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ABSTRACT

We study how the choice of visual perspective affects learning and generalization
in the context of physical manipulation from raw sensor observations. Compared
with the more commonly used global third-person perspective, a hand-centric
(eye-in-hand) perspective affords reduced observability, but we find that it consis-
tently improves training efficiency and out-of-distribution generalization. These
benefits hold across a variety of learning algorithms, experimental settings, and
distribution shifts, and for both simulated and real robot apparatuses. However,
this is only the case when hand-centric observability is sufficient; otherwise, in-
cluding a third-person perspective is necessary for learning, but also harms out-
of-distribution generalization. To mitigate this, we propose to regularize the third-
person information stream via a variational information bottleneck. On six repre-
sentative manipulation tasks with varying hand-centric observability adapted from
the Meta-World benchmark, this results in a state-of-the-art reinforcement learn-
ing agent operating from both perspectives improving its out-of-distribution gen-
eralization on every task. While some practitioners have long put cameras in the
hands of robots, our work systematically analyzes the benefits of doing so and
provides simple and broadly applicable insights for improving end-to-end learned
vision-based robotic manipulation.1

Figure 1: Illustration suggesting the role that visual perspective can play in facilitating the acquisition of sym-
metries with respect to certain transformations on the world state s. T0: planar translation of the end-effector
and cube. T1: vertical translation of the table surface, end-effector, and cube. T2: addition of distractor objects.
O3: third-person perspective. Oh: hand-centric perspective.

1 INTRODUCTION

Physical manipulation is so fundamental a skill for natural agents that it has been described as a
“Rosetta Stone for cognition” (Ritter & Haschke, 2015). How can we endow machines with similar

∗Co-first authorship. Order determined by coin flip.
1Project website: https://sites.google.com/view/seeing-from-hands.
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mastery over their physical environment? One promising avenue is to use a data-driven approach,
in which the mapping from raw sensor observations of the environment (and other readily avail-
able signals, e.g. via proprioception) to actions is acquired inductively. Helpful inductive biases
in modern machine learning techniques such as over-parameterized models and stochastic gradient
descent have enabled surprising (and poorly understood) generalization capabilities in some appli-
cations (Neyshabur et al., 2014; Belkin et al., 2019; Zhang et al., 2021). Despite this, visuomotor
policies learned end-to-end remain brittle relative to many common real-world distribution shifts:
subtle changes in lighting, texture, and geometry that would not faze a human cause drastic perfor-
mance drops (Julian et al., 2020).

While a wide variety of algorithms have been proposed to improve the learning and generalization
of object manipulation skills, in this paper we instead consider the design of the agent’s observation
space, a facet of the learning pipeline that has been underexplored (Section 5). Indeed, in some
applications of machine learning, e.g., image classification or text summarization, the disembodied
nature of the task affords relatively little flexibility in this regard. Yet, even in these settings, simple
data processing techniques such as normalization and data augmentation can have noticeable effects
on learning and generalization (Perez & Wang, 2017). The role of data can only be more profound
in an embodied setting: any sensors capable of being practically instrumented will only provide a
partial observation of the underlying world state. While partial observability is typically regarded
as a challenge that only exacerbates the difficulty of a learning problem (Kaelbling et al., 1998), we
may also consider how partial observations can facilitate the acquisition of useful symmetries.

The natural world gives clear examples of this. For instance, because cutaneous touch is inherently
restricted to sensing portions of the environment in direct contact with the agent, tactile sensing by
construction exhibits invariances to many common transformations on the underlying world state;
grasping an apple from the checkout counter (without looking at it) is largely the same as doing so
from one’s kitchen table. Due in part to the nascent state of tactile sensing hardware (Yuan et al.,
2017) and simulation (Agarwal et al., 2020), in this work we investigate the above insight in vision,
the ubiquitous sensory modality in robotic learning. In particular, we focus on the role of perspective
as induced from the placement of cameras. To roughly imitate the locality of cutaneous touch, we
consider the hand-centric (eye-in-hand) perspective arising from mounting a camera on a robotic
manipulator’s wrist. We also consider the more commonly used third-person perspective afforded
by a fixed camera in the world frame.

The main contribution of this work is an empirical study of the role of visual perspective in learning
and generalization in the context of physical manipulation. We first perform a head-to-head compar-
ison between hand-centric and third-person perspectives in a grasping task that features three kinds
of distribution shifts. We find that using the hand-centric perspective, with no other algorithmic
modifications, reduces aggregate out-of-distribution failure rate by 92%, 99%, and 100% (relative)
in the imitation learning, reinforcement learning, and adversarial imitation learning settings in sim-
ulation, and by 45% (relative) in the imitation learning setting on a real robot apparatus.

Despite their apparent superiority, hand-centric perspectives cannot be used alone for tasks in which
their limited observability is a liability during training. To realize the benefits of hand-centric per-
spectives more generally, we propose using both hand-centric and third-person perspectives in con-
junction for full observability while regularizing the latter with a variational information bottle-
neck (Alemi et al., 2016) to mitigate the latter’s detrimental effects on out-of-distribution general-
ization. We instantiate this simple and broadly applicable principle in DrQ-v2 (Yarats et al., 2021), a
state-of-the-art vision-based reinforcement learning algorithm, and find that it reduces the aggregate
out-of-distribution failure rate compared to using both perspectives naively by 64% (relative) across
six representative manipulation tasks with varying levels of hand-centric observability adapted from
the Meta-World benchmark (Yu et al., 2020).

2 PROBLEM SETUP

Preliminaries: MDPs and POMDPs. We frame the physical manipulation tasks considered in this
work as discrete-time infinite-horizon Markov decision processes (MDPs). An MDPM is a 6-tuple
(S,A, P,R, γ, µ), where S is a set of states, A is a set of actions, P : S × A → Π(S) is a state-
transition (or dynamics) function, R : S × A → R is a reward function, γ ∈ (0, 1) is a discount
factor, and µ ∈ Π(S) is an initial state distribution. An MDP whose state cannot be directly observed
can be formalized as a partially observable MDP (POMDP), an 8-tuple (S,A, P,R, γ, µ,Ω, O)
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that extends the underlying MDP with two ingredients: a set of observations Ω and an observation
function O : S × A → Π(Ω). We consider only a restricted class of POMDPs in which the
observation function is limited to be O : S → Ω. To solve a POMDP, we optimize a policy
π : Ω→ Π(A) to maximize the expected return R(M, π ◦O) = Eµ,P,π [

∑∞
t=0 γ

tR(st, at)], where
π ◦O maps a state to an action distribution via composing the policy and observation function.

Observation functions. In this work, we denote the observation functions corresponding to the
hand-centric and third-person visual perspectives as Oh and O3, respectively. We also consider
proprioception, denoted asOp. Often, multiple observation functions are used together; for example,
we denote using both the hand-centric and proprioceptive observations as Oh+p.

Invariances and generalization. We say that a function f : X ×Y → Z is invariant in domain sub-
space X to a transformation T : X → X iff ∀x ∈ X , y ∈ Y. f(T (x), y) = f(x, y). We formalize
the notion of generalization by saying that π ◦ O generalizes inM to a distribution shift caused by
transformation T iff R(M, π ◦O) is invariant inM to T . We consider two kinds of generalization:
in-distribution and out-of-distribution generalization, also referred to as interpolation and extrapo-
lation. The latter corresponds to the agent generalizing inM to some specified transformation, and
the former is a special case when the transformation is identity. In this work, we limit the scope of
the transformations onM we consider to those acting on the initial state distribution µ through the
state set S. A few concrete examples of such transformations are illustrated in Figure 1.

