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Abstract

Recent studies show that graph convolutional network (GCN) often performs worse
for low-degree nodes, exhibiting the so-called structural unfairness for graphs
with long-tailed degree distributions prevalent in the real world. Graph contrastive
learning (GCL), which marries the power of GCN and contrastive learning, has
emerged as a promising self-supervised approach for learning node representations.
How does GCL behave in terms of structural fairness? Surprisingly, we find
that representations obtained by GCL methods are already fairer to degree bias
than those learned by GCN. We theoretically show that this fairness stems from
intra-community concentration and inter-community scatter properties of GCL,
resulting in a much clear community structure to drive low-degree nodes away from
the community boundary. Based on our theoretical analysis, we further devise a
novel graph augmentation method, called GRAph contrastive learning for DEgree
bias (GRADE), which applies different strategies to low- and high-degree nodes.
Extensive experiments on various benchmarks and evaluation protocols validate
the effectiveness of the proposed method.

1 Introduction

Despite their strong expressive power in graph representation learning, recent studies reveal that the
performance of vanilla graph convolutional network (GCN) [17] exhibits a structural unfairness [25,
16], which is primarily beneficial to high-degree nodes (head nodes) but biased against low-degree
nodes (tail nodes). Such a performance disparity is alarming and causes a performance bottleneck,
given that node degrees of real-world graphs often follow a long-tailed power-law distribution [2].

Graph contrastive learning (GCL) [30, 24, 22, 38] has been a promising paradigm in graph domain,
which integrates the power of GCN and contrastive leaning [13, 5, 10]. In a nutshell, these methods
typically construct multiple views via stochastic augmentations of the input, then optimize the GCN
encoder by contrasting positive samples against negative ones. Inheriting advantages of contrastive
learning, GCL relieves graph representation learning from human annotations, and displays state-of-
the-art performance in a variety of tasks [35, 12, 39, 36].

Will GCL present the same structure unfairness as GCN? For this purpose, we conduct experiments
to surprisingly find out that GCL methods are better at maintaining structural fairness where a
smaller performance gap exists between tail nodes and head nodes than that of GCN. This finding
suggests that GCL has the potential to mitigate structural unfairness. Based on this finding, a natural
and fundamental question arises: why is graph contrastive learning fairer to degree bias? A well-
informed answer can yield profound insights into solutions to this important problem, and deepen our
understanding of the mechanism of GCL.

∗Corresponding authors.
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(a) GCN on Cora
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(b) DGI on Cora

5 10 15 20 25 30 35 40
Degree

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. A
cc

.

y=0.0018x+0.7426

(c) GraphCL on Cora
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(d) GCN on Citeseer
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(e) DGI on Citeseer
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(f) GraphCL on Citeseer

Figure 1: Visualization for the fairness of models to degree bias. Blue scatters refer to the average
accuracy (Avg. Acc.) of a specific degree group. Orange dotted lines are regression lines of blue
scatters in each figure. For clarity, we annotate analytical expressions of regression lines. The higher
the average accuracy of tail nodes and the smaller the slope of the regression line indicate that the
model is fairer to degree bias.

Intuitively, graph augmentation provides an opportunity for tail nodes to generate more within-
community edges, making their representations closer to those with the same community via the
contrastive framework. These refined representations drive tail nodes away from the community
boundary. Theoretically, we prove that node representations learned by GCL conform to a clearer
community structure by Intra-community Concentration Theorem 1 and Inter-community Scatter
Theorem 2. These theorems are relevant to two crucial components in GCL. One is the alignment
of positive pairs, which is exactly the optimization objective. The other is the pre-defined graph
augmentation, determining the concentration of augmented representations. Based on the analysis,
we establish the relation between graph augmentation and representation concentration, implying
that a well-designed graph augmentation can promote structural fairness by concentrating augmented
representations.

