΠC(bRt,γ#νA)− ηC(s, a)⟩ℓ2 |Ft]|
=|⟨ηAt (s, a)− ηC(s, a),E[ΠC(bRt,γ#νA)|Ft]− ηC(s, a)⟩ℓ2 |
=|⟨ηAt (s, a)− ηC(s, a),E[bRt,γ#νA)|Ft]− ηC(s, a)⟩ℓ2 |
=|⟨ηAt (s, a)− ηC(s, a),ΠCT π(βA

t+1η
A
t + (1− βA

t+1)η
B
t )(s, a)− (ΠCT πηC)(s, a)⟩ℓ2 |

≤√γ|⟨ηAt − ηC , (β
A
t+1η

A
t + (1− βA

t+1)η
B
t )− ηC⟩ℓ̄2 |

≤√γ(βA
t+1ℓ̄

2
2(η

A
t , ηC) + (1− βA

t+1)|⟨ηAt − ηC , η
B
t − ηC⟩ℓ̄2 |)

≤√γ(βA
t+1 max

z∈{A,B}
ℓ̄22(η

z
t , ηC) + (1− βA

t+1)∥ηAt − ηC∥ℓ̄2∥η
B
t − ηC∥ℓ̄2 |)

≤√γ max
z∈{A,B}

ℓ̄22(η
z
t , ηC)

=
√
γ∥Xt∥∞.

In total, this yields

|E[FA
t (s, a)|Ft]|

≤ 1

ζAt (s, a)
1α̃A

t (s,a)>0α̃
A
t (s, a)

2K +
1

ζAt (s, a)
1α̃A

t (s,a)>0(1− α̃A
t (s, a))α̃

A
t (s, a)2

√
γ∥Xt∥∞.

≤ ct +
√
γ∥Xt∥∞.

Since ℓ̄2(η, η
′) < K for every η, η′ ∈ FS×A

C,m some K > 0, the conditional variance V[FA
t |Ft] can

be bounded uniformly in t.
Therefore, the requirements of Lemma 4 are fulfilled, and its application yields XA

t (s, a) =
ℓ22(η

A
t (s, a), ηC(s, a)) → 0 and XB

t (s, a) = ℓ22(η
B
t (s, a), ηC(s, a)) → 0. Hence, also ηAt , η

B
t

converge to ηC with respect to ℓ̄2.
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