3 HAND-CENTRIC VS. THIRD-PERSON PERSPECTIVES

The first hypothesis we investigate is that using the hand-centric perspective Oh instead of the third-
person perspectiveO3 can significantly improve the learning and generalization of the agent π◦O. In
this section, we probe this hypothesis in settings where the hand-centric perspective gives sufficient
observability of the scene (we consider when this does not hold in Section 4).

3.1 SIMULATED EXPERIMENTS

We first consider a visuomotor grasping task instantiated in the PyBullet physics engine (Coumans &
Bai, 2016–2021). A simulated Franka Emika Panda manipulator is tasked with picking up a specific
cube that initially rests on a table. The action space is 4-DoF, consisting of 3-DoF end-effector
position control and 1-DoF gripper control. Observation functions includeOh andO3, which output
84× 84 RGB images, and Op, which outputs 3D end-effector position relative to the robot base, 1D
gripper width, and a Boolean contact flag for each of two gripper “fingers”.

We use three learning algorithms: imitation learning with dataset aggregation (DAgger) (Ross et al.,
2011), reinforcement learning using data-regularized Q-functions (DrQ) (Kostrikov et al., 2020),
and adversarial imitation learning using discriminator-actor-critic (DAC) (Kostrikov et al., 2018).
We defer exposition on these algorithms to Appendix A.2. We run DAgger and DrQ on three exper-
iment variants that each target a test-time distribution shift in the table height, distractor objects, and
table texture. The distribution shifts are detailed and visualized in Appendix A.1. With DAC, we
assess in-distribution generalization in the training environment and out-of-distribution generaliza-
tion between demonstration (demo) collection and the training environment. Details on the model
architectures and hyperparameters used can be found in Appendices A.3 and A.4. DAgger and DrQ
results are reported in Figure 2 and aggregated in Table 1. DAC results are reported in Figure 3, with
experiment variant descriptions in the caption.

For DAgger (left two columns of Figure 2), we find that the hand-centric perspective leads to clear
improvements in out-of-distribution generalization (test) across all three experiment variants de-
spite in-distribution generalization progress (train) being essentially identical between π ◦Oh+p and
π◦O3+p. The only exceptions to π◦Oh+p generalizing better are in some instances of the distractor
objects variant. Here, seeing the red, green, and blue distractor objects during training was sufficient
for both π ◦ Oh+p and π ◦ O3+p to learn to ignore these object colors, even under distractor distri-
bution shift. Generalization to white distractors was likely facilitated by the RGB representation of
white as the “sum” of red, green, and blue.

For DrQ (right two columns of Figure 2), the differences between π◦Oh+p and π◦O3+p extend into
training time. In the table height variant, π ◦Oh+p exhibits increased sample efficiency for training
as well as similar out-of-distribution generalization benefits as seen for DAgger. For the distractor
objects variant, π ◦ Oh+p converges before π ◦ O3+p makes any significant progress on success
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Table 1: Aggregate cube grasping out-of-distribution generalization performance across the three experiment
variants computed from taking the three highest success rates achieved in each run of each DAgger or DrQ
agent. The hand-centric perspective leads to the best aggregate success rate for both algorithms, with its 95%
confidence intervals of the interquartile mean (IQM) not overlapping those of the third-person perspective.

success rate (%)
mean median IQM 95% CI of IQM

DAgger π ◦Oh+p 92.2 99.4 97.5 [97.0,97.8]
π ◦O3+p 64.4 61.1 69.3 [67.0, 71.4]

DrQ π ◦Oh+p 94.7 100.0 99.3 [98.4,99.9]
π ◦O3+p 46.6 59.4 46.9 [44.3, 49.3]
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Figure 2: DAgger and DrQ results for cube grasping. The first, second, and third rows respectively contain
results for the table height (shifted by zshift), distractor objects, and table textures experiment variants. See
Appendix A.1 for visualizations of the train and test distributions for each experiment variant. Compared to
the third-person perspective (dashed lines), the hand-centric perspective (solid lines) leads to better out-of-
distribution generalization performance across all three distribution shifts for both DAgger and DrQ. For DrQ,
we also see appreciable improvements in sample efficiency when using the hand-centric perspective. Shaded
regions indicate the standard error of the mean over three random seeds.

rate (though we did observe increasing returns). Since DrQ trained π ◦ O3+p to convergence for
the other variants within the same interaction budget, it follows that the presence of the distractors
rendered the training task too hard for π ◦O3+p, but not for π ◦Oh+p. In the table textures variant,
the generalization improvement of π ◦ Oh+p over π ◦ O3+p is less extreme. We attribute this to
invariances to image-space transformations learned via the data augmentation built into DrQ. In
Appendix A.5, an ablation in which this augmentation is removed further shows its importance.

For DAC, we find stark improvements in the generalization of π ◦ Oh over that of π ◦ O3. In the
first DAC-specific experiment variant (left plot of Figure 3), π ◦Oh fully generalizes in-distribution
with as few as 5 demos, whereas π ◦ O3 achieves significantly lower success, even with 25 demos
and much more online interaction. In the second variant (center plot of Figure 3), the distribution
shift between demo collection and training barely affects π ◦ Oh, but severely compromises the
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Figure 3: DAC results for cube grasping. Left: base variant (initial object and end-effector position random-
ization) with no distribution shift between demo collection and training. Center: base variant with table height
shift between collection of 25 demos and training. Right: base variant plus three distractor objects with no
distribution shift between demo collection and training. Across the three experiment variants, the hand-centric
perspective enables the agent to generalize in- and out-of-distribution more efficiently and effectively. Shaded
regions indicate the standard error of the mean over five random seeds.

training of π ◦ O3. In the third variant (right plot of Figure 3), despite the presence of distractor
objects giving the discriminator strong predictive power in distinguishing between demos and agent
behavior, π◦Oh still achieves a significant measure of in-distribution generalization, whereas π◦O3

makes little progress even with eight times the number of demos. We remark that, in the context
of adversarial imitation learning, π ◦ Oh achieves its sample efficiency and robustness without any
special requirements on the training data (Zolna et al., 2020) or modified training objectives (Xu &
Denil, 2020).

3.2 REAL ROBOT EXPERIMENTS

We further investigate our hypothesis in a real-world analogue of the above environment: a Franka
Emika Panda manipulator equipped with a parallel-jaw gripper is tasked with grasping a Scotch-
Brite sponge amongst distractors (Figure 4). The action space consists of 3-DoF end-effector posi-
tion control and 1-DoF gripper control. Oh and O3 output 100× 100 RGB images, and Op outputs
the 3D end-effector position relative to the robot base and the 1D gripper width. We train π ◦Oh+p

and π◦O3+p via behavior cloning (BC) on 360 demonstrations collected via teleoperation, obtaining
85% success rate on the training distribution for both. Like above, we consider test-time distribution
shifts in the table height, distractor objects, and table texture. Assessment of each distribution shift
instance was done using 20 sampled environment initializations. Appendix B presents the setup in
full detail as well as results stratified by distribution shift. Table 2 summarizes the results. Videos are
available on our project website. These experiments indicate that the hand-centric perspective better
facilitates out-of-distribution generalization for visuomotor manipulation not only in simulation, but
also on a real robot.

Figure 4: Sample observations from O3 (left) and Oh

(right) in our real robot apparatus.