To take a step further, we propose a GRAph contrastive learning for DEgree bias (GRADE) based
on a novel graph augmentation. To make augmented representations more concentrated within
communities, GRADE enlarges limited neighbors of tail nodes to contain more nodes within the
same community, where the ego network of the tail node interpolates with that of the sampled similar
node. As for head nodes, GRADE purifies their ego networks by removing neighbors from different
communities. Extensive experiments on various benchmark datasets and several evaluation protocols
validate the effectiveness of GRADE.

In summary, our contributions are four-fold:

• We are the first to discover that GCL methods exhibit more structural fairness than GCN, which
has a smaller performance disparity between tail nodes and head nodes. This discovery inspires a
new path for alleviating structural unfairness based on contrastive learning.

• We theoretically validate the reason for structural fairness in GCL is that GCL stimulates intra-
community concentration and inter-community scatter. Therefore, tail nodes are farther away from
the community boundary for better classification.

• Based on theoretical insights, we propose a method GRADE to further improve structural fairness
by enriching the neighborhood of tail nodes while purifying neighbors of head nodes.

• Comprehensive experiments demonstrate that our GRADE outperforms baselines on multiple
benchmark datasets and enhances the fairness to degree bias.
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2 Exploring the Behavior of Graph Contrastive Learning on Degree Bias

Real-world graphs in many domains follow a long-tailed distribution in node degrees, i.e., a significant
fraction of nodes are tail nodes with small degrees. It is well known that GCN often performs worse
accuracy for tail nodes. Here we aim to study how GCL behaves under degree bias.

Experimental Setup We take two representative GCL algorithms DGI [30] and GraphCL [35] as
examples to analyze the performance disparity under degree bias. Specifically, we train DGI and
GraphCL on four benchmarks Cora [17], Citeseer [17], Photo [23] and Computer [23], and leverage
early stopping based on the training loss. To compare with GCN, our linear evaluation protocol
deploys the semi-supervised split [17], where 20 labeled nodes per class form training set and test set
composes of randomly sampled 1000 nodes with degrees less than 50. GCN follows the standard
training paradigm [17] with the above train-test split. Further implementation details and chosen
hyper-parameters are deferred to Appendix A.

Results To illustrate the fairness to degree bias, we group nodes of the same degree and calculate
the average accuracy of these degree groups separately shown in Figure 1. To further visualize how
the model balances the performance between tail nodes and head nodes, we fit these scatters with
linear regression. If the slope of the regression line is flat, the model is fair to degree bias. More
results on Photo and Computer datasets can be seen in Appendix A. From the figure, we can find
that the average accuracy for tail nodes of GCL methods DGI and GraphCL is higher than that of
GCN, and the slope of the regression line is also smaller. These interesting observations suggest that
label-independent GCL methods are actually fairer than GCN under degree bias.

3 Analysis on the Structural Fairness of Graph Contrastive Learning

Based on the above observations, a natural and fundamental question arises: where does this structural
fairness stem from? We first define some preliminary notations, then provide a theoretical analysis to
explain this question.

3.1 Preliminary Notations

Let G = (V, E , X) be a graph, where V is the set of N nodes {v1, v2, · · · , vN}, E ⊆ V ×V is the set
of edges, X = [x1,x2, · · · ,xN ] ∈ RN×B represents the node feature matrix and xi is the feature
vector of node vi. The edges can be represented by an adjacency matrix A ∈ {0, 1}N×N , where
Aij = 1 iff (vi, vj) ∈ E . Given unlabeled training nodes, each node belongs to one of K latent
communities C1, C2, · · · , CK . Assuming the augmentation set T consisting of all transformations
on topology, the set of potential positive samples generated from ego network Gi of node vi is denoted
as T (Gi). The goal of GCL is to learn a GCN encoder f such that positive pairs are closely aligned
while negative pairs are far apart. Here we focus on topological augmentation and single-layer GCN,

f(Gi) = ReLU(L̃iXW ), (1)

where L̃i is the i-row of transition matrix L̃ = D̃−1Ã, Ã = A+ I is self-looped adjacency matrix
and D̃ii =

