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Abstract

Instruction tuning plays a critical role in aligning large language models (LLMs) with
human preference. Despite the vast amount of open instruction datasets, naively training a
LLM on all existing instructions may not be optimal and practical. To pinpoint the most
beneficial datapoints, data assessment and selection methods have been proposed in the
fields of natural language processing (NLP) and deep learning. However, under the context
of instruction tuning, there still exists a gap in knowledge on what kind of data evaluation
metrics can be employed and how they can be integrated into the selection mechanism. To
bridge this gap, we present a comprehensive review on existing literature of data assessment
and selection especially for instruction tuning of LLMs. We systematically categorize all
applicable methods into quality-based, diversity-based, and importance-based ones where
a unified, fine-grained taxonomy is structured. For each category, representative methods
are elaborated to describe the landscape of relevant research. In addition, comparison
between the latest methods is conducted on their officially reported results to provide
in-depth discussions on their limitations. Finally, we summarize the open challenges and
propose the promosing avenues for future studies. All related contents are available at
https://anonymous.4open.science/status/instruction_tuning_data_survey-B307.

1 Introduction

One of the ultimate goal of developing large lnguage models (LLMs) is to unlock their potentials of
generalization to unseen natural language processing (NLP) tasks. Towards this goal, a series of LLMs such as
GPTs [Brown et al. (2020); Achiam et al. (2023)], LLaMAs [Touvron et al. (2023a;b); AI@Meta (2024)], and
Mistrals [Jiang et al. (2023a; 2024a)] have delivered high-level text understanding and generation capabilities
via utilizing vast amount of high-quality web and human-annotated datasets for pre-training and preference
alignment [Liu et al. (2023a; 2024c); Sun et al. (2024b); Edunov et al. (2019); Dong et al. (2019)]. During
preference alignment, instruction tuning plays an important role in refining the pre-trained LLMs to provide
accurate, pertinent, and harmless responses on a collection of downstream tasks [Wei et al. (2021); Sanh
et al. (2021); Zhang et al. (2023d); Peng et al. (2023); Longpre et al. (2023); Shu et al. (2023); Jang et al.
(2023); Ghosh et al. (2024); Kung & Peng (2023)]. For efficient and effective instruction tuning, existing
studies [Ouyang et al. (2022); Taori et al. (2023); Zhou et al. (2024a); Xia et al. (2024a)] have noticed that
improving the quality of instruction tuning data (e.g., formulation of well-defined and complete contexts),
rather than simply piling up instructions without analysis (e.g., exhaustive collection of open datasets), is of
prioritized concerns.

In this work, we aim to unify a wide array of data assessment and selection methods under the context of
instruction tuning of LLMs. As revealed from the probabilistic view [John & Draper (1975); Murphy (2012);
Albalak et al. (2024)], the statistical patterns inherent in datasets determine the modeling performance. The
overall evaluation of datapoints not only deciphers the distribution in various aspects (e.g., composition, task,
and domain) but also helps cherry-pick the most beneficial subsets for higher performance with less training
cost. Through this survey, we demonstrate that: 1) existing resourceful data assessment methods can be
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Figure 1: Categorization of data assessment and selection methods for effective instruction tuning of LLMs.

categorized into three main perspectives: quality, diversity, and importance (see Fig. 1). 2) a systematic view
of selection methods can be unified even they more or less exhibit coupling with the assessment techniques
(see Fig. 2). It is noted that quality, diversity, and importance might be used interchangeably without
strict discrimination in previous studies. But here we provide a rationalized organization taxonomy for
structured elaboration. Despite the goal of being comprehensive, the present survey only provides details of
certain typical, representative methods to avoid being tediously long. We hope the in-depth explanations and
discussions on the selected methods provide insights into developing robust data assessment and selection
pipelines for future studies.

1.1 Related Surveys

[Liu et al. (2024d)] studied the mainstream datasets for building LLMs, including the pre-training corpora,
instruction tuning datasets, preference datasets, evaluation benchmarks, and traditional NLP datasets. Their
work focuses on the descriptions of dataset statistics (e.g., categorization, sources, and domains) without
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providing guidelines on utilization. In contrast, we emphasize the selection of instruction-tuning data for the
improved downstream performance. [Albalak et al. (2024)] presented a systematic overview of constructing the
data pipeline for language models. Any selection method, either via distribution matching or diversification,
can be composed of: 1) utility function; 2) selection mechanism. During different stages of the pipeline, the
selection method should be adjusted according to different selection objectives (e.g., language filtering, data
quality control , domain knowledge division , deduplication, toxic and explicit content removal, and data
mixing). Their work pays extra attention to the processing of the pre-training corpora while neglecting the
fine-grained analysis of existing selection methods specifically designed for instruction tuning. In this case,
our survey serves as an indispensable extension on the selection of instruction datasets. [Wang et al. (2024a)]
focused on the data preparation for instruction tuning. Existing methods on building instruction tuning
datasets include: 1) reformulating the discriminative NLP datasets into generative ones; 2) self-instruct
with seed prompts; 3) prompt mapping and evol-instruct Popular methods on dataset selection can be
simply classified as: 1) system of indicators; 2) trainable LLMs; 3) powerful LLMs; and 4) small models.
Comparatively, our survey stems from the characteristics of data themselves, namely quality, diversity, and
importance, for categorization of selection methods. In each category, we further provide subdivided groups
by the selection philosophy, which deepens the understanding of selection for practical take-home messages.

Existing surveys on general data selection also shed light on the principles of developing selection methods.
[Guo et al. (2022)] started from the general coreset selection methods in the field of deep learning and categorize
all selection manners into: 1) geometry-based methods (e.g., herding, k-center greedy); 2) uncertainty-based
methods (e.g., least confidence/entropy/margin); 3) error/loss-based methods (forgetting; GraND/EL2N;
importance resampling); 4) decision boundary-based (adversarial deepfool; contrastive active learning); 5)
gradient matching-based (gradient approximation towards full set); 6) bi-level optimization-based (inner loop
of model optimization and outer loop of datapoint selection); 7) sub-modularity-based (e.g., graph cut; facility
location); 8) proxy-based (preference of a small model on data selection). [Zhou et al. (2024b)] investigated
the potential metrics and aspects for data quality measurement. They provide a list of available tools for
data evaluation. Apart from data assessment and selection methods that are specifically designed for NLP or
LLM applications [Moore & Lewis (2010); Chen et al. (2024a); Dodge et al. (2020); Kandpal et al. (2022); Li
et al. (2022); Feng et al. (2021); Lee et al. (2021); Malhotra & Bakal (2015); Liu et al. (2024e)], there exist
many survey studies that tackle general quality measurement in machine learning [Gupta et al. (2021); Zha
et al. (2023); Ehrlinger & Wöß (2022); Mohammed et al. (2024); Li et al. (2024c); Lu et al. (2023b); Dix et al.
(2023); Priestley et al. (2023); Byabazaire et al. (2020); Roh et al. (2019); Sidi et al. (2012); Batini et al.
(2009)] for constructing safe, unbiased, and accurate datasets. In this paper, we mainly focus on reviewing
data selection methods for utilizing instruction tuning data in the context of large language models.

1.2 Survey Scope

Although "data evaluation" has been so frequently mentioned that it appears as a cliché problem in developing
machine learning algorithms, the optimal solution to establishing an overall data assessment and selection
pipeline still remains an open question. Especially under the context of instruction tuning of LLMs, existing
studies proposed various measurements and strategies to select the "high-quality" instructions. However,
very few studies noticed that there exists no unified dimensions or aspects in measuring data "quality" where
previous works tend to put emphasis on the domain-specific and task-dependent characteristics. In addition,
the inherent, systematic coupling between data assessment and subset selection is not well demonstrated.

Under such circumstance, the present study strives to provide a comprehensive review on evaluating and
decomposing massive instruction tuning datasets. We categorize the main aspects of data assessment in terms
of quality, diversity, and importance. To reduce ambiguity, their definitions are first provided below.

Quality refers to the intrinsic value of the data. High-quality data typically satisfy two conditions: 1) The
instructions are clear, accurate, and explicit in explaining the task at hand and the expected behavior of
LLMs. 2) The responses are correct, coherent, and pertinent to the instructions. All the requirements and
constraints specified in instructions should be met. Accordingly, most existing methods not only underline
the clarity and fluency of instructions but also filter out mismatched, incorrect, and harmful responses via
various judging and measuring techniques.
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Figure 2: A high-level overview of comprehensive data assessment and selection. The analysis aspects that
apply to either individuals or the overall dataset can be categorized into three groups marked in blue italic.

Diversity refers to the variety and richness of the dataset. During training, models that are exposed to
datapoints under a wide range of scenarios enjoy a high level of generalization to unseen tasks. High-diversity
data imply that each constituting datapoint is unique. The diverse dataset should cover different knowledge
domains and task definitions with varying input contexts and output constraints. In light of this statement,
existing methods that prioritize diversity all emphasize the removal of homogeneous, near-deduplicated
datapoints in terms of lexical and semantic representations.

Importance refers to the impact of specific data points on the LLM’s performance. It implies the necessity of
adding one datapoint into the selected subset for instruction tuning. The importance of a datapoint is up
to factors such as the difficulty of following the instruction, the capability of the LLM under investigation,
and the scale of the dataset to be selected. Under such circumstance, various methods of importance-based
selection have been developed by measuring the difficulty of each datapoint, matching the gradients or
performance of models that are trained on the selected and the full set, and investigating the dynamics of
models in learning rich and scarce datasets.

In each aspect, we provide a detailed survey on both traditional (e.g., hand-crafted indicators) and machine
learning (e.g., model-based indicators) methods. Besides, the coreset sampling methods that bridge evalua-
tion and selection are introduced separately in diversity and importance oriented subset construction. In
consideration of the properties of instruction tuning, we focus on the text modality and start from classical
text analysis metrics. Metrics that are either specific to instruction tuning or compatible with pre-training
and preference alignment are included since they all share general rules in data assessment.

The survey is organized as follows. First, we present the preliminaries for assessment and selection of instruction
tuning datasets (Sec. §2). Next, we present the surveying methods of data assessment and selection methods
in terms of quality (Sec. §3), diversity (Sec. §4), and importance (Sec. §5). Then, discussions on the existing
methods are provided in (Sec. §6), followed by the promising directions for future research (Sec. §7). The
final conclusion is given in (Sec. §8).
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1.3 What’s Beyond the Survey Scope

The instruction tuning methods for de-bias and fairness of LLMs are not covered in the present study. We
acknowledge that the bias and fairness aspects of instruction data are valued in developing responsible
LLMs [Gallegos et al. (2024); Chu et al. (2024); Li et al. (2023d)]. However, they are beyond the scope of the
present study for the following reasons:

• Most data selection methods on instruction tuning do not even notice the bias or fairness of data.
They are in lack of explicitly designing steps to reduce negative impacts of biased data.

• Existing fairness tuning methods follow their own definitions of quality and diversity in terms of
gender, race, religion, profession, age, and political ideology. It is difficult to bring in all their
corresponding evaluation techniques under our selection taxonomy.

• The bias and fairness not only intersect with diversity but also with quality control, which is not an
inclusive concept. For example, to control the harmful contents like hatred and racism responses,
reward models or GPT scoring from quality-based selection can be used because the publicly released
reward models and LLMs are already aligned with human preference.

• The evaluation of bias and fairness is not covered in existing studies on data selection, which makes
it difficult to validate the effectiveness of selection techniques in improving the fairness of LLMs.

However, we emphasize that bias and fairness should be specifically handled because instruction-tuned LLMs
tend to exhibit more bias than the pre-trained LLMs [Itzhak et al. (2024)]. Therefore, we believe the selection
for a less-biased dataset would be a promising future direction in developing comprehensive selection methods.

2 Preliminaries

In this section, we briefly introduce the instruction tuning of LLMs and the problem statement for dataset
assessment and selection.

Instruction Dataset Preparation In instruction tuning, each text sample Ii is usually composed of three
parts: 1) instruction (either with or without system prompt), 2) input (can be empty), and 3) response.

For an off-the-shelf pre-trained LLM parameterized as θ, a pre-determined instruction template is used to
wrap the Ii into a textual prompt pi with special tokens like "<|im_start|>" and "<|im_end|>" for separation
of roles (e.g., system, user, assistant, function, and observation) and their contents. It is noted that
the prompt template for organizing a text sample Ii differs across model families. Especially, the special
tokens are unique to the tokenizers and play an important role in differentiating multi-turn conversations and
stopping model generations.Then, a LLM-associated tokenizer performs tokenization on the textual prompt
pi for a sequence of token-id integers: xi = [xi(1), xi(2), ..., xi(n)], where xi(j) denotes the j-th token of xi

and n is the total number of tokens. Out of simplicity, the token sequence xi can be simply split into two
parts by the index t: 1) the instruction part (xi(<t)) that is fed into the LLM without being involved in
loss computation, and 2) the ground-truth response part (xi(≥t)) that is expected as the LLM output via
minimizing its language modeling loss. Without losing generality, we use the terminology of "datapoints"
throughout the paper to refer to the tokenized samples xi.

The process of processing an instruction sample xi is illustrated in Fig. 3. We choose one example from the
Alpaca dataset [Taori et al. (2023)] and perform Qwen tokenization [Yang et al. (2024)] for demonstration.
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{
    "instruction":"Explain the difference 
between a URL and a domain name."
    "input":""
    "output":"A URL, which stands for Uniform 
Resource Locator, is the entire address used to 
visit a website or access a specific online 
resource. It includes the protocol (such as 
HTTP or HTTPS), the domain name, and other 
elements like the path, parameters, or anchor. 
For example, the URL of this page is https://
play.aidungeon.io/main/homePage.\n\nOn the 
other hand, a domain name is a component of a 
URL that specifically identifies the website or 
web page. It is the part of the URL that comes 
after the protocol and before the path. For 
example, in the URL above, the domain name is 
\"play.aidungeon.io\". \n\nIn simpler terms, 
you can think of a URL as an address that leads 
you to a specific location on the web, while a 
domain name is the specific name of the 
location you're visiting."
}

Template Wrapping

<|im_start|>system\nYou are a helpful 
assistant.<|im_end|>\n<|im_start|>user\nExplain 
the difference between a URL and a domain 
name.<|im_end|>\n<|im_start|>assistant\nA URL, 
which stands for Uniform Resource Locator, is 
the entire address used to visit a website or 
access a specific online resource. It includes 
the protocol (such as HTTP or HTTPS), the 
domain name, and other elements like the path, 
parameters, or anchor. For example, the URL of 
this page is https://play.aidungeon.io/main/
homePage.\n\nOn the other hand, a domain name 
is a component of a URL that specifically 
identifies the website or web page. It is the 
part of the URL that comes after the protocol 
and before the path. For example, in the URL 
above, the domain name is 
\"play.aidungeon.io\". \n\nIn simpler terms, 
you can think of a URL as an address that leads 
you to a specific location on the web, while a 
domain name is the specific name of the 
location you're visiting.<|im_end|>

Tokenization

{
    "chat_template": "{% for message in 
messages %}{% if loop.first and messages[0]
['role'] != 'system' %}{{ '<|im_start|
>system\nYou are a helpful assistant.<|im_end|
>\n' }}{% endif %}{{'<|im_start|>' + 
message['role'] + '\n' + message['content'] + 
'<|im_end|>' + '\n'}}{% endfor %}{% if 
add_generation_prompt %}{{ '<|im_start|
>assistant\n' }}{% endif %}"
}

Synstem
User

Assistant

Figure 3: The pre-processing of an instruction dataset includes: 1) template wrapping, and 2) tokenization.
In the first step, we wrap the raw texts Ii with a pre-defined chat template into the textual prompts pi.
In the second step, we perform tokenization on pi with the LLM-associated tokenizer for the datapoint xi.
Given the index t for indicating where the loss mask of language modeling starts taking effect, we split xi

into xi(<t) and xi(≥t), respectively denoting the instruction part (input) and the response part (output).

Instruction Supervision Given the tokenized instruction tuning dataset S = {xi}N
i=1, the supervised

tuning is performed via cross-entropy loss:

L =
∑

xi∈S

Li,

Li = −
|xi|∑
j=t

logP (xi(j)|xi(<j); θ).
(1)

For each xi, given all previous tokens xi(<j) , the model iteratively predicts the next token xi(j) at the j-th
index. Note that the previous tokens here include both the instruction context part xi(<t) and the response
completions up to the current token xi(≥t,<j) .