Table 2: Aggregate sponge grasping out-of-
distribution generalization performance across the
three sets of distribution shifts.

success rate (%)
mean median IQM

π ◦Oh+p 52.0 52.5 53.3
π ◦O3+p 20.0 12.5 15.8

4 INTEGRATING HAND-CENTRIC AND THIRD-PERSON PERSPECTIVES

The previous experiments demonstrate how hand-centric perspectives can lead to clear improve-
ments in learning and generalization over third-person perspectives. Unfortunately, this does not
mean that the use of hand-centric perspectives is a panacea. The limited observability of hand-
centric perspectives is a double-edged sword: depending on the environment and task, it can enable
π ◦ Oh to establish useful invariances, or confuse π ◦ Oh by enforcing harmful ones. In this sec-
tion, we focus on evaluating across tasks of varying hand-centric observability, including those in
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which insufficient observability severely undermines π ◦ Oh. How can we realize the benefits of
hand-centric perspectives even in such scenarios?

4.1 REGULARIZING THE THIRD-PERSON INFORMATION STREAM

Insufficient observability arising from using Oh alone necessitates the inclusion of O3. While using
both perspectives should effectively resolve the issue of insufficient observability and enable the
agent to train, we know from Section 3 that the use of the third-person perspective can hamper
out-of-distribution generalization by allowing the agent to “overfit” to particularities of the training
distribution. To mitigate this, we propose to regularize the third-person perspective’s representation.
While multiple regularization techniques could conceivably be suitable to this end, we choose the
variational information bottleneck (VIB) to use in our experiments due to its simplicity, theoretical
justification, and empirical performance (Alemi et al., 2016).

For our subsequent experiments, we build on top of the state-of-the-art vision-based actor-critic
reinforcement learning algorithm DrQ-v2 (Yarats et al., 2021) (see Appendix C.3 for a detailed
description). When we use both hand-centric and third-person observations oh and o3, we instantiate
two separate image encoders fξh and fξ3 . We denote the corresponding representations as zh and
z3. These are concatenated before being fed to the actor πφ and critic networks Qθ1 , Qθ2 .

We apply a VIB to the third-person information stream to regularize the DrQ-v2 critic. This amounts
to a variational approximation to maximizing the mutual information between the third-person ob-
servations and the critic’s predictions of the temporal difference targets while minimizing the mutual
information between the third-person observations and their representations. We implement this by
replacing the deterministic third-person encoder fξ3 with a stochastic encoder pξ3(z3|o3), specify-
ing a prior p(z3), and adding a weighted KL divergence term to the critic loss. The VIB-regularized
DrQ-v2 critic objective is
L(ξh, ξ3, θ1, θ2) = ED, pξ3 [LDrQ-v2 critic(ξh, ξ3, θ1, θ2)] + ED [β3DKL(pξ3(z3|o3) ‖ p(z3))] , (1)

where D is the replay buffer. We specify pξ3(z3|o3) as a diagonal Gaussian and p(z3) as a standard
Gaussian, which enables analytical computation of the KL divergence. We use the reparameteriza-
tion trick to enable optimization of the first term via pathwise derivatives. We do not need to modify
the actor objective as only gradients from the critic are used to update the encoder(s) in DrQ-v2.
We remark that a (variational) information bottleneck can be applied to many imitation learning and
reinforcement learning algorithms (Peng et al., 2018; Goyal et al., 2019; Igl et al., 2019; Kumar
et al., 2021).

4.2 META-WORLD EXPERIMENTAL SETUP

We evaluate the learning and generalization performance of seven DrQ-v2 agents: π ◦ Oh+p

(hand-centric perspective), π ◦ O3+p (third-person perspective), π ◦ Oh+3+p (both perspectives),
π ◦ Oh+3+p + VIB(z3) (both perspectives with a VIB on the third-person information stream),
and three ablation agents introduced later. We evaluate the agents on six tasks adapted from the
Meta-World benchmark (Yu et al., 2020). We design the task set to exhibit three levels of hand-
centric observability (high, moderate, and low) with two tasks per level. In each task, a simulated
Sawyer robot manipulates objects resting on a table. The action space is 4-DoF, consisting of 3-DoF
end-effector position control and 1-DoF gripper control. We do not use the original Meta-World ob-
servation space as it contains low-dimensional pose information about task-pertinent objects instead
of images. Rather, we configure the observations so that Oh and O3 output 84 × 84 RGB images,
and Op outputs 3D end-effector position and 1D gripper width. See Figure 5 for a visualization of
each task through the lens of Oh and O3. Experiments in Appendix C.5 establish that propriocep-
tion alone is not sufficient to reliably solve any of the tasks. Experiments in Appendix C.6 consider
variations of peg-insert-side that require an additional 1-DoF end-effector orientation control.

While the distribution shifts in the experiments of the previous section arise from transformations on
the table height, distractor objects, and table textures, in this section we focus on distribution shifts
arising from transformations on the initial object positions. All object positions have disjoint initial
train and test distributions such that the latter’s support “surrounds” that of the former (see Table 9
in Appendix C.2 for details).

Aside from adapting the DrQ-v2 algorithm to our setting as described above, we use the original
DrQ-v2 model and hyperparameters with some minor exceptions (see Appendix C.7 for details).
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Figure 5: The Meta-World tasks used in the experiments in Section 4. The top row contains third-person obser-
vations o3, and the bottom row contains corresponding hand-centric observations oh. Initial object positions
are randomized. The last two tasks, reach-hard and peg-insert-side-hard, are custom-made; there, the green goal
and the green peg are randomly initialized either to the left or to the right of the gripper with equal probability,
and they are not initially visible to the hand-centric perspective. Because of the severely limited hand-centric
observability, the third-person perspective is crucial for learning to direct the gripper to the correct location.
This is especially the case for the reach-hard task, which we modified to prohibit any vertical end-effector
movement. See Section C.1 in the Appendix for more details about each task.

Hyperparameters that are common to all agents are shared for a given task. With agents that include
regularization, we tune the regularization weight(s) on a validation sample from the test distribution.
Test success rate is computed on a separate sample of 20 environments from the test distribution.

4.3 META-WORLD RESULTS AND DISCUSSION

Main experimental results in Meta-World are summarized in Table 3. Figure 6 provides detailed
comparisons between the four DrQ-v2 agents introduced above. When using both perspectives,
regularizing the third-person perspective’s representation via a VIB reduces the interquartile mean
of the out-of-distribution failure rate across all six tasks by 64% (relative). We also note that this
method achieves the best performance in each individual task, albeit sometimes with less sample
efficiency. To properly explain these phenomena, we now embark on a more stratified analysis and
discussion of the results.