∑
j Ãij is degree matrix. We consider a community indicator Ff

Ff (Gi) = argmin
k∈[K]

∥f(Gi)− µk∥, (2)

where µk = Evi∈Ck
EĜi∈T (Gi)

[f(Ĝi)] is the community center, and ∥ · ∥ stands for l2-norm. To
quantify the performance of Ff , the error can be formulated as

Err(Ff ) =

K∑
k=1

P[Ff (Gi) ̸= k,∀vi ∈ Ck]. (3)

With the above definitions, we denote Sε = {vi ∈ ∪K
k=1Ck : ∀Ĝ1

i , Ĝ2
i ∈ T (Gi), ∥f(Ĝ1

i )− f(Ĝ2
i )∥ ≤

ε} as the set of nodes with ε-close representations among graph augmentations.

3.2 Theoretical Analysis

We assume the nonlinear transformation has M -Lipschitz continuity, i.e., ∥f(Gi) − f(Gj)∥ =

∥ReLU(L̃iXW )−ReLU(L̃jXW )∥ ≤ M∥L̃iX − L̃jX∥, and graph augmentations are uniformly
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sampled with m augmented edges P[Ĝi = T (Gi)] = 1/C(N − 1,m). Let there be a ball of radius
βm such that for any augmentation ∥L̃iX − L̂iX∥2 ≤ βm, where L̂ is the augmented transition.

Theorem 1 Intra-community Concentration. Let pre-transformation representations L̃X be sub-
Gaussian random variable with variance σ2. For all nodes vi ∈ Sε, if ε2 ≤ βm

6M2κ , their repre-
sentations f(Gi) fit sub-Gaussian distribution with variance σ2

f,ε ≤ 1
κσ

2 with κ ≥ 1 where κ is a
coefficient that reflects the degree of concentration.

This theorem builds a relation between the intra-community concentration of final representations
and the alignment of positive pairs in Sε. Specifically, intra-commmunity concentration requires
smaller ε. By decreasing the distance between positive pairs, GCL fits the requirement.

Next, we demonstrate that GCL also maintains the property of inter-community scatter for community
assignment. For a given augmentation set T , we first define the augmentation distance between two
nodes as the minimum distance between their pre-transformation representations,

dT (vi, vj) = min
Ĝi∈T (Gi),Ĝj∈T (Gj)

∥L̂iX − L̂jX∥ = min
Ĝi∈T (Gi),Ĝj∈T (Gj)

∥( Âi

d̂i
− Âj

d̂j
)X∥, (4)

where Âi is the i-row of augmented adjacency matrix Â, and d̂i is the augmented node degree.
Based on the augmentation distance, we further introduce the definition of (α, γ, d̂)-augmentation to
measure the concentration of pre-transformation representations.

Definition 1 (α, γ, d̂)-Augmentation. The augmentation set T is a (α, γ, d̂)-augmentation, if for
each community Ck, there exists a subset C0

k ⊂ Ck such that the following two conditions hold

1. P[vi ∈ C0
k ] ≥ αP[vi ∈ Ck] where α ∈ (0, 1],

2. supvi,vj∈C0
k
dT (vi, vj) ≤ γ( B

d̂k
min

)
1
2 where γ ∈ (0, 1],

where d̂kmin = minvi∈C0
k,Ĝi∈T (Gi)

d̂i, and B is the feature dimension.

Larger α and smaller γ(B/d̂kmin)
1
2 indicate pre-transformation representations are more concentrated.

We assume that the representation is normalized by ∥f(Gi)∥ = r and let pk = P[vi ∈ Ck]. Then we
simultaneously bound the inter-community distance and the error of the community indicator.

Lemma 1 For a (α, γ, d̂)-augmentation with subset C0
k of each community Ck, if nodes belonging

to (C0
1 ∪ · · · ∪ C0

K) ∩ Sε can be correctly assigned by the community indicator Ff , then the error of
all nodes can be bounded by (1− α) +Rε, where Rε = P[Sε] is the proportion of complement.