Data Assessment and Selection We aim at finding the most informative subset Sb ⊂ S from the entire
set S under the given budget |Sb| ≤ b. Mathematically, the selection of Sb requires: 1) a quantitative
evaluation function q(·) that assesses each datapoint xi, and 2) an elaborated sampling mechanism π that
determines the rules of selection:

Sb = π(S, b, q). (2)

With respect to the detailed implementation of π, either an iterative, greedy algorithm or a batch-wise
heuristic rule can be adopted for compatibility with q(·). For example, the greedy sampling is represented as:

Sb = πgreedy(S, b, q) = arg max
S′⊆S,|S′|≤b

∑
xi∈S′

q(xi). (3)
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The greedy algorithm πgreedy consistently selects datapoint xi with the highest score q(xi) until the budget
target b is met. The heuristic sampling algorithm, on the other hand, chooses each datapoint xi according to
a pre-defined rule. For example, the probability derived by the score q(xi) can be employed as reference:

Sb = πprob(S, b, q) = Sample(S, b, p),

p(xi) = q(xi)∑
xj∈S q(xj) ,

(4)

where Sample(S, b, p) performs sampling b times upon the normalized probability distribution over q(·). More
advanced sampling techniques π can be developed in accordance with the domains and tasks at hand.

Such data assessment and selection paradigm is expected to bring about the following benefits: 1) the
reduction of noise by ignoring those mislabeled, mismatched instruction-response pairs, 2) the re-balance of
data distributions by down-sampling those easy, common, and similar examples while up-sampling hard, rare,
and unique ones, and 3) the expedition of training in return for efficient optimization of LLMs.

3 Quality-based Selection

In this section, we present methods on quality assessment and selection. Without lose of generality, we present
the unified formulation of quality measurement. The evaluation function q(xi) in quality-based methods can
be decomposed into two fine-grained parts: 1) instruction quality qI(xi) and 2) response quality qR(xi).

q(xi) = fq(qI(xi<t), qR(xi≥t)), (5)

where fq is an aggregation function that combines the instruction and response quality scores either explicitly
or implicitly. Specifically, the instruction quality qI can be further broken down into: 1) clarity qC

I that
measures the ease of understanding the task, 2) accuracy qA

I that measures how well the instruction aligns
with the expected task, and 3) explicitness qE

I that measures how explicitly the instruction defines the output
constraints (e.g., formats and styles). Consequently, we have qI(xi<t) = gI(qC

I (xi<t), qA
I (xi<t), qE

I (xi<t)) with
the aggregation function gI . Similarly for the measurement of response, its quality qR can be assessed via: 1)
correctness qC

R that measures whether the response correctly answers the instruction, 2) coherence qH
R that

measures the logical consistency of the response, and 3) pertinence qP
R that measures the relevance of the

response to the instruction. The final response can be judged as qR(xi≥t) = gR(qC
R(xi<t), qH

R (xi<t), qP
R(xi<t))

with an aggregation function gR. It is noted that all the mentioned quality measurement components above
are only demonstrative and are not enforced explicitly in the development of existing quality-based methods.
Therefore, certain fine-grained aspects might be integrated into one formulation without extra considerations.

3.1 Hand-crafted Indicators

Overview Traditional methods develop hand-crafted indicators to evaluate the data quality in terms
of linguistic analysis such as vocabulary, syntax, and inter-sample semantic similarity. Each indicator is
manually, empirically designed with prior knowledge on the language, domain, and task of the corpus under
investigation. The calculation of each indicator is explicitly defined and does not require training and inference
of proxy models or language models. Although the indicators are hand-crafted, deep learning models such
as sentence encoders might be leveraged to extract embedding representations for each datapoint xi. An
indicator INDi can be typically defined as:

INDi = f(IND1(xi), IND2(xi),
IND3(xi), ...INDM (xi)),

(6)

where M denotes the total number of indicators and f is the aggregation function which depends on both
the instruction task and dataset. One can simply use linear combinations with pre-defined or dynamically
adjusted weights. However, meticulous tuning might be needed for the ultimate f . Given the indicators
INDi for each xi, two intuitive selection methods can be adopted: 1) to filter out datapoints whose indicator
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scores are below a threshold; 2) to keep only the samples whose indicator scores rank within a certain range
of percentiles. Mathematically, these two selection mechanisms can be respectively represented as:

Sπ = {xi|τmin < f(xi) < τmax, 1 ≤ i ≤ N}, (7)

Sπ = {xi|Pmin ≤ F̂f (f(xi)) ≤ Pmax, 1 ≤ i ≤ N}, (8)

where τmin and τmax respectively denote the left and right threshold boundaries. The estimated F̂f is
the empirical cumulative distribution function of all indicators f . Pmin and Pmax respectively refer to the
minimum and maximum percentile for enclosing the selection range. In practice, both the threshold and
percentiles are hyper-parameters that require task-specific fine-tuning.

Technical Details [Mishra et al. (2020a)] and [Mishra et al. (2020b)] introduce a data quality metric, namely
the DQI, to quantify the differences between successive benchmarks by giving high scores to generalizable
samples and low scores to biased samples. Such a metric implies whether a well-trained model truly learns
the underlying task rather than overfitting the spurious bias of specific benchmarks. Specifically, DQI has
seven components including vocabulary, inter-sample N-gram frequency and relation, inter-sample semantic
textual similarities (STS), intra-sample word similarity, intra-sample STS, N-Gram frequency per label, and
inter-split STS. Based on the DQI, [Mishra & Sachdeva (2020)] propose to prune existing huge NLP datasets
and demonstrates that the model trained on only 2% of the SNLI dataset achieves near-equal performance
with that on the entire set. It first performs AFLite [Le Bras et al. (2020)], which is detailed in [Sakaguchi
et al. (2021)], to keep samples with predictability scores over a threshold and then delete bottom k samples
with the lowest DQI scores. [Dang & Verma (2024)] further split DQI components into linguistic indicators
and semantic indicators, and validate their respective roles in detecting outliers, noises, and duplications.
Apart from data selection for training LLMs, quality indicators can also be employed to identify the most
discriminative samples in the evaluation set to expedite evaluation of LLMs. [Saranathan et al.] investigate
key indicators such as spelling errors [Yannakoudakis & Fawthrop (1983)], average word length, excessive word
repetition, and the compound probability distribution. These indicators stem from the traditional studies on
text readability (i.e., readability formulas and sophisticated features) [Klare et al. (1963; 1984); Dubay (2004);
Kintsch & Vipond (2014); Kemper (1983)]. Recent studies on readability leverage NLP systems to extract
more advanced and informative features for readability measures [Si & Callan (2001); Collins-Thompson &
Callan (2005); Schwarm & Ostendorf (2005); Feng et al. (2010)]. [François (2010; 2011); François & Fairon
(2012)] systematically analyze the lexical features, syntactic features, semantic features, and language-specific
features with up to 46 indicators. [François & Miltsakaki (2012)] validate these manually-designed (classical)
and NLP-enabled (non-classical) readability formulas, implying that high-quality texts can be pinpointed by
such carefully designed metrics. [Felice & Specia (2012)] find that the hand-crafted linguistic features should
be combined with other shallow features for better quality estimation.

Remark The hand-crafted indicators often stem from studies on linguistic analysis and readability mea-
surement. Although these indicators help filter out instruction samples that are unreadable, nonsensical, and
incoherent, they cannot detect mismatched instruction-response pairs and therefore fail to guarantee the
instruction-following capability of LLMs trained on highly-scored datasets.

3.2 Model-based Indicators

Overview The model-based indicators, on the other hand, leverage trainable models to predict the
indicators for each datapoint. The trainable models used for data quality measurement can either share the
same or similar architecture with the language model under development, or possess completely different
implementations. Accordingly, these indicators can be simply defined as:

INDi = f(IND1
θ1

(xi), IND2
θ2

(xi),
IND3

θ3
(xi), ...INDM

θM
(xi)),

(9)

where the learnable parameters θ1, θ2, ..., θM highlight the difference between model-based and hand-crafted
indicators. Based on such indicators, similar selection mechanisms (Eqs. 7 and 8) can be adopted.
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Technical Details One of the most intuitive model-based indicators is perplexity [Shannon (2001); Jelinek
et al. (1977); Jelinek (1980)]. It is frequently mentioned as the evaluation metric for pre-trained language
models [Penedo et al. (2023); Radford et al. (2018; 2019); Brown et al. (2020); Achiam et al. (2023)] but can
also be employed as a data quality indicator. [Ankner et al. (2024)] propose to use a small GPT-style reference
model such as MPT 125M [Team (2023)] to prune datasets via perplexity-based sampling for training a 3B
model. For any datapoint xi, the perplexity is defined as the exponential of negative likelihood with base of 2:

NLLi = 1
|xi|

|xi|∑
j=1

−logP (xi(j)|xi(<j); θ)

PPLXi = 2NLLi

(10)

Based on the perplexity inferred from a small model, samples at the high and medium percentiles are chosen
by Eq. 8 for downstream fine-tuning. [Deng et al. (2021)] develop a unified evaluator framework to score the
generated outputs for natural language generation tasks. A RoBERTa-based [Liu et al. (2019)] discriminator
learns to score responses in terms of consistency, relevance, preservation, engagingness, and groundedness.
One could simply adopt such a discriminator for evaluation of instruction-response pairs. [Zhong et al.
(2022)] further propose a multi-dimensional scoring evaluator. For each evaluation dimension, the original
instruction-response pairs are converted into positive samples in the form of boolean question-answer problems.
The negative samples are respectively constructed via a rule-based transformation. The evaluator itself is
implemented as a T5 model [Raffel et al. (2020)] and trained on these positive and negative samples for
scoring in the range from 0 to 1. [Jiang et al. (2024c)] prune the UltraChat [Ding et al. (2023)] dataset
by scoring each datapoint by the learning complexity of a pre-trained Qwen-1.8B model [Bai et al. (2023)].
Specifically, the learning complexity is calculated as the averaged prediction confidence of different subnets:

S̃(xi) = 1
I

I∑
j=1

PPLXi;Θj , (11)

where I is the number of subnets. Each subnet Θj is obtained by adjusting the dropout rate from 10% to
90% on the original Θ of any pre-trained language model. Such a dropout technique imitates the learning
progress in a training-free manner. Datapoints with small S̃(xi) are considered as easy ones. They are often
learned at an earlier training stage with less model capacity compared with hard ones. In a data-poor regime,
easy datapoints are more informative and should be kept first. On the contrary, in a data-rich regime, hard
datapoints should be treasured in that more samples can be preserved for fine-tuning. Both [Bukharin &
Zhao (2023)] and [Du et al. (2023)] employ reward models to assess the quality of each instruction pairs.
They respectively utilize the raft model [Dong et al. (2023)] and the deberta-v3-large-v2 1 for reward scoring:

Ri = rθ(xi(<t), xi(≥t)), (12)

where rθ denotes the reward model. t is the index where xi(<t) and xi(≥t) respectively denote the instruction
Q and response A. [Marion et al. (2023)] investigate three classic metrics in clean set selection [Guo et al.
(2022); Song et al. (2022); Natarajan et al. (2013); Qin et al. (2024)]: perplexity (Eq. 10), error l2-Norm
(EL2N) [Paul et al. (2021)], and memorization ranking [Biderman et al. (2024)]. Specifically, EL2N is defined
as:

EL2Ni = 1
|xi|

|xi|∑
j=1

∥P (xi(<j); θ) − yi(j)∥2, (13)

where yi(j) denotes the one-hot ground-truth vector as the target of the probability vector P (xi(<j); θ).
Specifically, both P (xi(<j); θ) ∈ RNvocab and yi(j) ∈ RNvocab are of the same dimension, where Nvocab denotes
the vocabulary size associated with the tokenizer. For the vector of yi(j), all elements are zero except that
the element indexed at xi(j) is one. The memorization ranking is represented as:

MEMi = 1
Nwin

Nwin∑
j=1

1(x̂i(Moffset+j) = xi(Moffset+j)), (14)

1https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
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where Nwin denotes the length of a consecutive sequence and Moffset is an offset of the starting index. The
x̂i(Moffset+j) refers to the generated token given input xi(<Moffset+j), and xi(Moffset+j) is its ground-truth. [Cao
et al. (2023)] combine both hand-crafted indicators (e.g., input length, output length, MTLD [McCarthy &
Jarvis (2010)], and kNN-i [Dong et al. (2011)]) and model-based indicators (e.g., reward score, perplexity,
and Uni-Eval metrics [Zhong et al. (2022)]) for fitting the loss of a LLM on the evaluation set. The linear
regression model is optimized via least squares method [Bjork (1988)] and the optimal selection of instruction
data is achieved via BlendSearch [Wang et al. (2021a;b)] for minimizing the estimated evaluation loss. [Li
et al. (2023a)] propose one of the most pioneering works that leverages the target language model itself
to perform self-guided data selection. The language model is first "warmed-up" with very few samples
randomly chosen from the pool to learn from brief experience. Then, such an experienced model evaluates
each instruction-response pair via the instruction-following difficulty (IFD) score. The IFD score measures
how much guidance or assistance the instruction provides to the generation of ground-truth response, by
comparing the loss of causal language modeling on the response with and without instruction:

IFDi = NLL
A|Q
i

NLLA
i

,

NLL
A|Q
i = 1

|xi(≥t)|

|xi|∑
j=t

−logP (xi(j)|xi(<j); θ),

NLLA
i = 1

|xi(≥t)|

|xi|∑
j=t

−logP (xi(j)|xi(t≤,<j); θ),

(15)

where the index t splits apart the instruction Q and the response A. Samples whose IFD scores over τmax = 1
are invalid datapoints with misaligned, mismatched instruction-response pairs. The empirical setting of
τmin affects the trade-off between quality and diversity of the selected datapoints. [Zhao & Fang (2024)]
comprehensively employ hand-crafted indicators for low-level quality filtering, and uses perplexity and IFD
score for high-level filtering. A voting mechanism is additionally introduced with IFD scores from one
pre-trained base model and one fine-tuned experience model. [Li et al. (2024b)] corroborate that both the
perplexity and IFD scores inferred from a rather small GPT2-125M [Radford et al. (2019)] are indicative in
selecting high-quality datapoints for training LLaMA2-7B and LLaMA2-13B [Touvron et al. (2023b)], which
greatly improves selection efficiency.

Another popular model-based quality filtering method is AF-Lite [Le Bras et al. (2020)], which has been
applied and validated in recent NLP studies [Mishra & Sachdeva (2020); Sakaguchi et al. (2021)]. It randomly
partition all available datapoints into the training set and the validation set. Then, a model (e.g., linear
classifier or language model) is trained on the training set and inferred on the validation set. Such process
iterates m times for calculation of the predictability score, which is defined as the ratio of the number of
correctly predicted response over the number of total predictions:

PREDi = |{x̂i ∈ Ei, s.t. x̂i = xi}|
Ei

,

Ei = {x̂θ1
i , x̂θ1

i , ..., x̂
θj

i , ..., x̂θm
i },

(16)

where x̂
θj

i denotes the generated response from the model parameterized as θj . It is noted that xi is not
involved for optimizing θj , and therefore a higher PREDi suggests better quality.

[Bhatt et al. (2024)] present uncertainty-based indicators such as mean entropy [Settles (2011); Kremer et al.
(2014)], least confidence [Settles (1995; 2011)], mean margin [Tong & Koller (2001); Balcan et al. (2006);
Settles (2011)], and min margin [Nguyen et al. (2022)]. Mathematically, such uncertainty indicators are
defined as:

U entropy
i = 1

|xi|

|xi|∑
j=1

P (xi(j)|xi(<j); θ)·

logP (xi(j)|xi(<j); θ).

(17)

10



Under review as submission to TMLR

U confidence
i = −

|xi|∏
j=1

P (xi(j)|xi(<j); θ). (18)

Umargin
i = − 1

|xi|

|xi|∑
j=1

(β1(P (xi(<j); θ))−

β2(P (xi(<j); θ))),

(19)

Umin-margin
i = − min

j∈{1,2,...,|xi|}
(β1(P (xi(<j); θ))−

β2(P (xi(<j); θ))),
(20)

where β1 and β2 denote the largest and second largest elements of the probability P (xi(<j); θ) ∈ RNvocab for
the newly generated j-th token. However, [Wu et al. (2023)] find that such uncertainty-based data sampling
methods perform worse than random sampling on Databricks-Dolly [Conover et al. (2023)], SelfInstruct-
Davinci [Taori et al. (2023)], and SelfInstruct-GPT4 [Peng et al. (2023)].

