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ABSTRACT

Transformer has become the dominant architecture for sequence modeling, yet a
detailed understanding of how its structural parameters influence expressive power
remains limited. In this work, we study the approximation properties of transform-
ers, with particular emphasis on the role of the number of attention heads. Our
analysis begins with the introduction of a generalized D-retrieval task, which we
prove to be dense in the space of continuous functions, thereby providing the basis
for our theoretical framework. We then establish both upper and lower bounds on
the parameter complexity required for ϵ-approximation. Specifically, we show that
transformers with sufficiently many heads admit efficient approximation, whereas
with too few heads, the number of parameters must scale at least as O(1/ϵcT ), for
some constant c and sequence length T . To the best of our knowledge, this con-
stitutes the first rigorous lower bound of this type in a nonlinear and practically
relevant setting. We further examine the single-head case and demonstrate that
an embedding dimension of order O(T ) allows complete memorization of the in-
put, where approximation is entirely achieved by the feed-forward block. Finally,
we validate our theoretical findings with experiments on both synthetic data and
real-world tasks, illustrating the practical relevance of our results.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has become the foundation of modern sequence
modeling, driving progress in natural language processing (Devlin et al., 2019; Brown et al., 2020),
computer vision (Dosovitskiy et al., 2021), and multi-modal learning (Radford et al., 2021). Its
ability to scale has enabled breakthroughs such as BERT, GPT, and ViT, making it the dominant
paradigm across domains. Despite this remarkable empirical success, the theoretical principles un-
derlying transformer expressivity remain incomplete. In particular, while universal approximation
results establish that transformers can approximate arbitrary sequence-to-sequence mappings (Yun
et al., 2020a; Pérez et al., 2021), much less is known about how their structural hyperparameters
influence approximation efficiency.

Among transformer hyperparameters, the number of attention heads plays a central role. In practice,
large models often adopt head counts such as 32, 64, or 128 (e.g., Devlin et al. (2019); Dosovitskiy
et al. (2021); Touvron et al. (2023); Jiang et al. (2023); Grattafiori et al. (2024) see Table 10 for
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more ), yet this choice is largely heuristic: there is no principled understanding of how many heads
are needed for a given task, nor of the costs incurred when the head count is insufficient. Theoreti-
cal progress on this question has so far been limited. Most existing results focus on upper bounds,
showing that transformers with sufficiently many heads or with extremely large embedding dimen-
sion in the single-head case can achieve universal approximation or good approximation rate, but
offering little insight into the limitations that arise when the head count is insufficient. Moreover,
many analyses rely on strong simplifications—such as restricting to linear embeddings, isolating the
attention block, or linearizing the architecture. While these assumptions make the problem more
tractable, they severely restrict the model’s expressive power and prevent the derivation of rigorous
lower bounds in realistic nonlinear settings.

In this work, we address this gap by analyzing single-layer transformers on sequence-to-vector tasks.
To this end, we introduce a new function class, the generalized D-retrieval tasks, which we design
as a structured but expressive family motivated by retrieval problems. Each coordinate is defined
by z̄i(XT ) = mint∈Si fi(x(t)), i = 1, . . . , D for subsets Si ⊆ [T ], and the overall target takes
the form H(XT ) = F0(z̄1(XT ), . . . , z̄D(XT )). By construction, this class extends retrieval-style
problems while being dense in the space of continuous sequence-to-vector mappings, ensuring that
results obtained in this setting reflect general approximation behavior.

The central challenge arises when the number of heads h is smaller than the intrinsic dimension
D of the target. In this case, multiple coordinates zi(XT ) must be represented by the same head,
creating an information bottleneck: the attention layer maps distinct sequences to nearly indistin-
guishable representations, forcing the feed-forward network to perform the separation. We show that
overcoming this bottleneck requires parameter growth exponential in the sequence length T , namely
O(1/ϵcT ) parameters for ϵ-accuracy, thus establishing the first rigorous lower bounds for transform-
ers in nonlinear settings. In contrast, when h ≥ D, heads can specialize to distinct coordinates zi,
eliminating the bottleneck and enabling efficient approximation.

Our results advance the theoretical understanding of attention by showing, that insufficient head
count provably limits expressivity in realistic regimes. Experiments on both synthetic tasks and
real-world retrieval data confirm that the predicted scaling laws persist in practice.

Contributions. Our main contributions are as follows:

First, we establish the first rigorous lower bounds for transformers in nonlinear settings, showing
that when h < D, parameter complexity grows exponentially with sequence length.

Second, we provide constructive upper bounds, proving that h ≥ D enables efficient approximation
with parameter growth independent of sequence length T .

Third, in the memorization regime, single-head transformers with embedding dimension n ≥ Td
approximate by memorizing sequences, with the complexity residing in the feed-forward block.

2 RELATED WORK

Several works have studied the approximation and expressivity properties of transformers. The uni-
versal approximation property was first established in Yun et al. (2020a), and later extended to trans-
formers with sparse attention matrices in Yun et al. (2020b). The approximation rate of single-layer
transformers with one head was analyzed in Jiang & Li (2024). Amsel et al. (2024) investigated
how the rank of the attention matrix influences expressivity for a specific nearest-neighbor target
can be constructed. They showed that when the rank is insufficient, the number of heads required
for approximation grows exponentially, independent of sequence length. In a related direction,
Bhojanapalli et al. (2020) argued that setting the rank of the attention matrix equal to the sequence
length enhances expressivity. Beyond finite-dimensional settings, Takakura & Suzuki (2023) consid-
ered sequences of infinite dimension, characterizing approximation rates in terms of target function
smoothness. Similarly, Wang et al. (2024) studied special classes of target functions and demon-
strated that approximation error scales polynomially with the number of heads. In addition to these
approximation-theoretic results, several works have investigated broader notions of expressivity.
Dehghani et al. (2019); Pérez et al. (2021) established the Turing completeness of transformers,
and Giannou et al. (2023) showed that transformers can represent arbitrary computer programs in
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a looped setting. Finally, Mahdavi et al. (2023) examined memorization capacity, proving that the
number of samples that can be stored scales linearly with the number of heads.

3 PRELIMINARIES

Input and Output We consider the input space

XT =
{
x(s) ∈ [0, 1]d : s ∈ [T ]

}
, (1)

where [T ] = {1, . . . , T}. We call T the length of the input sequence. The output is a single vector
y ∈ Rl, where l is independent of T and specified by the task.

For example, in a text retrieval task one may take d to be the max number of tokens per candidate,
T the number of candidates, and l the size of the output representation.

Input Representation. Each token is mapped to an E-dimensional vector by a trainable encoder

Pϕ : [0, 1]d × [T ] → RE , (x, s) 7→ Pϕ(x, s),

which jointly incorporates the content x and its position s. Given XT = {x(s)}Ts=1 ∈ XT , the
embedded sequence is

X̂T = { x̂(s) = Pϕ(x(s), s) ∈ RE : s ∈ [T ] }. (2)

This formulation subsumes common designs where Pϕ combines a content embedding with either
learned or deterministic positional encoding.

For example, if Emb(x) is a content embedding map and p(t) a positional code, then common
schemes correspond to

Pϕ(x(t), t) = Emb(x(t)) + p(t) (additive PE),

or
Pϕ(x(t), t) =

(
Emb(x(t)), p(t)

)
(concatenated PE).

Following common practice, we append a trainable classification token ĉ0 ∈ RE to the sequence.
The final input to the transformer is

X̂[T ] = {x̂(1), . . . , x̂(T ), ĉ0} ∈ RE×(T+1), (3)

and the output ŷ is taken from the (T+1)-th position corresponding to ĉ0.

Transformer Hypothesis Class With the input space and embedding defined, we then formulate
the transformer hypothesis space.

We consider a single-layer transformer based on the standard architecture (Vaswani et al., 2017),
with two modifications introduced for analytical simplicity. Firstly, we omit layer normalization
to simplify the analysis, while acknowledging its practical importance, and we conjecture that our
key lower bound (Theorem 2 (2)) still holds when layer normalization is present. Secondly, we
exclude residual connections outside the feed-forward network. In the single-layer sequence-to-
vector setting, where the output is read from a designated classification token, the residual branch
can be merged into the feed-forward transformation by reparameterization, thus these likewise do
not alter the expressive power of the architecture.

For an h-head, single-layer transformer, let n denote the embedding dimension per head and E =
nh the total embedding dimension. The output is

ŷ = Ĥ(X̂[T ]) = F̂
(
ĉ0 +WO Concathi=1

( T∑
t=1

σ
[
(WQ,iĉ0)

⊤WK,ix̂(t)
]
WV,ix̂(t)

))
, (4)

where for each head i, WQ,i,WK,i ∈ Rn×E are the query/key projection matrices, WV,i ∈ Rn×E

is the value projection, WO ∈ RE×E is the output projection applied to the concatenated heads, and
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F̂ : RE → Rl is a feed-forward network which we call it the feed-forward block. The softmax with
scaling factor β is defined by

σ[ρ](t) =
exp
(
β ρ(t)

)∑T
t′=1 exp

(
β ρ(t′)

) , β > 0. (5)

and β > 0 may be chosen arbitrarily large in order to make the softmax attention mechanism
approximate a hardmax.

We denote this family by
H(h, n, d, T,M), (6)

the class of single-layer transformers with h heads, per-head embedding dimension n, input dimen-
sion d, sequence length T , and parameter count M . Each H ∈ H(h, n, d, T,M) is a mapping

H : Rd×T → Rl,

implemented by the encoder Pϕ : [0, 1]d × [T ] → Rnh, concatenation of the classification token
ĉ0, a multi-head attention layer with projections {WQ,i,WK,i,WV,i}hi=1,WO, and a feed-forward
network F̂ : Rnh → Rl. Thus H has the form equation 4, with parameter count k referring to the
weights and biases in FFNs (Pϕ, F̂ ).

Approximation Problem With the hypothesis class specified, we now formalize the approxima-
tion problem, which provides the framework for analyzing the expressive power of transformers.
Definition 1 (ϵ-approximation). Let XT ⊂ Rd×T be a compact domain, and let F : XT → Rl be a
target function. We say that the hypothesis class H(h, n, d, T,M) ϵ-approximates F on XT if there
exists Ĥ ∈ H(h, n, d, T,M) such that

sup
XT∈XT

∥Ĥ(XT )− F (XT )∥∞ < ϵ.

4 GENERALIZED D-RETRIEVAL TASKS

Target functions. To motivate our construction, consider a simple one-dimensional example:
XT = {XT = (x(1), . . . , x(T )) : x(t) ∈ [0, 1] },

with target
H(XT ) = max

1≤t≤T
x(t) + min

1≤t≤T
x(t). (7)

This task requires the model to extract two distinct features from the sequence—the maximum and
the minimum—before combining them. It can thus be viewed as a retrieval problem with two
independent features being aggregated.

This example illustrates the broader idea behind our target class: retrieval-style problems where mul-
tiple salient features must be identified and combined. We now formalize this intuition by defining
the family of generalized D-retrieval tasks.

Mathematical Formulation Formally, for each i = 1, . . . , D, let fi : [0, 1]d → [0, 1] be C2 and
define

z̄i(XT ) = min
t∈Si

fi(x(t)), Si ⊆ [T ], |Si| ≥
1

4
T, (8)

so that z̄(XT ) = (z̄1(XT ), . . . , z̄D(XT )) ∈ [0, 1]D. The target is then
H(XT ) = F0

(
z̄(XT )

)
, (9)

where F0 : [0, 1]D → R is C1. For vector-valued targets H : [0, 1]d×T → Rl defined with the same
functions fi, subsets Si, and an outer map F0 : [0, 1]D → Rl, the extension is applied coordinate-
wise, since each coordinate function of F0 can be approximated independently. Therefore, it suffices
to consider the scalar-valued case. We denote by Fd,T

D the class of all such functions H .

Related sparse sequence-to-sequence retrieval tasks, such as the q-sparse token regression (qSTR)
model of (Mousavi-Hosseini et al., 2025), where each output position depends on at most q relevant
input tokens, can be viewed as sequence-to-sequence analogues of our formulation. Their results on
the sample complexity of single-layer Transformers with at least q heads are complementary to our
approximation-theoretic guarantees in the generalized D-retrieval setting.
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Assumptions on the target class For the theoretical analysis to be tractable we impose the fol-
lowing conditions:
Assumption 1 (Model constraints). The model constraints are as follows:
(1.1) The embedding Pϕ satisfies

∥Pϕ(x(s), s)∥2 ≤ 1, ∀ s ∈ [T ], XT ∈ XT ,

ensuring embedded inputs remain uniformly bounded.
(1.2) The post-attention mapping F̂ is a two-layer feed-forward network with 1-Lipschitz activation,
hence a universal approximator on compact domains.
(1.3) All weights in F̂ and entries of the attention matrices {WQ,i,WK,i,WV,i},WO are bounded
in magnitude by 1, ensuring stability of the model.
Assumption 2 (Target class constraint). The target functions defined in equation 9 satisfy the fol-
lowing:
(2.1) Each fi : [0, 1]

d → [0, 1] attains its unique global minimum zi at a point x(i) ∈ [0, 1]d.
(2.2) The minimizers {x(i)}Di=1 are pairwise distinct.
(2.3) The Hessian ∇2

xfi(x
(i)) is positive definite for all i = 1, . . . , D.