The above lemma presents a sufficient condition to guarantee the performance of the community
indicator. Then we need to explore when nodes in (C0

1 ∪ · · · ∪ C0
K) ∩ Sε can be correctly assigned

by Ff .

Lemma 2 For a (α, γ, d̂)-augmentation and each ℓ ∈ [K], if

µ⊤
ℓ µk < r2(1− ρℓ(α, γ, d̂, ε)−

√
2ρℓ(α, γ, d̂, ε)−

∆µ

2
)

holds for all k ̸= ℓ, then every node vi ∈ C0
ℓ∩Sε can be correctly assigned by the community indicator

Ff , where ρℓ(α, δ, ε) = 2(1− α) + 2Rε

pℓ
+ α( Mγ

√
B

r
√

d̂ℓ
min

+ 2ε
r ) and ∆µ = 1−mink∈[K] ∥µk∥2/r2.

Combining Lemma 1 and 2, we can obtain the Inter-community Scatter Theorem as follows.

Theorem 2 Inter-community Scatter. For a (α, γ, d̂)-augmentation, if

µ⊤
ℓ µk < r2(1− ρmax(α, γ, d̂, ε)−

√
2ρmax(α, γ, d̂, ε)−

∆µ

2
) (5)
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holds for any pair of (ℓ, k) with ℓ ̸= k, then the error of the community indicator Ff can be

bounded by (1 − α) + Rε, where ρmax(α, γ, d̂, ε) = 2(1 − α) + maxℓ

(
2Rε

pℓ
+ Mαγ

√
B

r
√

d̂ℓ
min

)
+ 2αε

r )

and ∆µ = 1−mink∈[K] ∥µk∥2/r2.

For the better assignment, the RHS of Equation 27 should approach r2, implying that smaller
ρmax(α, γ, d̂, ε) is required. We further bound Rε by the alignment objective of contrastive loss.

Theorem 3 The term Rε is upper bounded by

Rε ≤
[C(N − 1,m)]2

ε
Evi

EĜ1
i ,Ĝ2

i ∈T (Gi)
∥f(Ĝ1

i )− f(Ĝ2
i )∥. (6)

We direct the readers to Appendix B for proof of all the above lemmas and theorems. The combination
of Theorem 2 and Theorem 3 indicates that the inter-community distance and the error of community
indicator are controlled by two key factors. 1) The alignment of positive pairs. Good alignment en-
ables small EĜ1

i ,Ĝ2
i ∈T (Gi)

∥f(Ĝ1
i )−f(Ĝ2

i )∥, resulting in small Rε. 2) The concentration of augmented
representations, where sharper concentration implies larger α in Definition 1. Small Rε and large
α directly decrease the error bound of community indicator, and provide small ρmax(α, γ, d̂, ε) for
inter-community scatter. It is worth mentioning that the first factor is the contrastive objective in GCL,
reflecting the reason for structural fairness in the GCL framework. While the second factor depends
on the graph augmentation. Thus, we are motivated to propose a graph augmentation designed for
further concentrating augmented representations.

4 GRADE Methodology

In this section, we present our novel GRADE framework dedicated to degree bias in detail, starting
with the special graph augmentation, followed by the objective of GCL.

4.1 Graph Augmentation

We generate two augmentations Ĝ1 and Ĝ2 by simultaneously corrupting the original feature and
topology to construct diverse contexts [36, 26]. We denote node representations in these two
augmentations as H = f(Ĝ1) and O = f(Ĝ2).

Topology Augmentation To obtain more concentrated augmented representations, we aim to
increase intra-community edges while decreasing inter-community edges. Due to the different
structural properties of tail nodes and head nodes, we design different topology augmentation
strategies for them shown in Figure 2. In order to expand the neighborhood of tail nodes to include
more same-community nodes, we interpolate the ego network of the anchor tail node vtail with that
of a sampled similar node vsample. To prevent injecting many different-community neighbors, we
regulate the interpolation ratio depending on the similarity between vtail and vsample. For head
nodes, we purify their neighborhood by similarity-based sampling to remove inter-community edges.