Remark Hybrid techniques that simultaneously combine perplexity, uncertainty, reward scores, and other
training-aware metrics are promising in selecting unbiased high quality samples. In consideration of the
training and inference cost, it is feasible to employ small proxy models as alternatives for computing
model-based indicators.

3.3 GPT Score

Overview The invoking of OpenAI APIs [Tingiris & Kinsella (2021); Lappalainen & Narayanan (2023);
Sun et al. (2023); Kublik & Saboo (2023)] for ChatGPT services (e.g., GPT3.5, GPT4) allows automatic
scoring of instruction tuning datasets. Recent studies on bringing LLMs as judges [Zheng et al. (2024);
Wang et al. (2023a); Zhu et al. (2023); Huang et al. (2024); Zeng et al. (2023); Chan et al. (2023)] reveal
that powerful language models like ChatGPT highly align with human preference on judging the quality of
instructions and responses. Given a well-designed prompt with clear definition on grading criteria, ChatGPT
produces justified quality scorings with explanations for the raw textual instruction data Ii:

GPTScorei = G(Ii, pG), (21)

where pG denotes the prompt template that defines the task and grading scheme with format constraints
on outputs (see Fig. 4). The G(·, ·) represents the process of quality scoring and response parsing, which
produces the GPT score GPTScorei. Samples with high GPTScorei can be selected using Eqs. 7 and 8.

Prompt pG for scoring Ii with instruction (input) and response in the <dimension>

We would like to request your feedback on the performance of AI assistant in response to the instruction and
the given input displayed following.

Instruction: <instruction>
Input: <input>
Response: <response>

Please rate according to the <dimension> of the response to the instruction and the input. Each
assistant receives a score on a scale of 0 to 5, where a higher score indicates higher level of the <dimension>.
Please first output a single line containing the value indicating the scores. In the subsequent line, please
provide a comprehensive explanation of your evaluation, avoiding any potential bias.

Figure 4: The prompt pG for scoring the raw text Ii with ChatGPT.
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Technical Details [Chen et al. (2023b)] propose a surprisingly easy-yet-effective method that directly
uses GPT3.5 to score datapoints in terms of helpfulness and accuracy. Both instructions and responses
are scored on a scale from 0 to 5 and experimental results show that general instruction datasets, except
coding-related samples, can be distilled into smaller subsets for better downstream performance. [Bukharin
& Zhao (2023)] follow [Chen et al. (2023b)] for filtering Alpaca [Taori et al. (2023)]. [Chen & Mueller (2024)]
employ the BSDetector [Chen & Mueller (2023)] to estimate the confidence of GPT3.5/GPT4 on the give
instruction-response pair. It takes both the self-consistency and direct scoring into consideration. Only highly
confident samples are kept for fine-tuning domain-specific LLMs and those less confident ones are corrected
automatically by these LLMs. [Xu et al. (2023b)] directly evaluate instruction datasets in terms of accuracy,
explanation, clarity, and difficulty for weighted scorings from GPT4. Then, both hand-crafted indicators (i.e.,
lengthwise semantic evaluation) and GPT4 scorings are employed for final ranking. [Liu et al. (2023b)] argue
that the direct scoring of GPT4 on one single instruction sample is not well-calibrated and instead gives
relative ranking of multiple instruction variants at once. The complexity of instructions [Xu et al. (2023a)]
and the quality of instruction-response pairs are sequentially obtained from GPT3.5. [Zhang et al. (2024c)]
use GPT scorings to judge: 1) whether the given text contains mathematical contents; 2) and if yes, whether
these maths contents are of high quality for education purpose. Such scores are proved more effective than
traditional "mathematical" classifiers [Paster et al. (2023)]. [Lu et al. (2023a)] propose to use ChatGPT for
annotating open-ended, fine-grained intention tags on open datasets. Then, the quality of the tag dataset is
evaluated by humans and GPT4 in terms of tagging precision and consistency. Instead of fully relying on the
GPT4, [Li et al. (2023c)] exploit the model under investigation itself (e.g., LLaMA 65B) to iteratively derive
quality scores on each augmented example on a 5-point scale. Then a curated clean set is chosen via the
Eq. 7. QuRator [Wettig et al. (2024)] manually define quality criterion such as writing style, facts and trivia,
educational value, and required expertise. Then, quality comparison is conducted on two instruction-response
samples via GPT3.5 scoring. Such pairwise scorings are used to fine-tune a sheared-LLaMA 1.3B model [Xia
et al. (2023)] in a manner similar to DPO [Ouyang et al. (2022); Rafailov et al. (2024)]. It is noted that the
pairwise scoring [Ouyang et al. (2022); Dubois et al. (2024); Zeng et al. (2023); Liu et al. (2023b)] has been
found more reliable, consistent, and unbiased than the individual scoring [Gunasekar et al. (2023); Chen et al.
(2023b)] during GPT-based quality analysis.

Remark Closed-source LLMs such as ChatGPT enjoy a high level of alignment with human preference and
therefore can be utilized for quality scoring. It would be cost-efficient to collect few (e.g., <100K) GPT-scored
samples first and then fine-tune an open-source LLM for quality measurement on massive corpus.

3.4 Human Evaluation

Overview Evaluation with human-in-the-loop is indispensable in constructing preference alignment
datasets [Wang et al. (2023b); Ouyang et al. (2022)] for helpfulness, honesty, and harmlessness. Specifically,
human annotators deliver gradings following specific criteria (see Fig. 5) in multiple dimensions:

LabelScorei = f(LabelScore1(xi),
LabelScore2(xi), ..., LabelScoreM (xi)),

(22)

where LabelScorem(xi) can be both bool or integer (e.g., range from 0 to 5) for the m-th fine-grained aspect.
The aggregation function f is commonly chosen as summation or averaging.

Technical Details The OpenAssistant [Köpf et al. (2024)] dataset is featured by its high-quality human-
generated, human-annotated multi-lingual conversations for both instruction tuning and reinforcement
learning from human feedback. For each instruction-response pair along the conversation tree, the human
annotators are asked to categorize them according to three dimensions: spam detection, guideline adherence,
and quality. The quality score is rated on a five-point Likert scale across aspects including quality, creativity,
humorousness, politeness, and harmlessness. These scores are used to sort instructions for analysis and
preference optimization of LLMs. [Lu et al. (2023a)] enroll human annotators to provide judgements on
the tagging of each instruction. To verify the quality scores provided by humans, counterfactual cases are
prepared respectively for precision and consistency tasks. Results show that human annotators have low false
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Guidelines (excerpts) for human annotations

# Guidelines
Below is a list of guidelines that should be adhered to for each possible task available when building the
dataset. To see some examples of how the guidelines can be applied, visit the examples document.

## 1. General rules
- Always make sure to read and understand the guidelines to each task before fulfilling it. - Try to follow the
guidelines as closely as possible. - If you are unsure whether a message violates a guidelines, contact us at our
Discord.
- Use the thumbs-up/thumbs-down system to further mark messages that are of high or low quality.

## 2. Providing an assistant reply #assistant-reply
### Do:
- Remain polite and treat the user with respect, even when not given the same courtesy.
...

Figure 5: The guidelines (thumbnails) for human experts to create and annotate instruction datasets.

positive rates at tagging precision, but lack proof of confidence on their original quality judgements. [Zhou
et al. (2024a)] propose to use human annotators for creation of small-yet-effective instruction datasets. To
collect questions and answers from various sources, simple hand-crafted indicators such as text length are
used to filter low-quality datapoints. Then, high quality instruction-response pairs are manually selected
(750) and written (250) via subjective quality control. The databricks-dolly dataset [Conover et al. (2023)]
contains 15K human-generated instruction-response pairs. Although quality is emphasized during large-scale
annotation, imperfect samples still exist. For example, low-quality and inaccurate responses, incomplete and
vague instructions, problematic texts with toxic language and grammar errors are found [He et al. (2024)].

Remark Human evaluation plays an irreplaceable role in quality control of preference alignment. To reduce
the inter-annotator inconsistency, detailed guidelines should be prepared for quality measurement. In addition,
supplementary quality measures such as GPT scores can be provided for reference during evaluation and
selection of high-quality datapoints.

4 Diversity-based Selection

In this section, we introduce methods that emphasize the diversity of instruction datasets. When it comes to
diversity, existing researches either measure the individual diversity of each sample (e.g., lexical and semantic
richness) or the overall diversity of the entire dataset (e.g., the volume of the enclosed embedding space).
Datapoints whose tasks and domains are of minority classes in a long-tailed distribution are preferred during
subset selection. Such sampling philosophy strikes to maintain or approximate the spread of the original
embedding clusters but with much less sparsity. In the case of diversity, the evaluation function q(xi) can be
represented in the unified formulation as:

q(xi) = fd(qL(xi), qS(xi)), (23)

where qL measures the lexical diversity of xi and qS assesses the semantic diversity. The fd denotes the
aggregation function in diversity measurement. Typically, qL often investigates the diversity of n-grams, tokens,
words, and sequences. Complementarily, qS emphasizes semantic diversity that the variety of representations
of the selected datapoints should be maximized in the embedding space. Both the two aspects of diversity
can be sequentially or jointly considered to remove any duplicates in the instruction datasets.

4.1 Hand-crafted Indicators

Overview The diversity of datasets is the key to develop less biased, more generalizable machine learning
models. However, recent studies [Zhao et al. (2024c;b)] show that existing datasets do not share a unified
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and concrete definition of diversity in terms of dataset composition, source, domain, subject, annotator, and
promote (fairness). With respect to the diversity measures specific in instruction tuning datasets, hand-crafted
indicators, similar to Eq. 6 in traditional NLP studies, can be used as a good starting point.

Technical Details One of the most popular diversity measure is lexical diversity, which refers to the range
of different words occurring in one text. The greater range implies greater diversity and quality. Type-token
ratio (TTR) [Templin (1957); Richards (1987)] is originally proposed as:

TTRi = |Unique(xi)|
|xi|

, (24)

where Unique(xi) denotes the set of unique tokens present in xi. To reduce the sensitivity of TTR to the
variation of text length, several studies [Covington & McFall (2008; 2010); Kettunen (2014); Matlach et al.
(2021)] standardized the length by introducing logarithms or n-grams into the formula.

Later, computational approaches to measure lexical diversity have been developed such as vocabulary diversity
(vocd-D) [Malvern & Richards (1997); Malvern et al. (2004); Silverman & Ratner (2002); deBoer (2014)],
the measure of textual lexical diversity (MTLD) [McCarthy & Jarvis (2010); Jarvis & Daller (2013)], and
hypergeometric distribution diversity (HD-D) [Jarvis (2013); McCarthy (2005)]. All these metrics require
multi-step computation for approximation. Specifically for vocd-D, random sampling is first performed on xi

for a series of sub-sequences with varying lengths k (e.g., 10, 20, 30 tokens). Then, TTRk is:

TTRk
i =

|Unique(xi(j≤,<j+k))|
|xi(j≤,<j+k)|

, 1 ≤ j ≤ |xi| − k, (25)

where xi(j≤,<j+k)) denotes the sub-sequence of xi starting from the randomly chosen index j and ending at
the index j + k. Then, the curve of TTRk

i versus the lengths k is plotted and a mathematical model is built
for fitting the curve:

ˆTTR
k

i = D
k

[(1 + 2 k

D
) 1

2 − 1], (26)

where D is the only parameter required to be estimated. By approximating ˆTTR
k

i towards TTRk
i with the

least squares, we have Dbest fit = D:
vocd-Di = D. (27)

A larger D reflects the higher diversity of xi. The computation of MTLD, on the other hand, first determines
the TTRi as a pre-defined threshold, and then partitions xi into M different contiguous subsequences
{x1

i , x2
i , ..., xm

i , ..., xM
i }. Each subsequence xm

i = xi(j≤,<j+k), ∀k > 0, ∀1 ≤ j ≤ |xi| − k maintains a TTRk
i

above the threshold TTRi. The MTLD is defined as:

MTLDi = 1
M

M∑
i=1

|xm
i |. (28)

The HD-D shares the same idea behind vocd-D but stems from the hypergeometric distribution [McCarthy &
Jarvis (2010)]. With M -times sampling, the HD-D represents the probability of drawing a certain number of
tokens of the given type from the subsequence of xi with a particular size k:

HD-Di =
|Unique(xi)|∑

t=1

1
M

M∑
m=1

1(xm
i(n) = ut), 1 ≤ n ≤ |xm

i |,

ut ∈ Unique(xi), xm
i = xi(j≤,<j+k), ∀k > 0, ∀1 ≤ j ≤ |xi| − k.

(29)

Variants of TTR indicators such as MTTRSS [Malvern et al. (2004)], MSTTR [Malvern et al. (2004)],
MATTR [Covington & McFall (2010)], and MTLD-W [Vidal & Jarvis (2020); Kyle et al. (2021)] all target at
the solutions to two fundamental problems [Bestgen (2023)]: 1) the sensitivity of indicators to text length,
and 2) the impact of the indicator parameters. [Li et al. (2015)] propose two rather simplified TTR scores as
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distinct-1 and distinct-2, where the number of distinct unigrams and bigrams of xi are respectively divided
by the total number of tokens. Other studies [Cao & Clark (2017); Zhu et al. (2018); Shu et al. (2019); Tevet
& Berant (2020)] extend the application of n-gram-based diversity for model-generated responses.

Apart from lexical diversity, there exists many efficient diversity indicators that are built upon the semantics
of each example. [Dong et al. (2011)] propose to approximate k-nearest neighbor (k-NN) graph [Peterson
(2009)] with arbitrary similarity measures on semantic embeddings of large-scale datasets. Such efficient
construction of a k-NN graph allows the distance of xi to its j-th nearest neighbors to be a feasible diversity
measure:

kNN j
i = d(g(xi), g(Nj(xi))), (30)

where Nj(xi) denotes the j-th closest neighbor of xi in the embedding space projected by g(·). The common
choices of the distance function d(·, ·) include the Euclidean distance, cosine distance, and Jaccard coefficient
distance [Huang et al. (2008)]. The projection from text (e.g., instruction-response pairs) into the embedding
space can be achieved with pre-trained sentence BERT [Reimers & Gurevych (2019); Feng et al. (2020)],
where an additional pooling operation is performed on the final output of BERT [Devlin et al. (2018)] for
sentence embeddings. Note that a higher kNNi implies that the sample xi is more unique and should be kept
in subset selection for higher diversity. Due to the fine-grained representation capability of BERT, existing
hand-crafted indicators often rely on BERT embeddings for similarity or diversity measurement [Tevet &
Berant (2020); Zhang et al. (2019); Larson et al. (2019); Yauney et al. (2023)].

To improve the generalization of diversity measure, [Xu et al. (2023b)] argue that the statistics of feature
embedding of each sample itself should be considered. It does not require additional prior knowledge on the
structure of embeddings. Given all datapoints xi ∈ S, their semantic embeddings from any sentence encoder
can be represented as X = [g(x1), g(x2), ..., g(xN )] ∈ R|S|×H . The row variance V ari of each embedding
g(xi) in the reduced dimensional space R|S|×k by principal components analysis (PCA) [Wold et al. (1987)]
is used as the diversity indicator:

V ari = 1
k − 1

∑
(j = 1)k(Yij − µi)2,

µi = 1
k

k∑
j=1

Yij

(31)

where the PCA chooses the top-k eigenvectors (V = [v1, v2, ..., vk] with λ1 ≥ λ2 ≥ ... ≥ λk) of the covariance
matrix Cov = QΛQT = 1

|S|−1 (X − µX)T (X − µX), µX = 1
|S|

∑|S|
i=1 Xi to project the original embeddings

into more compact and reduced ones via Y = (X − µX)V . Samples with the highest 20% V ari (via Eq. 8)
are selected as the variety-curated dataset.

