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Figure 1: A rollout of our navigation policy pre-trained with random crop prediction on
synthetic noise images. Given a goal image and the current view, the agent first explore
the environment by panning its camera. Once the goal view is detected, shown by the
green bounding box, the agent moves towards the goal to complete the task. Click the
image for a video.

Abstract

In visual navigation, one powerful paradigm is to predict actions from observations
directly. Training such an end-to-end system allows representations that are useful
for downstream tasks to emerge automatically. However, the lack of inductive
bias makes this system data-hungry. We hypothesize a sufficient representation
of the current view and the goal view for a navigation policy can be learned by
predicting the location and size of a crop of the current view that corresponds
to the goal. We further show that training such random crop prediction in a
self-supervised fashion purely on synthetic noise images transfers well to natural
home images. The learned representation can then be bootstrapped to learn a
navigation policy efficiently with little interaction data. Code is available at
https://github.com/yanweiw/noise2ptz

1 Introduction

Consider a visual navigation task, where an agent needs to navigate to a target described by a goal
image. Whether the agent should move forward or turn around to explore depends on if the goal
image can be found in the current view. In other words, visual navigation requires learning a spatial
representation of where the goal is relative to the current pose. While such a spatial representation
can naturally emerge from end-to-end training of action predictions given current views and goal
images, this approach can require a non-trivial amount of interaction data as self-supervision, which
is costly to acquire. In order to learn a navigation policy from minimal navigation data, we ask if
we can learn purely from synthetic noise data a spatial representation that can both transfer well to
photo-realistic environments and be sufficient for downstream self-supervised policy training.
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One useful spatial representation can be the relative 2D transformation between two views. Specif-
ically, if we can locate a goal image as a crop in the center of the current view, an agent should
move forward to get closer. If the crop is on the left/right side of the current view, the agent should
turn left/right to center the heading. The relative 2D transformation can thus be parametrized by
the location and the scale of one crop inside the current view that corresponds to the goal image,
which together we refer to as PTZ factors (analogous to cameras’ pan, tilt, and zoom.) Given a fixed
pre-trained PTZ encoder that extracts spatial representation from pixel inputs into a low-dimensional
PTZ vector, the downstream navigation policy can learn to predict actions from PTZ vectors with far
fewer interaction data than learning directly from pixel inputs. Additionally, an embedding space
learned directly from pixels is likely to suffer from the distribution shift as we move from training
images to testing images. On the contrary, a policy that inputs the PTZ parametrization, which only
captures relative transformation, will be insulated from domain shifts. The goal of this paper is
to verify that bootstrapping a pre-trained PTZ predictor allows learning a navigation policy with
only a little interaction data in new environments. Our major contribution shows self-supervising
the PTZ encoder to predict random crops of synthetic noise images produces a sufficiently
performing spatial representation for navigation that also transfers well to photo-realistic
environments.

2 Related Works

Self-supervised learning has shown steady progress in closing the performance gap between su-
pervised models and unsupervised models in computer vision [5, 8, 10, 21, 6, 4, 3]. Early works
[5, 8, 10, 21] leverage various pretext tasks to learn transferable representations, while more recent
works [6, 4, 3] focus on contrastive learning to extract useful features from unlabeled images. Simi-
larly in robotics, [14, 18] pursue contrastive learning and data augmentation to learn image-based
control policies for simulated agents, and [12, 1] use real robots to experiment with 50k grasps for
700 hours and 100k pokes for 400 hours respectively. All these works train and test on data collected
in the same domain. While generating enough data to train a self-supervised robot policy in the
simulation is fast, collecting a large enough real-world interactive dataset can take hundreds of hours
even if the data collection is automatic without any manual annotation. An attractive idea to further
reduce the need for interaction data is to only test a learned policy in the real-world distribution and
use alternative data sources for training. For example, [19] discovers visual pre-training on object
detection significantly improves sample efficiency for learning affordance prediction; [20] investi-
gates representation learning on a single image; and [7, 9] show synthetic data can be a potential
cheap replacement for real-world data. Specifically, [7] generates a synthetic fractal noise dataset
FractalDB for training, and [9] demonstrates the utility in pre-training Vision Transformers (ViTs)
with FractalDB. Beyond fractal noise, [2] provides a comprehensive study on how different noise
types affect representation learning.