(2.4) The gradient ∇zF0(z1, . . . , zD) has all coordinates strictly nonzero.
Remark. Assumption 2 excludes only degenerate cases while preserving broad generality for both
the functions fi and the outer map F0. More specifically: Assumptions (2.1) and (2.4) ensure that
each fi behaves regularly around its minimizer. A degenerate example excluded by these assump-
tions is fi(x) ≡ c0 for constant c0, which is totally independent of the input; Assumption (2.2)
requires distinct minimizers, which allows partitioning the space into D disjoint basins around each
minimizer x(i). A degenerate example excluded by this assumption is f1 = f2 = · · · = fD; As-
sumption (2.3) enforces sensitivity of the target to small perturbations near the minimizers, ruling
out trivial flat cases (such as F0 ≡ c0 for constant c0) where no meaningful separation can be made.

Having introduced the generalized D-retrieval tasks, it remains to ask whether this family is suffi-
ciently expressive. To address this, we now establish the universality of the target class: the family
is dense in the space of continuous sequence-to-vector mappings.
Theorem 1 (Density of the target class). For fixed d, T , the family {FD}∞D=1 is dense in C(XT ).
That is, for every F ∈ C(XT ) and every ϵ > 0, there exists D and f ∈ FD such that

max
X∈XT

|F (X)− f(X)| ≤ ϵ.

The proof is deferred to Appendix A.1. This density property highlights that our specially designed
target family is not overly restrictive; rather, it forms a sufficiently general class to capture arbitrary
continuous sequence-to-vector mappings. Beyond density, we show that D is indeed the intrinsic
dimension of this target, which means that it is the unique D ≪ T for which the target H can be
represented in the generalized D-retrieval task form.
Corollary 1 (Uniqueness of intrinsic dimension). If task H can be represented by ({fi, Si}D1

i=1, F0)

and ({f̃i, S̃i}D2
i=1, F̃0), satisfying Assumption 1 and 2 with D2

1 +D2
2 ≤ 1

50T , then D1 = D2.

This corollary justifies that D comes from the intrinsic property of the target and is invariant across
its form of representation. The proof is deferred to Appendix A.2

5 APPROXIMATION RATE OF GENERALIZED D-RETRIEVAL TASKS

Theorem 1 establishes that the generalized D-retrieval tasks form a dense family in the space of
continuous sequence-to-vector functions. The next step is to analyze the efficiency with which trans-
formers approximate these functions. To this end, we begin by stating two standard approximation
assumptions regarding how well the fundamental building blocks of the target can be approximated.
Assumption 3 (Approximation of components). We assume the following approximation properties
hold.
(A1) There exist constants C1 > 0 and γ > 0 such that for every δ > 0, the function F0 : [0, 1]D →
R can be δ-approximated by a two-layer feed-forward network Φδ of width at most C1/δ

γ , i.e.,
sup

x∈[0,1]D
|F0(x)− Φδ(x)| ≤ δ.
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(A2) There exist constants C2 > 0 and γ > 0 (possibly different from (A1)) such that for each
i = 1, . . . , D and every δ > 0, the function fi : [0, 1]d → [0, 1] can be δ-approximated by a
two-layer feed-forward network Ψi,δ of width at most C2/δ

γ , i.e.,
sup

x∈[0,1]d
|fi(x)−Ψi,δ(x)| ≤ δ.

These assumptions are reasonable: by the classical result of (Cybenko, 1989), two-layer networks
can approximate continuous functions on compact domains. In particular, if the Barron norm is
finite, one may take γ = 2 (Barron, 1993); even in the worst case, setting γ = max(d,D) yields
approximation rates comparable to uniform grid discretizations, which still suffices for our analysis.

We now present our main theoretical result. It establishes upper and lower bounds on the approxi-
mation rates of transformers within the generalized D-retrieval framework. In particular, the lower
bound in part (2) provides the first rigorous evidence that insufficient head count h < D leads to
exponential parameter complexity, revealing a fundamental expressivity bottleneck.
Theorem 2 (Approximation rates of transformers). Fix d, T . Under Assumption 3, the following
hold for any target H ∈ Fd,T

D :

(1) Sufficient expressivity with D heads. For h = D and embedding dimension n = 2 per
head, there exists a constant Cd,D,T > 0 such that ∀M >

Cd,D,T

ϵγ . the hypothesis class
H(h, n, d, T,M) ϵ-approximates H .

(2) Lower bound with s < D heads. For h = s < D, define

k =
( 14T − s−D + 1)

(n+ 1)s+ 1
− 1,

then
min

{
M : H(h, n, d, T,M) ϵ-approximates H

}
= Ω

(
1
ϵk

)
.

(3) Single-head large embedding dimension. For h = 1 and per-head embedding dimension
n ≥ Td, if the feed-forward block is a 5-layer ReLU neural network, then there exists a
constant Cd,D,T > 0 such that for all M >

Cd,D,T

ϵ1+γ , the hypothesis class H(h, n, d, T,M)
can ϵ-approximate H .

Remark. We clarify the precise role of the assumptions and constants in Theorem 2.
(1)Theorems 2 (1) and 2 (3) require only Assumption 3, while Theorem 2 (2) relies only on As-
sumptions 1 and 2.
(2) The constant in Theorem 2 can be made explicit as Cd,D,T = Cd,D (rT )−αd,DT ,where r > 0

is determined by the local behavior of the functions fi around x(i) and of F0, and αd,D depends
only on d and D. This form is valid in the regime d,D ≪ T ≪ 1/ϵ.
(3) The exponent coefficients in Theorems 2 (1) and 2 (3) differ because, in Theorem 2 (3), the
network F̂ also needs Ω(T/ϵ) parameters to approximate the “max-like” operation. This yields a
bound of the form M ≤ 1

ϵmax(1,γ) , and for notational simplicity we write M ≤ 1/ϵ1+γ .
We provide the detailed proof in Appendix A.2. We also justify the tightness of Theorem 2 (2) in
Appendix A.2.2.

Theorem 2 highlights how approximation efficiency depends on head count: enough heads allow
specialization, too few force inefficient compression, and a single large head can rely on memoriza-
tion. To illustrate these cases concretely, we now revisit the toy example from equation 7 and discuss
how each part of the theorem works in that setting.

Case (1): h ≥ D heads. Theorem 2 (1) shows that when the number of heads matches the intrinsic
dimension D of the target, the transformer can allocate one head per component feature, allowing
each head to specialize and leaving the feed-forward block to aggregate their outputs. This yields
efficient approximation with O(M−1/γ) error for parameter count M , independent of sequence
length T .

In the toy example with D = 2, one head naturally tracks the maximum and the other the minimum,
so the task is solved directly without incurring inefficiency. This illustrates how having “enough
heads” removes the unfavorable scaling in T and explains the practical advantage of multiple heads
beyond universal approximation results (e.g., Kajitsuka & Sato (2023)).

6



Published as a conference paper at ICLR 2026

Case (2): h < D heads. Theorem 2 (2) establishes that when the number of heads is smaller than
the intrinsic dimension D, the parameter count required to achieve a given accuracy can grow expo-
nentially in the sequence length T . This lower bound highlights why insufficient heads lead to severe
inefficiency. Intuitively, each head can be viewed as specializing in one coordinate of the minima
structure in equation 9. When h < D, a single head must encode multiple roles simultaneously.

In the toy example with D = 2, one head is forced to capture both the maximum and the minimum
across all T positions. Since softmax attention only produces weighted averages, the head must
effectively encode information from multiple sequence elements simultaneously. As T increases,
the number of relevant elements to distinguish grows linearly with T , yet they are compressed into
an n-dimensional vector whose size does not scale with T . The feed-forward block must then
disentangle these increasingly entangled representations, which requires parameters exponential in
T . This explains why the parameter requirement scales as Ω(1/ϵcT ) and why the scaling improves
dramatically once h ≥ D.

Theorem 2 (2) is proved with the following idea: (i) each head selects its most responsive locations
(yj , tj) in D disjoint minima basins around x(i); (ii) because s < D, there is at least one segment
Gi ⊂ B(x(i), r) that no head focuses on. We then consider the segment Gi in it; (iii) along this
segment (suppose it is G1), we construct many candidate subsequences and, by a pigeonhole ar-
gument, obtain two subsequences Z1, Z2 whose post-attention representations are almost identical
but whose contribution to f1 differs; (iv) these subsequences are then embedded into full sequences
W1,W2, which the target function separates by at least 3ϵ, while the attention block maps them
within O(ϵk+1), forcing a large feed-forward network.

The intuition by which we derive the large network is different from geometric arguments in existing
works such as (Yehudai & Shamir, 2019). We directly made use of the fact that the network must be
either large or have large parameters to approximate a function with large Lipschitz norm.

Case (3): single head with large embedding. Theorem 2 (3) shows that when the embedding
dimension scales with the sequence length, E = n ≥ Td, the model can encode the entire sequence
into the classification token ĉ0. Concretely, each input can be embedded as et ⊗ x(t) ∈ RTd, where
et is the t-th standard basis vector, so that trivial attention aggregates to

1
T (x(1), . . . , x(T )) ∈ [0, 1]T ,

which preserves the full sequence. The feed-forward block F̂ can then recover the target relation
efficiently. Unlike memorization of training data (Mahdavi et al., 2023), this mechanism can gener-
alize since it captures the relation itself. Moreover, approximating extrema functions such as max
and min with a shallow ReLU network is straightforward (see Lemma 9), requiring width O(T/ϵ)
for ϵ accuracy. However, this regime is impractical, as it demands embedding dimensions that grow
linearly with T .

As deeper transformer are more commonly used in practice, here we conjecture the extension of
Theorem 2 (2) onto the L-layer case.

Conjecture 1 (Multilayer transformer case). A necessary condition for efficient approximation is
L · h ≥ D. When the head number is insufficient across layers, we conjecture the lower-bound
scaling for some constants aL, bL > 0 depending only on depth L to be

log(ParamCount) = Ω
(
| log ϵ| · aL T bL

nh

)
,

Experiments on the synthetic dataset in Section 6.1 with 2-layer transformer with no positional
encoding and no layer norm has also verified this transition at D = L ·h. (See Table 5 in Appendix)

6 EXPERIMENTS

Theorem 2 provides theoretical insights into how the approximation ability of transformers depends
on the number of heads. In this section, we illustrate these insights empirically. We begin with syn-
thetic tasks that mirror the structure of the generalized D-retrieval tasks, and then turn to real datasets
(MS MARCO and CIFAR-10) to examine whether similar scaling behaviors arise in practice.
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6.1 NUMERICAL VERIFICATION OF THEOREM 2 WITH SYNTHETIC DATASET

We design a synthetic task aligned with the target class analyzed in Theorem 2. Given a sequence
X = {x(1), . . . , x(T )} of length T with x(t) ∈ R4, the output is

y =

4∑
i=1

max
1≤t≤T

a⊤i x(t),

where a1, . . . , a4 ∈ R4 are fixed. Inputs are sampled i.i.d. from x(t) ∼ N (0, I4). For T ∈
{8, 16, 32, 64, 128} we generate 8000 training and 2000 validation examples.

On this task, we evaluate single-layer transformers with head numbers h ∈ {1, 2, 3, 4, 5} and fixed
per-head embedding dimension. Each x(t) is embedded via a two-layer ReLU MLP and concate-
nated with a trainable classification token c0, after which a single-layer multi-head attention block
(without residuals or normalization) processes the sequence. A two-layer GeLU MLP then outputs
the scalar prediction. Both MLPs have the same hidden dimension N .

Then for each (h, T ), models are trained under multiple random seeds. We report the minimal
normalized mean squared error (NMSE) across seeds to reduce optimization noise and highlight
expressivity. NMSE, equivalent to 1 − R2, corrects for the variance shrinkage of maxima as T
grows, thus enabling fair comparison across lengths. Further training details and explanations are
given in Appendix B.1.1.
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Figure 1: Results on the synthetic example. (a) NMSE vs. number of heads h for sequence lengths
T ∈ {8, 16, 32, 64, 128}, hidden dimension fixed at N = 32. Note that there is a transition at h = 4.
(A table of mean and variance values corresponding to these curves is provided in Table 2.) (b) Log
Hidden Dimension N vs. Log Accuracy for different sequence lengths T . The parameter count k
for the MLPs change linearly with N . (Plots for h = 1 and h = 2

are in Figure 4.)

Figure 1a shows minimal validation NMSE versus head number h across sequence lengths T . Per-
formance improves monotonically with h and exhibits a clear transition near the intrinsic dimension
D = 4. For h < D, NMSE grows with T , as limited heads must encode multiple extrema and
the FFN becomes inefficient. Once h ≥ D, curves flatten across T , indicating that heads special-
ize to different coordinates and the FFN aggregates them very effectively. Normalization by NMSE
ensures comparability across T , despite the increasing concentration of the max-of-Gaussians target.

Figure 1b highlights a phase transition between h = 3 and h = 4, with h = D = 4 equal to
the intrinsic dimension of the target. When h ≤ 3, the negative log NMSE scales approximately
linearly with the log parameter count (proportional to the MLP hidden dimension N ), in agreement
with Theorem 2 (2). Moreover, for a fixed parameter count, larger T yields higher NMSE (worse
approximation). Equivalently, as indicated by the fitted scaling lines, achieving the same error re-
quires larger parameter counts when T increases, in line with Theorem 2 (2). In contrast, for h = 4
these trends change qualitatively. Validation error reaches the order of 10−6, indicating near-perfect
generalization, yet the slope with respect to parameter count reverses: larger MLPs yield slightly
higher validation NMSE, a signature of tiny overfitting. The dependence on T also changes in this
regime; see Remark B.1.1 in Appendix for details.

We also conducted experiments on synthetic data with the widely used scheme of fixing E = nh =
32 constant(For h = 3, 5, we choose per-head embedding dimension to be ⌈32/h⌉, and total embed-
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ding dimension becomes E = 33, 35. See Table 3 in Appendix for details), as well as experiments
on synthetic datasets with D = 3 (See Table 4 in Appendix for details). Both of the above ex-
periments demonstrate similar trends to the D = 4 experiments, implying the robustness of our
results.