Formally, we build the similarity matrix S between node pairs based on cosine similarity of their
representations, Sij = sim(hi,hj) for i ̸= j and Sii = 0 otherwise. For any tail node vtail, we
sample a node vsample from the multimodal distribution Multi(stail), where stail is the row vector
of S corresponding to vtail. Then we construct a new similarity-aware neighborhood for vtail by
interpolating between neighbor distributions of vtail and vtarget. Here, the neighbor distribution
for node v is defined as p(u|v) = 1/|N (v)| if u ∈ N (v) and p(u|v) = 0 otherwise. To avoid the
detrimental connectivity, the similarity sim(htail,hsample) is used as the interpolation ratio ϕ,

psample(u|vtail) = (1− ϕ)p(u|vtail) + ϕp(u|vsample). (7)

The interpolation ratio ϕ decreases as the similarity between vtail and vsample decreases, and we
guarantee (1 − ϕ) to be at least 0.5 to preserve the original neighborhood. Given the neighbor
distribution psample(u|vtail), we sample neighbors from it without replacement. The number of
neighbors is sampled from degree distribution except tail nodes to keep degree statistics.
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Figure 2: Topology augmentation in GRADE. Different augmentation strategies are designed for tail
nodes and head nodes. Tail nodes obtain more intra-community edges by interpolation, while head
nodes remove inter-community edges via purification.

For each head node vhead, we define the similarity distribution for purification. Specifically, the
similarity distribution for node v is psim(u|v) = sim(hu,hv) if u ∈ N (v) and p(u|v) = 0 otherwise.
Based on the similarity distribution psim(u|vhead), we sample dhead(1− pedr) neighbors without
replacement, where pedr is the edge drop rate. Through this sampling, edges of dissimilar nodes tend
to be removed, thereby retaining effective neighborhood information.

Feature Augmentation We randomly sample a mask vector m ∈ {0, 1}B to hide a fraction of
dimensions in node feature. Each element in mask m is sampled from a Bernoulli distribution
Ber(1− pfdr), where the hyperparameter pfdr is the feature drop rate. Thus, the augmented node
feature X̂ is computed by

X̂ = [x1 ◦m,x2 ◦m, · · · ,xN ◦m]. (8)

In our implementation, we set a threshold ζ to distinguish tail nodes and head nodes. The same
hyperparameters pfdr and pedr are used to generate augmentations Ĝ1 and Ĝ2.

4.2 Optimization Objective

We employ a contrastive objective [38] on obtained node representations of two graph augmentations.
For node vi, node representations hi and oi from different graph augmentations form the positive
pair, and node representations of other nodes in two graph augmentations are regarded as negative
pairs. Therefore, we define the pairwise objective for each positive pair (hi,oi) as

ℓ(hi,oi) = log
eθ(hi,oi)/τ

eθ(hi,oi)/τ +
∑

k ̸=i e
θ(hi,ok)/τ +

∑
k ̸=i e

θ(hi,hk)/τ
. (9)

where τ is a temperature parameter. The critic θ(h,o) is defined as sim(g(h), g(o)), where the
projection g is a two-layer multilayer perceptron (MLP) to enhance the expression power [5]. The
overall objective to be maximized is the average of all positive pairs,

J =
1

2N

N∑
i=1

[ℓ(hi,oi) + ℓ(oi,hi)] . (10)
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Table 1: Quantitative results (%) on node classification. (bold: best; em dash: out-of-memory)

Cora Citeseer Photo Computer

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Su
pe

rv
is

ed
Sp

lit
GCN 82.30±0.49 76.87±0.34 65.84±0.55 59.62±0.64 93.52±0.82 78.88±2.01 89.14±0.75 72.61±3.05