When it comes to the overall diversity of a dataset S, the average distance of any datapoint xi to its closest
neighbor in the dataset, namely kNNi, can be leveraged intuitively:

DkNN (S) = 1
|S|

|S|∑
i=1

kNN1
i , xi ∈ S. (32)

Such a diversity measure has been widely used in dataset construction and retrieval [Stasaski et al. (2020);
Stasaski & Hearst (2022); Mithun et al. (2019); Spyromitros-Xioufis et al. (2015); Sun et al. (2024a); Ionescu
et al. (2018)]. [Du & Black (2019)] simply perform clustering on all samples with k-means [Ikotun et al.
(2023)] into K clusters (C1,C2,...,CK) in the embedding space, and then uses the cluster inertia as diversity
indicators:

Dinertia(S) =
K∑

j=1

∑
xi∈Cj

∥g(xi) − µj∥2,

µj = 1
|Cj |

∑
xi∈Cj

g(xi).
(33)
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[Lai et al. (2020)] develop a diversity metric on the dispersion of a cluster induced by embeddings of all
samples, where the cluster is approximated by a multi-variate Gaussian distribution:

Dradius(S) = H

√√√√ H∏
j=1

σj , (34)

where H is the dimension of the projected embeddings g(xi) ∈ RH and σj denotes the radius of the
ellipsoid along the j-th axis of the dataset S. The inter-cluster (class) distance can also be used for diversity
measure [Dang & Verma (2024)]:

DICD(S) = 1
K

K∑
j=1

divJS(Pj ||P̸=j), (35)

where Pj denotes the inverse-document frequency (IDF) distribution [Sparck Jones (1972)] of the cluster Cj

and divJS is the Jensen-Shannon divergence.

Remark Both lexical and semantic diversity should be considered with hand-crafted indicators. The
optimization of individual diversity would contribute to the overall diversity of the entire dataset.

4.2 Model-based Indicators

Overview Similar to Eq. 9, model-based indicators on diversity also rely on the target or proxy language
model for computing the indices.

Technical Details The diversity of a dataset S can be intuitively defined as the sum of rarity measures
of each constituting element xi. Accordingly, entropy-related methods are proposed to estimate such rarity.
The more uncommon, various samples exist, the higher diversity the dataset becomes. Mathematically, the
vanilla entropy [Shannon (1948)] is proposed for diversity measures:

Dentropy(S) = −
∑

xi∈S

P (xi|θ) · log2(P (xi|θ)), (36)

where P (xi) denotes the probability of xi occurring in the dataset. Later, Rényi entropy [Rényi (1961)]
introduce an additional parameter α > 0, α ̸= 1 for a generalized entropy definition:

DRE
α (S) = 1

1 − α
log2(

∑
xi∈S

P (xi|θ)α). (37)

The parameter α adjusts the element-wise emphasis on rare or frequent events.

Studies on biology and ecology [Mouillot & Lepretre (1999); Peet (1974); He & Hu (2005); Gregorius &
Gillet (2008)] investigate Simpson’s Index (SI) [Simpson (1949); Wu et al. (2024; 2022)] for measuring the
biodiversity of species and genetics. [Zhou et al. (2020)] propose a variant of the original SI with a more
flexible statistic metric:

DSI(S) = 2
∑

xi,xj∈S,i≤j 1(xi = xj |θ)
|S|(|S| + 1) , (38)

where the equivalence of xi and xj is judged by an indicator function parameterized as θ.

Vendi Score (VS) [Dan Friedman & Dieng (2023); Pasarkar & Dieng (2023); Nguyen & Dieng (2024)] is
rencently proposed for diversity measurement in machine learning researches. Inspired by the Rényi entropy,
a generalized VS metric [Pasarkar & Dieng (2023)] is defined as below:

DV S
α (S) = exp( 1

1 − α
log2(

|S|∑
i=1,i∈supp(λ̄)

λ̄α
i|θ)), (39)
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where λ̄i|θ denotes the normalized eigenvalues of the similarity kernel matrix KS|θ, and supp(λ̄) is the
set of indices of all non-zero eigenvalues. The smaller α < 1 makes the scoring more sensitive to rare
classes and therefore allows accurate diversity measurement even under severe class imbalance. One simple
implementation of the similarity kernel KS|θ is to use the Gaussian Radial Basis function k with feature
embeddings as k(g(xi|θ), g(xj |θ)) = exp(− 1

2 ∥g(xi|θ) − g(xj |θ)∥2). [Nguyen & Dieng (2024)] further introduce
quality scoring into Eq. 39 where for each subset Sb ⊂ S, its average quality score Q(Sb) = 1

|Sb|
∑

xi∈Sb
INDi

is multiplied with DV S
α (Sb) for comprehensive evaluation in terms of quality and diversity.

[Miranda et al. (2022)] propose an intrinsic diversity coefficient to measure the diversity of a dataset with
Task2Vec embeddings [Achille et al. (2019); Nguyen et al. (2019)] for distance computation between different
tasks. The Task2Vec encodes data from different tasks by the diagonal entries of the Fisher Information
Matrix (FIM). The FIM results from fine-tuning only the final (e.g., token classification) layer of a pre-trained
model, namely a probe model (e.g., GPT2 [Radford et al. (2019)]), to solve the task. Given a batch of samples
B, the mathematical representation of FIM is defined as:

F̂B = Exi,j,x̂i(j)∇θ log P (x̂i(j)|xi(<j); θ)·
∇θ log P (x̂i(j)|xi(<j); θ)T ,

(40)

where x̂i(j) denotes the j-th token predicted from the model parameterized as θ given the real sequence input
xi(<j). The expectation Exi,j,x̂i(j) takes an average over the sequence length |xi| for each xi sampled randomly

from the batch xi ∈ B. The Task2Vec embedding
→
fB = diag(FB), where diag(·) denotes the diagonal entries

of FB . Based on the Task2Vec embeddings, [Lee et al. (2023)] propose to compute the diversity coefficients
d̂iv specifically for NLP datasets:

Dd̂iv(S) = EB1,B2∼Sd(
→

fB1,
→

fB2),

Dd̂iv(S1, S2) = EB1∼S1,B2∼S2d(
→

fB1,
→

fB2),
(41)

where d denotes distance measurement (e.g., cosine distance). Both B1 and B2 are two batches sampled
respectively from the same or different datasets for diversity measures within or across datasets. Experiments
confirm that hand-crafted indicators such as the number of latent concepts [Xie et al. (2021)] and the richness
of vocabulary are positively associated with the proposed d̂iv coefficients.

[Lu et al. (2023a)] develop a diversity measure by open-ended tagging. Specifically, a tagging model
parameterized by θ is trained with GPT4-labeled tagging pairs. To label such tags of each datapoint, the
GPT4 first performs open-set fine-grained tagging and then all the collected tags are normalized to filter out
low-frequency ones and aggregate near-duplicate ones. The specifically trained tagging model describes each
instruction tuning datapoint xi by its fine-grained, atomic intentions and semantics (e.g., tasks and domains).
Correspondingly, the number of tags can be viewed as a diversity indicator for sampling a instruction subset
Sb from the whole set S (see Alg. 1).

Remark The model-based indicators are highlighted by their flexibility in handling various aspects of
diversity either implicitly or explicitly.

4.3 Geometry-based Coreset Sampling

Overview Instead of explicitly calculating the diversity-aware indicators, recent studies on selecting
instruction datasets tend to introduce coreset sampling methods for a systematic consideration [Guo et al.
(2022)]. Specifically, coreset sampling aims to find the most informative-and-diverse subset that represents
the entire dataset the most, so that close or even surpassing performance can be achieved on the language
model trained on the subset with respect to that on the entire set.

Technical Details Among different categories of coreset sampling methods, geometry-based methods
are the most intuitive and widely-used ones [Chen et al. (2012); Agarwal et al. (2020); Sener & Savarese
(2017); Sinha et al. (2020); Kamalov (2020); Rezazadegan Tavakoli et al. (2011); Kirchenbauer et al. (2024);
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Algorithm 1 TagLM-based Diverse Sampling [Lu et al. (2023a)]
Require: data xi ∈ S, a tagging LLM Tθ, a visited tag set DB

b , and a budget b
1: Initialize Sb = ∅
2: for each xi ∈ S do
3: Obtain tags Dxi

= Tθ(xi)
4: end for
5: repeat
6: Initialize DB

b = ∅
7: for each xi = arg maxxi∈S Dxi do
8: if |DB

b ∪ Dxi | > |DB
b | then

9: Sb = Sb ∪ {xi}
10: DB

b = DB
b ∪ Dxi

11: S = S\{xi}
12: end if
13: end for
14: until |Sb| = b
15: return Sb

Zhou et al. (2023)]. The intuition behind is that close samples in the embedding space often share similar
properties with low diversity. Therefore, redundant information can be effectively suppressed by controlling
the minimum distance between any two samples for subset selection. Specifically, k-center greedy is a typical
diversity-oriented sampling method for massive pretraining and instruction-tuning corpus [Chen et al. (2023a);
Bhatt et al. (2024); Wu et al. (2023); Zhao & Fang (2024); Du et al. (2023)]. It solves the minimax facility
location (FL) problem [Cornuéjols et al. (1983); Farahani & Hekmatfar (2009)], i.e., selecting the subset Sb

under the given size budget b from the full set S so that the largest distance between an example in S\Sb

and its closest example in Sb is minimized:

min
Sb⊂S, |Sb|=b

max
xi∈S\Sb

min
xj∈Sb

d(g(xi), g(xj)). (42)

The direct solution to Eq. 42 is NP-hard [Cook et al. (1994)] and a greedy approximation is proposed [Sener
& Savarese (2017)] (see Alg. 2). Instead of simultaneously retrieving all the datapoints that can maximize
the diversity of the selected subset, k-center greedy iteratively finds the most heterogeneous datapoint until
the budget b runs out. For initialization of S0

b , one can either choose randomly sampled datapoints from S,
or use the cluster center points from K clusters (C1, C2, ..., CK) of S via k-means clustering. Similarly, the
farthest point sampling method [Eldar et al. (1997)] shares the same principle that each iteration time only
the farthest datapoint relative to the already selected coreset is chosen from the candidates.

Algorithm 2 K-Center Greedy [Sener & Savarese (2017)]
Require: data xi ∈ S, existing pool S0

b and a budget b
1: Initialize Sb = S0

b

2: repeat
3: u = arg maxxi∈S\Sb

minxj∈Sb
d(g(xi), g(xj))

4: Sb = Sb ∪ {u}
5: until |Sb| = b + |S0

b |
6: return Sb\S0

b

In addition to the k-center greedy, the herding methods [Chen et al. (2012); Welling (2009); Huszár &
Duvenaud (2012); Adhikary & Boots (2022)] select datapoints xi so that the distance between the coreset
center and the full set center is minimized in the embedding space. For efficiency, it is also approximated via
greedy implementation [Chen et al. (2016); Harvey & Samadi (2014)] by adding one sample each time into
the Sb to minimize the distance between two centers (see Alg. 3). Similar to k-center greedy, the herding
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greedy also performs iterative sample selection. However, it differs in that in each step, the distance between
the centers of the selected set and the full set is minimized.

Algorithm 3 Herding Greedy [Harvey & Samadi (2014)]
Require: data xi ∈ S, a budget b

1: Initialize µ = 1
n

∑n
i=1 g(xi)

2: Initialize Sb = ∅
3: for t = 1 to b do
4: u = arg minxi∈S\Sb

∥µ−
1

|Sb|+1
∑

xj∈Sb∪{xi} g(xj)∥2

5: Sb = Sb ∪ {u}
6: end for
7: return Sb

Furthermore, recent studies tend to develop complex heuristic sampling methods that takes geometry-based
diversity into consideration [Jiang et al. (2023c); Chan et al. (2021); Xia et al. (2022)]. Specifically, the
inter-sample similarity of the selected coreset is minimized in return for an overall high diversity. [Jiang et al.
(2024c)] propose to preserve informative subset with the learning complexity (see Eq. 11) and implicitly puts
constraints on its diversity via sampling on the k-means clusters:

Ddist(S) = 1
|S|

∑
xi∈S

min
j ̸=i

d(xi, xj) ≥ C, (43)

where C denotes the constant that controls the degree of diversity. A larger C represents the larger diversity
of the dataset. The detailed procedure can be found in Alg. 4. It can be seen that datapoints are first
sampled cluster-by-cluster to ensure a more balanced data distribution. Then, a percentile-based selection is
performed on each cluster to select datapoints with easy learning complexity.

Algorithm 4 Easy and Diverse First Sampling [Jiang et al. (2024c)]
Require: data xi ∈ S, existing pool S0

b , a budget b, and the number of clusters K
1: Initialize Sb = S0

b

2: arg minC

∑K
j=1

∑
xi∈Cj⊂S ∥ g(xi)

∥g(xi)∥ − µj∥2,

µj = 1
|Cj |

∑
xi∈Cj

g(xi)
∥g(xi)∥ .

3: for j = 1 to K do
4: Sj

b = {xi|F̂S̃(S̃(xi)) ≤ b
K , xi ∈ Cj}

5: Sb = Sb ∪ Sj
b

6: end for
7: return Sb

[Bukharin & Zhao (2023)] propose the quality-diversity instruction tuning (QDIT). It also uses FL functions
for diversity measure of the subset Sb:

DF L(Sb) =
∑

xj∈S

max
xi∈Sb

sim(g(xi), g(xj)), (44)

where sim(·, ·) denotes the similarity function (e.g., cosine similarity). If the selected Sb can be well-
representative of the entire set S, then Sb is assumed of high diversity. Given quality scores defined by
Eq. 21, the detailed mechanism of QDIT is described in Alg. 5 with greedy approximation. Different from
the previous sequential setup that respectively prioritizes quality and diversity in two successive steps, QDIT
adopts a dynamic weighting over the GPT scoring-based quality and the FL-based diversity for selection.

[Liu et al. (2023b)] adopt the quality score-first and diversity-aware data selection method (DEITA), where
all datapoints are first scored and sorted by quality measurement, and then selected by a geometry-based
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Algorithm 5 QDIT sampling [Bukharin & Zhao (2023)]
Require: data xi ∈ S, a budget b, and the trade-off hyper-parameter α

1: Initialize Sb = ∅
2: for t = 1 to b do
3: u = arg maxxi∈S\Sb

(1 − α) · DF L(Sb ∪ {xi}) + α · GPTScorei

4: Sb = Sb ∪ {u}
5: end for
6: return Sb

heuristic criterion (i.e., Repr Filter). Specifically, it considers that for each chosen datapoint in Sb, its
kNN1

i (Eq. 30) should be above a certain threshold τ so that the overall diversity DkNN (Sb) (Eq. 32) can be
improved. As shown in Alg. 6, the quality and complexity of each sample xi are respectively measured by
the trained complexity scoring model θC and the quality scoring model θQ with prompts pC and pQ. Then,
samples with high GCQ are prioritized but only those dissimilar ones can be kept for the diversity of Sb.

Algorithm 6 DEITA Sampling [Liu et al. (2023b)]
Require: data xi ∈ S and a budget b

1: Compute the combined complexity and quality score GCQ(xi) = G(xi, pC |θC) · G(xi, pQ|θQ)
2: u = arg maxxi∈S GCQ(xi|θ)
3: Initialize Sb = {u}
4: S = S\{u}
5: while |Sb| < b do
6: u = arg maxxi∈S GCQ(xi|θ)
7: if d(g(u), g(N0(u)) > τ, N0(u) ∈ Sb then
8: Sb = Sb ∪ {u}
9: end if

10: S = S\{u}
11: end while
12: return Sb

Another series of geometry-based methods focus on the organization of data structures via developing
clustering-based sampling techniques [Citovsky et al. (2021); Tirumala et al. (2024); Axiotis et al. (2024);
Shao et al. (2024); Alcoforado et al. (2024); Saranathan et al.]. With respect to the clustering criterion,
traditional methods employ topic modeling with LDA [Blei et al. (2003); Raghuveer et al. (2012); Bui et al.
(2017)], NMF [Lee & Seung (2000); Wang & Zhang (2012); Shen & Si (2010); Lazar & Doncescu (2009)],
TF-IDF [Sparck Jones (1972); Bafna et al. (2016); Patil & Atique (2013); Roul et al. (2014)], and latent
concepts [Xie et al. (2021)] to assign text corpus into thematic clusters. Most recent studies exploit sentence
encoding methods [Reimers & Gurevych (2019); Feng et al. (2020)] to perform clustering in the embedding
space, where the vanilla k-means clustering and its variants [Sinaga & Yang (2020); Kanungo et al. (2000);
Bandyapadhyay & Varadarajan (2015)], DBSCAN [Deng (2020); Khan et al. (2014); Creţulescu et al. (2019)],
and spectral clustering [Bach & Jordan (2003); Von Luxburg (2007); Jia et al. (2014)] are widely used.
Specifically, [Tirumala et al. (2024)] propose to use SemDeDup [Abbas et al. (2023)] to remove semantically
similar examples for deduplication, which provides a basis of diversity sampling. Then, k-means clustering is
performed in the embedding space. In each cluster, the prototype-based sampling technique [Sorscher et al.
(2022)] is used. The "prototypical" samples, whose distance to their assigned cluster centers are small, should
be discarded first to allow more "outliers" to be kept in Sb during iterative sampling (see Alg. 7). It is noted
that two times of clustering operations are conducted, where the semantic deduplication and prototype-based
sampling are respectively performed on K1 and K2 clusters.

