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Abstract

Buffer cache has been widely implemented in database systems to reduce disk
I/Os. Existing database systems typically use heuristic-based algorithms for buffer
replacement, which cannot dynamically adapt to changing workload patterns. This
paper proposes a deep reinforcement learning-based approach, DRL-Clusters, to
manage the buffer pool when handling changing workloads. DRL-Clusters can
dynamically adapt to different workload patterns without incurring high inference
overhead and miss ratio with page re-clustering and continuous interactions with
the cache environment. Our evaluation results demonstrate that DRL-Clusters can
achieve a lower or comparable miss ratio than the heuristic policies while reducing
13.3% - 26.8% page access overhead under changing workloads.

1 Introduction

The buffer pool is one of the critical optimizations that databases use to reduce disk I/Os to improve
reads/writes performance. By holding the most recently accessed disk pages in the buffer pool,
subsequent transactions requesting the same page can directly retrieve it from memory rather than
from disk, thus improving the page access performance. In practice, the buffer pool has a limited size
and cannot accommodate all disk pages, so when a new page is accessed while the buffer pool has no
space, a victim page in the buffer pool must be evicted and replaced with the new page.

Buffer replacement policies have been heavily studied over many years. Existing database systems
typically use heuristics algorithms that exploit commonly observed patterns, such as Least Recently
Used (LRU) (1), Most Recently Used (MRU), CLOCK algorithms (2) and their variants (3). The
drawback of these heuristic-based policies is that they are customized for a limited class of known
page access patterns and cannot adapt to changing workloads that preserve dynamic patterns.

On the other hand, deep learning (DL) has achieved dramatic breakthroughs in computer vision,
speech recognition, and natural language processing by capturing complex and useful patterns from
large data corpora. Recently we have seen a rapid growth of database research in optimizing database
configuration, indexing, and query execution with DL techniques (4; 5; 6). Therefore, it is natural to
explore if DL models could improve buffer performance for databases and further advance the field.
There is little existing work that applies DL to the buffer replacement management for optimizing
database systems’ performance. The most relevant work is iBTune (5), which uses a deep neural
network to tune the buffer pool size to achieve a guaranteed level of service level agreement. Another
work (7) proposed to apply DL to buffer replacement problems in the hardware and predict whether
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the accessed data should be cached or not. In this paper, we consider replacing the heuristic algorithms
with a DL component to manage the buffer pool and predict which page should be evicted.

Despite the potential improvement, it is challenging to apply a DL model to manage buffer replace-
ment in database systems in an effective way. Because traditional DL models learn the patterns from
the collected data set and focus on recurring workloads, but the workloads in a database system
usually present various access patterns. Therefore, to handle a dynamic workload, the model should
be able to adapt rapidly to new patterns, which poses challenges. In addition, the decision space for
the model to decide which page to evict is as large as the number of pages in the buffer, which intro-
duces significant overhead to the training and inference process. Compared with traditional heuristic
algorithms, a practical DL model for managing the buffer pool in production database systems should
not introduce non-negligible overhead when making a page eviction decision. Otherwise, it will
increase page access overhead and undermine the database performance, which is unacceptable in
production environments.

To address these challenges, this paper proposes a practical deep reinforcement learning-based system,
named DRL-Clusters, to manage the buffer pool in database systems. To address the adaptivity
problem under a dynamic workload, DRL-Clusters uses the reward functions in reinforcement
learning to evaluate the buffer performance of the database measured by hit ratio and learn to decide
which page to evict through a trial-and-error process. Besides, to address the overhead issue, DRL-
Clusters reduces the decision space by clustering the pages into clusters so that the decision space is
reduced to the selections of a cluster. For each page, DRL-Clusters maintains short-term, mid-term,
and long-term access counts as the features. The pages with similar features are grouped into the
same cluster.

We implement DRL-Clusters and compare its performance with other heuristic policies and the
baseline. Under synthetic dynamic workloads, our evaluation shows that DRL-Clusters can save
13.3% - 26.8% page access time compared to existing heuristic policies while preserving a comparable
miss ratio. Comparing to the non-clustered baseline, DRL-Clusters reduces the page access overhead
by 2.25X.

2 Preliminaries

In this section, we describe the baseline design which manages the database buffer pool with a
deep reinforcement learning model, without the clustering optimization. We denoted the baseline as
DRL-BL. Then we analyze its limitations when managing a large buffer pool.

2.1 Baseline

In the baseline design DRL-BL, the system that using reinforcement learning model to manage
database buffer pool consists of the following five components:

DRL Agent generates a buffer pool page eviction action based on the current state of the environment.
The next state, as well as the reward, will be calculated based on this action. In this paper, we select
Deep Q-Network (DQN) as the learning method. DQN was designed by combining reinforcement
learning and deep neural networks at scale.