6.2 EXPERIMENTS ON REAL DATASETS

We conduct two additional experiments on real datasets to assess the practical relevance of our the-
oretical findings. The first is a text retrieval task based on MS MARCO, and the second is an image
classification task based on CIFAR-10. As there is no natural NMSE-like metric on retrieval tasks
and accuracy is most widely used, we focus on training accuracy to isolate architectural expressivity
from issues related to optimization or data scarcity. For completeness, we also report test accuracy
for both experiments in Table 7 and 9 in Appendix. The experiments examine whether the phase
transition around the intrinsic dimension D, predicted by Theorem 2, also manifests in practice.

MS MARCO (text retrieval). We construct retrieval-style datasets from the MS MARCO passage
ranking collection (Bajaj et al., 2016), where each query is paired with one positive passage and T−1
mined hard negatives (T ∈ {8, 16, 32, 64}). We train a two-layer transformer encoder with per-head
embedding dimension fixed at 32, varying the number of heads across {1, 2, 4, 6, 8, 10, 12, 14, 16}.
Input text is tokenized using the BERT tokenizer, and word, positional, and segment embeddings
from pretrained BERT (Devlin et al., 2019) are kept frozen. These 768-dimensional embeddings are
linearly projected to the embedding size E = heads× 32, after which only the projection and trans-
former layers are trained. Full dataset construction and training details are given in Appendix B.2.

CIFAR-10 (image classification). We further evaluate on the CIFAR-10 dataset (Krizhevsky,
2009) using a four-layer Vision transformer (ViT) (Dosovitskiy et al., 2021). Each image of size
32 × 32 is divided into non-overlapping 8 × 8 patches (patch size = 8), which are linearly em-
bedded. The transformer encoder has per-head embedding dimension fixed at 16, and we vary the
number of heads across h ∈ {1, 2, 4, 8, 10, 11, 12, 13, 14, 16, 20, 24}. To vary the sequence length,
we extend the border with interpolation around each image to enlarge its side length, after which the

sequence length is given by
(

image side length
patch size

)2
+1, including the classification token. Figure 6 shows

some of the examples. Full dataset preprocessing and training details are provided in Appendix B.3.

Result analysis. Both experiments exhibit the same qualitative trend as in the synthetic setting.
Figure 2a shows that in the text retrieval experiment, when h < 12, accuracy declines as the se-
quence length T increases, consistent with Theorem 2 (2). Once h > 12, this dependence on
T disappears, and performance remains stable. Taking Err(h, T ) = 1 − Accuracy(h, T ) as er-
ror, by using cT β exp(αh/T δ) to approximate (Err(h, T )) in log scale under MAE and drop-outs
(h = 1, 12, 14, 16 are dropped out as outliers, δ = 0.25 > 0, α = −1.40 < 0), figure 2b illustrates
that when h < 12, − log(Err(h, T )) ∝ h/T δ , highly consistent with the order in Theorem 2 (2)
under fixed parameter count M . The flattening of curves after h > 12 is also consistent with theory.

Figure 2c shows similar trend in image classification, with intrinsic dimension at h = 10. Figures 2d
and 2e illustrates weighted reversal score, calculated by R(h) = 1

wh

∑
T1<T2

max((err(T1) −
err(T2)), 0) with normalization factor wh = maxT err(T )−minT err(T ), detects the existence of
longer T yielding smaller error for this head number h. Such phenomenon leads to positive R(h),
and it also indicates phase transition as explained in remark B.1.1. Figure 2e further verified this.

7 CONCLUSION

In this work we investigated the approximation properties of single-layer transformers. We first
introduced a structured target family, the generalized D-retrieval task, that is broad enough to
capture general sequence-to-vector mappings (Theorem 1). Within this setting, we analyzed
how the approximation efficiency of transformers depends on architectural choices, especially
the number of head. Our results indicate that having a sufficient number of heads leads to
efficient approximation, while an insufficient number of heads forces the parameter count to
grow exponentially with sequence length T . We also examined the single-head case, where large
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Figure 2: Experiments on real datasets. Training performance with different numbers of heads
h across different sequence lengths T . (a) Accuracy vs. number of heads for different T in text
retrieval; phase transition near h = 12. Mean and standard deviation see Table 6. MRR shows a
similar trend, see Fig. 5 in the appendix. (b) Phase transition for text retrieval. (c) Accuracy vs. num-
ber of heads for different T in image classification; phase transition near h = 10. Mean and standard
deviation see Table 8. (d) Weighted Reversal Score for Image Classification, err = 1−Accuracy.
The plot becomes positive when h ≥ 10, indicating phase transition. (e) Weighted Reversal Score
for Synthetic Experiment, it becomes positive at h = 4, exactly the intrinsic dimension of the task.

embedding dimension allows sequence memorization but shifts the complexity to the feed-forward
block (Theorem 2). These findings clarify the roles played by head count in transformer expressivity.

Our experiments on both synthetic and real datasets reveal a non-trivial phase transition around the
intrinsic dimension D, consistent with theoretical analysis. When the number of heads is below
D, models exhibit higher error for the same parameter count as sequence length T increases. Once
the head count reaches or exceeds D, approximation rate becomes independent of sequence lengths
T . This transition is also observed in real-world datasets with deeper architectures, indicating that
the notion of intrinsic dimension is not only theoretical but also practically relevant. In particular,
beyond fully training models, analyzing head contributions early in training to estimate how many
heads meaningfully affect the output, or training multiple models with varying depths and head
counts while tracking how error scales with T are potential ways to probe the task’s intrinsic dimen-
sion. These experiments might demonstrate whether the inferred intrinsic dimension is stable across
architectures, thereby informing head-count selection and the head number to retain under pruning.

Limitations. We conclude by noting several limitations of this study. Firstly, although the ana-
lyzed target class is dense, the phenomena of interest are most naturally manifested in retrieval-style
tasks aligned with our setting. Secondly, our analysis is restricted to single-layer transformers;
while experiments on real datasets supports Conjecture 1 in deeper architectures, a rigorous multi-
layer theory remains open. Finally, the tradeoff between sequence memorization and pattern learn-
ing—observed for shorter sequences (cf. Remark B.1.1)—has not yet been established rigorously
and warrants further investigation.

10



Published as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

This research is supported by the National Research Foundation, Singapore, under the NRF fellow-
ship (project No. NRF-NRFF13-2021-0005).

REFERENCES

Noah Amsel, Gilad Yehudai, and Joan Bruna. Quality over Quantity in Attention Layers: When
Adding More Heads Hurts. In The Thirteenth International Conference on Learning Representa-
tions, October 2024.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information Theory, 39(3):930–945, May 1993. ISSN 1557-9654. doi: 10.1109/
18.256500.

Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Low-
rank bottleneck in multi-head attention models. In International conference on machine learning,
pp. 864–873. PMLR, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 2(4):303–314, December 1989. ISSN 1435-568X. doi: 10.1007/
BF02551274.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
Transformers. In arXiv:1807.03819 [Cs, Stat], March 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs], May 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representations, 2021.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped Transformers as Programmable Computers. In Proceedings of the 40th
International Conference on Machine Learning, pp. 11398–11442. PMLR, July 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023.

Haotian Jiang and Qianxiao Li. Approximation Rate of the Transformer Architecture for Sequence
Modeling. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.
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A PROOFS OF MAIN THEOREMS

A.1 PROOF OF THEOREM 1

Proof Sketch. The proof proceeds in three steps. First, by Lemma 1, we approximate a broader
function class that relaxes the smoothness requirements and the assumptions in Assumption 2. Sec-
ond, Lemmas 2 and 3 show that by constructing appropriate Si, we can faithfully recover all in-
formation from the original input sequence with simple fi. Finally, the outer function F0 can be
applied to approximate an arbitrary sequence-to-vector target within this class. Together, these steps
establish the result.

Proof of Theorem 1. To prove Theorem 1, we first establish a few auxiliary lemmas.

Lemma 1 (Relaxed target class and closure equivalence). Let F̃d,T
D be defined as in 9 but with only

fi ∈ C([0, 1]d, [0, 1]), i.e., we drop ”unique minimizer”, ”pairwise distinct”and ”PD Hessian”.Set
Fd,T :=

⋃
D≥1 F

d,T
D and F̃d,T :=

⋃
D≥1 F̃

d,T
D . Then

Fd,T
∥·∥∞

= F̃d,T
∥·∥∞

on XT .

Proof. Fix H̃(XT ) = F̃0

(
z̃1(XT ), . . . , z̃D(XT )

)
∈ F̃d,T

D with z̃i(XT ) = mint∈Si
f̃i(x(t)) and

f̃i ∈ C([0, 1]d, [0, 1]). Let ε > 0. We will construct H ∈ Fd,T with ∥H − H̃∥∞ ≤ ε. Firstly, by
Stone–Weierstrass, choose pi ∈ C∞([0, 1]d) so that ∥pi − f̃i∥∞ ≤ η, where η > 0 will be fixed
later. Because the uniform approximation can slightly leave [0, 1], compose with a smooth strictly
increasing squashing s : [−c, 1 + c] → [0, 1] with s(u) = u on [0, 1] and ∥s ◦ pi − pi∥∞ ≤ η (for
small enough c > 0), and replace pi by s ◦ pi. We still write pi and retain ∥pi − f̃i∥∞ ≤ 2η.

Secondly, let ξi ∈ argminx∈[0,1]d pi(x) (nonempty by compactness). Pick r ∈ (0, 1
4 ) small and a

C∞ bump ϕi supported in B(ξi, 2r) ∩ [0, 1]d, with ϕi(ξi) = 1, ∇ϕi(ξi) = 0, and with ∇2ϕi(ξi)
negative definite.1 Define, for parameters δi,1, δi,2 > 0 to be fixed,

gi(x) := pi(x) − δi,1 ϕi(x) + δi,2 ϕi(x) ∥x− ξi∥2.

(i) Since gi(ξi) = pi(ξi) − δi,1 while gi(x) ≥ pi(x) whenever ϕi(x) = 0 and gi(x) > pi(x) for
x ∈ B(ξi, 2r) \ {ξi}, we get that ξi is the unique global minimizer of gi.

(ii) At ξi, because ∇ϕi(ξi) = 0,

∇2gi(ξi) = ∇2pi(ξi) − δi,1 ∇2ϕi(ξi) + 2δi,2I.

Here −∇2ϕi(ξi) ≻ 0, so choosing (δi,1, δi,2) suitably makes ∇2gi(ξi) ≻ 0 (PD). Because ∥ϕi∥∞ ≤
1 and ∥ ∥x− ξi∥2∥∞ ≤ d on [0, 1]d,

∥gi − pi∥∞ ≤ δi,1 + δi,2 (2r)
2.

Hence, by taking r small and then δi,1, δi,2 small (using the r−2 scaling in ∇2ϕi(ξi) to keep the
Hessian PD), we can ensure both PD at ξi and ∥gi − pi∥∞ ≤ η.

Thirdly, we use tiny translation to remove distinctiveness. It may happen that ξi = ξi′ for some i ̸=
i′. Choose pairwise distinct small vectors vi ∈ Rd and fix a smooth cutoff χ ∈ C∞([0, 1]d, [0, 1])
that equals 1 on [r, 1 − r]d and vanishes near the boundary. Define a C∞ diffeomorphism of the
cube,

Φi(x) := x − εi χ(x) vi, with εi > 0 small.
Then Φi is arbitrarily close to the identity in C1 for small εi, maps [0, 1]d to itself, and hi := gi ◦Φi

has a (unique) minimizer at x(i) := Φ−1
i (ξi). For different i, these points are distinct if the vi’s are

distinct and εi’s are small but nonzero. Moreover, because ∇gi(ξi) = 0, the Hessian at x(i) satisfies

∇2hi(x
(i)) = DΦi(x

(i))⊤ ∇2gi(ξi)DΦi(x
(i)) ≻ 0,

1For instance take ϕi(x) = ψ(∥x − ξi∥2/r2) with ψ(0) = 1, ψ′ < 0 near 0, ψ ≡ 0 on [1,∞); then
∇2ϕi(ξi) ≺ 0 and its norm scales like r−2.

13



Published as a conference paper at ICLR 2026

so PD is preserved. Since gi is Lipschitz on the compact cube, ∥hi − gi∥∞ ≤ Li εi for some Li,
hence by taking εi small we get ∥hi − gi∥∞ ≤ η.

Finally, if needed, compose with the same strictly increasing squashing s as in Step 1 and set

fi := s ◦ hi ∈ C2([0, 1]d, [0, 1]).

Because s is strictly increasing, it preserves the minimizer location and, at the minimizer x(i), ∇2(s◦
hi)(x

(i)) = s′
(
hi(x

(i))
)
∇2hi(x

(i)) ≻ 0. Also ∥fi − hi∥∞ ≤ η by construction.

Collecting the bounds from previous deduction:

∥fi − f̃i∥∞ ≤ ∥pi − f̃i∥∞︸ ︷︷ ︸
≤2η

+ ∥gi − pi∥∞︸ ︷︷ ︸
≤η

+ ∥hi − gi∥∞︸ ︷︷ ︸
≤η

+ ∥fi − hi∥∞︸ ︷︷ ︸
≤η

≤ 5η.

For each i, the map u 7→ mint∈Si
ut is 1-Lipschitz in ∥ · ∥∞. Hence the corresponding features

z̄i(XT ) := mint∈Si
fi(x(t)) and z̃i(XT ) := mint∈Si

f̃i(x(t)) satisfy ∥z̄i − z̃i∥∞ ≤ 5η. Let ωF̃0
be

a modulus of continuity of F̃0 on [0, 1]D. Choose η so small that ωF̃0
(5η) ≤ ε/2. Then∥∥F̃0

(
z̄(XT )

)
− F̃0

(
z̃(XT )

)∥∥
∞ ≤ ε/2.