Table 3: Aggregate out-of-distribution generalization performance across all six Meta-World tasks computed
from taking the three highest success rates achieved in each run of each DrQ-v2 agent. Using both perspectives
with a VIB on the third-person perspective’s representation results in the best aggregate success rate. The last
three agents are ablations of the above and are presented and discussed in Appendix C.4.

success rate (%)
mean median IQM 95% CI of IQM

π ◦Oh+p 69.6 73.1 73.7 [72.1, 75.4]
π ◦O3+p 55.6 51.7 56.6 [53.4, 59.1]
π ◦Oh+3+p 67.4 68.1 66.3 [62.9, 69.8]
π ◦Oh+3+p + VIB(z3) 84.4 82.5 87.7 [85.2,90.0]
π ◦Oh+3+p + VIB(zh) + VIB(z3) 51.8 54.7 58.2 [50.5, 65.9]
π ◦O3′+3+p + VIB(z3) 40.6 32.8 34.5 [32.7, 36.4]
π ◦Oh+3+p + `2(z3) 70.3 70.0 69.8 [67.7, 72.3]

Characterization of hand-centric observability via training performance. When the world state
is sufficiently observable via the hand-centric perspective, we expect the convergence during training
of π◦Oh+p to match or surpass that of π◦O3+p. We find that this is indeed the case for handle-press-
side, button-press, soccer, and peg-insert-side (high and moderate hand-centric observability), and
not the case for reach-hard or peg-insert-side-hard (low hand-centric observability). This validates
our selection and framing of the tasks at different levels of hand-centric observability. Interestingly,
we observe that in peg-insert-side-hard, π ◦Oh+p eventually achieves some success during training
by “zooming out” to improve its observability.
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Figure 6: DrQ-v2 results for Meta-World. Each row contains results for two manipulation tasks that roughly
exhibit the same level of hand-centric observability, which decreases from top to bottom (high, moderate,
low). Using the proposed approach (both perspectives with a VIB on the third-person perspective’s representa-
tion) leads to the best out-of-distribution generalization performance for all levels of hand-centric observability
(though it is matched by the hand-centric perspective when hand-centric observability is high, as expected).
Shaded regions indicate the standard error of the mean over three random seeds.

Hand-centric perspective vs. third-person perspective. When hand-centric observability is high
or moderate, π◦Oh+p generalizes better out-of-distribution than π◦O3+p, corroborating results from
Section 3 with another form of distribution shift. When hand-centric observability is low, π ◦Oh+p

both trains and generalizes worse than π ◦O3+p. This supports our motivation for considering using
both perspectives in conjunction.

Effect of combining the hand-centric and third-person perspectives. When hand-centric observ-
ability is high or moderate, including the third-person perspective can harm generalization. We see
that for button-press, peg-insert-side, handle-press, and soccer, π ◦ Oh+3+p is sandwiched between
π ◦Oh+p and π ◦O3+p on the test distribution. The drop from π ◦Oh+p to π ◦Oh+3+p is significant
for the former two tasks, and marginal for the latter two. This validates our hypothesis that includ-
ing O3 enables the agent to “overfit” to training conditions. When hand-centric observability is low,
combining both perspectives results in π ◦Oh+3+p matching or surpassing the training performance
of π ◦Oh+p and π ◦O3+p, and greatly outperforming both at test time. This validates our hypothesis
that, when necessary, including third-person observations helps resolve training difficulties arising
from insufficient hand-centric observability.

Effect of regularizing the third-person information stream via a VIB. π ◦ Oh+3+p + VIB(z3)
consistently improves upon π ◦ Oh+3+p in out-of-distribution generalization for all tasks except
handle-press-side, in which the two are about equal. This directly indicates the benefit of the VIB
regularization. These gains come at the cost of slightly delaying the convergence of training. How-
ever, it is arguable that this is inevitable and even desirable. A known phenomenon in neural network
training is that spurious correlations or “shortcuts” in the data are sometimes easier to learn than
causal relationships (Sagawa et al., 2019). Slower training and higher generalization may indicate
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the avoidance of such behavior. Additionally, in button-press, π ◦ Oh+3+p + VIB(z3) recovers the
out-of-distribution generalization exhibited by π ◦ Oh+p, and when hand-centric observability is
moderate, π ◦Oh+3+p + VIB(z3) improves upon π ◦Oh+p.

Ablations on π ◦ Oh+3+p + VIB(z3). We conduct three ablations on this best-performing agent
to better understand the design decisions underlying its gains. See Appendix C.4 for description,
results, and discussion.

5 RELATED WORK

Learning for vision-based object manipulation. A wide range of works have focused on algorith-
mic development for end-to-end learning of vision-based object manipulation skills (Levine et al.,
2016; Agrawal et al., 2016; Finn et al., 2016; 2017; Kalashnikov et al., 2018; Srinivas et al., 2018;
Ebert et al., 2018; Zhu et al., 2018; Jayaraman et al., 2018; Rafailov et al., 2021). Some works on
learned visuomotor control use eye-in-hand cameras for tasks such as grasping (Song et al., 2020)
and insertion (Zhao et al., 2020; Puang et al., 2020; Luo et al., 2021; Valassakis et al., 2021), and oth-
ers which pre-date end-to-end visuomotor learning use both eye-in-hand and third-person cameras
for visual servoing (Flandin et al., 2000; Lippiello et al., 2005). Very few works consider the design
of camera placements (Zaky et al., 2020) or conduct any controlled comparisons on different combi-
nations of visual perspectives (Zhan et al., 2020; Mandlekar et al., 2021; Wu et al., 2021). Unlike all
of these works, we propose specific hypotheses regarding the benefits of different choices of visual
perspective and perform a systematic empirical validation of these hypotheses with evaluation on
multiple families of learning algorithms, manipulation tasks, and distribution shifts. Concurrently
with our work, Jangir et al. (2022) investigate fusing information from hand-centric and third-person
perspectives using a cross-view attention mechanism and demonstrate impressive sim2real transfer.

The role of perspective on generalization. Hill et al. (2019) assess an agent learning to execute
language instructions in simulated environments using high-level actions and find that using an
egocentric observation space results in better systematic generalization to new instruction noun-
verb combinations. Szot et al. (2021) find that an agent tasked to pick up a certain object (using
abstracted grasping) in a cluttered room generalizes better to unseen objects and room layouts when
using wrist- and head-mounted cameras in conjunction. Our work provides complementary evidence
for the effect of perspective on the generalization of learned agents in a markedly different setting:
we consider vision-based physical manipulation. Also, the aforementioned works rely on memory-
augmented agents to resolve partial observability as is common in navigation tasks, whereas we use
third-person observations as is standard in tabletop manipulation and demonstrate the importance of
regularizing their representation.

Invariances through data augmentation in reinforcement learning. Several works have inves-
tigated ways to apply standard data augmentation techniques from computer vision in the rein-
forcement learning setting (Laskin et al., 2020; Kostrikov et al., 2020; Yarats et al., 2021). These
works consider data augmentation as a means to prescribe invariances to image-space transfor-
mations, whereas we are concerned with how different observation functions facilitate generaliza-
tion to environmental transformations. To emphasize that these directions are orthogonal, we use
DrQ (Kostrikov et al., 2020) and DrQ-v2 (Yarats et al., 2021) in our experiments.

6 CONCLUSION

In this work, we abstain from algorithm development and focus on studying an underexplored de-
sign choice in the embodied learning pipeline: the observation function. While hand-centric robotic
perception is more traditionally instrumented with tactile sensing, our findings using vision affirm
that perspective, even when controlling for modality, can play an important role in learning and
generalization. This insight may very well apply to robotic systems that leverage tactile sensing.
Overall, in the context of end-to-end learning for visuomotor manipulation policies, our findings
lead us to recommend using hand-centric perspectives when their limited observability is sufficient,
and otherwise defaulting to using both hand-centric and third-person perspectives while regulariz-
ing the representation of the latter. The breadth of the learning algorithms, manipulation tasks, and
distribution shifts that we base these conclusions on, coupled with their simplicity and lack of re-
strictive assumptions, suggests that these recommendations should be broadly applicable, even to
more complex, longer-horizon tasks that feature sub-tasks analogous to those we experiment with.
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A CUBE GRASPING EXPERIMENT DETAILS

A.1 ENVIRONMENT DETAILS

For the cube grasping experiments in Section 3, we investigate three types of distribution shifts. The
experiment variants for DAgger and DrQ are summarized in Table 4. The DAC experiments featured
a subset of these conditions explained in the caption of Figure 3. Figures 7, 8, and 9 visualize each
type of distribution shift.