Environment represents the buffer in a database buffer pool.

State represents the current state of the buffer, which includes the features of all the pages in the
buffer pool.

Action represents which page needs to be evicted. The agent generates the corresponding action at
based on the current state of the buffer pool.

Reward reflects how the system performance changes before and after an action is taken. In this
paper, the performance refers to the buffer pool miss ratio.

In the baseline design, the state space consists of the features from all buffer pages, and the action
space comprises all of the buffer pages. Specifically, three different features are used for each page:
short-term, mid-term, and long-term access frequencies. The state space is encoded as {F0, F1 ..., Fi}
where Fi denotes the features of the i-th page. Let Fi = {fsi , fmi , fli} denotes the short-term, mid-term,
and long-term access times to the i-th page. Specifically, the baseline maintains a sliding window
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that captures most recent page requests and the window size is equal to the value of the defined
long-term. For example, if the long-term is 1000, then the sliding window will store the most recent
1000 pages requests, Whenever a new page request is generated, either it is page hit or page miss, the
sliding window will delete the earliest request and add the new request. In the case that the new page
request results in a page miss, the baseline will count each distinct page’s short-term, mid-term, and
long-term access times from the 1000 requests in the sliding window.

2.2 Limitations of Baseline

The baseline works well when managing a small buffer, however, it becomes impractical when
handling a large buffer pool, which is the typical use case in real-world database systems. We analyze
the limitation of the baseline approach as follows. We formally formulate the average access time to
database records as follows.

Tavg = Thit · (1−miss_ratio) + Tmiss · (miss_ratio) (1)

where Tavg denotes the average access time, Thit denotes the overhead of a page hit, and Tmiss

denotes the overhead of a page miss. Tmiss can be further broken down to:

Tmiss = TIO + Tinfer (2)

where TIO refers to the system IO delay and Tinfer refers to the buffer management inference time,
namely the time used to decide which buffer page to evict. Substituting Eq. 2 to Eq. 1, we have

Tavg = Thit · (1−miss_ratio) + (TIO + Tinfer) · (miss_ratio) (3)

In the above equation, TIO and Thit depend on the specific hardware but are fixed values, it can be
seen that the average access time is not only determined by miss_ratio but also by Tinfer, which
varies in different buffer management policies.

For heuristic buffer replacement policies (e.g., LRU, LFU, MRU), Tinfer is negligible as the eviction
decision made by these policies is of O(1) complexity. However, in the baseline, Tinfer becomes
non-negligible when the decision space is large, as the overhead of making a decision1 is of O(N)
complexity, where N is the feature size used by the model. Consider a real-world use case where
a database server allocates 32GB memory for the buffer pool, which can hold 8 million pages2.
Therefore, the baseline would maintain up to 24 million features and feed them into the DQN agent
under each reference time. Such a large feature size could significantly prolong the inference time
and render the model inefficient for a large buffer pool.

We use an experiment to demonstrate the relationship between the model inference time and the
feature size in a DL model. We first train a DL model that maintains X features, then we test the
model by asking the model to make a decision and measure the inference overhead. We test the
model 10 times and report the average inference time. We vary X from 300 to 12000 and report the
inference time in Figure 1a. The result shows that the inference overhead grows linearly with the
feature size, from 0.14ms when the feature size is 300 to 0.38ms when the size is 12000.

The experiment result conveys the following information: even though DL models can reduce
the miss_ratio, it incurs extra overhead in the model inference process and increase the T_infer,
which can offset the benefit of reduced miss_ratio. The larger the feature size is, the higher the
inference overhead will be. The inference overhead makes DL models unable to scale up to support
enterprise-class databases that are usually configured with a large buffer pool.

3 DRL-Clusters Approach

In this paper, we aim to design an efficient (with low Tinfer) yet effective (with low miss_ratio)
DL-based buffer replacement policy. Inspired by the formal analysis in the previous section, there is
a trade-off between the feature size and model inference overhead. The insight we obtained is that
reducing the feature size can reduce the model inference overhead. So we propose a cluster-based

1also known as inference
2assume each page is of 4K size
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Figure 1

DRL model to manage the buffer pool, denoted as DRL-Clusters. By grouping buffer pages with
similar page features into clusters, we can derive cluster features of much smaller size and then feed
the cluster features to the DQN agent.

In DRL-Clusters, the decision space is reduced from buffer pages to the clusters. At the time a cluster
is chosen by the model, choosing which page from the cluster to evict is also a non-trivial problem.
In our approach, we randomly choose a page from the cluster to evict, we will talk about different
selection strategies in Sec. 5. Therefore, compared with the baseline DRL-BL, the DQN agent of
DRL-Clusters uses a much smaller feature size and thus incurs a much lower inference overhead.