[Axiotis et al. (2024)] propose a k-means cluster-based sensitivity sampling technique. For each datapoint in
a cluster, both its distance to the cluster center and a proxy evaluation loss [Feldman & Langberg (2011)]
measured on that cluster center contribute proportional to the probability of being chosen. [Shao et al. (2024)]
propose the balanced ClusterClip sampling. It first performs k-means clustering and then sample datapoints
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Algorithm 7 D4 Sampling [Liu et al. (2023b)]
Require: data xi ∈ S, a budget b, the number of clusters for SemDeDup K1 and the number of clusters for

prototypicality K2
1: Initialize Sd = ∅, Sb = ∅
2: arg minC

∑K1
j=1

∑
xi∈Cj⊂S ∥ g(xi)

∥g(xi)∥ − µj∥2,

µj = 1
|Cj |

∑
xi∈Cj

g(xi)
∥g(xi)∥ .

3: for j = 1 to K1 do
4: Cv

j = ∅
5: while |Cv

j | < |Cj | do
6: u = arg minxi∈Cj\Cv

j
sim(g(xi), µj)

7: if maxxi∈Cj
sim(g(u), g(xi)) < τ then

8: Sd = Sd ∪ {u}
9: end if

10: Cv
j = Cv

j ∪ {u}
11: end while
12: end for
13: arg minC

∑K2
j=1

∑
xi∈Cj⊂Sd

∥ g(xi)
∥g(xi)∥ − µj∥2,

µj = 1
|Cj |

∑
xi∈Cj

g(xi)
∥g(xi)∥ .

14: for j = 1 to K2 do
15: Sj

b = {xi|F̂d(d(xi, µj) > b
K2

, xi ∈ Cj}
16: Sb = Sb ∪ Sj

b

17: end for
18: return Sb

uniformly from each cluster. Different from the uniform sampling, the proposed ClusterClip puts constraints
on the maximum number of each cluster being sampled, and therefore avoids overfitting of small clusters.

[Alcoforado et al. (2024)] comprehensively compare different geometry-based diversity sampling techniques
such as similarity or distance-based greedy sampling and clustering-based sampling. It proposes three
approaches to select subsets Sb for human annotation: 1) reverse semantic search, 2) ordered clustering, and
3) limited lexical similarity. For the reverse semantic search, two datapoints (xi, xj) that share the least
semantic similarity are first sampled as S0

b and then iterative selection of the next most dissimilar element
from S is added into S0

b . Its implementation is quite similar to the k-center greedy algorithm (see Alg. 2)
except for the initialization of S0

b . For the limited lexical similarity approach, the first sample x0 is chosen
randomly for initialization of S0

b . For the remaining b − 1 quota, each sample xi is also randomly chosen from
S\Sb as long as sim(xi, xi−1) ≤ τ , where sim(·, ·) here denotes the lexical similarity such as BLEU [Papineni
et al. (2002)] and ROUGE scores [Lin (2004)]. The ordered clustering applies a hierarchical and density-based
clustering algorithm like HDBSCAN [Campello et al. (2013)] on all samples and sequentially (i.e., from
large to small clusters) choose the samples of the lowest membership in each cluster into the subset Sb.
Experimental results show that the reverse semantic search performs most consistently and competitively,
while the limited lexical similarity is sensitive to the hyper-parameter threshold τ . The ordered clustering is
not robust across datasets and fails to select high-quality samples.

Remark Geometry-based sampling is intuitive and effective in diversity control. Most solutions to optimizing
the overall diversity can be reformulated as variants of an iterative, similarity or distance-based, greedy
sampling technique. Clustering does play an explanatory role in deciphering the embedding structures,
making it easier and preciser to control the proportion of selection.

4.4 Bilevel Optimization-based Coreset Sampling

Overview The selection of coreset can also be viewede as a bilevel optimization problem [Colson et al.
(2007); Zhang (2024); Sinha et al. (2017); Borsos et al. (2020); Killamsetty et al. (2021b;c); Zhang et al. (2022);
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Borsos et al. (2024); Pan et al. (2024)] that consists of two loops: 1) the outer loop of optimizing the hard
masks or soft weights for selecting the subset Sb from S; 2) the inner loop of optimizing the model parameters
θ on Sb. Without lose of generalizability, the bilevel optimization with the self-supervised language modeling
loss can be written as follows:

Sb = arg min
S

′
b
⊂S

∑
xi∈S

′
b
,θ=θ∗

NLL
A|Q
i ,

s.t. θ∗ = arg min
θ

∑
xi∈S

′
b

NLL
A|Q
i .

(45)

Technical Details The retrieve method proposed by [Killamsetty et al. (2021c)] takes both labeled
and unlabeled datasets into consideration, where the self-supervised loss from the unlabeled set (e.g.,
consistency regularization [Xie et al. (2020); Wang et al. (2021c)] and entropy regularization [Zhao et al.
(2020b); Grandvalet & Bengio (2004); Erkan & Altun (2010)]) contributes to the inter-level and outer-level
optimization as well. To improve the robustness, Glister [Killamsetty et al. (2021b)] optimizes the outer-level
coreset selection on the additionally prepared validation set for the minimized validation loss. [Li et al.
(2023e)] further emphasize the role of the validation set in bilevel optimization. It not only computes the
loss on the validation set for adversarial training, but also introduces gradient matching [Killamsetty et al.
(2021a)] where the gradient of the model on the selected subset Sb should be close to that on the entire S.

[Borsos et al. (2024)] reformulate the coreset sampling as a cardinality-constrained bilevel optimization
problem. It proposes greedy forward selection and first-order methods that apply to any twice differentiable
models. Variants of the solution for acceleration are extended: 1) binary weights, inverse-hessian-vector
product approximations, and batch-wise selection; 2) small proxy models for fast estimation; 3) enforced
sparsity-inducing penalty in the outer loop.

The ScaleBiO [Pan et al. (2024)] specifically address the data reweighting problem for large-scale LLM
instruction tuning. It also prepares an extra validation set Sval for the minimization of the outer loop.
ScaleBio transforms the bilevel optimization into the single loop framework with an outer-level problem plus a
constraint of the inner-level problem. A multiplier α > 0 and a proxy u for optimizing the original inner loop
(i.e., model weights θ) are introduced into the minimax formulation [Kwon et al. (2023); Lu & Mei (2024)].

In contrast to a fixed budget b, [Xia et al. (2024b)] propose a lexicographic bilevel-optimization method [Borsos
et al. (2020); Killamsetty et al. (2021b;c)] where the inner loop optimizes model parameters and the outer
loop optimizes data selection. During optimization of the data selection mask, the loss terms are relaxed to
allow the size of the final coreset smaller than b.

Remark The bilevel optimization methods often involve regularization tricks as a relaxation to the original
problem with nested outer-inner loops. Compared with the boolean selection, soft weights-based objective
guarantees a higher level of diversity as each sample contributes more or less to the overall optimization.

5 Importance-based Selection

This section provides the review of methods on importance measurement and selection. By importance we
mean the necessity of adding one instruction-response sample into the training set. Due to the pre-training
nature of LLMs, a wide range of materials have been "parameterized" as internal knowledge and therefore
several common tasks can be correctly solved without additional fine-tuning. In this case, alignment is not
required for easy samples but becomes indispensable for difficult ones. The selected datapoints provide
supplementary knowledge to activate the pre-trained LLMs on following complex instructions. Generally, the
evaluation function q(xi) in the context of importance can be alternatively implemented as: 1) the complexity
of the datapoint itself qC that can be perceived by the task definition and the model’s uncertainty, 2) the
contribution of each datapoint to the overall performance qP that can be reflected in the losses and errors
during learning, and 3) the degree of gradient matching qG that indicates influential datapoints for effective
selection. Consequently, we can unify the importance-based measurements as:

q(xi) = fi(qC(xi), qP (xi), qG(xi)), (46)
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where fi denotes the aggregation function. It is noted that most existing methods simply choose one of the
above evaluation implementations and therefore fi can be designed as an exclusive choice function.

5.1 Hand-crafted Indicators

Overview Existing researches on importance measurement of datapoints often stem from two aspects:
1) from the perspective of a datapoint itself, i.e., the difficulty or complexity of each datapoint and the
amount of information it provides; 2) from the perspective of the model under development, i.e., the necessity
of learning from such a datapoint based on the current performance and confidence (uncertainty), Most
hand-crafted indicators are proposed to analyze the text difficulty.

Technical Details The readability indices [Young & Shishido (2023)] can be used to assess both quality (see
Sec. §3.1) and difficulty of text samples. Specifically, samples with intricate grammar, advanced vocabulary,
and inference dependency are deemed as difficult ones and can be used to evaluate robustness of models
across benchmarks of various difficulty levels [Smith & Johnson (2020); Kiela et al. (2021); Ethayarajh et al.
(2022); Belinkov & Glass (2019); Nie et al. (2019); Ribeiro et al. (2020)]. For specialized domains such as
solving maths problems, the education level (e.g., elementary-level, high school-level, and university-level)
determines the difficulty of samples [Patel et al. (2021); Huang et al. (2016); Koncel-Kedziorski et al. (2016)].

One of the pioneering studies on readability scores for difficulty assessment is to compute the percentage of
difficult or easy words in one sentence [Klare (1974); Begeny & Greene (2014)]. The words on a pre-defined
list are counted as familiar words, and those not listed are unfamiliar, advanced words. Besides, the average
number of syllables per word, the number of single-syllable words, and the number of multi-syllable words
are also indicative in assessing the text materials [Connatser (1999); Carrell (1987); Zakaluk & Samuels
(1988); Dale & Chall (1949)]. Notably, there exist three representative readability metrics: 1) the Dale
Chall formula [Chall & Dale (1995)], 2) the flesch reading ease [Flesch (1948)], and 3) the gunning fog
index [Gunning (1952)]. Given these metrics, [Saranathan et al.] conduct a thorough analysis on existing NLP
datasets S to select the most challenging subsets for efficient evaluation of LLMs. The easiest and hardest
samples from the TruthfulQA [Lin et al. (2021)] via these indicators are confirmed positively correlated with
the actual complexity. The selection of difficult instruction-response pairs via Eq. 8 allows a wider distribution
of performance for the models under investigation. The introduction of difficult datapoints into the subset Sb

helps keep the relative rank of different models unchanged compared with that measured on the entire set S.

Remark The difficulty indices help comprehensively analyze the robustness of models across samples and
datasets. In addition, it also presents guidelines of curating and constructing discriminating NLP benchmarks.

5.2 Model-based Indicators

Overview To avoid potential confusion, the model-based importance indicators discussed in this section
are mainly categorized as three kinds: 1) uncertainty-based; 2) reward score-based; and 3) data model-based.
Methods that employ training/inference losses, errors (metrics), and gradients are not included despite their
involvement of the language model for importance sampling.

Technical Details Inspired from uncertainty indicators, [Siddhant & Lipton (2018); Kung et al. (2023);
Nieth et al. (2024)] propose the prompt uncertainty which measures the disagreement between model responses
on different perturbed versions of the same instruction:

Uprompt
i = − 1

K

K∑
k=1

|xi|∑
j=t

|P (xi(j)|xi(<j); θ)−

P (xi(j)|x̃k
i(<j); θ)|,

(47)

where K denotes the number of perturbations and x̃k
i is the k-th perturbed prompt. Note that only the

instruction part xi(<t) is perturbed and sent to the model for the following likelihood measurement on the
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original response xi(j), j = t, t + 1, ..., |xi|. Samples with high prompt uncertainty should be chosen for
fine-tuning since the model does not perform consistently on such instructions.

[Jiang et al. (2023b)] target at the over-confidence problem of LLMs after instruction tuning [Kadavath et al.
(2022)], and propose the CAPE to calibrate the uncertainty with augmented prompt ensembles. They first
transform all discriminative and generative tasks into multiple-choice problems, and use the LLM’s predicted
probabilities over answer choices (e.g., A, B, C) for uncertainty estimation. Then, prompt augmentations are
performed via paraphrasing of the template, permutation of the in-context examples and the answer choices.
Multiple predictions over the answer choices are collected with the augmented prompts as inputs, which helps
calibrate the uncertainty in an ensemble manner. Such calibrated uncertainty tells if an instruction-tuned
LLM simply memorizes the response to a given prompt rather than truly understanding the instruction.
Therefore, it can be used to precisely choose important datapoints with high uncertainty.

Apart from the uncertainty, the reward model can also be used beyond quality scorer. Since most of the
knowledge and capabilities are acquired during pre-training [Zhou et al. (2024a)], the instruction tuning
datasets are aimed at aligning the behavior of models with human preference and expectations. Therefore,
for any given instruction xi, if the generated response is of high quality, then the necessity of fine-tuning on
this instruction is low. Accordingly, xi is deemed as "unimportant" and will not be chosen into the subset.
In that case, the language model parameterized as θ is first prompted with xi(<t) to generate the response
x̂θ

i(≥t). Then, a reward model parameterized as ϕ acts as a necessity evaluation model:

R̂i = rϕ(xi(<t), x̂θ
i(≥t)), (48)

Samples whose necessity score R̂i below a pre-determined threshold are selected via Eq. 7, implying that the
model θ does not own the capabilities to handle xi and requires fine-tuning.

Another series of model-based importance estimation methods are based on datamodels [Ilyas et al. (2022);
Park et al. (2023); Jain et al. (2023); Kang et al. (2024); Chhabra et al. (2024); Saunshi et al. (2022); Ye et al.
(2024)], where the contribution of each datapoint to the model’s behavior is estimated. The datamodels can
be implemented in any machine learning model which targets at predicting the influence of each datapoint on
the performance of the trained model [Koh & Liang (2017); Jain et al. (2022); Liu et al. (2024b); Picard et al.
(2024); Bae et al. (2024); Covert et al. (2024)].

[Engstrom et al. (2024)] propose to use datamodels to select subsets that maximize the overall performance.
Specifically, it chooses the subset Sb ⊂ S, S = {x1, x2, ..., x|S|} by estimating the loss of the model trained on
it. Out of simplicity, the datamodel τθx

can be implemented as a linear model and it learns to approximate
the actual loss via the TARK estimator [Park et al. (2023)]:

θxj
= arg min

θ
Ê

(m)
Si∼Sb⊂S [Lreg(τθ(1Si

)), Lxj
(Si)],

1Sb
∈ {0, 1}|S|, (1Sb

)i =
{

1, if xi ∈ Sb,

0, otherwise.
,

τθx
(1Sb

) = θT
x 1Sb

,

(49)

where Lxj (Si) denotes the loss of the model (trained on Si) on the sample xj . The Ê(m) is a m-sample
empirical expectation and Lreg(·, ·) is a regression loss function (e.g., mean squared error). Intuitively, what
the datamodel τθx

does is to approximate the real loss Lxj
(Si) under various compositions of subsets Si ∼ Sb.

Given any subset S
′

b, the averaged loss approximated by the datamodel on all xj ∈ Seval is calculated on the
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evaluation set Seval and minimized to find the optimal Sb, |Sb| = b:

Sb = arg min
S

′
b
⊂S

L̂Seval
(S

′

b),

L̂Seval
(S

′

b) = Ê
(n)
xj∼Seval

[τθxj
(1S

′
b
)]

= 1
|Seval|

∑
xj∈Seval

θT
xj
1S∗

b

= 1
T
S∗

b
( 1
|Seval|

∑
xj∈Seval

θxj ).

(50)

The importance of xi ∈ S is therefore measured by 1
|Seval|

∑
xj∈Seval

θxj
and its smallest b elements are chosen

for the minimum loss L̂Seval
.