Table 4: Variants of the cube grasping environment with distribution shifts used for the DAgger and DrQ
experiments. All task variants include initial object position and initial end-effector position randomization
that is consistent across train and test. Table textures are from the describable textures dataset (DTD) (Cimpoi
et al., 2014).

train test

table height zshift = 0 zshift ∈ {−0.10,−0.05,+0.05,+0.10}
distractor objects 1 red, 1 green, 1 blue 3 of color ∈ {red, green, blue, brown,white, black}
table texture texture ∈ 5 DTD textures texture ∈ 20 held-out DTD textures

Figure 7: Visualization of the table height distribution shift used in the cube grasping experiments. From left
to right, zshift is −0.10,−0.05, 0,+0.05,+0.10. The top and bottom rows contain the third-person and hand-
centric perspectives, respectively. Positions of the cube and end-effector are not randomized in this visualization
for the sake of clarity.

Figure 8: Visualization of the distractor objects distribution shift used in the cube grasping experiments. From
left to right, we have “mix” (1 red, 1 green, 1 blue), 3 red, 3 green, 3 blue, 3 brown, 3 white, and 3 black.
The top and bottom rows contain the third-person and hand-centric perspectives, respectively. Positions of the
cubes and end-effector are not randomized in this visualization for the sake of clarity.
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Figure 9: Visualization of the table textures distribution shift used in the cube grasping experiments. The top
two rows contain the third-person and hand-centric perspectives of the five table textures used during training
for DAgger and DrQ, and the bottom two rows contain the perspectives of five held-out textures used at test
time (out of twenty total held-out textures). Positions of the cube and end-effector are not randomized in
this visualization for the sake of clarity. The textures were acquired from the describable textures dataset
(DTD) (Cimpoi et al., 2014).
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A.2 ALGORITHMS

The dataset aggregation (DAgger) algorithm proposed by Ross et al. (2011) is an iterative online
algorithm for training an imitation learning policy. In each iteration i (which we call a “DAgger
round”), the current policy πi is run to sample a set of trajectories, and an expert policy π∗ is used
to label each of the visited states with an optimal action. These labeled trajectories are aggregated
into a dataset D that grows in size over the DAgger rounds, and the imitation learning policy π̂i is
trained on the entire D for some number of epochs before repeating the above procedure in the next
iteration. The trajectory-generating policy πi is often modified such that in earlier DAgger rounds
the expert policy π∗ is utilized more heavily than the imitation learning policy π̂i when collecting
new trajectories, i.e. πi = βiπ

∗+ (1−βi)π̂i, where βi is typically annealed over time (e.g., linearly
from 1 to 0 over the DAgger rounds).

The Data-regularized Q (DrQ) algorithm proposed by Kostrikov et al. (2020) is a model-free, off-
policy, actor-critic reinforcement learning algorithm that applies image augmentation techniques
commonly used in computer vision (primarily random shifts) to input images, along with regular-
izations of the Q target and function, such that deep neural network-based agents can be trained
effectively from pixels. The original DrQ paper uses soft actor-critic (Haarnoja et al., 2018) and
DQN (Mnih et al., 2013) as backbones; we use the soft actor-critic version in our experiments be-
cause the cube grasping action space is continuous.

The discriminator actor-critic algorithm (DAC) was proposed in Kostrikov et al. (2018) and is an off-
policy version of the generative adversarial imitation learning (GAIL) method (Ho & Ermon, 2016).
Unlike Kostrikov et al. (2018) we use a deterministic reinforcement learning algorithm similar to that
of Fujimoto et al. (2018), as we find this helps stability. To scale the method to image observations,
we apply similar augmentation techniques as in Kostrikov et al. (2020).

A.3 MODEL ARCHITECTURES

For DAgger in the cube grasping experiments discussed in Section 3, we feed the 84 × 84 images
into a ResNet-18 convolutional image encoder (He et al., 2016) trained from scratch, with the final
classification layer replaced by a linear layer that outputs a 64-dimensional representation. We con-
catenate proprioceptive information (3D end-effector position relative to the robot base, 1D gripper
width, and a Boolean contact flag for each of two gripper “fingers”) to the image representation, and
the result is passed into feedforward policy and value networks with two hidden layers of 32 units
each.

For DrQ, we use the original actor-critic DrQ model proposed by Kostrikov et al. (2020), except for
one modification: we concatenate proprioceptive information (3D end-effector position relative to
the robot base, 1D gripper width, and a Boolean contact flag for each of two gripper “fingers”) to
the flattened image representation before feeding it into the actor and critic networks.

For the DAC algorithm we use the same convolutional architectures as Kostrikov et al. (2018). The
convolutional encoder is shared between the discriminator, actor and critic. We use additional MLP
heads with capacities 128, 256 and 256 respectively for those components, as we empirically found
that lower-capacity networks decrease the likelihood of overfitting to spurious features.
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A.4 HYPERPARAMETERS

The DAgger, DrQ, and DAC hyperparameters used in the cube grasping experiments are listed in
Tables 5, 6, and 7, respectively.

Table 5: The default hyperparameters used for DAgger in the cube grasping environment.

parameter setting

num. DAgger rounds 6
num. new episodes per round 200
num. epochs per round 15
batch size 256
β schedule (% time expert policy is used) linear anneal from 1 to 0 over 6 rounds
learning rate 10−3

Table 6: The default hyperparameters used for DrQ in the cube grasping environment.

parameter setting

replay buffer capacity 105

action repeat 2
seed steps 1000
n-step returns 3
mini-batch size 128
discount γ 0.99
optimizer Adam
learning rate 10−3

critic target update frequency 2
critic Q-function soft-update rate τ 0.01
actor update frequency 2
actor log stddev. bounds [−10, 2]
init. temperature 0.1
features dim. 50
hidden dim. 1024

Table 7: The default hyperparameters used for DAC in the cube grasping environment.

parameter setting

replay buffer capacity 15× 103

action repeat 1
seed steps 200
mini-batch size 512
discount γ 0.99
optimizer Adam
learning rate 10−3

actor deterministic
critic Q-function soft-update rate τ 0.01
features dim. 64
discriminator hidden dim. 128
actor hidden dim. 256
critic hidden dim. 256
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A.5 ABLATION STUDY: REMOVING THE DATA AUGMENTATION IN DRQ

In this experiment, we investigate the effect of the data augmentation component of the DrQ al-
gorithm by ablating it. The motivation is to see whether data augmentation is still necessary for a
policy using the hand-centric perspective, which already leads to lower overfitting and better gen-
eralization. The results in Figure 10 reveal that the augmentation is indeed still crucial because
without it, training does not converge even with much more environment interaction. However, the
hand-centric perspective does still enable the agent to make greater progress.
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Figure 10: DrQ results for cube grasping with (left) and without (right) image augmentation. Note that the
left half of this figure is an exact replica of the right half of Figure 2. Ablating the image augmentation
component of DrQ reveals its importance; without it, training fails to converge even with much larger amounts
of environment interaction. However, the hand-centric perspective still facilitates faster training than the third-
person perspective for the first two experiment variants. Shaded regions indicate the standard error of the mean
over three random seeds.