Figure 1b presents the workflow of our DRL-Clusters. In the case page access hits in the buffer
pool, we update the page features based on short-term/mid-term/long-term access times, and the
cluster manager will update the corresponding cluster features3. In the case of a page miss, the
DRL-Cluster agent will read the current features of all clusters and feed them into the DQN. The
DQN then generates an action of selecting a cluster and from which a page will be evicted4. The
page eviction will result in a new state (e.g., new page features). The reward will be generated and
used to update the DQN periodically.

Compared with the baseline design, the state space of DRL-Cluster only consists of clusters features,
and the action space only comprises the clusters as well. Therefore, the size of features fed to the
DQN agent can be significantly reduced, and so as the inference overhead, as learned by Figure 1a.

As shown by the DRL-Clusters workflow diagram, both page hit and page miss will update the page
features. To guarantee that the pages belonging to the same cluster still preserve similar page features
after certain rounds, the cluster manager will conduct a re-clustering procedure to update the clusters.
Since re-clustering is an expensive operation, which takes more than 2 seconds for clustering 10000
pages into 10 clusters as observed in our experiment, we run this procedure in a background thread
and periodically execute it.

4 Implementation & Evaluation

4.1 Implementation

The baseline is implemented by (8). It builds a simulation environment of a database buffer
and integrates classic buffer replacement policies, such as LRU, LFU, and MRU. To implement
DRL-Clusters, we extend the baseline by implementing a cluster manager and integrating it with
the baseline, and we also alter the feature vectors from page features to cluster features. We use
KMeans (9) as the clustering algorithm. When the agent generates an action that the X th cluster is
selected, we randomly pick one page in the X th cluster to evict. We set the delay to 0 ms for a page
hit and 1 ms for a page miss as suggested by (10).

3each cluster’s features are derived by averaging the page features in the cluster
4For the sake of simplicity, we randomly select a page to evict.
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4.2 Evaluation

4.2.1 Workload Generation

We generate two types of workloads with different access patterns, namely random workload, and
sequential workload. By mixing them, we can synthesize a dynamic workload. We ensure the number
of distinct contents is much larger than the buffer size so as to trigger enough misses.

For the random workload, we refer to a popular data simulation model Zipf to generate both training
and testing datasets. Zipf is widely used in the simulation of network content requests. It provides a
simple but general way to simulate content requests that follow the Zipfian distribution (11). When
generating the dataset, similar to existing works (8), we set the parameter to 1.3. We use Zipf to
generate two samples, one for the training dataset and the other for the testing dataset. We generate
40K requests consisting of 15K distinct contents in each sample.

For the sequential workload, we use Zipf to generate a pair of random numbers, with the first one
denotes the content starting index and the second denotes the scanning length. For example, with a
pair of (1001, 10), 1001 will be the starting index, and 10 will be the length. It represents a sequential
request which accesses the content from id 1001 to 1011. Similarly, we generate two samples that
contain 47K requests within the same range of 15K distinct contents. We then mix them with the
random workloads. In the end, we obtain two mixed samples, with each containing 87K requests.

4.2.2 Experiments

We use the mixed samples generated as described in Sec. 4.2.1 to evaluate the performance of the
DRL-Clusters. For classic buffer replacement policies, we drive the testing sample sequentially to
the target implementations. For the DRL-based implementations, we first train the model with the
training samples for 100 epochs and then test it with the testing samples.

Comparison to classic policies: In this experiment, we configure the buffer size to 7.5K for all
implementations and configure 3 clusters in DRL-Clusters. After driving the testing workloads,
we report the metrics of miss ratio and average page access time in table 1. For the average page
access time, we sum up each page access’s time and divide it by the number of page accesses. The
result shows that LFU achieves the lowest miss ratio among all buffer replacement policies, and our
DRL-Clusters achieves a lower miss ratio than the other two classic policies (LRU, MRU). The result
can be explained by the fact that the mixed workloads generated in Sec. 4.2.1 features the Zipfian
distribution, which favors the LFU policy, and our DRL-Clusters also use frequency as the feature.
However, LFU causes the highest average page access time. We investigate the cause of such a high
access time and find it is due to the expensive metadata maintenance in LFU (which tracks all pages’
accessed times). Compared to all classic policies, our DRL-Clusters achieves the lowest page access
time and can save 13.3% - 26.8% access time.

We also vary the buffer size from 5K to 10K and report the same metrics in Figure 2. The result
shows the miss ratio and average access time decrease linearly as the buffer size increases. Under all
settings, DRL-Clusters always achieves the second-lowest miss ratio and lowest average access time.