3 Method

Given a robot interaction dataset D, we want an agent to navigate to a goal location upon receiving
a goal image xg. The dataset D consists of image action pairs (xt, at, xt+1), where xt is the pixel
observation at time t, at the action taken at time t, and xt+1 the pixel observation after the action.
One self-supervised approach to learn a navigation policy is to train an inverse model on D, which
predicts an action given a current view and a goal view [1]. We divide the inverse model into an
encoder Eϕ that encode image pairs into states and an LSTM policy πθ that predicts actions given
states as ŝt = Eϕ(xt, xt+1), ât = πθ(ŝt). We can train Eϕ and πθ jointly end-to-end by minimizing
cross entropy loss between at and ât for all image-action sequences in D as shown in the top part of
Fig 2 (a). We use a simple LSTM architecture to learn a policy as memory of past states and actions
benefits navigation with only partial observations [11], and we discuss in the experiments section that
the LSTM is sufficiently expressive to solve our navigation task.

To improve data efficiency, we observe interaction data (i.e. action labels) is only necessary for
training policy πθ. To find alternative cheap data sources for training Eϕ, we observe in Fig 2 (c) that
a goal view can be seen as a crop from the current view. The relative location and size of the crop
indicate the relative heading and distance of the agent from the goal location. Thus the spatial relation
between the two views can be parametrized by the panning angle p, tilting angle t, and zooming
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Figure 2: Top (a): An end-to-end system, where a generic encoder is jointly learned with
a LSTM navigation policy. Bottom: (b) Replacing the generic encoder with a fixed PTZ
encoder pre-trained from synthetic noise images reduces the amount of interaction data
needed to train the navigation policy.

factor z of a camera. We hypothesize such a 3 DOF parametrization is sufficient for local navigation
where a goal is close to the agent. The low dimensionality of this state representation ŝt is desirable
as the mapping between states and actions can now be learned with a little interaction data. We will
now discuss our implementation of the PTZ encoder that predicts (p, t, z) given two images.

3.1 Self-Supervised Training of PTZ Encoder

We approximate learning a PTZ encoder with learning a random crop predictor. Given a 256× 256
image, we randomly crop a 128× 128 pixel patch to form the current view. For the goal view, we
randomly sample a scale factor z from 0.5− 1 and (p, t) from 0− 1 relative to the top left corner of
the first crop to generate the second crop at the location (128x, 128y). We resized the second crop to
a 128× 128 pixel patch afterward. Additionally, we generate pairs of crops without any overlap to
supervise scenarios where the goal image is not observable in the current view. We assign PTZ label
(0, 0, 0) to indicate zero overlap. We train a ResNet18 network to regress the PTZ factors (p, t, z) on
concatenated crop pairs from static natural home images (without action labels) or synthetic images
as shown in Fig 3.

3.2 Self-Supervised Training of PTZ-enabled Navigation Policy

Given an interaction dataset D collected from random exploration, we encode the current and goal
views into states using the PTZ module as a fixed feature extractor and train an LSTM policy πθ to
predict actions from the states. To train πθ, we sample sub-trajectories up to a maximum trajectory
length from every image-action sequence in D. We use a single-layer LSTM network with 512
hidden units with ReLU activation to regress the navigation action with L1 loss. During inference, the
LSTM predicts an action autoregressively until the agent reaches the goal or the episode terminates.
Notice if sub-trajectories of the maximum sequence 1 are sampled, the LSTM policy is effectively
trained as a feed-forward network that does not use memory from previous time steps.

4 Data Collection

4.1 Interaction Data Collection

For training, we choose ten Gibson environments—‘Crandon,’ ‘Delton,’ ‘Goffs,’ ‘Oyens,’ ‘Placida,’
‘Roane,’ ‘Springhill,’ ‘Sumas,’ ‘Superior,’ and ‘Woonsocket.’ We create a 20k/10k training/validation
set and a 50k/10k training/validation set by sampling 40/20 and 100/20 starting locations in each of
the ten environments. We also create a small 1k/1k training/validation set by sampling 20 starting
locations from ‘Superior’ and 20 starting locations from ‘Crandon’ respectively. Collectively, we
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Figure 3: Sampling random crops of (a) static kitchen scenes and (b) synthetic noise images (From left to right:
Perlin noise, fractal noise, and random geometric shapes.) Red boxes denote the current view, while the green
boxes denote the goal view.

have created three interaction dataset D2k, D30k and D60k. For our random exploration strategy, we
refer the readers to [11].