Finally, approximate F̃0 uniformly on [0, 1]D by some F0 ∈ C1([0, 1]D) within ε/2 (Stone–
Weierstrass). Setting

H(XT ) := F0

(
z̄1(XT ), . . . , z̄D(XT )

)
∈ Fd,T ,

we obtain
∥H − H̃∥∞ ≤ ∥F0(z̄)− F̃0(z̄)∥∞︸ ︷︷ ︸

≤ε/2

+ ∥F̃0(z)− F̃0(z̃)∥∞︸ ︷︷ ︸
≤ε/2

≤ ε.

This shows F̃d,T ⊂ Fd,T
∥·∥∞

. The reverse inclusion is simple, hence we have the lemma.

Remark. Thus, we now focus on the relaxed class F̃d,T and Lemma 1 lifts the result to the original
class Fd,T .

Lemma 2 (Order-statistic in the relaxed class). Without loss of generation, suppose 4|T . Let m =
T
4 . For each j ∈ [d] and XT = {x(1), . . . , x(T )}, define

Uj(XT ) := max
B⊆[T ]
|B|=m

min
u∈B

x(u)j ,

and for each fixed t ∈ [T ],

Yt,j(XT ) := max
A⊆[T ]

|A|=m, t∈A

min
u∈A

x(u)j , Zt,j(XT ) := max
A⊆[T ]

|A|=m, t∈A

min
u∈A

(1− x(u)j).

Let v1,j ≥ · · · ≥ vT,j be the sorted values of {x(1)j , . . . , x(T )j} and set Uj = vm,j . For the
multi-set {x(u)j : u ∈ [T ]}, let v1,j ≥ · · · ≥ vT,j (nonincreasing) and w1,j ≤ · · · ≤ wT,j

(nondecreasing). Then we have

Yt,j = min{x(t)j , vm,j}, 1− Zt,j = max{x(t)j , wm,j}.

In particular:

x(t)j ≤ vm,j ⇒ Yt,j = x(t)j , x(t)j ≥ wm,j ⇒ 1− Zt,j = x(t)j .

Proof. Among all m-subsets B, the maximum of minu∈B x(u)j is attained by picking the m largest
coordinates, so Uj = vm,j . Forcing t ∈ A, the choice of the other m − 1 indices to maximize the
minimum is the m − 1 largest among {x(u)j : u ̸= t}, hence Yt,j = min{x(t)j , vm,j}. For
Zt,j , note that minu∈A(1 − x(u)j) = 1 − maxu∈A x(u)j , so maximizing it over A is the same
as minimizing maxu∈A x(u)j , which picks t plus the (m−1) smallest leading to 1 − Zt,j . The
particular statements follow immediately.
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Lemma 3 (Smooth selector). For q > 0 define

x̂q(t)j :=
eq( 1−Zt,j−wm,j )2 (1− Zt,j) + eq(Yt,j−vm,j )2 Yt,j

eq( 1−Zt,j−wm,j )2 + eq(Yt,j−vm,j )2
.

Then x̂q(t)j → x(t)j uniformly on XT as q → ∞.

Proof. From Lemma 2, if x(t)j ≥ Uj , we have Yt,j = vm,j and (Yt,j−vm,j)
2 = 0 while 1−Zt,j =

x(t)j and (1−Zt,j −wm,j)
2 > 0. Thus, as q → ∞, the weight concentrates on (1−Zt,j) = x(t)j .

If x(t)j ≤ Uj and wm,j ≥ x(t)j , we have (1 − Zt,j − wm,j)
2 = 0 while Yt,j = x(t)j and

(Yt,j − vm,j)
2 > 0 concentrating on Yt,j = x(t)j . If wm,j ≤ x(t)j ≤ Uj , we have 1 − Zt,j =

Yt,j = x(t)j , so either of three settings leads to x(t)j . The compactness of XT gives us the uniform
property.

Now, we begin our formal proof for Theorem 1.

By Lemma 1, for any F ∈ C(XT ) and ε > 0, it suffices to construct an H̃ ∈ F̃d,T with ∥F−H̃∥∞ ≤
ε/2, since the lemma 1 could lift it to Fd,T with another ε/2.

Fix m = T
4 . For each coordinate j and each S ⊆ [T ] with |S| = m, include the relaxed primitives

z(j,S)(XT ) := min
t∈S

x(t)j , z̄(j,S)(XT ) := min
t∈S

(1− x(t)j).

To form the thresholds vm,j and wm,j needed in Lemma 2, additionally include:

min
t∈S

x(t)j for all S ⊆ [T ] \ {t} with |S| = m,

and
min
t∈S

(1− x(t)j) for all S ⊆ [T ] \ {t} with |S| = T −m,

Using smooth log-sum-exp (softmax) in the outer function F̃0, we can recover the subset-wise max-
imum required to compute Uj , Yt,j , Zt,j , vm,j and wm,j from these primitives.

By Lemma 3, for any δ > 0 there exists q such that

max
XT∈XT

max
t∈[T ], j∈[d]

∣∣x̂q(t)j − x(t)j
∣∣ ≤ δ.

By uniform continuity of F on the compact XT , choose δ so that this implies |F (XT ) −
F (X̂q(T ))| ≤ ε/4 for all XT , where X̂q(T ) stacks the coordinates x̂q(t)j . We approximate the con-
tinuous map u 7→ F (u) on [0, 1]dT uniformly by a polynomial P within ε/4 (Stone–Weierstrass).
Define

H̃(XT ) :=
(
P ◦ vec

)
(X̂q(T )),

which is a C1 function of the inner features. Hence H̃ ∈ F̃d,T and

∥F − H̃∥∞ ≤ ∥F − F ◦ X̂q∥∞︸ ︷︷ ︸
≤ε/4

+ ∥F ◦ X̂q − P ◦ X̂q∥∞︸ ︷︷ ︸
≤ε/4

≤ ε/2.

Apply Lemma 1 to replace each relaxed primitives by admissible C2 functions with unique mini-
mizers and to replace F̃0 by function F0 so that the final error increases by at most ε/2. This leads
to f ∈ Fd,T

D with ∥F − f∥∞ ≤ ε.

A.2 PROOF OF THEOREM 2

A.2.1 PROOF OF THEOREM 2 (1)

Here we prove Theorem 2 (1)
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Proof Sketch. The idea is straightforward. Each attention head is assigned to approximate one
term mint∈Si

fi(x(t)). Once these components are extracted, the outer function F0 can be approxi-
mated by a suitable F̂ , completing the construction.

Proof of Theorem 2 (1): Sufficient expressivity with D heads. Fix d, T and α ∈ (0, 1), and let ε > 0
be given. Throughout the proof, constants depending only on (d,D, T ) are absorbed into Cd,D,T >
0 which may change from line to line.

In the display equation 4, each head produces an n-dimensional vector and Concathi=1 gives a vector
in Rnh before F̂ . For the construction, we realize the usual block-by-head parameterization, which
means that the encoder outputs a block-decomposed embedding

x̂(t) =
(
x̂(1)(t), . . . , x̂(D)(t)

)
∈ R2D, x̂(i)(t) ∈ R2,

and the i-th head only reads the i-th block via block-diagonal WQ,i,WV,i (entries bounded by 1).
This keeps the parameter counts within the same order. We therefore set the per-head embedding
dimension to n = 2.

Firstly, from Assumption (A2), for any δ > 0 there exist two-layer FFNs Ψi,δ : [0, 1]d → [0, 1] such
that

max
x∈[0,1]d

|fi(x)−Ψi,δ(x)| ≤ δ, width(Ψi,δ) ≤
C2

δγf
, (10)

where γf > 0 is the exponent from (A2). Define for each head i, the position gate

ri(s) :=

{
0, s ∈ Si,

−1, s /∈ Si,
s ∈ [T ].

(Recall Si ⊂ [T ] with |Si| ≥ αT by equation 8.) We implement the encoder Pϕ so that its i-th block
is

x̂(i)(t) =
(
Ψi,δ(x(t)) , ri(t)

)
∈ [0, 1]× {−1, 0} ⊂ [−1, 1]2. (11)

This choice follows ∥x̂(t)∥2 ≤
√
2D. After a fixed rescaling (absorbed into β), this meets the norm

constraint.

Secondly, we would like to use head-wise attention to isolate the minimum on Si. For each head i,
we take a single attention logit (mh = 1) by choosing

WO,i = I, WK,i = [−1 1] , WQ,iĉ0 = 1, WV,i = I2.

All entries are within the allowed bound 1. With the block equation 11, the (pre-softmax) score of
token t in head i is

ρi(t) = (WK,ix̂
(i)(t))⊤(WQ,iĉ0) = −Ψi,δ

(
x(t)

)
+ ri(t). (12)

Let σ[ρi] be the softmax equation 5 with β > 0. Define the head-i value readout (first coordinate of
the head output)

z̃i(XT ) :=

T∑
t=1

σ[ρi](t) Ψi,δ

(
x(t)

)
. (13)

Here, the second coordinate is unused. F̂ could ignore it via a fixed linear projection, counted in the
constant Cd,D,T .

Now, we give a uniform bound on Si. Take at := Ψi,δ(x(t)) ∈ [0, 1] and split the sum into Si and
Sc
i . From ri(t) = 0 on Si and ri(t) = −1 on Sc

i , we have

σ[ρi](t) =
eβ(−at+ri(t))∑

u∈Si
e−βau +

∑
u∈Sc

i
e−β(au+1)

≤


e−βat∑

u∈Si
e−βau

, t ∈ Si,

e−β · e−βat∑
u∈Si

e−βau
, t ∈ Sc

i .

16
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Hence, we have

z̃i =
∑
t∈Si

σ[ρi](t)at +
∑
t∈Sc

i

σ[ρi](t)at ≤
∑

t∈Si
ate

−βat∑
u∈Si

e−βau︸ ︷︷ ︸
Gibbs mean on Si

+ e−β

∑
t∈Sc

i
ate

−βat∑
u∈Si

e−βau
. (14)

To simplify, we denote a∗ := mint∈Si
at and bt := at − a∗ ∈ [0, 1] for t ∈ Si. Then, we have∑

t∈Si
ate

−βat∑
u∈Si

e−βau
= a∗ +

∑
t∈Si

bte
−βbt∑

u∈Si
e−βbu

≤ a∗ +
∑
t∈Si

bte
−βbt ≤ a∗ +

|Si| − 1

eβ
,

The inequality comes from supb∈[0,1] be
−βb = e−1/β for β ≥ 1 and one of the bt is 0, so the

denominator in the middle fraction is ≥ 1. For the Sc
i term in 14, we use at ≤ 1 and

∑
u∈Si

e−βau ≥
1 to get

e−β

∑
t∈Sc

i
ate

−βat∑
u∈Si

e−βau
≤ e−β

∣∣Sc
i

∣∣ ≤ e−β T.

Combining the two bounds, we have the uniform estimate:

min
t∈Si

Ψi,δ

(
x(t)

)
≤ z̃i(XT ) ≤ min

t∈Si

Ψi,δ

(
x(t)

)
+

|Si| − 1

eβ
+ Te−β (β ≥ 1). (15)

In particular, since |Si| ≤ T , there is a constant CT with

0 ≤ z̃i(XT )−min
t∈Si

Ψi,δ

(
x(t)

)
≤ CT

( 1
β
+ e−β

)
, CT := max{T/e, T}. (16)

Thirdly, we need to lift bounds from z̃i to zi. From equation 10 and the definition of zi,∣∣∣min
t∈Si

fi
(
x(t)

)
−min

t∈Si

Ψi,δ

(
x(t)

)∣∣∣ ≤ δ.

Together with equation 16,∣∣z̃i(XT )− z̄i(XT )
∣∣ ≤ δ + CT

( 1
β
+ e−β

)
for all XT ∈ XT , i = 1, . . . , D. (17)

Let L0 := supz∈[0,1]D ∥∇F0(z)∥1 < ∞ (compactness and C1). Choose

δ :=
ε

4L0D
, β ≥ βε := max

{
1,

4CTL0D

ε
, log

(4CTL0D

ε

)}
.

Then by equation 17,

∥z̃(XT )− z(XT )∥∞ ≤ ε

2L0D
for all XT ∈ XT . (18)

Finally, we constrcut the approximation for F0 and count the number of parameter. By Assump-
tion (A1), there exists a two-layer FFN Φδ0 : [0, 1]D → R with width ≤ C1/δ

γ0

0 (for some γ0 > 0)
such that

max
z∈[0,1]D

|F0(z)− Φδ0(z)| ≤ δ0.

Set δ0 := ε/2. Define the model’s final feed-forward F̂ to project R2D → RD by keeping the first
coordinate of each head (a fixed linear map with entries in {0, 1}) and apply Φδ0 .

Then for all XT , we have∣∣F̂ (Concati(·))− F0

(
z(XT )

)∣∣ ≤ ∣∣Φδ0

(
z̃(XT )

)
− Φδ0

(
z(XT )

)∣∣+ ∣∣Φδ0

(
z(XT )

)
− F0

(
z(XT )

)∣∣
≤ L0 ∥z̃(XT )− z(XT )∥1 + δ0

≤ L0D ∥z̃(XT )− z(XT )∥∞ + ε/2

≤ ε/2 + ε/2 = ε,

where we used equation 18 in the last inequality.

Here, the trainable components are composed of three parts:

17
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• the D subnetworks Ψi,δ inside the encoder blocks equation 11;

• the fixed-size projections WQ,i,WK,i,WV,i (size O(D) and independent of ε);

• the two-layer FFN Φδ0 used inside F̂ .