[Liu et al. (2024b)] also propose a simulation-based [Guu et al. (2023)] linear datamodel that correlates the
training samples with the validation or test set loss. A featured simulator, namely GPTfluence, models the
training dynamics (e.g., loss, BLEU and ROUGE scores) across time via an n-th order Markov process. It
extracts representations g(xi), xi ∈ S from BERT or GPT, and generates both multiplicative and additive
factors to reflect the influence of any training example on the testing set. The testing performance ϕt at any
time t is affected by: 1) its performance at preceding n times and 2) the current training batch ct:

ϕt(xk) =
n∑

j=1
αj(ct)ϕt−j(xk) + β(ct), ∀xk ∈ Seval,

αj(ct) =
|ct|∑
i=1

Ai,j , β(ct) =
|ct|∑
i=1

Bi, ∀xi ∈ ct ⊂ S,

Aij = ⟨WT
(j)g(xi)j , UT

(j)g(xk)⟩F ,

Bi = ⟨W′T g(xi)j , U′g(xk)⟩F ,

(51)

where WT
(j), UT

(j), W′, U′ are learnable weights which are optimized by minimizing
∑T

t=1(yt − ϕt(xk))2 with
yt being the ground-truth metric score monitored during training at step t. The ⟨·, ·⟩F denotes the Frobenius
inner product. Samples that reduce the evaluation loss the most are selected as influential data.

Instead of performing off-line selection, [Yu et al. (2024)] propose MATES where a small datamodel continuously
selects the most effective subset for the current training of the LLM. The datamodel, like a partner, is updated
alternatively to adapt to the constantly changing preferences of the model under development.

Unlike previous datamodels that predict the influence of datapoints via the testing performance of the model,
[Xie et al. (2023)] propose the DSIR with importance scores estimated by the distributional resemblance. It
simply assumes that training samples that resemble the evaluation set are important, and these datapoints
should be selected with higher probability. Given the hashed n-grams features h(xi) ∈ Nm of xi, its importance
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score wi is calculated as:
wi = ŵi∑|S|

i=1 ŵi

,

ŵi = p̂feat(h(xi))
q̂feat(h(xi))

,

p̂feat(h(xi)) =
m∏

j=1
γ

h(xi)j

j ,

q̂feat(h(xi)) =
m∏

j=1
β

h(xi)j

j ,

γ̂ = 1∑
xi∈Seval

1T h(xi)
∑

xj∈Seval

h(xj),

β̂ = 1∑
xi∈S 1T h(xi)

∑
xj∈S

h(xj),

(52)

where S and Seval respectively denote the training set and the evaluation set. Given the budget b, the
subset Sb is obtained by importance-weighted sampling without replacement b times. [Zhang et al. (2023c)]
also proposes to use a independent-cascade diffusion model [Li et al. (2018); Du et al. (2014)] to mimic
the information diffusion process upon a directed graph on embeddings of datapoints. The most influential
datapoint are selected for annotation and serve as in-context learning examples for LLMs.

Remark Compared with uncertainty and reward score, datamodel-based importance indicators are more
correlated with the downstream performance since the task-specific evaluation set is introduced to provide
feedback on the selection scheme.

5.3 Loss and Error-based Coreset Sampling

Overview During training, samples that contribute more to the total loss or cause worse performance
are considered more important. In the light of this statement, the influence of each datapoint can also be
measured via the losses and errors for coreset sampling. Compared with the datamodel-based measurement
that estimates individual importance with a specifically designed datamodel, loss and error-based measurement
is performed with the same LLM under development.

Technical Details One kind of methods that record the errors of each sample during training to estimate
importance is forgetting score or forgetting event [Toneva et al. (2018)]. It counts how many times the
forgetting happens with the iteration of training step t. For any given sample xi in a batch B (xi ∈ B ⊂ S),
if the previous accuracy acct−1

i surpasses the current accuracy acct
i (acct

i > acct+1
i ), then the example xi

undergoes a forgetting event. Conversely, a learning event occurs if acct
i < acct+1

i . The number of forgetting
events implies whether the sample is difficult and indispensable for training. An example xi is defined as
unforgettable if it satisfies:

Unforgeti =


1, ∃t∗ < ∞, s.t. acct

i < acct+1
i

and ∀k ≥ t∗, acck
i > acck−1

i ,

0, otherwise.

(53)

The easy samples with Unforgeti = 1 can be simply discarded and the important subset Sb = {xi|Unforgeti =
0, xi ∈ S} is selected for training. Recent studies on both pre-training and instruction tuning have investigated
the effectiveness of using the forgetting score for efficient data pruning [Sorscher et al. (2022); Paul et al.
(2021); Zhang et al. (2023a); Jin & Ren (2024a); Maini et al. (2022)].

In contrast to the term "forgetting", researchers introduce the concept "memorization" [Feldman (2020);
Tirumala et al. (2022); Antoniades et al. (2024)] for analysis on the generalization of deep models [Zhang
et al. (2021)]. The memorization of training samples is necessary for reducing close-to-optimal generalization
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error especially when a long-tailed disttribution is observed for the training set [Feldman (2020)]. Specifically,
the amount of label memorization on the instruction-response pair (xi(<t), xi(≥t)) is defined as follows:

Memoi = 1
|xi| − t

|xi|∑
j=t

(P (xi(j)|xi(<j); θS)−

P (xi(j)|xi(<j); θS\xi)),

(54)

where θS and θS\xi respectively refer to the language model parameters optimized with the entire set with
and without xi. Accordingly, the influence of the sample xi on other samples xk, xk ̸= xi can be defined
as [Feldman & Zhang (2020)]:

Inflik = 1
|xk| − t

|xk|∑
j=t

(P (xk(j)|xk(<j); θS)−

P (xk(j)|xk(<j); θS\xi)),

(55)

where xk(<t) and xk(≥t)) respectively denote the instruction and response part of xk. In practice, the
memorization and influence scores are approximated via batch-wise sampling where N batches B1, B2, ..., BN

are sampled from S with |Bi| = n. For each batch Bi, a language model parameterized as θBi is trained to
compute the memorization and influence scores of each sample xi. It is noted that some batches contain xi

and the others do not. Therefore, the two probability terms in Eqs. 54 and 55 are respectively averaged over
multiple probability outputs of the models trained on batches with and without xi. [Sorscher et al. (2022)]
confirm that memorization scores (Eq. 54) demonstrate stronger performance on pruning the dataset into a
significantly smaller subset Sb than random sampling, EL2N (Eq. 13), and influence scores (Eq. 55). [Suzuki
et al. (2023)] and [Schoch et al. (2023)] also follow [Feldman & Zhang (2020)] to select the high-quality
influential subset for LLM training.

Furthermore, [Chen et al. (2024b)] use the evaluation loss to check whether the current task requires certain
skills or capabilities that can be obtained by learning from the prerequisite tasks. For each task, it selects
the skill-dependent datapoints that reduce evaluation loss. [Mishra & Sachdeva (2020)] propose a rather
simple method that adopts a proxy model (e.g., logistic regression and SVM) to train on the randomly
selected subset Sb and evaluate on the remaining set S\Sb. Such process iterates over multiple times to
ensure that each sample is at least validated once. The probability of each sample being correctly predicted
is used as importance measurement. Likewise, [Lin et al. (2022)] also quantify the average marginal effect
(AME) as influence of xi. It can be viewed as a variant of shapley value [Jia et al. (2019); Ghorbani & Zou
(2019); Schoch et al. (2023); Kwon & Zou (2021)]. Different subsets are randomly sampled to train multiple
submodels and each submodel is evaluated for jointly estimating the AME via LASSO regression [Lecué &
Mendelson (2018)].

Remark The loss and error-based selection methods are intuitive and effective to select the datapoints
with high difficulty and influence. To accelerate the computation of marginal effect (gain) of each datapoint,
iterative approximations can be adopted with small proxy models.

5.4 Gradient-based Coreset Sampling

Overview Since gradients directly affect the optimization of language models, two kinds of intuitive
methods for data selection are presented: 1) gradient matching [Zhao et al. (2020a); Killamsetty et al. (2021a);
Jiang et al. (2023d); Zhao & Bilen (2023); Du et al. (2024); Balles et al. (2022); Zhang et al. (2024a)], i.e.,
the gradients of the entire set S being approximated by the weighted gradients of the subset Sb, and 2)
gradient-based influence [Pruthi et al. (2020); Brophy et al. (2023); Koh & Liang (2017); Basu et al. (2020);
Picard et al. (2024); Alaa & Van Der Schaar (2020)], i.e., the influence of each sample xi on a testing
datapoint xt being measured by upweighted gradient multiplication. Specifically, the gradient matching aims
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to minimize the difference below:

θ∗, S∗
b = arg min

θ,S
d( 1

|S|
∑

xi∈S

∇θNLL
A|Q
i ,

1∑
i wi

∑
xi∈Sb

wi∇θNLL
A|Q
i ), Sb ∈ S, wi > 0,

(56)

where d(·, ·) denotes the distance measurement and wi is the weight for the gradient of xi.

The gradient-based influence methods, on the other hand, aim at selecting the most influential datapoints in
terms of the variation of model parameters θ. Given the optimal parameters θ∗, the updated parameters
θϵ

{xi} by up-weighting the loss of xi with ϵ can be derived as the first-order Taylor series expansion as follows:

θϵ
xi

= arg min
θ

1
|S|

∑
xj∈S

NLL
A|Q
j + ϵNLL

A|Q
i ,

θϵ
xi

≈ θ∗ − ϵH−1
θ∗ ∇θNLL

A|Q
i ,

(57)

where Hθ∗ represents the Hessian with respect to the model parameters θ∗. Accordingly, the influence function
of a sample xi on the model parameters and its effect on the performance of a particular sample xj can be
respectively denoted as:

InflFi =
dθϵ

xi

dϵ
|ϵ=0 = −H−1

θ∗ ∇θNLL
A|Q
i ,

InflFij = −∇θNLL
A|Q
j

T
H−1

θ∗ ∇θNLL
A|Q
i .

(58)

The importance indicator InflFij approximately measures the change of the loss on xj when xi is removed
from the training set. To expedite the computation of Hessian matrix for large models, a combination of
Hessian-vector product and optimization techniques are developed [Pearlmutter (1994); Nilsen et al. (2019);
Mathieu & LeCun (2014); Agarwal et al. (2016); Shewchuk et al. (1994)].

Another kind of influence score is defined as the expected gradient norm (GraNd score) [Paul et al. (2021);
Kirsch (2023); Böther et al. (2023)], where the GraNd score controls the contribution of a training sample to
the change of the loss.

GraNdi = Eθ∥∇θNLL
A|Q
i ∥2 (59)

Experiments [Paul et al. (2021)] suggest that the GraNd score (Eq. 59) can be well approximated by EL2N
score (Eq. 13) for efficient data pruning.

Technical Details [Xia et al. (2024a)] propose to find the most influential training data that resemble the
testing set the most via low-rank gradient similarity search. [Tan et al. (2024a)] introduce the moving-one-
sample-out (MoSo) by pinpointing the least informative samples via gradient-based influence assessment. To
avoid the costly retraining procedure by iteratively moving one sample out, a gradient-based approximator is
proposed to select samples whose gradients are consistently aligned with the average gradients of the entire
training set.

For the detailed definition of distance measure of Eq. 56, [Everaert & Potts (2023)] exploit the KL-divergence
to measure the difference between the selected subset and the testing set. Note that here the objective
is to approach the distribution of the testing set rather than the entire training set. [Killamsetty et al.
(2021a)] speed up the gradient matching between the selected dataset and the validation set via an orthogonal
matching pursuit algorithm. [Lin et al. (2024)] apply gradient-based influence scores on recommendation
datasets for effective LLM instruction tuning. [Schioppa et al. (2021)] choose a different way [Arnoldi (1951)]
to accelerate the computation of the inverse Hessian matrix in Eq. 57 and successfully scales up the influence
scoring for LLMs with several hundreds of millions of parameters. [Grosse et al. (2023)] use the influence
functions to study the generalization properties of LLMs To scale up influence functions for LLMs up to 52
billions, an approximation technique via Eigenvalue-corrected Kronecker-Factored Approximate Curvature
(EK-FAC) [George et al. (2021)] to efficiently find the most influential samples to the pre-trained LLMs over

28



Under review as submission to TMLR

Table 1: Statistics of datasets in existing representative data assessment and selection methods.
Methods Quality Diversity Importance Training Set Training Set Size

IFD [Li et al. (2023a)] ! % %
Alpaca 52K

WizardLM 70K

LIFT [Xu et al. (2023b)] ! ! %
Open-Platypus 25K

CodeAlpaca 20K

DQ [Zhou et al. (2023)] % ! % Alpaca 52K

PPL [Ankner et al. (2024)] ! % %
The Pile NA

Dolma NA

InstructionMining [Cao et al. (2023)] ! % %
OpenOrca 50K

Dolly 15K

FL [Bhatt et al. (2024)] ! ! % FLAN v2 99K

Alpagasus [Chen et al. (2023b)] ! % % Alpaca 52K

BSDetector [Chen & Mueller (2024)] ! % %
SQuAD-N NA
Emails-N NA
DROP-N NA

DEITA [Liu et al. (2023b)] ! ! % Mixed(ShareGPT+UltraChat+WizardLM) 206K

AutoDS [Zhang et al. (2024c)] ! % % OpenWebMath NA

Qurator [Wettig et al. (2024)] ! % % QuRatedPajama 260B tkn

ClusterClip [Shao et al. (2024)] % ! %
OpenOrca 4.2M

Proof-Pile-2 2.7M

QDIT [Bukharin & Zhao (2023)] ! ! %

UltraChat 1.3M
LMSYS 1M
Alpaca 52K

Mixed (Alpaca+OIG+Dolly) 270K
Dolly 15K

DsDm [Engstrom et al. (2024)] % % ! C4 NA

MATES [Yu et al. (2024)] % % ! C4 NA

DSIR [Xie et al. (2023)] % % ! The Pile 1.6B

Skill-it [Chen et al. (2024b)] % % ! RedPajama 1.2T tokens

LESS [Xia et al. (2024a)] % % ! Mixed(FLAN v2+Dolly+OpenAssistant+COT) 270K

maths and programming abilities, cross-lingual generalization, and role-playing behavior. [Zhao et al. (2021)]
condense the datasets into small informative synthetic samples where the gradients of the model on the
synthetic data are matching those on the real data of the entire training set.

Remark The gradient-based coreset sampling techniques are highly dependent on the LLMs under develop-
ment, where the gradients describe the model’s inherent knowledge and uncertainty about each datapoint.
Despite the precision of gradient-based selection methods, it is noted that approximation is unavoidable for
application on LLMs. The efficiency and accuracy of various approximation techniques should be considered.

6 Results and Discussions

In this section, we classify different methods according to their respective emphases, and then demonstrate
their effectiveness in the selection of "high-standard" datapoints for instruction tuning. First, we provide
explanations on the classification and selection of recent instruction tuning methods. Then, we summarize
the representative methods with their data statistics in Tab. 1. Finally, we provide the detailed experimental
results of each method respectively under our structures of quality, diversity, and importance.

Criteria on Classification and Selection of Existing Methods For the classification of existing
methods into quality-based, diversity-based, and importance-based categories, we adhere to the following
evidence: 1) the data characteristics emphasized in the motivation of their method development, and 2) the
optimization objectives organized in this survey that are closest to those in their pipelines. For instance, the
concept of diversity is stressed in DEITA [Liu et al. (2023b)] where a similarity-based filtering step is set
to remove highly duplicated datapoints. Therefore, it falls under the category of diversity-based selection
methods. DSIR [Xie et al. (2023)], on the other hand, directly estimates the importance of datapoints
by matching the distribution between the selected subset and the target evaluation set. It is noted that
many existing methods design compound, multi-facet selection criteria that strike a balance between quality,
diversity, and importance. In this case, we choose the most representative methods under each category to
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Table 2: Experimental results of quality-based selection methods are directly cited from their papers. BT
denotes billions of tokens. WK, CR, LU, SPS, and RC respectively stand for compound datasets of World
Knowledge, Commonsense Reasoning, Language Understanding, Symbolic Problem Solving, and Reading
Comprehension.