DGI 82.28±0.84 77.23±0.90 65.64±0.63 59.47±1.24 92.98±1.12 78.83±1.66 88.96±0.96 72.30±1.80

GraphCL 81.78±0.67 76.01±1.07 65.16±1.02 58.72±1.37 — — — —
GRACE 82.32±0.45 76.78±0.87 64.16±2.07 59.73±1.94 93.12±0.40 78.60±3.12 88.22±1.04 71.74±3.05

MVGRL 83.22±1.02 77.84±1.35 66.26±0.72 60.30±0.95 94.10±0.31 78.36±2.22 — —
CCA-SSG 82.70±0.86 77.35±1.06 65.96±1.36 58.81±1.67 94.36±0.25 79.34±3.42 89.22±0.95 73.82±1.80

GRADE 83.40±0.80 78.54±1.15 67.14±1.07 61.04±2.07 94.72±0.30 78.86±2.77 89.42±0.53 74.71±1.30

Se
m

i-s
up

er
vi

se
d

Sp
lit GCN 74.18±0.40 69.84±0.56 53.80±0.94 50.15±0.69 91.04±0.65 65.47±1.20 78.58±0.93 61.80±1.43

DGI 75.92±0.86 70.04±0.53 54.52±1.44 51.92±1.23 90.78±0.78 66.27±0.76 79.00±0.80 62.00±1.70

GraphCL 75.68±2.84 69.86±2.41 54.06±1.93 51.75±1.78 — — — —
GRACE 75.12±1.41 69.66±1.29 53.56±3.42 49.83±1.74 91.12±0.31 65.07±1.28 79.10±1.79 61.76±1.97

MVGRL 76.44±1.17 70.52±1.63 56.84±1.26 53.79±1.25 92.01±0.87 66.16±2.13 — —
CCA-SSG 75.74±1.96 71.70±1.59 57.90±1.82 54.70±1.54 91.68±0.50 67.08±1.08 82.20±0.47 65.04±1.16

GRADE 77.20±0.94 73.37±1.27 59.44±0.78 56.47±0.64 92.04±0.30 66.62±2.27 82.50±1.04 67.50±1.80

5 Experiments

Datasets For a comprehensive comparison, we use four real-world datasets to evaluate the perfor-
mance of node classification and the fairness to degree bias. Specifically, we choose two categories
of datasets: 1) citation networks including Cora [17] and Citeseer [17], 2) social networks Photo [23]
and Computer [23] from Amazon. The statistics of these datasets are summarized in Appendix C.

Evaluation Protocol We compare GRADE with state-of-the-art GCL models DGI [30],
GraphCL [35], GRACE [38], MVGRL [12] and CCA-SSG [36], and semi-supervised baseline
GCN [17] for reference. For GCL models, we follow the linear evaluation scheme introduced in [30],
where each model is firstly trained in an unsupervised manner and node representations are subse-
quently fed into a simple logistic regression classifier. We adopt two universally accepted splits for
full evaluation: 1) semi-supervised split [30, 35] that 20 labeled nodes per class are for training and
1000 nodes are for testing, 2) supervised split [38, 36] that 1000 nodes are for testing and the rest of
nodes form the training set. It is worth noting that 1000 nodes in the test set are randomly sampled
with degrees less than 50 to provide an appropriate degree range for analysis. GCN is trained by the
original paradigm [17] with the above train-test split. We refer readers of interest to Appendix C on
details of experiments, including implementation and hyperparameters.

5.1 Main Results and Analysis

Node Classification We train each model for 10 independent trials with different seeds, and report
mean and standard deviation results in Table 1. We observe that the proposed GRADE outperforms
all baselines in most cases. The improvement of GRADE is more pronounced on Cora and Citeseer
datasets, where average node degrees are around 3 and a large number of tail nodes exist. Additionally,
we find that GCL models tend to outperform GCN in the semi-supervised split, suggesting that GCN
may benefit more from end-to-end training with more supervision.