Thus

M ≤ C ′ D · 1

δγf
+ C ′′ · 1

δγ0

0

+ C ′′′ for constants C ′, C ′′, C ′′′ = Cd,D,T .

With δ = Θ(ε) and δ0 = Θ(ε) chosen above,

M ≤ Cd,D,T

εγ
, γ := max{γf , γ0},

and the construction uses h = D heads with per-head dimension n = 2 and achieves ε-
approximation on XT . This proves Theorem 2 (1).

A.2.2 PROOF OF THEOREM 2 (2)

Proof Sketch. The argument proceeds in two parts. The core idea is to construct two sequences
whose representations after the attention layer are indistinguishably close, on the order of O(ϵk+1),
yet whose target outputs differ by at least 3ϵ. Lemma 4 then implies the lower bound on the param-
eter count required for approximation.

Using Lemmas 5, 6, and 7, we obtain D disjoint neighborhoods around the minima x(i). Since
D > s = h, there exists at least one neighborhood not selected by the s heads. Within this re-
gion, the pigeonhole principle guarantees the existence of two distinct subsequences. By carefully
designing these subsequences, we ensure that their outputs after the attention layer are nearly in-
distinguishable, while their target values differ by at least 3ϵ. Extending them to full sequences
completes the construction.

We now turn to the full proof. To establish Theorem 2 (2), we begin by introducing several auxiliary
lemmas that will serve as building blocks for the argument. Lemma 5, 6, and 7 are only to set up the
approximation problem into a more tractable form.
Lemma 4. Let v1, v2 ∈ Rn. Suppose

∥v1 − v2∥2 ≤ A and ∥F̂ (v1)− F̂ (v2)∥ ≥ B,

where F̂ : Rn → Rm is a two-layer feed-forward network satisfying the constraints stated above.
Then F̂ must use at least

Ω

(
B

A
√
n

)
parameters.

Proof of Lemma 4. Let ∆x := v1 − v2 and ∆F := F̂ (v1)− F̂ (v2). Suppose the two-layer network
with width p be

F̂ (x) = V σ(Ux+ b) + c,

where U ∈ Rp×n, V ∈ Rm×p, b ∈ Rp, c ∈ Rm, σ is 1-Lipschitz acting coordinate-wise and every
entry of U, V, b, c has magnitude at most 1.

For the j-th output coordinate, we have

∆Fj =

p∑
r=1

Vjr

(
σ(u⊤

r v1 + br)− σ(u⊤
r v2 + br)

)
,

where u⊤
r is the r-th row of U . Using the 1-Lipschitz property of σ and Cauchy–Schwarz inequality,

we have

|∆Fj | ≤
p∑

r=1

|Vjr| |u⊤
r ∆x| ≤

p∑
r=1

|Vjr| ∥ur∥2 ∥∆x∥2.

18
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By the entrywise weight bound, ∥ur∥2 ≤
√
n and |Vjr| ≤ 1. Therefore, for all j, we have

|∆Fj | ≤ p
√
n ∥∆x∥2. (19)

Let ∥ · ∥ be the norm used in the lemma statement. By norm equivalence in finite dimensions, there
exists cm ∈ (0, 1] depending only on the chosen norm and m such that

∥y∥ ≤ 1

cm
∥y∥∞ for all y ∈ Rm.

∥∆F∥ ≥ B implies ∥∆F∥∞ ≥ cmB, so there is some j⋆ with

|∆Fj⋆ | ≥ cmB.

Combining this with equation 19 and ∥∆x∥2 ≤ A, we have

cmB ≤ p
√
nA =⇒ p ≥ cm B

A
√
n
.

Finally, let peff ≤ p be the number of hidden units that actually affect the output, i.e., those with a
nonzero row in U and a nonzero entry in the j⋆-th row of V . The above bound holds with peff in
place of p, hence peff ≥ cmB/(A

√
n). Each such unit uses at least one nonzero parameter in U and

one in V , so the parameter counts k satisfy k ≥ peff . Therefore

k ≥ cm B

A
√
n

= Ω

(
B

A
√
n

)
,

which proves the lemma.

Lemma 5. There exists R > 0 such that for every i ∈ {1, . . . , D} and every r < R, there exist
constants δi > 0 and Li > 0 with the following property: there exists a segment Gi ⊂ B(x(i), r) of
length δi such that

|fi(x)− fi(y)| ≥ Li ∥x− y∥2, ∀x, y ∈ Gi.

and moreover
fi(x) > zi, ∀x ∈ Gi,

Proof of Lemma 5. Fix i ∈ {1, . . . , D} and denote x⋆ := x(i), f := fi and H⋆ := ∇2
xf(x

⋆). By
positive definiteness, let λi := λmin(H⋆) > 0. By continuity of ∇2f , there exists RH

i > 0 such that

∇2f(x) ⪰ λi

2 I for all x ∈ B(x⋆, RH
i ).

Set µi := λi/2 > 0. Because the domain is [0, 1]d and x⋆ ∈ [0, 1]d, we could choose a unit vector
vi pointing strictly into the cube at x⋆ (if x⋆ is interior, take any unit vector). Define

τi := sup{ t > 0 : x⋆ + svi ∈ [0, 1]d for all s ∈ [0, t] } > 0,

and set Ri := min{RH
i , τi}. Take R := min1≤i≤D Ri > 0. Fix any r ∈ (0, R) and consider the

restriction
g(t) := f(x⋆ + tvi), t ∈ [0, r].

Then
g′′(t) = v⊤i ∇2f(x⋆ + tvi) vi ≥ µi for all t ∈ [0, r].

Since x⋆ minimizes f on [0, 1]d and vi is feasible inward, we have g(t) ≥ g(0) for small t ≥ 0
leading to the one-sided derivative g′(0+) ≥ 0 (if x⋆ is interior then ∇f(x⋆) = 0 so g′(0) = 0).
Because g′′ ≥ µi, the derivative g′ is increasing and thus

g′(t) ≥ g′(0+) + µit ≥ µit, t ∈ [0, r].

Let a := r/4 and b := r/2 and define the segment

Gi := {x⋆ + tvi : t ∈ [a, b] } ⊂ B(x⋆, r),

whose length is δi := b − a = r/4. For any x = x⋆ + tvi and y = x⋆ + svi in Gi with t > s, the
mean value theorem gives some ξ ∈ (s, t) ⊂ [a, b] such that

|f(x)− f(y)| = |g(t)− g(s)| = |g′(ξ)| |t− s| ≥ µia |t− s| =
(λir

8

)
∥x− y∥2.
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Therefore the choice
Li :=

λir

8
> 0

works uniformly for all x, y ∈ Gi. The segment Gi does not contain x⋆, for all its points are at
distance at least a = r/4 > 0 from x⋆. By uniqueness of the minimizer, f(x) > f(x⋆) = zi for all
x ∈ Gi.

The lemma holds with δi = r/4 and Li = (λmin(∇2
xfi(x

(i))) r)/8.

Lemma 6. Let (z1, . . . , zD) denote the minima defined above. Then there exist constants r0 > 0
and L0 > 0 such that the following holds: for any i ∈ {1, . . . , D} and any perturbation δ0 with
|δ0| < r0, ∣∣F0(z1, . . . , zi + δ0, . . . , zD)− F0(z1, . . . , zD)

∣∣ ≥ L0 |δ0|.

Proof of Lemma 6. Denote ei for the i-th standard basis vector of RD. By assumption, mi :=∣∣∂iF0(z)
∣∣ > 0 for each i. Since F0 ∈ C1, the map u 7→ ∂iF0(u) is continuous at z. Hence for each

i, there exists rconti > 0 such that∣∣∂iF0(u)
∣∣ ≥ 1

2 mi whenever ∥u− z∥∞ < rconti .

If necessary, shrink rconti so that the line segment { z + tei : |t| < rconti } lies in [0, 1]D. Define
uniform constants

L0 := 1
2 min
1≤i≤D

mi > 0, r0 := min
1≤i≤D

rconti > 0.

Fix i and δ0 with |δ0| < r0. Consider the one-dimensional slice gi(t) := F0(z + tei) for |t| < r0.
Then gi is C1 and g′i(t) = ∂iF0(z + tei). By the mean value theorem, there exists θ ∈ (0, 1) such
that

F0(z + δ0ei)− F0(z) = g′i(θδ0) δ0 = ∂iF0

(
z + θδ0ei

)
δ0.

Taking absolute values and using the lower bound on
∣∣∂iF0(·)

∣∣ inside the ℓ∞-ball of radius r0 around
z, we have ∣∣F0(z + δ0ei)− F0(z)

∣∣ ≥ L0 |δ0|,
which is the desired inequality.

Lemma 7. Let zi = minx∈[0,1]d fi(x) and let x(i) denote the unique minimizer of fi (as assumed
above). Then there exist constants R0 > 0 and ε0 > 0 such that:

1. The open balls {B(x(i), R0)}Di=1 are pairwise disjoint.

2. For each i ∈ {1, . . . , D} and every x ∈ [0, 1]d \B(x(i), R0),

fi(x) > zi + ε0.

Proof of Lemma 7. Since the minimizers {x(i)}Di=1 are pairwise distinct and finite in number, we
have

∆ := min
i̸=j

∥∥x(i) − x(j)
∥∥
2

> 0.

Set R0 := 1
2∆. If i ̸= j and x ∈ B(x(i), R0), by the triangle inequality, we have

∥x− x(j)∥2 ≥ ∥x(i) − x(j)∥2 − ∥x− x(i)∥2 > ∆−R0 = R0,

so x /∈ B(x(j), R0). Hence the balls are pairwise disjoint, proving the first part.

For the second part, fix i and define the compact set Ki := [0, 1]d \ B(x(i), R0). The continuity of
fi implies that the minimum

mi := min
x∈Ki

fi(x)

is attained on Ki. Because x(i) /∈ Ki and x(i) is the unique global minimizer on [0, 1]d, we have
mi > zi. Let εi := mi − zi > 0 and set

ε0 := 1
2 min
1≤i≤D

εi > 0.

20



Published as a conference paper at ICLR 2026

Notation flow (dependency structure) Meaning
x(i) Point where fi achieves minimum

→ B(x(i), r) Basin region for retrieval coordinate i
(Basin around x(i))

→ Gi,Ki Monotone local segment near x(i)

(In B(x(i), r))

P0 The set of all candidate points.
(We only choose xt ∈ P0)

Si Index partition for retrieval coordinate i
(i = 1, . . . , D)

Attention head j Defines response at position t
→ λj(x, t) Attention score
→ (yj , tj) Maximum-attention point selected by

head j in P0 × Sj

→ Y = {y1, . . . , ys} Chosen maximizers of attention score
(one per head)

→ vj(x, t) Value embedding

WLOG, suppose K1 ∩ Y = ∅.
→ T0 T0 ⊂ S1, indices not in (yj , tj), j = 1, . . . , s
→ η : [0, 1] → G1 Coordinate system on G1

→ q = f1 ◦ η Rewriting f1|G1
into the coordinate system.

→ Ut Discrete grid on [0, 1] at index t
→ zℓ(t) Candidate point for subsequence ℓ, zℓ(t) ∈ η(Ut)

Adversarial subsequences
→ Zℓ = (zℓ(1), . . . , zℓ(T0)) Two subsequences almost

indistinguishable by attention head.
→ Wℓ Full sequence embedding Zℓ

→ wℓ(t) Token of Wℓ of index t
→ I1, I2, I3 Partition of indices: differ / agree / remaining

Per-head analysis
→ Qj,i Attention mass on Ij (j ∈ {1, 2, 3}, i ∈ {1, . . . , s})
→ Vj,i Weighted value average on Ij

Table 1: Flow-style dependency map of notation introduced in the proof of Theorem 2.2.

Then, for every x ∈ Ki, we have

fi(x) ≥ mi = zi + εi ≥ zi + 2ε0 > zi + ε0,

Thus, we have proved this lemma.

Before the proof, We also provide a notation table to help with understanding in Table 1.

Proof of Theorem 2 (2). Given the target function under the assumptions. For any given single-layer
transformer defined in the main context, our goal is to find two different sequences such that their
output in the part

Concathi=1

( T∑
t=1

σ
[
(WK,ix̂(t))

⊤WQ,iĉ0
]
WV,ix̂(t)

)
(20)

are very close (differs by only O(ϵk+1)), but their output from the target function differs by at least
3ϵ, then according to lemma 4, we have the required parameter count for the FFN F̂ to be at least
Ω(1/ϵk).
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Notations For each head i = 1, . . . , s, define the attention weight function

λi(x, t) = exp
(
γ (WK,iPϕ(x, t))

⊤WQ,iĉ0
)
,

and the value mapping
vi(x, t) = WV,iPϕ(x, t) ∈ Rn,

where γ > 0 is the softmax scaling factor, WQ,i,WK,i ∈ Rn×E are the query and key projections,
and WV,i ∈ Rn×E is the value projection for head i.

Notation of sets Without loss of generality, we assume x(i) belongs to the interior of [0, 1]d, and
the other case can be treated with the same method below. From lemma 5, lemma 6 and lemma 7
we have that there exists R > 0 and segments Gi ⊂ B(x(i), R), i = 1, . . . , D and L, δ0, r > 0
satisfying the following:

• ∀i, ∀x, y ∈ Gi, we have |fi(x)− fi(y)| > L∥x− y∥2.

• ∀j ̸= i and ∀x ∈ B(x(j), R), y ∈ B(x(i), R), we have fi(y)− fi(x) > δ0.

• The length of Gi is r, ∀i = 1, . . . , D.

• For any i ∈ {1, . . . , D} and any perturbation δ1 with |δ1| < maxx∈B(x(i),R)(fi(x)− zi),∣∣F0(z1, . . . , zi + δ1, . . . , zD)− F0(z1, . . . , zD)
∣∣ ≥ L |δ1|.