Methods Training Set Model Ratio/Size Reported Results on Testing Sets

IFD
[Li et al. (2023a)]

ARC HellaSwag MMLU TruthfulQA AlpacaEval

Alpaca LLaMA
7B

Full 0.427 0.769 0.417 0.396 0.265
5% 0.539 0.795 0.365 0.383 0.347

WizardLM Full 0.531 0.774 0.378 0.429 0.620
10% 0.529 0.790 0.331 0.414 0.614

Alpaca

LLaMA2
7B

Full 0.544 0.787 0.470 0.410 0.278
5% 0.558 0.579 0.804 0.442 0.368

10% 0.580 0.804 0.466 0.402 NA
15% 0.564 0.574 0.807 0.464 NA

WizardLM

Full 0.576 0.820 0.541 0.415 0.350
5% 0.624 0.840 0.557 0.428 0.468

10% 0.630 0.839 0.553 0.419 NA
15% 0.624 0.835 0.556 0.434 NA

ARC HellaSwag MMLU TruthfulQA

LIFT
[Xu et al. (2023b)]

Open- Mistral
7B

Random 15K 0.607 0.820 0.625 0.438
Platypus LIFT 15K 0.643 0.844 0.645 0.490

HumanEval MBPP
Code- StarCoder

15B
Random 10K 0.381 0.431

Alpaca LIFT 10K 0.550 0.495
WK CR LU SPS RC

PPL
[Ankner et al. (2024)]

The Pile

MPT
1B

Full 0.155 0.103 0.281 0.035 0.112
Low 50% 0.111 0.058 0.187 0.035 0.087
Mid 50% 0.161 0.090 0.281 0.034 0.109
High 50% 0.182 0.128 0.332 0.034 0.106

Dolma

Full 0.165 0.123 0.289 0.036 0.080
Low 50% 0.161 0.101 0.273 0.345 0.079
Mid 50% 0.180 0.130 0.319 0.034 0.104
High 50% 0.167 0.131 0.311 0.032 0.086

ARC HellaSwag MMLU TruthfulQA

InstructionMining
[Cao et al. (2023)]

OpenOrca
& Dolly

LLaMA2
7B

IM 10K 0.567 0.798 0.499 0.483
IM 40K 0.544 0.801 0.526 0.498

Random 10K 0.548 0.796 0.490 0.516
Random 40K 0.548 0.799 0.512 0.500

MMLU BBH

FL
[Bhatt et al. (2024)] FLAN v2 LLaMA2

7B

Random 20K 0.443 0.390
FL 20K 0.451 0.383

Random 30K 0.449 0.394
FL 30K 0.471 0.411

Random 45K 0.460 0.394
FL 45K 0.476 0.413

BBH DROP HumanEval MMLU

Alpagasus
[Chen et al. (2023b)] Alpaca

LLaMA2
7B

Random 9K 0.319 0.259 0.116 0.369
Full 52K 0.330 0.259 0.117 0.409

Alpagasus 9K 0.338 0.260 0.122 0.388

LLaMA2
13B

Random 9K 0.386 0.334 0.152 0.450
Full 52k 0.387 0.338 0.157 0.479

Alpagasus 9K 0.389 0.344 0.159 0.461
SQuQA-N Emails-N DROP-N

BSDetector
[Chen & Mueller (2024)]

SQuAD-N

LLaMA2
7B

Chat

Full 0.499 NA NA
Auto-filter 0.599 NA NA

Auto-correct 0.714 NA NA

Emails-N
Full NA 0.507 NA

Auto-filter NA 0.497 NA
Auto-correct NA 0.523 NA

DROP-N
Full NA NA 0.447

Auto-filter NA NA 0.474
Auto-correct NA NA 0.505

MATH GSM8K BBH ARC-E ARC-C

AutoDS
[Zhang et al. (2024c)]

Open-
WebMath

Mistral
7B

Random 2.5BT 0.143 0.441 0.565 0.842 0.567
AutoDS 2.5BT 0.161 0.454 0.586 0.842 0.552

LogiQ BoolQ NQ MMLU HellaSwag
Random 2.5BT 0.310 0.838 0.292 0.522 0.622
AutoDS 2.5BT 0.310 0.831 0.291 0.523 0.627

PIQA Winogrande SciQ
Random 2.5BT 0.822 0.802 0.972
AutoDS 2.5BT 0.822 0.800 0.968

Sheared RC CR WK
QuRator QuRated- LLaMA Random 30BT 0.509 0.55 0.149

[Wettig et al. (2024)] Pajama 1.3B Qurator 30BT 0.521 0.555 0.152

30



Under review as submission to TMLR

Table 3: Experimental results of diversity-based selection methods are directly cited from their papers.
Methods Training Set Model Ratio/Size Reported Results on Testing Sets

ARC HellaSwag MMLU TruthfulQA

DEITA
[Liu et al. (2023b)] Mixed

LLaMA-13B Random 10K 0.558 0.800 0.474 0.574
DEITA 10K 0.595 0.820 0.606 0.550

LLaMA2-13B Random 10K 0.615 0.837 0.552 0.448
DEITA 10K 0.589 0.821 0.553 0.546

Mistral-7B Random 10K 0.554 0.792 0.587 0.536
DEITA 6K 0.578 0.803 0.619 0.598

SuperGLUE GSM8k OBQA MT-Bench

ClusterClip
[Shao et al. (2024)]

OpenOrca Mistral-7B
Random 5B tokens 0.621 0.615 0.798 6.600
Uniform 5B tokens 0.630 0.588 0.782 6.750

ClusterClip 0.643 0.587 0.814 6.900
MATH GSM8K MMLU BBH

Proof-Pile-2 LLaMA2-7B
Random 20B tkn 0.065 0.256 0.488 0.418
Uniform 20B tkn 0.076 0.260 0.500 0.429

ClusterClip 0.079 0.248 0.511 0.428
MMLU BBH ARC

QDIT
[Bukharin & Zhao (2023)]

UltraChat

LLaMA-7B

Random 10K 0.321 0.332 0.583
QDIT 10K 0.361 0.321 0.607

LMSYS Random 10K 0.331 0.326 0.602
QDIT 10K 0.373 0.325 0.614

Alpaca Random 3K 0.362 0.303 0.617
QDIT 3K 0.355 0.304 0.620

Mixed Random 10K 0.329 0.309 0.583
QDIT 10K 0.343 0.312 0.607

Dolly Random 1K 0.281 0.273 0.594
QDIT 1K 0.338 0.303 0.598

DROP LAMBADA SciQ

UltraChat Random 10K 0.262 0.698 0.854
QDIT 10K 0.267 0.698 0.868

LMSYS Random 10K 0.251 0.685 0.867
QDIT 10K 0.264 0.693 0.850

Alpaca Random 3K 0.263 0.716 0.870
QDIT 3K 0.270 0.697 0.841

Mixed Random 10K 0.203 0.681 0.841
QDIT 10K 0.260 0.697 0.898

Dolly Random 1K 0.173 0.717 0.807
QDIT 1K 0.226 0.723 0.806

BBH DROP MMLU HumanEval

DQ
[Zhou et al. (2023)] Alpaca LLaMA-7B

Full 0.329 0.263 0.416 0.100
20% 0.327 0.267 0.398 0.092
2% 0.329 0.276 0.366 0.085

highlight their corresponding facets without misinterpreting their mechanisms. Furthermore, we select the
most recent methods that exploit open-sourced LLMs for verifying the effectiveness of their proposed data
selection techniques. Such accessibility to public LLMs avoids the privacy issues and inference costs brought
by requesting API services from close-sourced proprietary models.

Quality The quality of data directly impacts the effectiveness of model training. Quality control measures
include data scoring, quality assessment, and more. In Tab. 2, we have summarized the results of different
methods focusing on data quality. In the table, we list the data used by different methods and the
proportion/size of the data selected. It can be seen that the method of selecting data based on quality can
match the results of training with full data even under the data-poor regime. They are also superior to
the results of randomly selecting a subset from the original dataset. In the table, WK stands for World
Knowledge, CR stands for Commonsense Reasoning, LU stands for Language Understanding, SPS stands for
Symbolic Problem Solving, and RC stands for Reading Comprehension.

Diversity Data engineering enhances the generalization ability of models by improving the diversity of
datasets. Such improved diversity may be implemented via encompassing data from different sources, with
varying features, and of distinct distributions. Researches indicate that it is insufficient to merely select
datasets that are similar to the target data from the downstream tasks. Tab. 3 demonstrates the importance
of diversity in data selection. Compared with random selection and uniform selection, the scheme of selecting
data with diversity criteria is superior. In addition, compared to only selecting high-quality data, the criteria
that combine quality and diversity can achieve better performance than simply selecting high-quality data.

Importance It is non-trivial to accurately identify and utilize datapoints that significantly affect model
performance As shown in Tab. 4, the importance-based data selection approaches often maximize the final
performance by integrating the data selection and model optimization processes. To address the challenges
of potential huge computation overhead brought by the implementation framework, they propose to use
instance-wise data impact and propose efficient parameterization. Moreover, by performing importance
resampling in the feature space that depicts geometric structures, they select examples of both high importance
and similarity to the target distribution, thereby enhancing the performance on the target tasks. Existing
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work has confirmed that the importance sampling-based approach can effectively improve the performance on
the target tasks with enhanced capabilities of LLMs.

Hybrid Selection It is noteworthy that many data selection methods such as LIFT [Xu et al. (2023b)],
FL [Bhatt et al. (2024)], DEITA [Liu et al. (2023b)], and QDIT [Bukharin & Zhao (2023)], attempted to
combine multiple aspects of data assessment into their selection pipelines. Most of them emphasize the overall
assessment of instruction data in that the definitions of "good data" are varied under different scenarios
in the era of LLMs. A unitary measurement would inevitably cause a biased selection of datapoints and
thereafter leads to the degraded performance of LLMs. Technically, existing hybrid selection methods can be
categorized into: 1) parallel setups, and 2) sequential setups. For the former, an operation of maximization
or weighted sum is performed on scores or proxy indicators (i.e., losses and gradients) from multiple aspects
(e.g., quality and diversity) [Xu et al. (2023b); Bhatt et al. (2024); Bukharin & Zhao (2023)]. For the latter, a
sequential setup of quality-, diversity-, or importance-oriented selection techniques is performed step-by-step
for hierarchical, stratified filtering [Liu et al. (2023b)]. Comparatively, the parallel setups allow dynamic
trade-offs between multiple data aspects by adjusting the aggregation operations. The sequential setups, on
the other hand, fail to retrieve the candidates that are filtered out in the preceding quality control steps even
if those candidates are of high importance or variety. Therefore, it would be preferred to develop hybrid
assessment techniques that simultaneously weigh quality, diversity, and importance. Furthermore, we notice
that the importance-based assessment is often overlooked in existing hybrid approaches, implying that the
investigation of integrating importance with quality and diversity is of high potentials for future studies.

Distinctions and Connections The methods that are respectively reported in Tabs. 2, 3, and 4 share
the similar philosophy of data assessment and selection but differ in the detailed implementations.

For the quality-based selection, most of existing methods like IFD [Li et al. (2023a)], PPL [Ankner et al.
(2024)], AutoDS [Zhang et al. (2024c)], and QuRator [Wettig et al. (2024)] mainly use the model-based
indicators to measure the quality of each datapoint. However, their indicators are derived from different
perspectives such as the perplexity of LLMs and the predicted quality score of a regression model. Both the
Alpagasus [Chen et al. (2023b)] and BSDetector [Chen & Mueller (2024)] mainly employ ChatGPT scoring
for quality evaluation. Alpagasus directly prompts GPT to score and filter out datapoints, but BSDetector
considers both the consistency of the generated responses from GPT and the quality of the ground-truth
response. On the other hand, LIFT [Xu et al. (2023b)], InstructionMining [Cao et al. (2023)], and FL [Bhatt
et al. (2024)] develop composite methods that involve hand-crafted or model-based indicators, together with
GPT scoring, for quality verification of the selected datapoints.

For the diversity-based selection, both DEITA [Liu et al. (2023b)] and ClusterClip [Shao et al. (2024)] adopt
the geometry-based measurement where the geometric structure of datapoints is maintained via clustering.
DEITA measures the individual-level relationship between one datapoint and its closest neighbor for sampling
while ClusterClip simply performs the cluster-level uniform sampling with the quantity limit. QDIT [Bukharin
& Zhao (2023)] performs the iterative selection where each step only one most promising datapoint from
the remaining dataset is selected to maximize the overall diversity of the selected subset. Despite the fact
that DQ [Zhou et al. (2023)] also exploits iterative coreset sampling, it first divides the entire dataset into
multiple subset bins and performs sampling across bins for aggregation and deduplication.

For the importance-based selection, DsDm [Engstrom et al. (2024)] and MATES [Yu et al. (2024)] employ
model-based indicators to estimate the influence with datamodels. However, these two methods choose
different implementations of datamodels. DsDm develops a linear model and approximates the loss of each
datapoint via the TARK estimator while MATES directly leverages a small language model to learn to predict
the individual influence of each datapoint. DSIR [Xie et al. (2023)], on the contrary, bypasses the need to
maintain a specific datamodel. Instead, it estimates the importance of each datapoint by comparing the
distributions of the entire selected subset with those of the validation set. Both Skill-it [Chen et al. (2024b)]
and LESS [Xia et al. (2024a)] pinpoint the samples that resemble the most to the target set. Skill-it performs
sampling via minimizing the evaluation loss while LESS utilizes the gradient similarity as a proxy.
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Table 4: Experimental results of importance-based selection methods are directly cited from their papers.
Methods Training Set Model Ratio/Size Reported Results on Testing Set

COPA OBQA PIQA CBT Hellaswag

DsDm
[Engstrom et al. (2024)] C4 Chinchilla-

optimal-1.3B

Random 0.620 0.334 0.689 0.864 0.449
DsDm 0.630 0.312 0.690 0.882 0.423

Winogrande BoolQ COQA ARC-E TriviaQA
Random 0.522 0.549 0.188 0.448 0.037

DsDm 0.511 0.580 0.255 0.476 0.071
SciQ ARC-E ARC-C LogiQA

MATES
[Yu et al. (2024)] C4

Pythia-410M Random 20% 0.641 0.402 0.256 0.247
MATES 20% 0.660 0.418 0.250 0.257

Pythia-1B Random 20% 0.658 0.437 0.256 0.275
MATES 20% 0.673 0.449 0.259 0.287

OBQA BoolQ HellaSwag PIQA Winogrande

Pythia-410M Random 20% 0.294 0.589 0.397 0.671 0.506
MATES 20% 0.308 0.606 0.410 0.687 0.527

Pythia-1B Random 20% 0.318 0.602 0.438 0.689 0.507
MATES 20% 0.322 0.609 0.453 0.695 0.524

MNLI QNLI QQP RTE

DSIR
[Xie et al. (2023)] The Pile RoBERTa-

Base (125M)

Random 51.2M 0.826 0.869 0.896 0.674
DSIR 51.2M 0.831 0.891 0.898 0.751

SST-2 MRPC CoLA STS-B
Random 51.2M 0.901 0.874 0.494 0.886

DSIR 51.2M 0.905 0.877 0.540 0.892
ARC-C ARC-E BoolQ COPA

Skill-it
[Chen et al. (2024b)] RedPajama GPT-Neo-3B

Skill-it 1B 0.346 0.612 0.682 0.820
Uniform 1B 0.354 0.652 0.689 0.810
Skill-it 1B 0.349 0.617 0.686 0.810

Uniform 1B 0.353 0.624 0.677 0.800
Skill-it 1B 0.348 0.620 0.687 0.810

Uniform 1B 0.346 0.625 0.672 0.810
HellaSwag LAMBADA PIQA Winogrande

Skill-it 1B 0.637 0.670 0.750 0.639
Uniform 1B 0.639 0.644 0.748 0.628
Skill-it 1B 0.639 0.667 0.752 0.632

Uniform 1B 0.638 0.659 0.755 0.639
Skill-it 1B 0.639 0.660 0.757 0.631

Uniform 1B 0.640 0.668 0.750 0.634
MMLU TYDIQA BBH

LESS
[Xia et al. (2024a)] Mixed

LLaMA2-7B
Full 0.516 0.540 0.432

Random 5% 0.465 0.527 0.389
LESS 5% 0.502 0.562 0.415

LLaMA2-13B
Full 0.545 0.543 0.508

Random 5% 0.534 0.530 0.470
LESS 5% 0.540 0.546 0.506

Mistral-7B
Full 0.604 0.577 0.530

Random 5% 0.600 0.569 0.545
LESS 5% 0.618 0.603 0.560

7 Future Directions: Challenges and Opportunities

In this section, we present the existing challenges and potential solutions to developing advanced data
assessment and selection methods.