4.2 PTZ training Data Collection

First, we generate a training set from similar domains to the navigation experiments. Specifically,
we sample 6500 photo-realistic home images sourced from 65 Gibson environments rendered by
the Habitat-Sim simulator to form the training set and 2300 home images from 23 other Gibson
environments to form the test set. Notice these images are generated i.i.d. without any action labels.
We refer to this dataset as Dhabitat

Second, we generate Perlin noise and fractal noise using [16]. Perlin noise is generated from 2, 4, 8
periods and fractal noise is generated from 2, 4, 8 periods and 1-5 octaves. We generate 10k Perlin
noise, 10k fractal noise, and 20k random shapes to form a 40k noise dataset Dall_noise. However,
this particular composition of noise is rather wishful as we do not know yet which one is the best
for PTZ encoder training. To uncover which noise is the best surrogate data source for natural home
images, we also create a 40k Dperlin, Dfractal and Dshape, each containing only one kind of noise.

4.3 Noise Choice for PTZ Pre-training

We first tried training our PTZ encoder on Gaussian noise. The resulting poor performance suggests
the particular choice of noise is critical. We hypothesize that patterned noise rather than high-
frequency noise should be more useful as the encoder probably needs some visual cues to find relative
transformations. To this end, we include Perlin noise, which can be used to simulate cloud formations
in the sky, and fractal noise, which can be found in nature [7], in the dataset to train the encoder. We
further include random geometric shapes as they are found in man-made environments and can help
the encoder learn edges and orientations. A sample of these three different kinds of random noise
is shown in Fig 3. We follow the same procedure as before to sample random crops on these noise
images. Using noise for pre-training completely removes the need to access a testing environment for
training data.

5 Experiments

5.1 PTZ Encoder Evaluation

To verify the PTZ encoder’s utility in visual navigation, we test the pre-trained encoder on 2300
natural home images. Specifically, we evaluate the model by calculating the IOU between the ground
truth bounding box and the predicted bounding box when the goal can be at least partially seen in the
current view. If the two images are not overlapping, we calculate the success rate at which the model
predicts a pan and tilt pixel center that is within 10 pixels away from the ground truth label (0, 0).
This corresponds to no detection of the goal in the current view. To test if the PTZ encoder trained on
synthetic noise images can perform well when evaluated on natural home images, we generate random
crops from five different data sources: Dhabitat (Gibson environments loaded in Habitat simulator
[13]), Dall_noise (all three synthetic noise combined), Dperlin (Perlin noise only), Dfractal (fractal
noise only) and Dshape (random shapes only). While the concurrent training of a PTZ encoder to
predict non-overlapping and overlapping crops of Dhabitat gives near-perfect evaluation results, the
simultaneous training of the two prediction tasks on noise images proves slow to convergence. We
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Data Overlap-IOU Non-Overlap
Shape 72.1 ± 0.4% 48.2 ± 1.1%
Perlin 61.6 ± 0.4% 65.3 ± 0.6%
Fractal 87.3 ± 0.5% 80.1 ± 0.6%
All noise combined 92.2 ± 0.1% 93.2 ± 0.5%
Habitat 97.1 ± 0.1% 98.8 ± 0.1%
Habitat w/o non-overlap 96.4 ± 0.1% 1.5 ± 0.1%
Fractal w/o curriculum 78.0 ± 0.4% 2.7 ± 0.3%

Table 1: Performance comparison of PTZ encoders on the 2300 natural home image test set. In the case when
the given goal view (partially) overlaps with the current view, we use the IOU between the ground truth box and
the predicted bounding box of the goal image in the current view as the evaluation metric. In the case when
the given goal view does not overlap with the current view, we set the ground truth PTZ label to (0,0,0). The
corresponding success is defined by whether the encoder predicts a (p, t) that is close enough to (0,0). We report
the success rates in such non-overlap cases.

hypothesize that noise images lack salient structures for the PTZ encoder to easily establish spatial
relationships between two overlapping crops, and consequently training with non-overlapping crops
concurrently could complicate the training. Therefore, we first train the encoder to only predict PTZ
for overlapping crops until convergence before mixing in non-overlapping crops, which results in
high prediction accuracy for both non-overlapping and overlapping crops. We call this staggered
training a curriculum for PTZ training with synthetic noise. Once we have the pre-trained PTZ
encoder Eϕ, we fix its weights and optimize only the LSTM weights in πθ as we train the navigation
policy with interaction data D.