A.6 MINOR DISCREPANCIES BETWEEN ALGORITHMS

Due to implementation idiosyncrasies, there are minor discrepancies in how each algorithm pro-
cesses environment observations. Following Kostrikov et al. (2020), for DrQ and DAC-DrQ ob-
servations are “frame-stacked” with three time steps’ observations. This was not done for DAgger.
Proprioceptives are used for DAgger and DrQ but not for DAC-DrQ. We take the position that these
differences increase the generalizability of the trends we observe. We emphasize that the target
effect under consideration is Oh vs. O3 in each setting.
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B REAL ROBOT EXPERIMENTS

In this section, we discuss real robot experiments resembling the simulated experiments in Section 3,
which presented a head-to-head comparison between the hand-centric and third-person perspectives.
A few minor differences exist between the simulated and real experiments, which are delineated in
Section B.1. However, the key findings discussed in Section B.2 match those from the simulated
experiments, validating the improved generalization performance that the hand-centric perspective
provides over the third-person perspective in vision-based manipulation tasks.

B.1 EXPERIMENTAL SETUP

As in the simulated experiments in Section 3, we conduct the real robot experiments with a Franka
Emika Panda robot arm. The robot is tasked with grasping and lifting a sponge from a gray bin
while other distractor objects are present. The action space is 4-DoF, consisting of 3-DoF end-
effector position control and 1-DoF gripper control. Observation functions include Oh and O3,
which output 100 × 100 RGB images, and Op, which outputs 3D end-effector position relative to
the robot base and 1D gripper width. As before, we perform a head-to-head comparison between
π◦Oh+p and π◦O3+p, i.e. the policies using hand-centric and third-person visual perspectives (and
proprioceptive observations), respectively.

During the training phase, we train a behavioral cloning policy until convergence using the same set
of 360 demonstrations for both π ◦Oh+p and π ◦O3+p, collected via robot teleoperation using a vir-
tual reality headset and controller. This is roughly the quantity of demonstrations needed to achieve
reliable grasping performance on the training distribution (85% success rate over 20 episodes) due
to randomized initial object positions as well as randomized initial gripper position. Unlike in Sec-
tion 3, we do not use dataset aggregation (DAgger) here. The target object to grasp is a Scotch-Brite
sponge, with the green side always facing upwards. In addition, at training time, three distractor
objects are present: a folded red washcloth, a folded blue washcloth, and a yellow sponge decorated
with spots.

At test time, we introduce three categories of distribution shifts, similar to those in Section 3: unseen
table heights, unseen distractor objects, and unseen table textures. Figures 11, 12, and 13 illustrate
these distribution shifts. When testing against unseen table heights and table textures, the scene
contains the same set of target object and distractor objects that we used at training time.

Figure 11: Table height distribution shifts. Columns from left to right: −0.05 m, −0.025 m, train, +0.025 m,
+0.05 m. Top (bottom): observations from O3 (Oh).
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Figure 12: Distractor object distribution shifts. Columns from left to right: train, distractor test set 1, distractor
test set 2, distractor test set 3. Top (bottom): observations from O3 (Oh).

Figure 13: Table texture distribution shifts. Columns from left to right: train, blue floral, green watercolor
garden, rainbow floral. Top (bottom): observations from O3 (Oh).
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B.2 EXPERIMENTAL RESULTS AND DISCUSSION

The real robot behavioral cloning results are reported in Table 8. We find that the hand-centric
perspective leads to significantly greater out-of-distribution generalization performance across all
three experiment variants despite both hand-centric and third-person policies achieving the same
performance on the training distribution (85% success rate over 20 episodes), validating the results
we see in simulation.
Table 8: Out-of-distribution generalization performance comparisons between a behavior cloning (BC) policy
using a hand-centric visual perspective and a BC policy using a third-person perspective. The distribution shifts
include unseen table heights (where zshift indicates the change from the base table height used during training,
in meters), unseen distractor objects, and unseen table textures. Compared to the third-person perspective, the
hand-centric perspective leads to better out-of-generalization distribution performance across all three distribu-
tion shifts. In-distribution results are provided to give an idea of a performance ceiling. Each success rate is
computed over 20 evaluation episodes.

success rate (%)
π ◦Oh+p π ◦O3+p

unseen table heights

zshift = −0.05 m 50 10
zshift = −0.025 m 80 60
zshift = +0.025 m 85 35
zshift = +0.05 m 65 0

unseen distractor objects
distractor test set 1 55 40
distractor test set 2 55 10
distractor test set 3 45 20

unseen table textures
blue floral 50 5
green watercolor garden 25 15
rainbow floral 10 5

in-distribution 85 85
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C META-WORLD EXPERIMENT DETAILS

C.1 INDIVIDUAL TASK DESCRIPTIONS

In this section, we explain the tasks that the agents must learn to accomplish in the six Meta-World
environments discussed in Section 4.2 and visualized in Figure 5. We also explain why each task
falls under a certain level of hand-centric observability. For details regarding the train and test
distributions, see Appendix C.2.

• handle-press-side: The goal is to press the handle fully downwards. Hand-centric observ-
ability is high because the handle is well aligned with the hand-centric camera’s field of
view.

• button-press: The goal is to push the button fully inwards. Hand-centric observability is
high because the button is well in view of the hand-centric camera, and the button remains
largely in view as the gripper approaches and presses it.

• soccer: The goal is to push or pick-and-place the ball into the center of the goal net. Hand-
centric observability is moderate because when the gripper approaches the ball, the observ-
ability of the goal net is appreciably reduced.

• peg-insert-side: The goal is to lift the peg and insert it into the hole in the target box.
Hand-centric observability is moderate because when the gripper approaches the peg, the
observability of the target box is appreciably reduced.

• reach-hard: The goal is to move the gripper to the green goal site, which is initialized either
to the left or right side of the gripper with equal probability (see Figure 14). Hand-centric
observability is low because the gripper is initialized at the same height as the goal, and
we restrain the gripper from moving vertically. Effectively, if given just the hand-centric
perspective’s observations, the agent does not know in which direction to move the gripper
in the beginning of an episode.

• peg-insert-side-hard: The goal is the same as in peg-insert-side, but like the green goal site
in reach-hard, the peg in this environment is initialized either to the left or right side of the
gripper with equal probability (see Figure 14). Hand-centric observability is low because
the gripper is initialized at the same height as the peg such that the peg is not initially visible
to the hand-centric view (though we do not prohibit vertical movement of the gripper as in
reach-hard, since this would make the peg insertion part of the task impossible), and also
because the peg and target box are initialized much farther apart than they are in peg-insert-
side (thus, the target box is completely out of view as the agent approaches and grasps the
peg).

Figure 14: Visualizations of the two sides that the green goal site or peg can be initialized to in the reach-hard
and peg-insert-side-hard tasks in Meta-World, respectively. One of the two sides is chosen via “coin flip” at the
beginning of each episode.
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C.2 TRAIN AND TEST DISTRIBUTIONS

At training time, initial positions of the objects in the Meta-World tasks are uniformly sampled
within some support. At test time, initial positions are sampled from a uniform distribution that
is completely disjoint from the training distribution, such that we test on out-of-distribution initial
object positions. To implement this, at test time we resample the set of initial object positions if
any of the positions overlaps with its train-time distribution. The full set of train-time and test-time
initial object positions is shown in Table 9. For visualizations, see Figure 15.