We denote by Ki := Gi∪{x(i)}, i = 1, . . . , D, and P0 = ∪D
i=1Ki. Recall that k =

1
4T−s−D+1

(n+1)s+1 −1.
We assume without loss of generality that k > 0 and 1

4T − s − D + 1 > 0, otherwise the result
would be trivial.

Max weight for each head For j = 1, . . . , s, define recursively the pairs (yj , tj) as follows:

• For the first head,
(y1, t1) = argmax

y∈P0
t∈S1

λ1(y, t).

• For j > 1,
(yj , tj) = arg max

y∈P0
t∈Sj

t/∈{t1,...,tj−1}

λj(y, t).

• If maximum can be obtained at multiple (y, t), then choose one of them.

Let Y = {y1, . . . , ys}. Since the sets K1, . . . ,KD are pairwise disjoint and s < D, there exists at
least one index i ∈ {1, . . . , D} such that

Ki ∩ Y = ∅.

Without loss of generality, we assume that i = 1. As we have |Si| ≥ 1
4T > s+D−1, i = 1, . . . , D,

we have that there exists a set of (t∗2, . . . , t
∗
D) such that

• t∗j /∈ {t1, . . . , ts}, for j = 2, . . . , D.

• t∗j are pairwise distinct.

• t∗j ∈ Sj , j = 2, . . . , D.

Let T0 = 1
4T − s − D + 1 > 0 and assume that T0 is a integer. Then we have |S1 −

{t1, . . . , ts, t∗2, . . . , t∗D}| ≥ T0 > 0. Without loss of generality, suppose {1, 2, . . . , T0} ⊂
S1 − {t1, . . . , ts, t∗2, . . . , t∗D}.
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Sequences to be considered As G1 is a segment of length r, then it is natural to assign coordinate
system η : [0, 1] → G1 on G1, with q := f1 ◦ η being a monotonically increasing function on [0, 1].
The monotone property is as a result of |f1(x)− f1(y)| ≥ L∥x− y∥2.
We denote by M = T0⌊ rL2

3T0ϵ
⌋. As T0|M , Construct the following T0 sets:

Uj =
j − 1

T0
+ { 1

M
, . . . ,

(T0

M )

M
}, j = 1, . . . , T0 (21)

We have |Uj | = ⌊ rL2

3T0ϵ
⌋ = O(1/ϵ).

Claim 2.1. Existence of two distinct sub-sequence
There exists two subsequences z1(1), . . . , z1(T0) and z2(1), . . . z2(T0) with zi(t) ∈ η(Ut) satisfying
the following conditions.

•
∥∥∥∥∑T0

t=1 λi(z1(t),t)vi(z1(t),t)∑T0
t=1 λi(z1(t),t)

−
∑T0

t=1 λi(z2(t),t)vi(z2(t),t)∑T0
t=1 λi(z2(t),t)

∥∥∥∥
2

≤ ϵk+1

3T0
, for i = 1, . . . , s.

For each i = 1, . . . , s, either of the following holds:

1.
∑T0

t=1 λi(z1(t),t)∑T0
t=1 λi(z2(t),t)

∈
[
1/(1 + ϵk+1

12T 2
0
), 1 + ϵk+1

12T 2
0

]
.

2. maxj=1,2

∑T0

t=1 λi(zj(t), t) ≤ ϵk+1

4

∑s
w=1 λi(yw, tw).

Proof. We compare the orders of 1/ϵ appearing on both sides of the conditions.

First, since |Ut| = O(1/ϵ) for each t, the total number of possible choices of subsequences
(z(1), . . . , z(T0)) is at most O(1/ϵT0).

Next, to satisfy condition (1), note that both vectors involved are n-dimensional with norms bounded
by 1. Thus, the discretization required to achieve accuracy ϵk+1/(3T0) in the ℓ2 norm leads to at
most O(1/ϵ(k+1)ns) distinct possibilities, since there are s heads.

For condition (2), observe that
s∑

w=1

λi(yw, tw) ≥ 1
T0

max
j=1,2

T0∑
t=1

λi(zj(t), t).

Hence, for each i, the relevant interval can be partitioned into at most O
(

− log ϵ
ϵk+1

)
sub-intervals.

Taken across s heads, this contributes at most O
(
(− log ϵ)s/ϵ(k+1)s

)
possibilities.

Combining the two conditions, the total number of distinct admissible cases is bounded above by

O

(
(− log ϵ)s

ϵ(k+1)ns+(k+1)s

)
.

Since T0 ≥ (k + 1)ns+ (k + 1)s+ 1, we have

O

(
1

ϵT0

)
≫ O

(
(− log ϵ)s

ϵ(k+1)ns+(k+1)s

)
.

Therefore, by the pigeonhole principle, there must exist two distinct subsequences
(z1(1), . . . , z1(T0)) and (z2(1), . . . , z2(T0)) satisfying all the conditions of Claim 2.1.

Construction of Distinct sequences From Claim 2.1, we have constructed two sub-sequences
Z1, Z2 satisfying the given conditions. We now consider the construction of two full input sequence
W1,W2:

• For t = 1, . . . , T0, if z1(t) = z2(t), then w1(t) = w2(t) = x(D). Otherwise, w1(t) =
z1(t), w2(t) = z2(t).

• wj(ti) = yi, i = 1, . . . , s; j = 1, 2.

• wj(t
∗
i ) = x(i), i = 2, . . . , D; j = 1, 2.

• For all other t, wj(t) = x(D).
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Difference of W1,W2 applied to target function Denote by I1 the set of all indices t with
z1(t) ̸= z2(t), and I2 = [T0] − I1, I3 = [T ] − I1. It is clear from the difference of Z1, Z2 that
I1 ̸= ∅.
We then define the following notations for the simplicity of calculation (defined for each head i =
1, . . . , s):

• Q1,i =
∑

t∈I1
λi(w1(t), t).

• Q2,i =
∑

t∈I1
λi(w2(t), t).

• V1,i = (
∑

t∈I1
λi(w1(t), t)vi(w1(t), t))/Q1,i.

• V2,i = (
∑

t∈I1
λi(w2(t), t)vi(w2(t), t))/Q2,i.

• Q3,i =
∑

t∈I2
λi(z1(t), t), which is also the same if defined on Z2.

• V3,i = (
∑

t∈I2
λi(z1(t), t)vi(z1(t), t))/Q3,i, which is the same if defined on Z2.

• Q4,i =
∑

t∈I3
λi(w1(t), t), which is the same if defined on W2.

• V4,i = (
∑

t∈I3
λi(w1(t), t)vi(w1(t), t))/Q4,i, which is the same if defined on W2.

As λi() maps to positive values, Vj,i are convex combinations of vi(), whose norm is bounded by 1
according to the constraint section 1. Therefore ∥Vj,i∥ ≤ 1, j = 1, 2, 3, 4.

As f1 ◦ η is monotone on [0, 1], let t̃ = maxt∈I1 t, then we have

• maxt∈S1
f1(w1(t)) = f1(w1(t̃)).

• maxt∈S1
f1(w2(t)) = f1(w2(t̃)).

And by construction we know that

∥(w1(t̃))− (w2(t̃))∥ ≥ r

M
(22)

which is the minimal distance for any two points in Ut̃. Then we have

|f1(w1(t̃))− f1(w2(t̃))| ≥
rL

M
(23)

As we have for i = 2, . . . , D

• maxt∈Si
fi(w1(t)) = z(i).

• maxt∈Si
fi(w2(t)) = z(i).

Then following the perturbation property of F0 defined above we have that the difference of output
between the two sequence to be at least rL2

M , which is greater than 3ϵ. Then ϵ-approximation requires
that |Model(W1)−Model(W2)| ≥ ϵ.

W1 and W2 are close after attention layer For any given head i, we consider the the two cases
given in 2.1.

Case 1 Case 1 can be rewritten as follows:

• ∥Q1,iV1,i+Q3,iV3,i

Q1,i+Q3,i
− Q2,iV2,i+Q3,iV3,i

Q2,i+Q3,i
∥2 ≤ ϵk+1

3T0
.

• Q1,i+Q3,i

Q2,i+Q3,i
∈
[
1/(1 + ϵk+1

12T 2
0
), 1 + ϵk+1

12T 2
0

]
.
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Without loss of generality, we assume Q1,i ≥ Q2,i. By calculation, we have

Q1,iV1,i +Q3,iV3,i

Q1,i +Q3,i
− Q2,iV2,i +Q3,iV3,i

Q2,i +Q3,i
(24)

=
Q3,i(Q2,i −Q1,i)(V3,i − V2,i)

(Q1,i +Q3,i)(Q2,i +Q3,i)
+

Q1,i

Q1,i +Q3,i
(V1,i − V2,i). (25)

We have already known that Q4,i ≥ Q1,i+Q2,i

T0
(As Q4,i has the max weight of each head in it). Then

∥Q4,i(Q2,i −Q1,i)(V4,i − V2,i)

(Q1,i +Q4,i)(Q2,i +Q4,i)
∥ (26)

≤∥ (Q2,i −Q1,i)(V4,i − V2,i)

(Q1,i +Q4,i)
∥ (27)

≤∥T0(Q2,i −Q1,i)(V4,i − V2,i)

(Q1,i +Q3,i)
∥ (28)

≤∥T0ϵ
k+1(V4,i − V2,i)

12T 2
0

∥ (29)

≤ϵk+1

6T0
(30)

Similarly, we also have

∥Q3,i(Q2,i −Q1,i)(V3,i − V2,i)

(Q1,i +Q3,i)(Q2,i +Q3,i)
∥ ≤ ϵk+1

6T0
(31)

From inequality 26 and substituting equation 24, we have

∥ Q1,i

Q1,i +Q3,i
(V1,i − V2,i)∥ ≤ ϵk+1

6T0
+

ϵk+1

3T0
=

ϵk+1

2T0
(32)

Therefore

∥ Q1,i

Q1,i +Q4,i
(V1,i − V2,i)∥ (33)

≤∥ T0Q1,i

Q1,i +Q3,i
(V1,i − V2,i)∥ (34)

≤ϵk+1

2
(35)

Thus

∥Q1,iV1,i +Q4,iV4,i

Q1,i +Q4,i
− Q2,iV2,i +Q4,iV4,i

Q2,i +Q4,i
∥2 (36)

≤∥Q4,i(Q2,i −Q1,i)(V4,i − V2,i)

(Q1,i +Q4,i)(Q2,i +Q4,i)
∥+ ∥ Q1,i

Q1,i +Q4,i
(V1,i − V2,i)∥ (37)

≤ϵk+1

6T0
+

ϵk+1

2
(38)

≤ϵk+1 (39)

Case 2 Case 2 can be rewritten as follows:

• ∥Q1,iV1,i+Q3,iV3,i

Q1,i+Q3,i
− Q2,iV2,i+Q3,iV3,i

Q2,i+Q3,i
∥2 ≤ ϵk+1

3T0
.

• Q1,i +Q3,i ≤ ϵk+1

4

∑s
w=1 λi(yw, tw) ≤ ϵk+1

4 Q4,i.

• Q2,i +Q3,i ≤ ϵk+1

4

∑s
w=1 λi(yw, tw) ≤ ϵk+1

4 Q4,i.
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Thus

∥Q1,iV1,i +Q4,iV4,i

Q1,i +Q4,i
− Q2,iV2,i +Q4,iV4,i

Q2,i +Q4,i
∥2 (40)

≤∥Q4,i(Q2,i −Q1,i)(V4,i − V2,i)

(Q1,i +Q4,i)(Q2,i +Q4,i)
∥+ ∥ Q1,i

Q1,i +Q4,i
(V1,i − V2,i)∥ (41)

≤∥ (Q2,i −Q1,i)(V4,i − V2,i)

(Q2,i +Q4,i)
∥+ ∥ Q1,i

Q1,i +Q4,i
(V1,i − V2,i)∥ (42)

≤∥ϵ
k+1(V4,i − V2,i)

4
∥+ ∥ϵ

k+1

4
(V1,i − V2,i)∥ (43)

≤ϵk+1 (44)

And it can be seen from definition that

• Q1,iV1,i+Q4,iV4,i

Q1,i+Q4,i
is the output of the i-th head of the attention layer with input sequence

W1. (which means Q1,iV1,i+Q4,iV4,i

Q1,i+Q4,i
=
∑T

t=1 σ
[
(WK,iŵ1(t))

⊤WQ,iĉ0
]
WV,iŵ1(t)).

• Q2,iV1,i+Q4,iV4,i

Q2,i+Q4,i
is the output of the i-th head of the attention layer with input sequence

W2. (which means Q2,iV2,i+Q4,iV4,i

Q2,i+Q4,i
=
∑T

t=1 σ
[
(WK,iŵ2(t))

⊤WQ,iĉ0
]
WV,iŵ2(t)).

Then for each i = 1, . . . , s, we have that

∥
T∑

t=1

σ
[
(WK,iŵ1(t))

⊤WQ,iĉ0
]
WV,iŵ1(t)−

T∑
t=1

σ
[
(WK,iŵ2(t))

⊤WQ,iĉ0
]
WV,iŵ2(t)∥ ≤ ϵk+1

(45)

Therefore, as WO have entries bounded by 1, we have

∥
[
ĉ0 +WO Concathi=1

( T∑
t=1

σ
[
(WK,iŵ1(t))

⊤WQ,iĉ0
]
WV,iŵ1(t)

)]
(46)

−
[
ĉ0 +WO Concathi=1

( T∑
t=1

σ
[
(WK,iŵ2(t))

⊤WQ,iĉ0
]
WV,iŵ2(t)

)]
∥ (47)

≤sϵk+1 (48)

However, it has been proven above that we need |Model(W1) − Model(W2)| ≥ ϵ to achieve ϵ-
approximation of the target function. According to lemma 4, the required parameter count of the
FFN F̂ is of order Ω(ϵ/ϵk+1). Thus the parameter count required to achieve ϵ-approximation is
Ω(1/ϵk).