To verify that GRADE improves the classification performance of tail nodes and also retains the
performance of head nodes, we divide test nodes of Cora into tail nodes and head nodes based on
the threshold ζ. We draw average accuracy w.r.t. degree of GRADE and competitive baselines as
violin plots in Figure 3. The subsequent experiments default to the supervised split if not specified.
As expected, GRADE achieves obvious performance gain regardless of tail nodes or head nodes.

Fairness Analysis In order to quantitatively analyze the fairness to degree bias, we define the group
mean as the mean of degree-specific average accuracy while the bias is the variance. Mathematically,

Avg.Acc.(k) = E[{Acc(vi),∀ node vi such that di = k}],
G.Mean = E[{Avg.Acc.(k),∀ node degree k}], Bias = Var({Avg.Acc.(k),∀ node degree k}).
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Table 2: Quantitative results (%) on fairness analysis.

Cora Citeseer Photo Computer

G. Mean↑ Bias↓ G. Mean↑ Bias↓ G. Mean↑ Bias↓ G. Mean↑ Bias↓

GCN 86.04 1.70 84.00 1.85 97.41 0.28 96.30 0.50
DGI 89.26 0.67 84.79 1.71 98.23 0.27 96.94 0.45
GraphCL 90.80 0.59 84.13 1.80 — — — —
GRACE 89.91 0.70 85.44 1.67 98.28 0.23 96.92 0.47
MVGRL 91.01 0.54 83.86 1.83 98.39 0.27 — —
CCA-SSG 90.86 0.63 84.35 1.73 98.44 0.24 97.17 0.39

GRADE 92.87 0.48 85.88 1.52 98.52 0.20 97.42 0.35

Based on these metrics, evaluation results are shown in Table 2. It can be seen that GRADE reduces
the bias across all datasets and maintain the highest group mean. Moreover, graph contrasting learning
models have a smaller bias compared to GCN, conforming to our previous study in Section 2.

Visualization To demonstrate that GRADE pulls same-community node representations more
concentrated, we visualize node representations of GRADE and competitive baselines on the Cora
dataset in Figure 5. Particularly, we zoom into one specific community colored blue. Graph contrastive
learning baselines always depict more crisp boundaries than GCN, where blue nodes are still scattered
in space. In GRADE, they are finally clustered together, illustrating that the proposed augmentation
design exerts a vital part.

5.2 Ablation Study and Hyperparameter Sensitivity

Ablation Study of Sampling Recall that GRADE augments tail nodes by sampling nodes for
interpolation, and also sample edges to remove in the purification of head nodes. We alter the
augmentation by fixing to the most similar node (without random interpolation) or top-dhead(1−pedr)
similar nodes (without random deleting) to validate the effectiveness of these sampling processes.
Results of the ablation study on Cora and Citeseer datasets are reported in Table 3. We can observe
that GRADE is consistently better than the remaining variants. Such a phenomenon implies that
reasonable randomness provides more diverse node contexts to contrast out essential features.

Effect of Threshold We investigate the impact of threshold ζ used to split tail nodes and head
nodes on classification performance. Figure 4 (a) shows the test Micro-F1 w.r.t. different ζ on
Cora dataset. The performance benefits from an applicable selection of ζ. When ζ is too small, the
neighbor sparsity of tail nodes cannot be mitigated; if it is too large, noise is injected.