In Tab 1, we show the mean and standard deviation of inference performance on both overlapping
and non-overlapping image pairs of PTZ trained on different data sources. Training on natural home
images Dhabitat naturally produces the highest accuracy. However, we observe that training on all
three noises combined Dall_noise produces competitive results without seeing a single natural home
image. This suggests that PTZ of two views is independent of the underlying visual statistics
and can transfer well from one domain to another. This property allows for stable training of
downstream LSTM policy as PTZ representation will be consistent across different visual domains.
This also suggests we do not need to collect new data to fine-tune our navigation policy if we move
from one environment to another. We show qualitative inference results of the PTZ encoder in Fig 1
where the green bounding boxes indicate where the PTZ encoder predicts the goal crop in the current
view. To understand which noise is the most helpful for pre-training, we train the PTZ encoder
on individual noise Dperlin, Dfractal and Dshape. We see in Tab 1 training on fractal noise to
convergence outperforms Perlin noise and random shapes and approaches the performance of all
noise combined. This result is in line with the finding in [7] and indicates that the natural home
images may share more similar visual statistics with fractal noise than others.

5.2 Navigation Policy Evaluation

To test our hypothesis that a pre-trained PTZ encoder can improve data efficiency, we consider a
local navigation task, where the goal is in the same room as the agent. We choose five Gibson
environments [17]—‘Beach,’ ‘Eastville,’ ‘Hambleton,’ ‘Hometown,’ and ‘Pettigrew.’ and evaluate our
PTZ-enabled navigation policy on a multi-step navigation task. Specifically, we sample 30 starting
and goal locations in each of the testing environments such that the start and the goal are five forward
steps apart. We then randomize the heading such that the goal can be in any direction including
behind the agent. To infer a trajectory, the agent will auto-regressively predict the next action given
the current view and goal view until it uses up to 50 steps or reaches the goal. To determine if an
agent arrives at an observation that is close enough to the goal image, we use perceptual loss [22] to
measure the similarity between those two observations in the eye of a human. If the similarity score
exceeds a threshold of 0.6 while the agent is within a 0.5m radius of the goal location, we consider
that agent has successfully reached the target.

We see in Fig 4 (a) that without PTZ encoding, the success rate of navigating to the goal location
increases as we train the whole pipeline with more data and longer trajectory sequences, presumably
because the system has to learn the appropriate state representation from scratch. However, with
PTZ encoding (trained with all noise) such dependency on interaction data becomes less acute.
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Figure 4: (a) PTZ-enabled (all noise) navigation policy (blue) trained with 2k interaction data outperforms the
best end-to-end policy (red) trained with 60k interaction data. Prefix 2k, 30k, 60k denote the size of data, while
suffix 1, 5, 15 denote the maximum length of sub-trajectories used for training. (b) An ablation study showing
a PTZ encoder trained on fractal noise alone (orange) is almost as good as one trained on all noise combined
(blue) in enabling the downstream navigation policy.

Specifically, training a PTZ-enabled policy with only 2k interaction data and one-action sequences
already outperforms training an end-to-end system from scratch with 60k data. As we increase the
action sequence length to train the PTZ-enabled system in the low data regime (2k), the performance
actually drops. Note training an LSTM with a single action step is essentially treating the LSTM as a
feed-forward network. The fact that a PTZ-enabled feed-forward policy outperforms PTZ-enabled
LSTM policies, which in this case likely overfit to the small interaction dataset, suggests we do not
need to consider more expressive architectures such as Transformer [15] to learn a PTZ-enabled
policy.

To further investigate which noise type helps train the PTZ module the most, we show in Fig 4 (b) that
the PTZ encoder trained with fractal noise outperforms Perlin noise and random shapes. Although the
evaluation metrics in Tab 1 shows a PTZ encoder trained with fractal noise alone is less accurate than
one trained with all noise combined, the navigation results show that it is still sufficient to achieve a
high success rate for the downstream navigation task using a PTZ encoder trained with fractal noise
alone. Lastly, we show in Fig 4 (b) that a PTZ encoder trained on natural home images yet only with
overlapping crops (‘2k_ptz_lstm_1_habitat’) leads to poorer navigation results than a PTZ encoder
trained on synthetic noise but with both overlapping and non-overlapping crops (‘2k_ptz_lstm_1’).
Consequently, it is essential to train a PTZ encoder to recognize when two views are overlapping
through a curriculum of training first on overlapping crops followed by adding non-overlapping crops.

6 Conclusion

In this paper, we focus on visual pre-training for navigation. As training in an end-to-end fashion
requires a significant amount of data (60k as shown in Figure 4), we break the system into two
modules: a feature encoder module (PTZ module) and an LSTM policy module, where the first part
can be effectively pre-trained without the use of expensive interaction data. Three synthetic noise are
included in pre-training the PTZ module and their effectiveness are extensively evaluated. Promising
experimental results verify the usefulness of a PTZ encoder in reducing the need for interaction data.
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