Remark. Tightness of Theorem 2 (2) The lower bound in Theorem 2 (2) remains essentially tight
under several relaxations of the feed-forward block F̂ . If F̂ uses Heaviside activations instead
of 1-Lipschitz activations, matching upper bounds can be constructed, but this case is impractical
since Heaviside activations are rarely used in practice. If parameter norms are permitted to scale
as O(T 1/ϵ), the parameter count can be reduced to O(1/ϵγ+1), though this scenario is likewise
unrealistic in practical settings. Finally, if F̂ is allowed up to five layers, the lower bound changes
to Ω(1/ϵk/4), which does not alter the qualitative conclusion.

A.3 PROOF OF THEOREM 2 (3)

Proof Sketch. The argument is based on an explicit construction. We begin with trivial attention,
so that the post-attention output is simply the averaged concatenation 1

T (x(1), . . . , x(T )) ∈ RTd.
The feed-forward block can then be used to compute the transformations fi(x(t)), perform the
necessary comparisons, and approximate F0, as ensured by Lemmas 9 and 8.
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Having outlined the main idea, we now proceed to the detailed proof. As a first step, we introduce
several auxiliary lemmas that will be used in the argument.

Lemma 8. Fix a pointwise activation σ (e.g., ReLU or any activation used in this paper). Let
F1 : Rm1 → Rm2 be a 2-layer fully connected network, F2 : Rm2 → Rm3 a 3-layer fully connected
network, and F3 : Rm3 → R a 2-layer fully connected network. Let W1,W2,W3 denote their
respective (maximum) hidden widths, and set W := max{W1,W2,W3}. Then there exists a 5-
layer fully connected network G : Rm1 → R with activation σ and hidden width at most W such
that

G(x) = F3

(
F2

(
F1(x)

))
for all x ∈ Rm1 .

Proof. Proof of Lemma 8 Write the three networks in affine–nonlinearity form (with a pointwise
activation σ):

F1(x) = A1 σ(B1x+ b1) + a1, x ∈ Rm1 , F1(x) ∈ Rm2 ,

F2(u) = C2 σ
(
D2 σ(E2u+ e2) + d2

)
+ c2, u ∈ Rm2 , F2(u) ∈ Rm3 ,

F3(v) = p3 σ(Q3v + q3) + r3, v ∈ Rm3 , F3(v) ∈ R.

Define a 5-layer fully connected network G : Rm1 → R by stacking the hidden layers of F1 (one),
F2 (two), and F3 (one), keeping their original widths:

h1(x) := σ(B1x+ b1),

u(x) := A1h1(x) + a1,

h2(x) := σ(E2u(x) + e2),

h3(x) := σ(D2h2(x) + d2),

v(x) := C2h3(x) + c2,

h4(x) := σ(Q3v(x) + q3),

G(x) := p3h4(x) + r3.

By construction,

G(x) = p3 σ
(
Q3

(
C2 σ(D2 σ(E2(A1 σ(B1x+b1)+a1)+e2)+d2)+c2

)
+q3

)
+r3 = F3

(
F2

(
F1(x)

))
.

Thus G realizes the composition exactly, has 4 hidden layers (hence 5 layers total), and its hidden
widths are precisely those of the constituent hidden layers of F1, F2, and F3.

Lemma 9 (Approximating max with a shallow ReLU network). Let f : [0, 1]T → R be
f(x1, . . . , xT ) = max{x1, . . . , xT }. For any ϵ ∈ (0, 1], there exists a fully connected ReLU net-
work f̂ with three layers (i.e., two hidden layers and one output layer), whose hidden-layer widths
are each at most 2T ⌈1/ϵ⌉, such that f̂ ϵ-approximates f .

Proof. Proof of Lemma 9 Let
n = ⌈1/ϵ⌉.

For each coordinate t ∈ [T ] and each grid index i = 0, 1, . . . , n − 1, define the first hidden layer
neurons by

h1(t, i) = ReLU
(
xt − i

n

)
.

For each j = 0, 1, . . . , n− 1, define the second hidden layer neurons by

h2(j) = ReLU

(
T∑

t=1

h1(t, j)

)
− ReLU

(
T∑

t=1

h1(t, j)− 1
n

)
.

Finally, the output of the network is given by

f̂(x1, . . . , xT ) =

n−1∑
j=0

h2(j).
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Claim. Fix j ∈ {0, . . . , n− 1} and set

Sj =

T∑
t=1

h1(t, j) =

T∑
t=1

ReLU
(
xt −

j

n

)
.

By definition,

h2(j) = ReLU(Sj) − ReLU
(
Sj −

1

n

)
.

1) If h2(j) > 0, then necessarily Sj > 0 (since ReLU(z) > 0 iff z > 0), hence there exists some t
with

ReLU
(
xt − j

n

)
> 0 ⇐⇒ xt >

j
n .

Thus h2(j) > 0 only if ∃ t with xt > j/n.

2) If there exists t with xt > (j + 1)/n, then

Sj ≥ ReLU
(
xt − j

n

)
> 1

n .

Therefore Sj ≥ 1
n , and we get

h2(j) = Sj −
(
Sj − 1

n

)
= 1

n .

Fix x ∈ [0, 1]T and let j be such that maxt xt ∈ (j/n, (j + 1)/n]. By construction,

h2(k) = 0 for k ≥ j + 1, h2(k) =
1
n for k ≤ j − 1,

and for k = j we have

0 ≤ h2(j) = ReLU(Sj)− ReLU
(
Sj − 1

n

)
≤ 1

n , Sj :=

T∑
t=1

ReLU
(
xt − j

n

)
.

Hence

f̂(x) =

n−1∑
k=0

h2(k) =

j−1∑
k=0

1
n + h2(j) ∈

[
j
n ,

j
n + 1

n

]
=
[
j
n ,

j+1
n

]
.

Since maxt xt ∈ (j/n, (j + 1)/n], it follows that

0 ≤ |f̂(x)−max
t

xt| ≤ 1
n ≤ ϵ.

Therefore f̂ ϵ-approximates f(x) = maxt xt on [0, 1]T .

Proof. Theorem 2 (3)
We begin by fixing the embedding with positional information. Let Pϕ : [0, 1]d × [T ] → RdT be
defined by

Pϕ(x(t), t) = (0, . . . , 0, x(t), 0, . . . , 0),

where the vector x(t) occupies the t-th block of dimension d, and all other blocks are zero. With the
classification token ĉ0 = 0, the attention layer reduces to a trivial aggregation, and the output (prior
to the feed-forward network) is

1
T (x(1), . . . , x(T )) ∈ [0, 1]dT .

Given a target accuracy ϵ > 0, we construct three feed-forward networks F1, F2, F3 as follows.

Step 1: Approximating the component functions. Define

F1 : 1
T [0, 1]

d×T → RD×T , F1

(
1
T x(1), . . . ,

1
T x(T )

)
= (u(1), . . . , u(T )),

where each u(t) ∈ RD satisfies

|u(t)i − fi(x(t))| ≤ ϵ for all i = 1, . . . , D.

By Assumption 3, such an approximation can be implemented by a two-layer FFN with parameter
count O(1/ϵγ).
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Step 2: Approximating the minimization. Let F ′
2 : RD×T → RD be defined by

F ′
2(u(1), . . . , u(T )) = (u1, . . . , uD), ui = min

t∈Si

u(t)i.

By Lemma 9 (which works the same for taking minimum), there exists a three-layer ReLU network
with O(1/ϵ) parameters that ϵ-approximates F ′

2. We denote this approximation by F2.

Step 3: Approximating the outer function. Finally, let F3 : RD → R be a two-layer FFN that
ϵ-approximates F0, with parameter count O(1/ϵγ).

Composition. Since F0 is C1 on a compact domain, it is Lipschitz with constant L, and the min
operator is 1-Lipschitz. Therefore, the composed network

F3 ◦ F2 ◦ F1

provides an Lϵ-approximation of the target function, with total parameter count

O(1/ϵγ+1).

According to lemma 8, F3 ◦ F2 ◦ F1 can be written equivalently as a five-layer FFN.

A.4 PROOF OF COROLLARY 1

Proof Sketch. It is a direct corollary of Theorem 2 (1) and 2 (2).

Proof. Suppose D1 < D2. Let M0 be the minimal positive integer such that H(D1, 2, d, T,M0)

ϵ-approximates H . Then with representation ({fi, Si}D1
i=1, F0), Theorem 2 (1) suggests that there

exists a positive Cd,D1,T such that

M0 ≤ Cd,D1,T

ϵγ
(49)

With representation ({f̃i, S̃i}D2
i=1, F̃0), Theorem 2 (2) suggests that there exists a positive Cd,D2,T

such that

M0 ≥ Cd,D2,T

ϵk
for k =

( 14T −D1 −D2 + 1)

3D1 + 1
− 1 (50)

As fi and F0 are at least C1 smooth, we have γ ≤ max(D1, D2). Thus with D2
1 +D2

2 ≤ 1
50T , we

have k > γ. Then there exist ϵ > 0 such that

Cd,D2,T

ϵk
>

Cd,D1,T

ϵγ
(51)

This leads to a contradiction. Thus D1 = D2.
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B EXPERIMENT DETAILS

B.1 DETAILS FOR EXPERIMENT 1

B.1.1 EXPERIMENTAL DETAILS FOR SECTION 6.1

Data generation. The intrinsic dimension of the synthetic task is D = 4. For each sequence length
T ∈ {8, 16, 32, 64, 128} we generate 8000 training and 2000 validation examples. The inputs are
i.i.d. Gaussian samples x(t) ∼ N (0, I4).

Model architecture. Each input vector x(t) is first mapped to R8h by a two-layer feed-forward
network with hidden dimension N and ReLU activations, ensuring a per-head embedding dimen-
sion of 8. A trainable classification token c0 is appended, and no positional encoding is used since
the task is permutation invariant. The sequence is processed by a single-layer multi-head attention
block without residual connections or layer normalization, consistent with the theoretical setting.
The output is concatenated and passed through a two-layer GeLU-activated feed-forward network
with hidden dimension N , yielding the final scalar prediction. The fixed hidden size ensures com-
parability of parameter counts across different h.

Training protocol. Each configuration (h, T ) is trained separately under multiple random seeds.
To reduce the effect of optimization variance, we report the minimal validation error achieved across
seeds. This choice isolates expressivity limitations of the architecture from randomness in training
dynamics.

Evaluation metric. We adopt the normalized mean squared error (NMSE), defined as mean
squared error divided by the variance of the targets. As T increases, maxima of Gaussian sam-
ples concentrate, shrinking target variance and making trivial predictors appear competitive under
raw MSE. (An intuition is that suppose the target output be YT = max1≤t≤T xt with input tokens
xt ∼ N (0, 1) independently, then Var(YT ) decreases as T increases, because YT concentrates more
tightly around its growing mean.)Normalization by variance corrects this effect and ensures compa-
rability across lengths. NMSE is also equivalent to 1 − R2, where R2 is the standard coefficient of
determination.

Variance across seeds. While mean performance across seeds is also informative, reporting the
minimal validation NMSE highlights the best achievable accuracy for a given architecture. This em-
phasizes limitations due to model capacity rather than training noise. Tables showing seed variance
are included for completeness (Table 2).

Remark. When h ≥ D = 4, we also observe that the validation NMSE first decreases rapidly and
then increases slowly as T grows. For shorter sequences, the model with enough heads can either
capture the pattern through attention (Theorem 2 (1)) or rely on a memorization-based strategy with
the feed-forward network (Theorem 2 (3)). Both approaches generalize reasonably well, but the
memorization-based one does so less effectively. For longer sequences, memorization becomes
infeasible and the model relies on attention, which generalizes better; however, longer sequences
may also be more sensitive to parameterization, and the observed curve likely reflects a tradeoff
between these effects. See Figure 3 in Appendix.

B.1.2 FIGURES AND TABLES FOR SYNTHETIC EXPERIMENT 6.1

Heads T=8 T=16 T=32 T=64 T=128
1 7.01× 10−2 ± 5.99× 10−2 1.09× 10−1 ± 9.93× 10−2 1.10× 10−1 ± 9.36× 10−2 1.14× 10−1 ± 8.53× 10−2 1.45× 10−1 ± 1.05× 10−1

2 7.31× 10−3 ± 4.75× 10−4 8.41× 10−3 ± 7.97× 10−4 9.42× 10−3 ± 6.42× 10−4 1.31× 10−2 ± 1.16× 10−2 1.47× 10−2 ± 1.21× 10−2

3 6.94× 10−4 ± 2.90× 10−4 6.40× 10−4 ± 3.87× 10−4 9.09× 10−4 ± 4.31× 10−4 1.31× 10−3 ± 5.10× 10−4 1.58× 10−3 ± 5.21× 10−4

4 6.10× 10−5 ± 1.52× 10−4 4.36× 10−5 ± 1.93× 10−4 4.80× 10−5 ± 2.30× 10−4 8.75× 10−6 ± 5.58× 10−5 5.23× 10−6 ± 5.67× 10−6

5 3.35× 10−5 ± 5.84× 10−5 1.10× 10−5 ± 2.36× 10−5 4.91× 10−6 ± 6.32× 10−6 4.19× 10−6 ± 8.39× 10−6 3.99× 10−6 ± 4.29× 10−6

Table 2: Error bar for synthetic dataset. NMSE(Mean ± Standard Deviation) for different sequence
lengths T and number of heads.
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Figure 3: A zoom in plot of Figure1, which shows that when the number of head is enough, the loss
first decreases and then increases, as explained in the remark B.1.1
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Figure 4: Additional plot of 1b for H = 1 and H = 2.