7.1 Benchmarking Instruction-Tuned LLMs

There exists a gap between the effectiveness of data selection and the reported performance on
benchmarks. In existing researches, the ablation studies on the effectiveness of assessment and selection
methods are often carried out by comparing the performance of LLMs fine-tuned with the selected and
the full dataset. However, for coreset sampling methods that use losses and gradients as proxies for data
quality, the downstream performance may not be positively correlated with the selection effectiveness. The
reason behind is that the evaluation loss itself [Yang et al. (2022); Hoffmann et al. (2022); Kaplan et al.
(2020)] is not informative enough for universal estimation of benchmark performance. [AI@Meta (2024)]
demonstrates that the correlation between the negative log-likelihood loss on downstream tasks and the
accuracy metrics should be modeled task-by-task and model-by-model. In the light of this statement, it is
impractical to simply count on losses or gradients to pinpoint the most beneficial data for improving the
downstream performance, let alone methods that try to predict the loss based on various indicators [Cao
et al. (2023)]. Furthermore, even if the metrics are exhaustively computed for the selection of each sample,
the gains brought by one sample might be limited in few tasks. Therefore, to comprehensively reflect the
effectiveness of sample selection, the evaluation of instruction-tuned models should be accompanied by the
specialised evaluation of the selected datapoints. For the former, all sorts of evaluation strategies have been
proposed to precisely evaluate the LLMs [Melis et al. (2017); Chang et al. (2024); Xu et al. (2022); Liang et al.
(2022)]. The multiple-choice QA tasks are not enlightening in judging if the instruction-tuned model truly
understands the problem rather than simply memorizing the answer choices given the instruction context.
For the later, a benchmark for documenting and comparing the statistics of the selected instruction-response
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pairs in terms of quality, diversity, and importance needs to be constructed in the future. It would benefit
the task-wise customized data selection according to the statistical indicators on such a benchmark.

Test set contamination should be considered during instruction data selection. For instruction
tuning on publicly released pre-trained LLMs, it cannot be too careful to check the potential data leakage
where the testing instructions are already modeled during pre-training [Rae et al. (2021); Li et al. (2023b);
Magar & Schwartz (2022); Carlini et al. (2019); Marone & Van Durme (2024); Deng et al. (2023); Cao et al.
(2024); Jiang et al. (2024b); Magar & Schwartz (2022)]. To improve the performance of pre-trained models
on downstream tasks, datapoints (i.e., instruction-like conversations) are already added into the annealing
phase of pre-training [AI@Meta (2024); Bilibili (2024); Yang et al. (2024); Bai et al. (2023)]. Therefore,
potential risks of data contamination are raised for benchmarking the fine-tuned LLMs. To avoid the negative
effect of data leakage on evaluation of the data assessment and selection, it is encouraged to follow [Li et al.
(2023a)] to adopt the pre-trained model for experiencing the datapoints before fine-tuning. If the model
exhibits overfitting behaviors (i.e., accurately generating the instruction part or producing the same answer
choice even with permutation on the choice letters), data contamination is likely to exist and thereafter the
testing set should be replaced. For future studies, it would be more reliable to decouple the evaluation of
data selection and that of fine-tuned LLMs, where the performance consistency between these two evaluation
results can be analyzed to rule out the possibility of contamination.

7.2 Unveiling the Definitions of Good Data

What signifies the most a good datapoint remains an open question. Unfortunately, there exists
no unified criteria on discriminating "good" instructions from "bad" ones. Essentially, the definitions on the
general data "quality" differ from task to task and domain to domain [Evans & Murshudov (2013); Flach
(2012); Albalak et al. (2024)]. Although existing quality measurement methods can be categorized in terms of
quality, diversity, and importance under the present study, they all exhibit more or less ad-hoc properties in
methodology. First, studies on instruction tuning are often targeted at improving the performance of LLMs
on downstream task. No matter whether these tasks are of general-purpose (e.g., common NLP tasks on
leaderboard [Myrzakhan et al. (2024); Wolf et al. (2019)]) or domain-specific applications, such task-orientated
data selection itself is only a "proxy" for exploring the underlying "quality" measurement. Especially for
coreset sampling methods that directly employ the evaluation set or testing set for distribution matching or
importance estimation, instructions that resemble the most to the testing set or bring about performance
gains are judged as "good" data. However, such "good" data cannot be easily transferred to another LLM of
completely different architecture and parameters. Each time the entire pipeline has to be enforced for a novel
task, making it difficult to accumulate universally-acknowledged high-quality data for archiving. Second, each
method has an individual quality evaluation system and very few of them ever tried to justify their design
and interpret the philosophy behind. It is difficult to validate whether certain component of the selection
pipeline can be replaced or removed for better serving a new task-of-interest.

Accordingly, further academic explorations include: 1) to present a more unified, generally applicable
definitions on "good" datapoints in terms of fine-grained aspects, and 2) to improve interpretability and
explanability of the selection pipeline beyond empirical design.

The expected model behavior retrospectively determines the trade-off between quality, diversity,
and importance for data selection. The three aspects we used to categorize data assessment methods are
actually overlapping with each other, where the "boundary" between two measuring dimension is often hard
to explicitly defined. Under such circumstance, the definition of good data can be perceived as the weighted,
biased mixture of quality, diversity, and importance. Existing methods are not flexible in dynamically
adjusting the mixing weights to adapt to different downstream tasks. Instead, their priority order of the
three dimensions is implicitly encoded into the selection of instructions. For instance, [Liu et al. (2023b)]
emphasizes quality and importance equally by first establishing the relative ranking of all samples in both
quality and complexity. The subset is formed by consecutively selecting the top-ranked samples in sequence,
with diversity intervened via ruling out heavily homogenized examples. Such hard-coded, greedy treatment
to quality, diversity, and importance is not applicable to scenarios where the behavior of LLMs is expected to
cater to varied preference.
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In general, the data assessment and selection methods that can adapt to the model requirement under different
application scenarios are yet to be systematically developed. For generation tasks like role playing and
creative writing, the preferred instruction tuning datapoints should be distinct from those for discriminative
tasks like named entity recognition and sentiment analysis.

7.3 Scaling Up Datasets

The optimal scale of the selected subset becomes less explicit with the expansion of datasets.
In the analysis of the disadvantages in exploiting the entire instruction dataset for alignment, putting aside
the issue of long training time, we notice that the performance of fine-tuning the entire dataset might not be
the optimal. There often exists a critical point of the best selection proportion, and such proportion varies
from dataset to dataset. When more instruction datasets from diverse domains and tasks are incorporated,
it becomes more difficult to nail down the best selection proportion for three main reasons. First, a large
proportion of noise exists in the open datasets and few noisy samples can already cause tremendous negative
impact on performance [Song et al. (2022)]. During the pre-processing of instruction dataset, noise can be
unintentionally introduced in instruction preparation (e.g., missing context or system prompt), response
generation (e.g., unverified or mismatched answers), format wrapping (e.g., invalid JSON and unresolved code),
and text augmentation (e.g., synonym replacement and reorder of words). Second, for specialized tasks in
"vertical" domains, the overfitting of specific prompts occurs [Ma et al. (2023)] when the diversity of input
instructions is rather limited. Despite the accuracy and rationality of the instruction-response pairs, LLMs
tend to overfit certain patterns of the input instruction rather than truly comprehend the task. Therefore, the
increase of dataset size instead reduces the generalization of trained LLMs with lower instruction following
capabilities. Third, the forgetting [Zhang & Wu (2024); Jin & Ren (2024b); Wang et al. (2024b)] becomes a
severe problem when more instruction datasets are introduced without setting a proper re-playing schedule
of pre-training or previously visited instruction tuning datapoints [Parmar et al. (2024); Jin et al. (2021);
Ibrahim et al. (2024)]. The skill cultivation of a LLM on any new instruction task heavily relies on its
preceding skills acquired during pre-training or previous fine-tuning. Consequently, the expansion of samples
for high-level skills would "dilute" those for low-level skills and degrade performance.

To sum up, with the dataset scaling up, fine-tuning with the selected subset instead of the entire set becomes
a must-have strategy. To help determine the optimal selection ratio, we suggest the following three guidelines:
1) One may first develop a complex quality measure scheme that uses both indicators and human verification
to estimate the noise percentage of each constituting dataset. Without lose of generality, random sampling
can be performed to accelerate quality measurement. To combat noise, a lower ratio (i.e., smaller Sb) should
be considered for data selection from the noisy S. 2) To combat overfitting, both the diversity of datapoints
within and across datasets should be emphasized. A higher keeping proportion should be established for
datasets with diverse instruction styles, prompt formations, and response patterns, which helps improve the
model’s instruction following capabilities. 3) For continual fine-tuning, datasets that share similar distributions
with pre-training and previous fine-tuning datapoints should be kept to fight against forgetting. The optimal
selection ratio and proportion for each dataset is built upon the meticulous and thorough analysis on each
instruction dataset, and therefore case-by-case adjustment is needed. For future studies, one may investigate
the automation of assessment and selection recipe to minimize the human intervention.

The optimization of a scalable pipeline for data assessment and selection is of urgent need. In
consideration of the cost of building human-labeled and human-verified instruction tuning datasets, methods
that employ powerful LLMs like GPT4 for instruction synthesis [Bradley et al. (2023); Li et al. (2023f); Xu
et al. (2023a); Li et al. (2024a); Zhao et al. (2024a); Dong et al. (2024)] have gained increasing attention. The
synthetic instructions proliferate cost-effectively with fine-grained control of characteristics such as difficulty
and style. Therefore, it is expected to witness a surge of datapoints (e.g., tens or even hundreds millions) in the
short future. In that case, datasets of such quantity pose a significant challenge to the robustness, efficiency,
and precision of the selection methods. Previous studies like DSIM [Xie et al. (2023)] demonstrated that cheap
approximation of features by bag-of-n-grams achieves similar performance but requires much less computing
resources. For future research, one may draw inspiration from the data deduplication and filtering techniques
in handling billions of pre-training tokens. Especially for the measurement of diversity, the computing of
embedding-based pairwise similarity and clustering can be greatly reduced with simplified representations. In
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addition, the hierarchical philosophy [Hmida et al. (2016); Talavera (1999); Cabezas et al. (2023); Ran et al.
(2023)] might be a promising approach to select data from coarse-grained to fine-grained structures. One may
apply the devide-and-conquer strategy to recursively handle each subset of the instruction dataset, limiting
the peak resource consumption under budget.

7.4 Scaling Up LLMs

The cost-efficiency of data assessment and selection diminishes with larger LLMs involved in the
pipeline. The model-based indicators and coreset sampling methods often require the language model itself
to be involved for computation of metrics [Li et al. (2023a)], losses [Chen et al. (2024b)], and gradients [Xia
et al. (2024a)]. With the increase of model sizes, it becomes more and more cumbersome to implement the
entire pipeline for quality measurement and selection. To expedite the process, one important direction for
future study is to develop proper efficient proxy models. Small proxy models have been successfully applied
in accelerated fine-tuning of language models [Hoffmann et al. (2022); Liu et al. (2024a)], filtering datasets
by perplexity [Ankner et al. (2024)], intervention on retrieval-augmented generation [Tan et al. (2024b)],
and performance prediction [Anugraha et al. (2024); Ngu et al. (2024)]. Such proxy models often share the
same architecture design with the LLMs under development but own much less parameters. The scaling
law [Kaplan et al. (2020)] confirms the expected consistent behavior between data quantity and model scale,
providing practical guidelines on the development of such proxy LLMs.

On the other hand, under the context of data evaluation, it calls upon on rethinking of traditional machine
learning techniques such as efficient optimization tricks and dimensionality reduction approaches. For example,
in the assessment of loss-based datapoint influence [Feldman & Zhang (2020)], the exhaustive measurement
on the marginal performance by moving-each-sample-out and model re-training can be simply approximated
by iterative batch-wise sampling tricks with a greedy principle behind. For efficient assessment, PCA [Xu
et al. (2023b)] and random projection [Xia et al. (2024a); Park et al. (2023)] are popular choices for obtaining
low-rank representations of embeddings and gradients, which facilitates not only metric computation but also
storing of datapoints.

The marginal benefits of instruction tuning diminishes with increasing size of LLMs for
knowledge supplement. Recent studies on the effectiveness of instruction tuning in injecting task-specific
or domain-specific knowledge into LLMs [Shi & Lipani (2023); Goyal et al. (2023); Zhang et al. (2024b);
Yıldız et al. (2024)] show that the stand-alone instruction tuning might not be the most appropriate method.
Compared with strategies like continual pre-training [Cossu et al. (2024); Ke (2024); Cossu et al. (2024)] and
instruction modeling [Lou et al. (2024); Cheng et al. (2024); Wang et al. (2022); Xu et al. (2024); Shi et al.
(2024)], instruction tuning counts the response sequences for loss computation without sufficient perception
of instruction context. For specialized domains like medicine, finance, and laws, if the pre-trained LLMs are
in lack of the prerequisite knowledge, the instruction tuning cannot properly activates the parameterized
"memory" for alignment but only causes overfitting of the given prompt. In that case, the benefits of data
selection are limited with poor generalizability.

Another noteworthy phenomenon in data assessment and selection studies is that due to limited budgets
of computing resources, most of the experiments are performed on LLMs of small and moderate size (e.g.,
less than 7B) to validate the effectiveness of the quality measurement and the selection strategy. Small
pre-trained LLMs, by their nature of small parameter size, are more sensitive to the instruction datasets
during fine-tuning or continual learning [Schick & Schütze (2020); Yıldız et al. (2024)]. They exhibit the
most significant rates of both forggeting (old knowledge) and learning (new knowledge). In the light of such
statement, small LLMs tend to sacrifice the task-irrelevant knowledge in return for rapid adaptation towards
novel domains and tasks. The selected datasets by various quality measures can impose immediate effect
on the parameters of small LLMs, but may weaken on those of huge ones. It remains unknown whether
the same quality measurement and data selection pipeline can achieve similar performance gains on both
small and large LLMs. For future research of data assessment and selection, extensive experiments are
required to validate their efficiency on huge LLMs (e.g., 70B and 405B) [AI@Meta (2024)] and LLMs of
mixture-of-experts (MoE) architectures (e.g., Mixtral 8x22B) [Jiang et al. (2024a)].
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In consideration of the pre-training corpus, extremely large LLMs already experienced a vast amount of
multi-lingual, multi-domain web texts during pre-training, and therefore the priority of the dimensions in
data assessment (i.e., quality, diversity, and importance) differs from small LLMs. The association between
the model scale and the data selection criteria is yet to be studied.

7.5 Validating the Bias and Fairness of Instruction-tuned LLMs

As mentioned in the Sec. 1.3, most existing data selection methods fail to specifically study the dataset bias
for consideration of fairness. It is noted that for domain-specific tasks such as solving programming and maths
problems, the data bias might not be that severe. However, for general question-answering, recommendation,
and creative writing tasks, even ChatGPT could produce biased answers that are intolerable in domains like
education [Doan et al. (2024); Zhang et al. (2023b); Chisca et al. (2024); Gao et al. (2024)]. To improve the
fairness of LLMs, it is necessary to take the measurement of data bias into serious consideration. Future
work includes: 1) the integration of embedding-based (e.g., WEAT [Caliskan et al. (2017)], SEAT [May et al.
(2019)]), probability-based (e.g., DisCo [Webster et al. (2020)], CrowS-Pairs Score [Nangia et al. (2020)]), and
generated texts-based (e.g., Co-Occurrence Bias Score [Bordia & Bowman (2019)], Full Gen Bias [Smith et al.
(2022)]) techniques for fairness evaluation of datapoints [Gallegos et al. (2024)], and 2) the construction of
bias and fairness benchmarks [Jiao et al. (2024)] under various domains and tasks as supplementary kits to
the current evaluation pipeline that only focuses on testing the capability of LLMs.

8 Conclusion

In this study, we have thoroughly examined the state-of-the-art data assessment and selection methods for
instruction tuning of LLMs. The present review presents a unified organization and categorizes these methods
in terms of measuring dimensionality: quality, diversity, and importance. In each dimensionality, we outline
the representative strategies in details and describe the factors to consider when selecting data for instruction
tuning. Furthermore, we report the performance of typical data selection methods and provide discussions on
the comparison between these methods. Last but not least, the existing challenges and potential solutions for
future studies are summarized in hope for benefitting the research community.
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