Table 9: The distributions of the initial object positions used in the six Meta-World environments. At training
time, we use the “narrow” initial object positions. At test time, we use the set difference between the “narrow”
and “wide” initial object positions, i.e. we repeatedly resample from “wide” until none of the objects in the
environment lie in the “narrow” distribution. As a result, the train- and test-time distributions are disjoint. The
range of positions for each object is given as a pair of coordinates: (xlow, ylow, zlow) and (xhigh, yhigh, zhigh).

task “narrow” init. obj. positions (x, y, z) “wide” init. obj. positions (x, y, z)

handle-press-side handlelow : (−0.35, 0.55,−0.001) handlelow : (−0.55, 0.4,−0.001)
handlehigh : (−0.15, 0.65, 0.001) handlehigh : (−0.15, 0.8, 0.001)

button-press buttonlow : (−0.2, 0.85, 0.115) buttonlow : (−0.4, 0.75, 0.115)
buttonhigh : (0, 0.9, 0.115) buttonhigh : (0.2, 0.9, 0.115)

soccer

balllow : (−0.2, 0.6, 0.03) balllow : (−0.3, 0.6, 0.03)
ballhigh : (0., 0.7, 0.03) ballhigh : (0.1, 0.7, 0.03)
goallow : (−0.2, 0.8, 0.0) goallow : (−0.3, 0.8, 0.0)
goalhigh : (0., 0.9, 0.0) goalhigh : (0.1, 0.9, 0.0)

peg-insert-side

peglow : (.05, 0.55, 0.02) peglow : (.0, 0.5, 0.02)
peghigh : (.15, 0.65, 0.02) peghigh : (.2, 0.7, 0.02)
goallow : (−0.325, 0.5,−0.001) goallow : (−0.35, 0.4,−0.001)
goalhigh : (−0.275, 0.6, 0.001) goalhigh : (−0.25, 0.7, 0.001)

reach-hard

if goal is on left of gripper: if goal is on left of gripper:
goallow : (−0.2, 0.85, 0.05) goallow : (−0.5, 0.9, 0.05)
goalhigh : (−0.2, 0.85, 0.05) goalhigh : (0.1, 0.9, 0.05)

if goal is on right of gripper: if goal is on right of gripper:
goallow : (−0.2, 0.35, 0.05) goallow : (−0.5, 0.3, 0.05)
goalhigh : (−0.2, 0.35, 0.05) goalhigh : (0.1, 0.3, 0.05)

peg-insert-side-hard

if peg starts on left of gripper: if peg starts on left of gripper:
peglow : (−0.025, 0.85, 0.02) peglow : (−0.3, 0.85, 0.02)
peghigh : (0.025, 0.85, 0.02) peghigh : (0.1, 0.85, 0.02)
goallow : (−0.525, 0.5,−0.001) goallow : (−0.525, 0.3,−0.001)
goalhigh : (−0.525, 0.6, 0.001) goalhigh : (−0.525, 0.75, 0.001)

if peg starts on right of gripper: if peg starts on right of gripper:
peglow : (−0.025, 0.35, 0.02) peglow : (−0.3, 0.35, 0.02)
peghigh : (0.025, 0.35, 0.02) peghigh : (0.1, 0.35, 0.02)
goallow : (−0.525, 0.5,−0.001) goallow : (−0.525, 0.3,−0.001)
goalhigh : (−0.525, 0.6, 0.001) goalhigh : (−0.525, 0.75, 0.001)
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Figure 15: Visualization of the train and test distributions in the six Meta-World environments used in the
experiments in Section 4. The three columns in the left half of the figure show three sets of initial object
positions randomly sampled from the training distribution; the three columns in the right half correspond to
the test distribution. From top to bottom are handle-press-side, button-press, soccer, peg-insert-side, reach-
hard, and peg-insert-side-hard. Both the third-person and hand-centric perspectives are shown for each random
initialization.
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C.3 DRQ-V2

DrQ-v2 (Yarats et al., 2021) is a state-of-the-art vision-based actor-critic reinforcement learning
algorithm that uses deep deterministic policy gradients (DDPG) (Lillicrap et al., 2015) as a backbone
(whereas DrQ-v1 by Kostrikov et al. (2020) uses soft actor-critic). The DrQ-v2 model includes:

• a convolutional image encoder fξ that outputs representation z = fξ(aug(o)) given frame-
stacked image observations o and a data augmentation function aug,

• two critic networks Qθk that output Q-values Qθk(z,a), k = 1, 2, à la clipped double Q-
learning (Fujimoto et al., 2018),

• and an actor network πφ that outputs action a = πφ(z)+ε, ε ∼ N (0, σ2), with σ2 annealed
over the course of training.

The individual critic losses are given by

Lk = Eτ∼D
[
(Qθk(z,a)− y)

2
]
, k = 1, 2 (2)

where τ = (ot,at, rt:t+n−1,ot+n) is a sample from replay bufferD and y is the temporal difference
target estimated via n-step returns:

y =

n−1∑
i=0

γirt+i + γn min
k∈{1,2}

Qθ̄k(zt+n,at+n) (3)

for slow-moving critic weights θ̄1, θ̄2. We omit presentation of the actor loss as we do not need
to modify it; in DrQ-v2, only gradients from the critic loss are used to update the weights of the
encoder(s).

In terms of the model architecture used in the experiments discussed in Section 4, we use the original
DrQ-v2 architecture, except for two modifications: first, we concatenate proprioceptive information
(3D end-effector position and 1D gripper width) to the flattened image representation before feeding
it into the actor and critic networks. Second, when using two perspectives at the same time (e.g.,
hand-centric and third-person), we use two separate image encoders that do not share weights. The
two representations are concatenated together (along with the proprioceptive information) and fed
into the actor and critic networks. The dimensionality of each encoder’s output representation is
preserved, thereby doubling the dimensionality of the final combined image representation.
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C.4 ABLATIONS ON π ◦Oh+3+p + VIB(z3)

To better understand what makes π ◦ Oh+3+p + VIB(z3) work the best, we conduct the following
ablations. Figure 17 presents the train and test curves of the ablation experiments.

What if both perspectives are regularized? The ablation agent π ◦Oh+3+p+ VIB(zh)+ VIB(z3)
adds a separate VIB to the hand-centric information stream in an analogous manner to how the
third-person perspective’s representation is regularized (detailed in Section 4.1). We use the same
β3 for both and tune βh. Note that setting βh = 0 for π ◦ Oh+3+p + VIB(zh) + VIB(z3) recovers
π ◦Oh+3+p + VIB(z3) modulo stochasticity in zh, so we limit the lowest value βh can take to 0.01.
We find that in no task does π ◦Oh+3+p + VIB(zh) + VIB(z3) outperform π ◦Oh+3+p + VIB(z3),
validating our choice of only regularizing the third-person perspective’s representation.