Effect of Drop Rate We perform sensitivity analysis on feature drop rate dfdr and edge drop rate
dedr which control the generation of graph augmentations. We vary these hyperparameters from 0
to 0.5 in node classification on the Cora dataset. The results are shown in Figure 4 (b). It can be
observed that the performance is relatively poor when the hyperparameter dfdr is too large and dedr
is too small. We infer that if the dfdr is too large, the original graph is heavily undermined to contain
useful information; and if the dedr is too small, the large number of neighbors makes the perturbation
of different augmentations too insignificant to achieve the purpose of contrast.
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Figure 3: Violin plots of the average accuracy
w.r.t. node degree for (a) tail nodes and (b) head
nodes on the Cora dataset. The box inside the
violin indicates 25-75 percentiles, and the median
is shown by a white scatter.
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Figure 4: The hyperparameter sensitivity of
GRADE with varying (a) threshold and (b) drop
rate on Cora dataset. In (b), the lighter color rep-
resents better performance, and the red scatter
highlights the peak.
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(a) GCN (b) MVGRL (c) CCA-SSG (d) GRADE

Figure 5: Visualization of node representations learned by competitive baselines and GRADE on
Cora dataset. Color denotes the community of nodes and size represents the node degree. Black
boxes highlight one community colored by blue as an example.

Table 3: Ablation study (%) on the sampling of GRADE. (w/o RI: without random interpolation; w/o
RD: without random deleting)

Cora Citeseer

Micro-F1↑ Macro-F1↑ G. Mean↑ Bias↓ Micro-F1↑ Macro-F1↑ G. Mean↑ Bias↓

w/o RI 83.00 77.97 90.86 0.55 66.10 61.02 84.96 1.80
w/o RD 82.30 76.50 90.54 0.60 65.90 58.83 84.21 1.84
w/o RI+RD 82.00 75.82 89.97 0.63 65.80 59.29 83.00 1.95

GRADE 84.30 80.66 92.87 0.48 68.80 64.21 85.88 1.52

6 Related Work

Graph Neural Networks Graph neural networks (GNNs) [18, 32, 4, 31] can be generally divided
into spectral methods and spatial methods. Specifically, spectral methods learn node representations
based on graph spectral theory. [3] first proposes a spectral graph-based extension of convolutional
networks, and GCN [17] simplifies ChebNet [6] by the first-order approximation. Spatial methods
directly define graph convolution in the spatial domain. GraphSAGE [11] learns aggregators by
sampling and aggregating neighbors, and GAT [29] assigns different edge weights during aggregation.
We refer readers to recent surveys [34, 37] for a more comprehensive review. On the other hand, some
literature [25, 33, 21] shows that there is a structural unfairness between tail nodes and head nodes in
GNNs. Existing explorations [20, 16] focus on supervised settings, ignoring the great potential of
self-supervised learning on this problem.

Graph Contrastive Learning Being popular in self-supervised visual representation learning [28,
7, 27, 13, 5, 10, 15], contrastive learning obtains discriminative representations by contrasting positive
and negative samples. Inspired by the local-global mutual information maximization viewpoint [14],
DGI [30] and InfoGraph [24] first marry the power of GNNs and contrastive learning. Following
them, MVGRL [12] introduces the node diffusion to the graph contrastive framework. GRACE [38],
GCA [39] and GraphCL [35] learn node representations by treating other nodes as negative samples,
while BGRL [26] proposes a negative-sample-free model. CCA-SSG [36] optimizes a feature-level
objective other than instance-level discrimination. There are several surveys [1, 19] summarizing
recent advances in graph contrastive learning. Despite their remarkable achievements, there is no
graph contrastive learning targeting the fairness of degree bias.

7 Conclusion

In this paper, we bring to light the prospect of GCL to alleviate structural unfairness for node
representation learning. We discover that node representations obtained by GCL methods are fairer to
degree bias than those learned by GCN, and explore the underlying cause of this phenomenon. Based
on our theoretical analysis, we further propose a novel GCL model targeting degree bias.

Limitations and Broader Impact A limitation of GRADE is its heuristic design, therefore an
interesting direction for future work is to extend GRADE into learnable graph augmentation. Our
work investigates the structural fairness in GCL for the first time and points out the great potential of
GCL for this problem. Considering that most real-world graphs follow the long-tail distribution, the
studied problem is practical and important. Additionally, our work deepens the understanding of the
learning mechanism of GCL, and may inspire more future research on structural fairness.
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