Heads T=8 T=16 T=32 T=64 T=128
1 1.75× 10−2 1.98× 10−2 2.06× 10−2 2.54× 10−2 3.03× 10−2

2 7.17× 10−3 7.39× 10−3 7.82× 10−3 8.57× 10−3 1.02× 10−2

3 2.11× 10−4 2.17× 10−4 2.73× 10−4 3.71× 10−4 4.77× 10−4

4 1.32× 10−6 5.59× 10−7 3.40× 10−7 3.46× 10−7 5.70× 10−7

5 2.19× 10−6 4.33× 10−7 3.22× 10−7 2.73× 10−7 2.66× 10−7

Table 3: Validation NMSE under fixed total embedding dimension E = nh = 32.

Heads T=8 T=16 T=32 T=64 T=128
1 1.38× 10−2 1.63× 10−2 1.84× 10−2 2.17× 10−2 2.31× 10−2

2 1.09× 10−3 7.08× 10−4 7.24× 10−4 7.76× 10−4 1.11× 10−3

3 4.18× 10−7 1.72× 10−7 1.17× 10−7 3.58× 10−7 2.11× 10−7

4 5.56× 10−7 1.22× 10−7 6.89× 10−8 1.85× 10−7 3.48× 10−7

Table 4: Approximation error for the D = 3 retrieval task under fixed total embedding dimension
E = nh.
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Heads T=8 T=16 T=32 T=64 T=128
1 2.12× 10−4 1.85× 10−4 2.22× 10−4 3.13× 10−4 4.28× 10−4

2 7.22× 10−6 2.69× 10−6 3.50× 10−6 3.07× 10−6 3.83× 10−6

3 8.16× 10−6 1.83× 10−6 1.73× 10−6 3.86× 10−6 3.50× 10−6

4 3.68× 10−6 1.87× 10−6 2.60× 10−6 4.32× 10−6 5.98× 10−6

5 6.15× 10−6 3.02× 10−6 3.31× 10−6 3.78× 10−6 5.34× 10−6

Table 5: Two-layer transformer on the synthetic task (D = 4, NoPE, NoLN, fixed total embedding
dimension E = nh = 32).

B.2 MS MARCO TEXT RETRIEVAL

B.2.1 EXPERIMENT DETAILS FOR MS MARCO (TEXT RETRIEVAL) EXPERIMENT

Dataset construction. We construct retrieval-style datasets from the MS MARCO passage rank-
ing collection (Bajaj et al., 2016). Since the original dataset associates each query with only a few
candidate passages, we enlarge the candidate set by mining hard negatives. Specifically, BM25
(Robertson & Zaragoza, 2009) is used to mine local negatives and FAISS (Johnson et al., 2019) sim-
ilarity search to retrieve global negatives, reducing redundancy across queries. For each query, the
sequence length T is defined as the total number of candidates (one positive and T − 1 negatives),
with T ∈ {8, 16, 32, 64}. We build datasets containing 28,000 training queries and 2,000 validation
queries for each T .

Model and training setup. We evaluate a two-layer Transformer encoder with per-head embed-
ding dimension fixed at 32, while varying the number of heads across {1, 2, 4, 6, 8, 10, 12, 14, 16}.
Tokenization and input embeddings follow the BERT tokenizer and frozen BERT word, position,
and segment embeddings (Devlin et al., 2019), projected to the model hidden size h = heads × 32.
Only the projection and Transformer layers are trained. We report training top-1 accuracy, focusing
on training performance since MS MARCO with BM25-mined negatives is particularly challenging
for validation, and the difference can be seen in training metrics. Training MRR is also reported in
Fig 5, with similar trend as training accuracy.

B.2.2 FIGURES AND TABLES FOR EXPERIMENT

Heads T=8 T=16 T=32 T=64
1 0.597± 0.003 0.450± 0.005 0.303± 0.003 0.154± 0.002
2 0.771± 0.003 0.647± 0.003 0.486± 0.002 0.286± 0.002
4 0.956± 0.002 0.900± 0.002 0.793± 0.002 0.580± 0.004
6 0.992± 0.000 0.977± 0.001 0.937± 0.001 0.814± 0.002
8 0.998± 0.000 0.995± 0.000 0.983± 0.001 0.932± 0.002

12 1.000± 0.000 0.999± 0.000 0.998± 0.000 0.991± 0.001
16 1.000± 0.000 1.000± 0.000 0.999± 0.000 0.996± 0.000

Table 6: Error bar for MS Marco dataset. Accuracy (Mean ± Standard Deviation) for different
sequence lengths T and number of heads.

B.3 CIFAR-10 IMAGE CLASSIFICATION

B.3.1 DATASET CONSTRUCTION

We create image classification datasets from the CIFAR-10 dataset using a padded preprocessing
approach. The original CIFAR-10 images have dimensions of 32 × 32 pixels. To generate datasets
with larger image sizes, we apply padding to achieve sizes in the set {32, 48, 64, 96, 128}. The
original image is randomly positioned within the enlarged frame, with padding filled using the colors
of the border pixels. An illustration is provided in Figure 6. By apply this padding method we are
creating tasks with increasing difficulty. The background is enlarged, making models need more
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Heads T=8 T=16 T=32 T=64
1 0.5107± 0.0069 0.3917± 0.0071 0.2542± 0.0049 0.1257± 0.0057
2 0.5221± 0.0102 0.4205± 0.0056 0.2712± 0.0067 0.1369± 0.0038
4 0.5076± 0.0112 0.4048± 0.0070 0.2547± 0.0093 0.1139± 0.0061
6 0.5153± 0.0112 0.3865± 0.0103 0.2397± 0.0098 0.1018± 0.0057
8 0.5058± 0.0082 0.3801± 0.0084 0.2308± 0.0068 0.0983± 0.0050

12 0.5184± 0.0073 0.3721± 0.0107 0.2219± 0.0091 0.0902± 0.0054
16 0.5021± 0.0123 0.2816± 0.0418 0.2170± 0.0075 0.0878± 0.0058

Table 7: MS Marco Validation Accuracy (Mean ± Standard Deviation) for different sequence lengths
T and number of heads.
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Figure 5: Plot of training mrr for MS MARCO dataset.

effort to learn how to extract useful information. The random placement make sure the padded
outside aera cannot be simply ignored by position encodings.

Each image is divided into non-overlapping patches of size 8 × 8 pixels, resulting in a sequence of
patches for each image. For each image size, the sequence length T is defined as the total number
of patches plus one additional class token, with T = {17, 37, 65, 145, 257}. We adopt the standard
CIFAR-10 data splits, which include 50, 000 training images and 10, 000 test images across 10
classes.

B.3.2 MODEL TRAINING SETUP

We evaluate a Vision Transformer (ViT) with four layers and a per-head embedding dimension of
16, while varying the number of attention heads in different configurations. Each image patch is
embedded through a linear projection, and positional embeddings are added along with a learnable
class token. No global convolutional embedding is used.

Input processing follows the standard ViT procedure, including patch embedding of size 8× 8, po-
sitional encoding, and aggregation of the class token for final classification. The model is trained
using the AdamW optimizer with cosine annealing learning rate scheduling. Standard architectural
techniques, such as layer normalization, residual connections, and dropout, are employed for regu-
larization.
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Figure 6: Examples of the padded images from the dataset.

Heads Seq=65 Seq=145 Seq=257 Seq=577 Seq=1025
1 4.78× 101 ± 4.50× 10−1 4.37× 101 ± 4.70× 10−1 4.20× 101 ± 5.00× 10−1 4.08× 101 ± 6.50× 10−1 4.00× 101 ± 7.20× 10−1

2 5.97× 101 ± 4.50× 10−1 5.52× 101 ± 3.80× 10−1 5.34× 101 ± 4.40× 10−1 5.15× 101 ± 4.70× 10−1 5.08× 101 ± 7.40× 10−1

4 7.55× 101 ± 2.10× 10−1 7.03× 101 ± 3.20× 10−1 6.85× 101 ± 7.70× 10−1 6.62× 101 ± 6.00× 10−1 6.58× 101 ± 7.20× 10−1

8 9.51× 101 ± 1.50× 10−1 9.26× 101 ± 4.70× 10−1 9.14× 101 ± 6.20× 10−1 9.07× 101 ± 1.02× 100 9.02× 101 ± 1.00× 100

10 9.81× 101 ± 5.00× 10−2 9.73× 101 ± 2.40× 10−1 9.67× 101 ± 4.60× 10−1 9.65× 101 ± 3.20× 10−1 9.67× 101 ± 7.30× 10−1

11 9.88× 101 ± 1.20× 10−1 9.83× 101 ± 1.20× 10−1 9.81× 101 ± 2.40× 10−1 9.77× 101 ± 2.10× 10−1 9.79× 101 ± 2.20× 10−1

12 9.92× 101 ± 3.00× 10−2 9.89× 101 ± 1.60× 10−1 9.86× 101 ± 2.40× 10−1 9.86× 101 ± 1.90× 10−1 9.86× 101 ± 2.90× 10−1

13 9.94× 101 ± 6.00× 10−2 9.93× 101 ± 6.00× 10−2 9.91× 101 ± 1.10× 10−1 9.90× 101 ± 2.00× 10−1 9.91× 101 ± 2.50× 10−1

14 9.96× 101 ± 3.00× 10−2 9.94× 101 ± 9.00× 10−2 9.93× 101 ± 1.00× 10−1 9.93× 101 ± 1.70× 10−1 9.93× 101 ± 2.30× 10−1

16 9.97× 101 ± 3.00× 10−2 9.96× 101 ± 2.00× 10−2 9.95× 101 ± 7.00× 10−2 9.96× 101 ± 1.40× 10−1 9.96× 101 ± 1.70× 10−1

20 9.98× 101 ± 1.00× 10−2 9.97× 101 ± 5.00× 10−2 9.97× 101 ± 8.00× 10−2 9.98× 101 ± 6.00× 10−2 9.99× 101 ± 7.00× 10−2

24 9.99× 101 ± 2.00× 10−2 9.98× 101 ± 2.00× 10−2 9.98× 101 ± 4.00× 10−2 9.99× 101 ± 4.00× 10−2 9.99× 101 ± 5.00× 10−2

Table 8: Error bar for Image task. Accuracy (Mean ± Standard Deviation) for different sequence
lengths and number of heads.

C LARGE LANGUAGE MODEL USAGE

Large language models were used only for linguistic refinement (e.g., polishing sentences and check-
ing grammar). The core ideas, theoretical results, experimental design, and analyses presented in
this paper were entirely developed by the authors without assistance from large language models.
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Heads T=65 T=145 T=257 T=577 T=1025
1 50.50± 0.44 45.85± 0.58 43.53± 0.58 41.43± 0.97 39.95± 0.75
2 60.01± 0.57 55.01± 0.25 53.12± 0.69 49.95± 0.80 48.53± 0.83
4 67.98± 0.43 63.49± 0.70 61.42± 0.61 57.19± 0.54 55.31± 0.85
8 69.65± 0.55 66.06± 0.53 62.43± 0.95 57.58± 0.59 56.18± 1.14

10 69.70± 0.24 65.64± 0.37 62.45± 0.49 57.21± 1.03 54.44± 1.49
11 69.84± 0.36 65.26± 0.43 61.97± 0.29 56.95± 0.63 53.77± 2.91
12 69.66± 0.39 65.79± 0.56 62.63± 0.36 56.57± 0.66 53.17± 1.06
13 69.72± 0.18 65.30± 0.59 61.66± 0.58 54.81± 2.23 52.90± 1.45
14 69.49± 0.48 65.25± 0.48 61.32± 0.95 54.01± 2.13 50.42± 2.48
16 69.69± 0.33 64.24± 0.33 59.29± 1.12 49.68± 1.39 48.51± 2.59
20 67.99± 0.35 61.49± 1.07 55.25± 2.12 48.65± 0.85 46.89± 1.07
24 65.12± 0.68 56.80± 1.09 52.14± 0.56 48.74± 0.60 48.39± 0.76

Table 9: Error bar for Image task. Validation Accuracy (Mean ± Standard Deviation) for different
sequence lengths and number of heads.

Table 10: Hyperparameter settings of popular transformer models. Only d (embedding dimension),
L (number of layers), and H (number of attention heads) are shown for brevity.

H Model d L Year
8 Attention is all you need 512 6 2017
8 Gemma 2B 2,048 18 2024

12 GPT 768 12 2018
16 BERT-Large 1,024 24 2019
16 ViT-Huge 1,280 32 2021
16 Gemma 7B 3,072 28 2024
28 Turing-NLG 4,256 78 2020
32 LLaMA-7B 4,096 32 2023
32 Baichuan 2-7B 4,096 32 2023
32 Mistral 7B 4,096 32 2023
32 Yi-6B 4,096 32 2023
32 LLaMA 3-8B 4,096 32 2024
32 Mixtral 8x7B 4,096 32 2024
40 LLaMA-13B 5,120 40 2023
40 Baichuan 2-13B 5,120 40 2023
56 Yi-34B 7,168 60 2023
64 LLaMA-65B 8,192 80 2023
64 Llama-2-70B 8,192 80 2023
64 LLaMA 3-70B 8,192 80 2024
96 GPT-3 12,288 96 2020
96 Jurassic-1 13,824 76 2021
128 MT-NLG 20,480 105 2021
128 LaMDA 8,192 64 2022
128 LLaMA 3.1-405B 16,384 126 2024
128 DeepSeek-V2 5,120 60 2024
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