Assessing the importance of the hand-centric perspective. π ◦O3′+3+p + VIB(z3) uses a second
third-person perspective O3′ instead of the hand-centric perspective Oh. Visualizations from this
additional third-person perspective are shown in Figure 16. We re-tune β3 for this agent. We find
that π ◦ O3′+3+p + VIB(z3) performs significantly worse than π ◦ Oh+3+p + VIB(z3), affirming
the benefit of using the hand-centric perspective in the multi-perspective setting.

zh-dependent regularization of z3. VIB(z3) reduces the information contained in z3 without di-
rectly considering zh. With the ablation agent π ◦ Oh+3+p + `2(z3), we consider a simple form of
zh-dependent regularization of z3 in which we push z3 towards zh by adding a weighted regulariza-
tion term α3‖z3 − stopgrad(zh)‖22 to the DrQ-v2 critic objective. This approach seems promising
given that π ◦ Oh+3+p consistently outperforms π ◦ O3+p across all six tasks, suggesting that even
in the midst of substantial partial observability, zh may represent information in a useful and gen-
eralizable way. We tune α3. We find that π ◦ Oh+3+p + `2(z3) marginally improves over vanilla
π ◦Oh+3+p but still comes far short of π ◦Oh+3+p + VIB(z3), suggesting that the two perspectives
contain important complementary information that is better represented separately.

Figure 16: Visualizations of the two third-person perspectives used in the ablation agent π◦O3′+3+p+VIB(z3)
discussed in Section 4.3. The top row contains the original third-person perspective; the bottom row contains
the second third-person perspective used only in the ablation.
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Figure 17: Ablation studies on π ◦ Oh+3+p + VIB(z3) in Meta-World. Shaded regions indicate the standard
error of the mean over three random seeds. Note that for π ◦Oh+3+p+VIB(zh)+VIB(z3) in peg-insert-side,
DrQ-v2 training did not converge within the specified number of training steps for one of three random seeds
(hence the larger shaded regions and the lower out-of-distribution generalization performance). In addition, for
π ◦ Oh+3+p + VIB(zh) + VIB(z3) in peg-insert-side-hard, DrQ-v2 training did not converge for any of the
three seeds.
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C.5 PROPRIOCEPTION-ONLY ABLATION

In this ablation experiment, we demonstrate that visual observations are a necessary component of
the observation space, i.e. that the tasks we experiment with cannot be consistently solved with pro-
prioceptive observations alone. We run DrQ-v2 on all six Meta-World tasks introduced in Section
4.2 without image observations and show the results in Figure 18. Unlike policies that are afforded
vision, these proprioception-only policies do not approach 100% success rate on the training distri-
butions.

train/ID test/OOD

0 50 100 150 200 250

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

0 50 100 150 200 250

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

handle-press

0 50 100 150 200 250

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

0 50 100 150 200 250

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

button-press

0 200 400 600 800

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

0 200 400 600 800

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

soccer

0 200 400 600 800

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0
su

cc
es

s
ra

te

0 200 400 600 800

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

peg-insert-side

0 200 400 600

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

0 200 400 600

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

reach-hard

0 200 400 600 800

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

0 200 400 600 800

environment steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

peg-insert-side-hard

Figure 18: DrQ-v2 results for Meta-World for π ◦ Op, i.e. an agent that operates solely from proprioception.
These results establish the necessity of vision for these tasks, as the policies are unable to consistently solve
task instances without it. For the reach-hard task, in which the goal is randomly initialized to the left or right of
the end-effector, the policy learns to always direct the end-effector towards one side. Shaded regions indicate
the standard error of the mean over three random seeds.
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C.6 EXPERIMENTS WITH END-EFFECTOR ORIENTATION CONTROL

The experiments in Section 4 involved a 4-DoF action space consisting of 3-DoF end-effector posi-
tion control and 1-DoF gripper control, which was sufficient for solving all of the Meta-World tasks.
In this section, we add one more degree of freedom for end-effector orientation control (allow-
ing the parallel-jaw gripper to swivel) and then construct and experiment on two modified versions
of the peg-insert-side task that cannot be solved without end-effector rotations. The train and test
distributions of initial object center-of-masses are the same as those in the original peg-insert-side
task.

In the first modified version, the end-effector is initially rotated 90 degrees from its original orien-
tation, forcing the agent to rotate the end-effector before grasping the peg (see the center column
of Figure 19 for a visualization). The second modified version of the task includes the following
changes: (1) the proprioceptive observations also include the end-effector’s orientation (as a quater-
nion), and (2) the peg—not the end-effector—is initially rotated by 90 degrees (see the rightmost
column of Figure 19 for a visualization). Not only does (2) force the agent to rotate the end-effector
before grasping the peg, but it also requires the agent to re-orient the peg correctly before inserting
it into the box. The experimental results for DrQ-v2 in these two new environments are shown in
Figure 20.

Figure 19: Visualizations of the two modified versions of the peg-insert-side task in Meta-World, where the
first and second rows contain the third-person and hand-centric perspectives of the initial configurations, re-
spectively. Left: original peg-insert-side setup. Center: end-effector initially rotated 90 degrees about the
vertical axis (corresponding to the left half of Figure 20). Right: peg initially rotated 90 degrees about the
vertical axis (corresponding to the right half of Figure 20).
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Figure 20: DrQ-v2 results for the two modified versions of the Meta-World peg-insert-side task (visualized
in Figure 19). For the first modified version, we see generalization performance trends similar to those in the
original rotation-less peg-insert-side task (second row, second column of Figure 6). In the second modified
version, π ◦ Oh+3+p + VIB(z3) outperforms π ◦ Oh+3+p in terms of sample complexity and generalization,
and π ◦Oh+p in terms of sample complexity. However, test performance begins to droop after 1.6M steps – we
attribute this to overfitting on the training distribution, which would likely occur to the other agents as well if
they were trained post-convergence to a similar extent. Shaded regions indicate the standard error of the mean
over three random seeds.
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C.7 HYPERPARAMETERS

We present the DrQ-v2 hyperparameters used in the Meta-World experiments in Table 10. The
configuration is largely identical to the one used in the original DrQ-v2 algorithm (Yarats et al.,
2021).

Table 10: The hyperparameters used for DrQ-v2 in the Meta-World tasks. The lower half of the table presents
the hyperparameters that are specific to the regularization methods and ablation agents.

parameter setting

replay buffer capacity 100,000 for {handle-press-side, button-press, reach-hard};
400,000 for all other environments

action repeat 2
frame stack 3
seed frames 4000
exploration steps 2000
n-step returns 3
mini-batch size 256
discount γ 0.99
optimizer Adam
learning rate 10−4

agent update frequency 2
critic Q-function soft-update rate τ 0.01
features dim. 50
hidden dim. 1024
exploration stddev. clip 0.3
exploration stddev. schedule linear(1.0, 0.1, 500000)

weight β3 of KL div. term in 500 for {soccer, peg-insert-side-hard};
π ◦Oh+3+p + VIB(z3) 50 for peg-insert-side w/ rotated initial gripper (for Appendix C.6)

1 for peg-insert-side w/ rotated initial peg (for Appendix C.6)
10 for all other environments

weights βh, β3 of KL div. terms in βh:
π ◦Oh+3+p + VIB(zh) + VIB(z3) 0.1 for {button-press, reach-hard, soccer};

0.001 for all other environments
β3:

same as β3 of KL div. term in π ◦Oh+3+p + VIB(z3)

weight β3 of KL div. term in 0 for handle-press-side;
π ◦O3′+3+p + VIB(z3) 500 for soccer;

1 for all other environments

weight α3 of `2 reg. term in 108 for all environments
π ◦Oh+3+p + `2(z3)

D MISCELLANEOUS DETAILS

We applied an exponentially weighted moving average filter on the data for DrQ in Figure 2 (α =
0.6), for DAC in Figure 3 (α = 0.3), and for DrQ-v2 in Figures 6 and 17 (α = 0.5) to smoothen the
train and test curves for increased readability. The smoothing factor α lies in the range [0, 1], where
values closer to 0 correspond to more smoothing.
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