Policies Miss ratio (%) Average access time
LRU 50.16 1.27 ms
LFU 40.44 1.42 ms
MRU 46.94 1.20 ms

DRL-Clusters 41.0 1.04 ms

Table 1: Comparison between DRL-Clusters and classic policies

Vary cluster size: In this experiment, we configure the buffer size to 7.5K and vary the cluster size
in DRL-Clusters. The cluster size varies from 5 to 30 and the results are reported in Figure 2. The
result shows there is a trade-off between the performance and cluster size in DRL-Clusters. When
the cluster size is smaller than 10, increasing cluster size can improve the performance (both miss
ratio and access time). However, further increasing cluster size to beyond 10 can negatively affect
performance.
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Figure 2: Vary buffer size

Cluster size Miss ratio (%) Average access time
5 43.86 1.21 ms
10 40.38 1.15 ms
15 42.14 1.22 ms
30 42.44 1.31 ms

Table 2: Performance of varying cluster sizes in DRL-Clusters

Approaches Miss ratio (%) Average access time
DRL-BL 19.81 0.99 ms

DRL-Clusters 19.57 0.44 ms

Table 3: Performance comparison between DRL-Clusters and DRL-BL

Comparison to baseline: In this experiment, we compare the performance of DRL-Clusters with
the baseline DRL-BL. We generate new mixed workloads in the same manner as Section 4.2.1. The
random (sequential) workloads contain 40K (180K) requests that comprise 20K distinct contents.
The buffer size is configured at 10K. After training both models for 100 epochs, we drive the mixed
testing workloads and report the miss ratio and average access time in Table 3. Compared to the
baseline, the result shows that DRL-Cluster achieves a similar miss ratio but reduces the inference
overhead from 0.99 ms to 0.44 ms, leading to a 2.25X improvement.

5 Discussion

In our DRL-Clusters, we simplify the victim page selection in a cluster by randomly selecting one.
This is based on the assumption that all pages within the same clusters preserve similar page features,
and choose any page in the cluster to evict would lead to the same effect or the same reward, in other
words. However, this assumption may not always hold, as the DQN agent does not directly read
the page features, so it is possible that randomly choose a page leads to a negative reward. One can
explore alternative ways to select a victim page from a cluster, such as maintaining an LRU and MRU
queue for each cluster and selecting the victim page accordingly.

Another shortcoming of DRL-Clusters is the feature set used in the model. We only consider the
frequency-based page features in different periods, making the model achieve a comparable miss
ratio with the LFU policy. One can further improve the model by including other page features into
the feature set, such as recency information and table features (e.g., table space IDs).
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In addition, in our current design, the number of clusters requires manually tuning and the database
operator needs to choose the best setting for their use case. Besides, the re-clustering procedure is
quite expensive, and we periodically execute it in a background thread so that it won’t affect the
handling of page access requests. Instead of periodically executing it, there are other ways to execute
the procedure. For instance, one can keep tracking the average distance of the pages to the cluster
centroids and trigger the re-clustering when the distance is above a threshold. Another approach is
to keep monitoring the miss ratio of the buffer pool and trigger the re-clustering if the miss ratio
increases consecutively.

6 Related Work

Deep learning-based approaches have been researched and applied to improve the efficiency of many
complex systems, such as databases and cache management.

To make a database perform better, Ji Zhang et al. (6) addressed the challenges of database auto-tuning
by proposing CDBTune, which utilized deep reinforcement learning to find the optimal configurations
in high-dimensional continuous parameter space. Adam et al. (12) introduced Self-Tuning Memory
Manager, which provided adaptive self-running of database memory heaps and cumulative database
memory allocation by using a combination of technologies such as control theory, runtime simulation
modeling, cost-benefit analysis, and operating system resource analysis. To be able to maintain the
machine learning models’ performance when the test data diverges from the training data, Lin Ma et
al. (4) proposed an active data collection platform that employed active learning to gather relevant
data. They also developed an active learning approach that can combine multiple noisy signals for
data gathering from database applications. To achieve more effective cache management, Zhan Shi et
al. (7) analyzed an LSTM (13) based offline cache replacement model and proposed Glider, which is
an online deep learning model that matches the offline model’s accuracy but with lower cost. Sami
Alabed et al. (14) also investigated the use of reinforcement learning to guide a general-purpose cache
manager. In contrast to these works, DRL-Cluster addressed the challenge of finding a trade-off
between model accuracy and performance by introducing a clustering-based reinforcement learning
approach.

7 Conclusion

This paper proposes a deep reinforcement learning-based approach, DRL-Clusters, to manage the
buffer pool when handling changing workloads. DRL-Clusters can dynamically adapt to different
workload patterns without incurring high inference overhead and miss ratio with page re-clustering
and continuous interactions with the cache environment. Our evaluation results demonstrate that
DRL-Clusters can achieve a lower or comparable miss ratio than the heuristic policies while reducing
13.3% - 26.8% page access overhead under dynamic workloads.
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